
CLOSE ENCOUNTERS OF THE UPSTREAM RESOURCE

HISAO MUNAKATA
RENESAS SOLUTIONS CORP
hisao.munakata.vt(at)renesas.com

Embedded Linux Conference 2012 Close Encounters of the Upstream Resource

2

who am I

Work for Renesas (semiconductor provider)

Over 15 years “real embedded Linux business field” experience
Providing “free Linux starter code (BSP)”
We help our important customers who are Linux newbie's.
(They ask anything about Linux to us.)

Over 5 years experience working with the community
Linux Foundation CEWG Architecture group co-chair
I am leading Linux core technology team in Renesas that develops
upstream Linux code. As this team consisted of several community
developers we had chance to work closely with Linux upstream.

We are learning how to work with the Linux community

MY FINDINGS

Embedded Linux Conference 2012 Close Encounters of the Upstream Resource

“production team” vs. “evolution team”
4

“red party”

product developer

“red party”

product developer

community, long-term, reusable code,
no appointed date of delivery

budget, mass production, competition

“utopia”

“business”

upstream
community“blue party”

upstream developer

office

Embedded Linux Conference 2012 Close Encounters of the Upstream Resource

Each party aims different goal
5

too short focused “easy” solution
A code reuse rate is low
No intention for open source contribution
lack of feedback (requirement, bug info)
random requirements

development takes too long time
maybe lack of stabilization
hard to make product differentiator
can not help today’s release
unclear support scheme

Each party aims different goal and it seems very hard to share it.
However red party’s (future) work depends on blue party anyway.

Embedded Linux Conference 2012 Close Encounters of the Upstream Resource

Red team development system
at the time of “binary-only world”

6

binary
code delivery

license fee
contract based

paid support

There were no chance (demand) to access source code. They could
ask paid support to get workaround, but it was not a true solution.

authorized integrator

Embedded Linux Conference 2012 Close Encounters of the Upstream Resource

7

source code

source code
integrated BSP

paid support
almost no
interaction

embedded Linux
distribution

Red team development system
at the time of start using Linux for CE products

Industry developers were mainly supported by embedded Linux
distribution and/or integrator company. Due to kernel version gap,
there were very limited connection to the upstream community.

Embedded Linux Conference 2012 Close Encounters of the Upstream Resource

8

They work closely

industry
consortium

upstream
community

Red team development system
at today (start adopting community framework)

Industry developers have started to adopt relatively new kernel that
have been integrated in software platform. However they are not
familiar with working with the upstream development community.

STRUGGLES OF PRODUCTION TEAM

Embedded Linux Conference 2012 Close Encounters of the Upstream Resource

tend to develop own unique kernel
10

You are allowed to modify source code as you like, BUT…

xhard to mainline

too unique codeupstream
community

struggles 1

Embedded Linux Conference 2012 Close Encounters of the Upstream Resource

incorrect way of patch creation
11

Linux has been constructed as
accumulation of a degradable
small patches.

Locally developed large & irregular patch can not be integrated

Driver code for specific
environment that is not
abstracted.
Does not work with SMP
incorrect use of kernel API
non-portable coding

Driver code for specific
environment that is not
abstracted.
Does not work with SMP
incorrect use of kernel API
non-portable coding

too big piece hard to
merge
duplication of code
missing git log information
wrong patch format

too big piece hard to
merge
duplication of code
missing git log information
wrong patch format

struggles 2

Embedded Linux Conference 2012 Close Encounters of the Upstream Resource

lack of elemental modern OS understanding
12

everyday
till mid-night

kernel panic !!
crush dump XXXX
segmentation fault

struggles 3

When they faced a problem of the Linux origin,
they think they can be settled in oneself. However ,...

Embedded Linux Conference 2012 Close Encounters of the Upstream Resource

emergency support request may not work
13

log

non-essential guidenon-essential guide

pointless log gatheringpointless log gathering

struggles 4

Embedded Linux Conference 2012 Close Encounters of the Upstream Resource

re-inventing already created bug-fix
14

fix already exist in
new kernel code creating in-house fix

bug fix bug fix

upstream
community

struggles 5

Embedded Linux Conference 2012 Close Encounters of the Upstream Resource

mindless patch merging without inspection
15

binary driverincompatible code

They really do not understand the role of tree maintainer

code that include bug

struggles 6

Embedded Linux Conference 2012 Close Encounters of the Upstream Resource

long term maintenance of in-house orphan tree
16

It costs enormous expenses for the lone tree maintenance.

locally developed
in-house code, that
could not be merged
back to the upstream

struggles 7

DO THE RIGHT THING
WITH THE COMMUNITY RESOURCE

Embedded Linux Conference 2012 Close Encounters of the Upstream Resource

As you start using fresh kernel, community became close
18

upstream
community

Linux 3.3

2.6.18

Linux 3.0

Linux 2.6.32 They had been completely isolated
(due to the kernel version gap)

getting
closer

Resources of the upstream community are more available till now.

Embedded Linux Conference 2012 Close Encounters of the Upstream Resource

Even if you are not a upstream developer,….

I know production developers are extremely busy with their own
target development, and I do not demand the following thing.

check all community ML discussion relating to your topic
create patch against current upstream development kernel
negotiate in ML discussion to merge your patch to the upstream

If you can pay more attention to existing
open source community resources like
git, BTS, ML and others, you may utilize
them to make your development more
efficient and clean. So this is the right time
to breakout to the open source arena.

19

Embedded Linux Conference 2012 Close Encounters of the Upstream Resource

Breakout to the community resource !
20

developer
network

ML archives

code
repository

consortium
code archives

Even without direct contribution, red team developer can
utilize various “open resources” to manage better work !!

upstream
community

Embedded Linux Conference 2012 Close Encounters of the Upstream Resource

several recommendations
21

Embedded Linux Conference 2012 Close Encounters of the Upstream Resource

22

recommendation 1
correct use and utilization of git

Git is extremely powerful code management tool. Correct and
efficient use of git is essential to improve your development.

You should add correct git log message to all codes you add.
Source code must be tie with .git repo management information.
This will dramatically reduce future debug and maintenance cost.

If you develop Linux/Android code, you can always compare
your code and current latest community code. It will show how
community modified (polished) the upstream code. And their
code might already include the code you need to develop.

You can create any experimental branch with git.
And you can merge it to the original tree when it is
enough verified. Creation of random experimental
branch without git use easily makes spaghetti code.

Embedded Linux Conference 2012 Close Encounters of the Upstream Resource

1. Determine potential problematic area by locating commonly used
functions in function call history included in error log messages

2. Use git to check which bug fix commits that are included in latest
stable tree update for the problematic area
http://git.kernel.org/?p=linux/kernel/git/stable/linux-stable.git;a=summary

3. Use git to check new commits in latest upstream tree for the
problematic area, maybe bug fixes are missing from stable?
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=summary

4. If no potential fixes exist in stable or latest upstream then give up

5. If fixes exist then create custom back port with multiple commits
covering the problematic

23

Example 1
kernel bug-fix patch cherry picking

Embedded Linux Conference 2012 Close Encounters of the Upstream Resource

6. Test the custom back port and keep your fingers crossed

7. If problem disappears then adjust back port to become smaller
to work towards locating actual fixes

8. If problem still exists then make back port larger to cover greater
area to include more potential fixes

9. Repeat testing and adjustment of back port until satisfied
or giving up

10.Contact stable maintainer to discuss inclusion of fix in
next stable release

24

Example 1
kernel bug-fix patch cherry picking (cont’d)

Embedded Linux Conference 2012 Close Encounters of the Upstream Resource

25

Android version comparison
Example 2

You can download Android platform source code (except 3.x
series) from AOSP repository. And fortunately AOSP code
includes git management information, you can compare your
code and AOSP latest code pretty easily. So if you are stuck with
any Android platform related problem, it is good idea to check
this first to notice Android upstream work result as it may already
include solution for your problem.

Furthermore, you can compare the cord of the latest Android
4.0.x series with the cord of the Android 2.3.x series. This may
help you when you want to add SMP support upon 3.2.x
environment.

You need to become professional user of repo and git command
to perform efficient code comparison.

Embedded Linux Conference 2012 Close Encounters of the Upstream Resource

You can compare OLD and NEW with following repo command.
This will show anything modified from OLD -> NEW and newly
added stuff on NEW.

Sample to compare android-4.0.1_r1 and android-4.0.3_r1

26

Example 2
Android version comparison (cont’d)

Embedded Linux Conference 2012 Close Encounters of the Upstream Resource

To deep dive into each change, initially you need to move to each
source directory and use git log command with appropriate
option. Here listed some useful git log option.

--grep= 'keyword’
Set to find log including ‘keyword’
You can find patch including the work “LTE” by setting --grep='LTE'

--author='author’
Set to find log that has ‘author’ in Author
You can find commit made by Samsung with setting
author='@samsung.com'

-p : generate patch form output
-E : accept Extended regular expression

27

Example 2
Android version comparison (cont’d)

Embedded Linux Conference 2012 Close Encounters of the Upstream Resource

If you want to find the change between android-2.3.7_r1 to
android-4.0.1_r1 that include keyword “LTE”, you can use
following command.

Last example is a bit advanced one. This will show android
enhancement between 2.3.7_r1 (GB) to 4.0.1_r1 (ICS) to add
support for SMP processor.

28

Example 2
Android version comparison (cont’d)

Embedded Linux Conference 2012 Close Encounters of the Upstream Resource

29

Placing maintainer who owns strong practice authority
recommendation 2

All patches must be investigated thoroughly before merging it,
and this is the process that is essential to avoid tree confusion.
The tree maintainer needs to block all inappropriate code.
Therefore he must have strong authority. It may be too hard for
junior engineer.

ugly
patch

Maintainer need to reject any request that include bad code.

in-house tree
maintainer

Embedded Linux Conference 2012 Close Encounters of the Upstream Resource

The perspective of the blue team is totally different from the red
team. However, it is useful for both sides to share the demand of
the red team. This can be a trigger to add industry demand into
future kernel.

30

red team and blue team coordination
recommendation 3

Red team can share production team demands to Blue team

production
task list

upstream
task list

demand
list

Embedded Linux Conference 2012 Close Encounters of the Upstream Resource

Community development takes time as it will require coordination.
Product development always requires immediate bug-fix.
Therefore it does not make sense to use single BTS for both party

However,… The same problem will occur again if they do not add
bug-fix code to the community upstream. So bug information share
between production(red) and upstream(blue) team would be
beneficial way.

31

Disclosure of red team BTS contents
recommendation 4

bug
report production

BTS

Embedded Linux Conference 2012 Close Encounters of the Upstream Resource

32

“LTSI” as common ground
recommendation 5

LTSI is Linux Foundation project to provide integrated stable kernel

upstream
latest

upstream
latest

upstream
long-term
upstream
long-term

Project code
“AOSP” etc.
Project code
“AOSP” etc.

SoC vendor
in-house tree
SoC vendor

in-house tree

4way merge
process needed

Champagne 17:15 Wednesday, February 15th

“On The Road: To Provide the Long-Term
Stable Linux For The Industry”

Champagne 17:15 Wednesday, February 15th

“On The Road: To Provide the Long-Term
Stable Linux For The Industry”

Embedded Linux Conference 2012 Close Encounters of the Upstream Resource

33

Conclusion

It is a very good trends that product development team
come to use relatively new kernel because it shorten the
distance to the upstream community.

However, it does not seem to be able to be understood
how the production developer can utilize the published
community resources.

It is understandable that production development team
prefer their own way of development. However it is
essentially important to study and adopt already proven
open source development process, e.g. “full utilization of
git”, “adoption of Linux upstream code review process”.

