Automated Test Framework (I{TF)

Embedded Linux Conference
2012

Overview

“ ATF is a Domain Specific Embedded Language (DSEL) for
defining tests.

“ Intended to be used for Unit Testing through System Testing

“ Intended to allow Test Case reuse in simulated, prototype
hardware and release hardware environments.

“ ATF consists of:
> A Perl-based Test API that provides:
e Communication to multiple test target via SSH, telnet, etc.
* Domain Specific Embedded Language (DSEL) for defining tests
¢ A wrapper on top of the Perl Test Harness

» Test Driver that allows running buckets of tests and summarizing
results

» Test cases that are written in the Test APl DSEL and/or Perl

Why ATF?

" Need 'simple-to-write' test cases
“ Need to be able to run single tests or buckets of test cases

" Need the ability to drive several systems and firmware

components from a single test case:
» CLI calls
» RPC calls
» Packet Injection

“ Wanted to avoid making test case writers learn complicated
programming languages

" Wanted the lightweight development cycle of a scripting
language

“ No known existing test suite met all of these requirements

Why Perl?

* Script language

" Code Reuse
» Perl's Test Harness
» Tools for handling Test Any Protocol

“ Useful for making a DSEL
» Expressive syntax
> Reflective

" Powerful enough language to handle unexpected corner cases

" Learned Incrementally

Target Uses

“ Unit Testing
» Used by firmware developers to test good paths

“ Build Verification Testing
» Used by the build to identify bad check ins

“ Functional Testing
» Used by firmware testers to verify component functionality

* Simulation Verification
» Used by hardware modelers to detect regressions

" System Verification

» Used by system testers and manufacturing to confirm all
components work together

“ Automated Regression Testing

Results

" Tests are written by testers & developers
» Our team has little to no Perl experience
» Only one of the testers is a programmer

" 1.5 dedicated testers since September 2010
» Create, run and write additional automation

“ Running weekly regression of 6300 tests

“ Running daily build verification test of 452 crucial tests

Features

" Supports multiple targets

HTML based report generation

Simple parallel execution

TODO keyword
» Intended for tests that are written before function is ready
» Can be used on entire test case, single test, or single expectation
» Test run, expectations checked, but results flagged as TODO
» Successes are marked as ‘unexpected successes’
» Failures are reported, but do not count as failures

SKIP keyword
» Intended for tests that temporarily should not be run, because of some detrimental effect
(such as preventing other tests in the bucket from running)
» Can be used on entire test case or single test
» Unlike TODO, SKIP Will NOT execute the test nor will it check expectations
» Tests marked as SKIP are reported as skipped, not as failures

Simplified flow control
» Test case stages with automatic flow control
» Variation keyword - allows simple to write looping mechanisms that can be
nested

Technical Detalls

Run Directive

#l/usr/bindperl

Declares an action to take

u=e ATFIITest)

“ Declares expectations of the {
Run
()l‘t‘)llt g:ge E
- - expect {
* Hides the mechanics of E 22% { Ericae > 0.3 4]
» Running the command expect {
. reject {
» Gathering output ,, et
» Reporting results ’
. # Launch Run 1 :
" Results are reported in # command

“Test Anything Protocol” ¢

#

ok 1 - Run to co
ok 2 - expect
ok 2 - reject
ok 4 - expect

ok 5 - expect :
ok & - reject

ok 7 - reject
#

1..7

Target

Evaluate Run 1 :

'Test a run.

'Test a r
‘echo -n
‘default

mpletion

v exit_code

exit_code

1 pattern ==

pattern ==

I pattern ==

pattern ==

" h

gqgiecho -n hi; echo world 1=82; exit 12323 };
exit_code == 123 %},

source => stdout, pattern => qr/ohids}:
source => stderr, pattern == qgqr/oworldwngims};
source == stderr, pattern => gr/~hi%/};
source => stdout, pattern => qrioworldwsng/ms};

L.,
hi; echo world 1»>82; exit 123°

'Test a run.'

‘echo -n hi; echo world 1=8£2; exit 123",

== 123

== 0, 1, 2

(?-xism:~hi%) source == stdout
{(?ms-wi:rworlding) source == stderr
(?-®xism:~hi%) source == stderr
(?ms-x1i:Mworldung) source => stdout

Run Directive - Expectations

" Exit code expectireject
» Declare a list of exit codes to
accept or reject

“ Pattern expect/reject
» Declare a data source
» Declare a pattern
» Optionally capture data
» Optionally mark the test as
TODO or SKIP

" Assert
» Catches some corner case
» Provide a nhame
» Declare a Boolean expression
that must be true

" Ok
> Perl assertion for remaining
corner cases

Run 1

cmd { ggl{echo -n hi; echo world 1=82; exit 123) };
expect |
reject {

exit_code =»> 120,.129 %},
exit_code == @,.1a@ };

== stdout,
qrisafhilhello|howdy) %5,
[greeting => 1]};
stderr,

qriahiss F;

expect { source
pattern ==
capture ==
source ==

pattern ==

reject {

assert { "Check exit code more thoroughly.”,
(fcapturef{exit_code} == 12a0)

& (Fcapture{exit_code} == 129} };
1

oki{fcapture{greeting} ne "howdy", "Let's stay formal.");

mm

Launch Run 1 : 'echo -n hi; echo world 1=£2; exit 123°'

Target : 'default’

#

11

Evaluate Run 1 : 'echo -n hi; echo world 1>&2; exit 123°'

#

ok 1 - Run to completion ‘'echo -n hi; echo world 1=82; exit 123",

ok 2 - expect : exit_code == 128, 121, 122, 122, 124, 125, 126, 127, 122, 129
ok 2 - reject : exit_code => @, 1, 2, 2, 4, 5, &, 7, 2, 49, 1o

ok 4 - expect : pattern == (?-xism:~{hi|hello|howdy)$) source => stdout
ok 5 - reject @ pattern == (?-xism:~hi%) source == stderr

ok & - assert : Check exit code more thoroughly.

#

ok 7 - Let's stay formal.

1.7

Run Directive — Lowered Expectations

= SKIP
» Can be used to prevent the
execution of:
¢ A test file
¢ A Run directive
¢ An individual pattern test
(But don't do this)

“TODO
» Prevents expect failures from
counting as failures
» Flags unexpected successes.
» Can mark
* A test file
* A Run directive
¢ An individual pattern test
* An exit code test

SKIP { "Running these tests will ruin the test environment." };
ToDo { "These tests shouldn't work YET." %},

Run {
Tobo { "Don't be surprised if this does not run." 3},
SKIF { "Let's just be safe and not run it." };

cmd 1 "echo hi ; exit 123" };

expect { exit_code => 12@8..,129,
Topo == "This always returns zero at the moment."};

expect { source => stdout,
pattern == gqr/a(hi|hello|howdy)%/,
TODO => "Output doesn't work quite vet." 3},

reject { source == stderr,
pattern == qrs./,
TODO == "currently there are lot of errors messages." };

Run Directive - Multi-target

This is not really necessary since these target always exist.
RequiredTargets 'default', 'host';

" Support multiple targets

" Default target
» Defined as local host
» Can be changed via the
command line or via an
optional configuration file

" Host is defined as local
host

" Other targets are defined in
an optional configuration
file

Skip this test if the default target is the local host.
SKIP { "This test requires the default target to be a remote target"
Y if ref($ATF::Configuration::Target{default}) eq 'ATF::Target::Local';

Set a local environment wvariable that we will see locally but not remotely.
FENV{DUMMY_VAR} = 'DUMMY_WVAR';

Run something locally using 'host'.
Run 1

cmd { "env" };

target { 'host' };

expect { source => stdout, pattern => qr/ADUMMY_VAR=DUMMY_VAR%/m};
T

Run something remotely using 'default’'.
Run 1

cmd { "env" 3}

target { 'default' };

reject { source ==> stdout, pattern => qr/ADUMMY_VAR=DUMMY_VAR%/m};
T

Run something remotely without declaring a target.
Run {

cmd { "env" };

reject { source =» stdout, pattern => qr/ADUMMY_VAR=DUMMY_VARE/ m};
T

Host 05
pefineTarget{test_svys => 'S5H',
address => 192,168.10.18, port =»> 22,

user => 'root', password == '12345']),;
Test MC
pefineTarget{test_mc == 'SSH',
address == '192,162.18.14', port == '22',
user == 'USERID', password == 'PASSWORD');

Redefine the default target
pDefaultTarget('test_mc');

Run Directive - Parallel Execution

Set the default timeout,
DefaultTimeout (12a] ;

" Simplified parallel execution
" Run time is not deterministic
" Maximum run time is known

" Visibility of captured values

Is deterministic
» Each Run sees captured
values available when they
are launched
» Foreground Run's results are
evaluated immediately at
completion

» Background Runs are
evaluated at the end of the
the enclosing Parallel block
in the order they were
launched.

Start a Parallel block for the fence
Farallel {
Run { # Run 1: a long running normal command.
cmd {"echo state runl && sleep 20"};
asszert {"state should not exist yet.", lexists({fcapture{state})},
expect { source => stdout, pattern => qgqrSastate (runl)$sm,
capture => [state => 1] 3};

Ti
Run { # Run 2: a long running background command.
cmd {"echo state runz && =sleep 260"3%};
expect { source => "state", pattern => qr/arundd$s
expect { source => stdout, pattern => qr/ostate (runz2)%sm,
capture =» [state => 1] 3}
background;
Ti
Run { # Run 3: a quick background Run.
cmd {"echo state runz && sleep 5"}
expect { source => "state", pattern => qrSorunz2dS G}
expect { source => stdout, pattern => qr/astate (run3)%sm,
capture => [state == 1] };
background;
T
Run { # Run 4: a longer running blocking Run.
cmd {"echo state rund && sleep 60"}
expect { source => "state", pattern => qgr/arunld$s
expect { source => stdout, pattern => qrsSostate (rund)ksm,
capture => [state => 1] 3};
Ti
ok({$capture{state} eq 'rung4’',
"Capture wariable 'state’' should only see foreground results now.");
T
ok({scapture{state} =q 'run3’',
"Capture wariable 'state' should see background results now.");

Run { # Run 5: a quick blocking Run.
cmd {"echo state run5 && sleep 5"};
expect { source == "state", pattern == qrSorun2sS G}
expect { source == stdout, pattern => grsShstate (runs)i%sSm,
capture => [state == 1] };

I

ok{fcapture{state} eq
"Capture wariable

‘runs’',
'state’

should see foreground results");

o
[

S

oW

oAk o o d A A A kR A e D O A ARt et D O AR AR AR AR AR
=

Run Directive - Previous Results

Launch Run 1 @ 'env'
Target : 'host'

k%

Evaluate Run 1 : 'env'

- Run to completion ‘env'.
- gxpect : pattern => (?m-x1s:ADUMMY_VAR=DUMMY_VAR$) source => stdout

Launch Run 2 : 'env'
Target : 'default’
Evaluate Run 2 : 'env'

- Run to completion ‘enwv'.
- reject : pattern == (?m-x1is:ADUMMY_VAR=DUMMY_VAR$) source => stdout

k%

Launch Runm 3 @ ‘env'
Target @ 'default'
Evaluate Run 2 : ‘'env'
5 - Run to completion ‘env'.
6 - reject ! pattern => (?m-xis:ADUMMY_VAR=DUMMY_VAR%3) source => stdout
]

HE e o
Launch Run 1 '‘echo state runl && sleep 3@

Target ‘default’

#

o e e e e i e e o e e i o o e e i i e e

Ewvaluate Run 1 'echo state runl && sleep 20

#

ok 1 - Run to completion ‘echo state runl && sleep 20°'.

ok 2 - assert state should not exist yet.

ok 2 - expect pattern == (?m-xis:icstate (runl)%) source => stdout
#

HE e o

Launch Run 2 '‘echo state run2 && sleep 3@'

Target 'default!

Running in the background.

#

HE e o

Launch Run 3 '‘echo state run3 && sleep 5'
Target ‘default’

Running in the background.

#

B i
Launch Run 4 ‘echo state run4 && sleep 60°

Target ‘default’

#

4 e e e e e e e e i e e
Ewvaluate Run 4 'echo state rund && sleep G@'

#

ok - Run to completion ‘echo state rund £& sleep G60°'.

4
ok 5 - expect pattern == (?-xism:~runl%$) source == state
=}

=1} - EXpeEct pattern == (?m-xis:i~state (run4)%) source => stdout

#

ok 7 - Capture wariable 'state' should only see foreground results now.
o e i e e i e o e e e o e e

Ewvaluate Run 2 'echo state run2 && sleep 28

Ran in the background.

#

ok 8 - Run to completion 'echo state runz && sleep 20'.

ok @ - expect pattern => (?-xism:~run4$) source == state

ok 10 - expect pattern => (?m-xis:astate {(run2)%) source => stdout
#

o e e e e e e o e e i o o e e i i e e

Ewvaluate Run 3 'echo state runz && sleep 5'

Ran in the background.

#

ok 11 - Run to completion 'echo state runz £& sleep 5'.

ok 12 - expect pattern => (?-xism:*runz%) source == state

ok 12 - expect pattern == (?m-xis:!sstate {(run2)%) source => stdout
#

ok 14 - cCapture wvariable 'state' should see background results now.
HE e

Launch Run 5 '‘echo state runs5 && sleep 5'

Target ‘default’

#

o e e e e e e o e e i o o e e i i e e

Ewvaluate Run 5 'echo state runs5 && sleep 5'

#

ok 15 - Run to completion '‘echo state run5 && sleep 5'.

ok 16 - expect pattern == (?-xism:~run3%) source == state

ok 17 - expect pattern => (?m-xis:~state (runS5)%) source => stdout
#

ok 1& - cCapture wvariable 'state' should see foreground results

1..18

Running Tests

= V/PERLENY .Jatf_driver -h
usage:!: atf_driver [-h]|--help]

driver options:

-h, --help

-, --werhose

-r, --recursive

-R, --html-report
-0, --output =dir=
-, --config =file=>

target options:

[options] testfile.atf

Display this help.

Display wverbose output,

Recursively search directories for .atf files.
Create HTHML test report in the output directory.
The report will be named ATF_Test_Results.html.
Directory to store results in. created if needed.
(required)

The path to a configuration file.
used multiple times.

This can be

-t --target-type =type> Test target tvpe. (Local, 55H, SS5HaAgent).

-A, --target-address <addr> HNetwork address of the test target.

-F, --target-port “port> Network port of the test target.

-u, --target-user =user= User ID to authenticate on test target.

-Ps --target-password =pw> Password to authenticate on test target.
> /SPERLENV ./Test_Bucket /sample.atf -t S5H -A 127.0.0.1 -P 22 -u USERID -p PASSWORD
> JSPERLENV ./Jatf_driver -o Jtmps/Results -t S5H -A 127.0.0.1 -F 22 -u USERID -p PASSWORD ./Test_Buckets/sample.atf
A Test_Bucketssample ., atf ok
All tests successful,
Files=1, Tests=6, 2 wallclock secs ([©.07 usr ©.,82 sys + 1.25 cusr ©,12 csys = 1.486 CFU)
Result: PASS
= JSPERLENV .Jfatf_driver -o Jtmps/Results -t S5H -A 127.0.0.1 -P 22 -u USERID -p PASSWORD ./Test_Buckets™.atf
ATest_Bucketssample.atf ok
A Test_Bucketslarge.atf ok
ATest_Bucketssingle_run.atf ok
A Test_Bucketsparallel . atf ok
S Test_Bucketsvaration. atf . ok
ATest_Bucketstodo_skip.atf ... ok
All tests successful,
Test Summary Report
A Test_Bucketslarge., atf (Wstar: o Tests: 212 Failed: @)

TODD passed: 16@, 162-163
A Test_Bucket/todo_skip.atf (Wstat: @ Tests: 126 Failed: @)
ToDo passed: 1@, 29-231, 35, 43-44, 46-47, 409, 52, 55-56
52-59, 64-6G6G, 7O-73, 77

Files=6, Tests=7320, 1932 wallclock secs (0.50 usr @.04 sys + 45,47 cusr 2,281 csys = 49,82 CPU)
Result: PASS

[hursh@b-liner Test_Bucket]$ []

Test Output - HTML Report

show failed PAS S E D

Time

elapsed time: 42 wallclock secs | 0.24 usr 0.04 sys + 1916 cusr1.43 csys = 20.87 CPLU)

Test file - Test results vy % *v
ATest_Bucket 41.79s
flarge. atf 100.0%
1 files 212 tests, 212 ok, O failed, 5todo, 0 skipped, 0 parse errors 41.78s
exit status: 0, wait status: 0 101.4%

Generated by TAP::Formatter:HTML v0.09 @ 16:22:16 03-Feb-2012

Launch Run 28 : 'Redefine reality.'
Command : 'expr 2 + 2 = §'
Target : 'default'

EEE RN T

Ewvaluate Run 28 ! 'Redefine reality. '

ok 160 - Run to completion 'expr 2 + 2 == 5. # TODO We're not quite there yet. ([unexpectedly succeeded!)
not ok 161 - expect : exit_code == 0 # TODO We're not quite there yet.

Failed (TODO) test 'expect : exit code == @'

at . /Test Bucket/large. atf line 103,

Failed Test : . /Test_Bucket/large atf Line 96

Bad Result

|1

ok 162 - reject : pattern == (?-xism:.) sounce => stderr # TODO We're not quite there yet. (unexpectediy
succeeded!)

ok 163 - reject ;| pattern == (?-xism:.) sournce == erroriog # TODO We're not quite there yet. [uUnexpectedy
succeeded!)

not ok 164 - expect : pattern == *14% source == stdout # TODO We're not quite there yet.

Failed (TODO) test 'expect : pattern == ~1% source == stdout'
at . /Test_Bucket/large. atT line 103.

Failed Test : ./ /Test Bucket/large.atf line 102

Bad Result

|@

EEE R R

Test Output - HTML Report

Test file - Test results % oy
- mi .
Pl 00O aTaaL L | uoaonan 04 0%
/test/RAS- | | NINIR] WO [HO000ORO0a [IRO0OROOONE :
Gard. atf H [IEOROOEO0aC | | (NI A | |00 0L
1 files 504 tests, 474 ok, 30 failed, 0 todo, 0 skipped, 0 parse errors

a4, 0%

exit status: 30, wait status: 7580

elapsed time: 1111 wallclock secs (0.45 usr 0.04 sys + 170.04 cusr 8. 75 csys = 179.28 CPL)

Generated by TAP! Formatter:HTML v0.09 @ 09:45: 27 09-Feb-2012

Flow Control - TestCase

“ High level conditional test execution

" Multiple TestCase declarations are
allowed in a single test file

" TestCase declarations cannot be
nested

" TestCase sections are implicit
Parallel blocks.

TestCase 'Small Sample Testcase', =sub {
Gatherbata {
Run {
cmd { "echo Look at system." 3}
expect { exit_code == @ 7};
T
;
Init {
Run {
cmd { "echo '(mMis)-'configure system " };
expect { exit_code => 1 };
T
Ti
Test {
Run {
cmd { "echo Tests go here" 3}
expect { exit_code => 0 };
T
3
cCleanup {
Run {
cmd { "echo Critical clean up goes here." };
expect { exit_code =»> @ };
T
Ti
T

R R R
TestCase : 'Small sample Testcase'

#

#

TestCase : 'GatherData' : GatherData

#

11
Launch Run 1 : 'echo Look at system.

Target : ‘default’

#

4 o e e e e e e e e e e e e e e e e
Evaluate Run 1 : 'echo Look at system.

#

ok 1 - Run to completion ‘echo Look at system.'.
ok 2 - expect ! exit_code == @

Launch Run 2 ! 'echo '(Mis)-'configure system
Target : ‘'default’

Evaluate Run 2 : 'echo '(Mis)-'Configure system

ok 2 - Run to completion ‘echo '(Mis)-'Configure system
not ok 4 - expect @ exit_code == 1

#

#

TestCase : 'Test' ! Test

#

11
Launch Run 3 : 'echo Tests go here'

Target : 'default’

#

Skipping Run : echo Tests go here

command : echo Tests go here

Reason : Skipped due to previous failures.

4 o e e e e e e e e e e e e e e e
Evaluate Run 3 : 'echo Tests go here'

#

ok 5 # skip Skipped due to previous failures, ! Run to completion ‘echo Tests go here'
ok & # skip Skipped due to previous failures. : expect : exit_code => @
#

PR S e e e e e e e e e e e e e e e e e
TestCase : 'Cleanup' : Ccleanup

#

mmm
Launch Run 4 : 'echo critical clean up goes here.

Target : ‘'default’

#

11
Evaluate Run 4 : 'echo Critical clean up goes here.

#

ok 7 - Run to completion ‘echo Critical clean up goes here.'.
ok 8 - expect @ exit_code == 0

#

#

TestCase : 'Small sample Testcase'

HESHESEHSE SRS RS B R R R R B R R e

1..2

Test Case Sections and Flow Control

Section Purpose Result on Failure
GatherData Inspect Environment Skip Init, Test and Cleanup
Init Setup for testing Skip Test and run Cleanup
Test Feature testing None

Cleanup Undo Changes Made | Abort further testing

" GatherData - For ‘look but don’t touch’ inspection of the test
environment prior to modifying the system state or testing anything.
This data can be used to restore the original state in the ‘Cleanup’ stage

“ Init - For modifying the test environment in preparation for the actual
test to be performed in the Test section, such as creating error
conditions or initializing resources to be used in the test

" Test - Perform the actual tests and check the results

® Cleanup - Perform any necessary cleanup before exiting the test case

Test Case Flow

Stage

Start Gather SuccesS N
TestCase Data

Yes ‘

. No
Init @

Yes

Test

Cleanup Success

Yes fCompIete
LTestCase

No

Abort
Further
Testing

Flow Control - Variation

" Looping construct

" Can loop across multiple variables

“ Annotates test output with active
variation state

" Preserves captures for each
iteration

use ATF::Test;
use strict;

our(fservice, %command);
variation Service == ['sshd', 'ntpd'],
command == ['restart', ‘'status'], =sub{
RuN{
name 1 "Running ¥command on kservice" F,
cmd { "fetciinit.dsfservice $command" 7},
expect { exit_code == @ T
Ti
Run<{
cmd { "echo Running &Command on FService" G}

expect { source => stdout
pattern == qr/(. ")/,
capture == [saw => 1] };

1

pDumpCapture()

#
#
#

4 4 A

#
#

#
ok 9@ - Run to completion
ok 1@ - expect !

EREEEEEEREE]

#

ok 11 - Run to completion
ok 12 - expect !

#

ERE R R R R R

ok 13 - Run to completion
ok 14 - expect !

WA A A A A A A A A

ok 15 - Run to completion
ok 16 - expect

S I

Launch Run 5 @ 'Running restart on ntpd’

command 'YetocSinit.dSntpd restart’
Target ‘default’
variation [Serwvice => 'ntpd', Ccommand => 'restart']

Evaluate Run 5 @ 'Running restart on ntpd’
Variation [Eerwvice == 'ntpd', Command ==

restart']

‘Jetc/init.ds/ntpd restart'.
exit_code => o

Launch Run & ! 'echo Running restart on ntpd'
Target ‘default’
wvariation : [Serwice => 'ntpd', Command == 'restart']

Evaluate Run & : 'echo Running restart on ntpd'

variation : [Serwvice => 'ntpd', Command == 'restart']
‘echo Running restart on ntpd'.
pattern == (?-xism:(.*)) source => stdout

Launch Run 7 'Running status on ntpd’

command 'YetocSinit.d/ntpd status’
Target ‘default’
variation [Serwice => 'ntpd', Ccommand => 'status']
Evaluate Run 7 'Running status on ntpd’
variation @ [Serwice == 'ntpd', Ccommand == 'status']

‘Jetoc/sinit.ds/ntpd status'.
exit_code => o

Launch Run 2 @ 'echo Running status on ntpd'’

Target 'default’
wvariation : [Serwice => 'ntpd', Command == 'status']
Evaluate Run 2 : 'echo Running status on ntpd'
variation [Serwice => 'ntpd', Ccommand => 'status']

‘echo Running status on ntpd'.
pattern == (?-xism:(.*)) source => stdout

$capture = {

‘ntpd' => {
'restart' == {
'saw' => 'Running restart on ntpd’
T
'status' == {
'saw' => 'Running status on ntpd’
¥
T
'saw' => 'Running status on ntpd',
'‘sshd' = {
‘restart' == {
'saw' => 'Running restart on sshd'
T
'‘status' => {
'saw' => 'Running status on sshd'
¥
T
Ti
$current = Scapture;

16

Native Perl

“ Can handle corner cases
» Supports POSIX
» Support for system calls

" To reduce repetition
» Subroutines are easy to use
> The .. operator helps
generate lists
> A test group can easily make
reusable libraries of common
functions

sub STD_EXPECT{
expect { exit_code == @ };
reject { source ==> stderr,
[FRttern == qr/./ };

Check the existence of file svstems.
Run |
cmd {"cat Sproc/mounts"};
STD_EXPECT;

Check a file system.
sub check_mount_points (%33 J{
my ($device, %path, $fstvpel) = @_;

Check if the file system's device mount

expect {
source => stdout,
pattern == gr(* fdevice “s+ Hpath s+
1
1
Check the file svstems
check_mount_points{"proc", "Sproc",
check_mount_points{"tmpfs", "Sdev",
check_mount_points{"/svs", "Says",
check_mount_points{"tmpfs", "Srmp",
check_mount_points("devpts", "Sdev/pts",
check_mount_points{"tmpfs", "Svar/log",
check_mount_points{"none", "Soore",
check_mount_points({"/dev/mmcblkopz", "/",

}i

point and type.

ffstype “s+ Jxm,

"proc"y;
"tmpfs");
"sysfs");
"tmpfs");
"devpts"]);
"tmpfs");
"tmpfs");
"ext3"]),;

Future Plans — Packet Injection

" Currently using a prototype
inhouse

" For internal data channels

“ Could be adapted to TCP or
other data stream

Farallel{
port_listen {
port 1 "bari1", "barz", ..., "barn" };
reject { Packet::Match(sa => '123CDE') };
[timecut { 2 };
{ "Not done yet." };
#SKIP { "Don't try wvet." };
background;
+i
Parallel{
port_listen {
port € "fool1", "fooz2" };
expect { Packet::Match(sa => '123CDE']) };

capture { seg_num => Packet::!Field({'seq'}) }:
timeout { 2 };
background;

T

port_inject {

port { "baz" }; # 0One at a time
zend { TcpPacket::Build(sa => '123CDE']) };
+i
Y}, # wait here at most 2 seconds
Test Packet
my %packet = [SA =» "ABC123",
DA =» "FFFFFFFFFFFF", # broadcast (7]
tcpPayload == ([("XX" x 1@a@)}]);
Listen for broadcast.
variation port => ["bari1", "barz2", ..., "barn"], =ub{

port_listen {
port I %port };
expect { Packet::Match(%packet]) 3}
timeout { 5 }:
i
b

port_inject {
port { "baz" }; # 0One at a time
zend f Packet::Build(%packet) };

T

wWalt here at most 5 seconds

T

188 bytes of random payload

Future Plans — Improvements

“ Remote Session Reuse

“ Output Issues in HTML Report

“ More Data Capture (Logs, Files)

" Store Results

“ Wrap more existing features in Perl's test harness
" Packaging and Dependency Bundling

“ Interactive Mode (Pause, Runtime Input)

" Random Variation Subsets
“ Other Protocols (CIM?)

To Conclude...

" Testing is important at all levels of development.
" Tests must be easy to write or they won't be written.

" Tests must be easy to run or they won't be used.

" Use or make a Domain Specific Embedded Language
» For ease of use.
» For flexibility to handle unexpected corner cases.

Questions?

“ Contact
Daniel Hursh
hursh@us.ibm.com

* ATF Homepage
https://Isourceforge.net/projects/atf-test

* ATF Source
git clone git:/llgit.code.sf.net/pl/atf-test/code atf-test-code

mailto:hursh@us.ibm.com
https://sourceforge.net/projects/atf-test

	
	Overview
	Why ATF?
	Why Perl?
	Target Users
	Results
	Features
	Details
	Run Directive
	Run Directive - Expectations
	Run Directive – Lowered Expectations
	Run Directive - Multi-target
	Run Directive – Parallel Execution
	Run Directive – Previous Results
	Running Tests
	Test Output – HTML Report
	Slide 17
	Flow Control - TestCase
	Test case sections and flow control
	Test Case Flow
	Flow Control - Variation
	Native Perl
	Future Plans – Packet Injection
	Future Plans – Improvements
	Slide 25
	Slide 26

