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Agenda

● Introduction to USB

● USB Gadget API

● Existing Gadgets

● Design your own Gadget

● Demo

● Conclusion
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Who am I?

● Software engineer at Adeneo Embedded 
(Bellevue, WA)
● Linux, Android
● Main activities:

– BSP adaptation
– Driver development
– System integration
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Context and objectives

● General knowledge of the API
● Focused on USB not general driver development
● Nothing on the host side

● Case study
● Using a generic embedded device, see how we can 

create a USB Gadget

● Show potential
● How to fulfill every need
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Universal Serial Bus

● Industry standard developed in the mid-1990s
● Defines the cables, connectors and protocols used for 

connection, communication and power supply 
between computers and electronic devices

● 2 billion USB devices were sold each year (as of 
2008)
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Universal Serial Bus

● Benefits:
● Replace lots of old buses
● Automatic configuration
● Multiple speeds
● Reliable

● Limits:
● Distance
● Peer-To-Peer
● Broadcasting
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Universal Serial Bus

● Architecture:
● Master-Slave protocol
● Up to 127 devices addressable
● Can be hot-plugged
● Identification to the host
● Supports high speeds
● Multifunction device possibility
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Universal Serial Bus

● Description:
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Universal Serial Bus

● Endpoints
● Source and Sink of data
● Uniquely identifiable
● Unique direction (except setup)
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Universal Serial Bus

● 4 transfer types:
● Control

● Configuration and control information
● Interrupt

● Small quantities time-sensitive data
● Bulk

● Large quantities time-insensitive data
● Isochronous

● Real-time data at predictable bit rates
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Typical Device Driver

● Device Firmware Driver
● Hardware specific routines
● USB interrupts/events

● Chapter 9
● Enumeration process
● Transfer data to upper layer

● USB Class Driver
● Defines the behavior
● Provides configuration
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Gadget API
● Provides essential infrastructure
● Similar to Chapter 9 in typical USB device software
● Handles USB protocol specific requirements
● Flexible enough to expose more complex USB device 

capabilities
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Gadget API vs. Linux-USB API

● Similarities
● Share common definitions for the standard USB messages, 

structures and constants
● Use queues of request objects to package I/O buffers
● Both APIs bind and unbind drivers to devices

● Differences
● Control transfers
● Configuration management

=> Thanks to similarities, Gadget API supports OTG
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Gadget API
Lower boundary:
● handling setup requests (ep0 protocol responses) 

possibly including class-specific functionality
● returning configuration and string descriptors
● (re)setting configurations and interface altsettings, 

including enabling and configuring endpoints
● handling life cycle events, such as managing bindings 

to hardware, USB suspend/resume, remote wakeup, 
and disconnection from the USB host

● managing IN and OUT transfers on all currently 
enabled endpoints 
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Gadget API
Upper layer:
● user mode code, using generic (gadgetfs) or application 

specific files in /dev
● networking subsystem (for network gadgets, like the 

CDC Ethernet Model gadget driver)
● data capture drivers, perhaps video4Linux or a scanner 

driver; or test and measurement hardware
● input subsystem (for HID gadgets)
● sound subsystem (for audio gadgets)
● file system (for PTP gadgets)
● block i/o subsystem (for usb-storage gadgets)
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Gadget API – Main structures

struct usb_gadget – represents a gadget device
➢ usb_gadget_ops – contains callbacks for hardware operations

struct usb_ep – device hardware management
➢ usb_ep_ops – contains callbacks for endpoints operations

struct usb_gadget_driver – device functions 
management (bind, unbind, suspend etc...)

struct usb_request – USB transfers management
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Gadget API – Main functions
General operations (usb_gadget_x()):

● probe_driver / unregister_driver

● set_selfpowered / clear_selfpowered

● vbus_connect / vbus_disconnect

● connect / disconnect

● frame_number

Endpoint operations (usb_ep_x()):

● autoconf / autoconf_reset

● enable / disable

● alloc / free

● queue / dequeue

● set_halt / clear_halt

● fifo_status / fifo_flush

Decriptor operations:

● usb_descriptor_fillbuf

● usb_gadget_config_buf
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Gadget API

Driver life cycle:
● Register driver for a particular device controller
● Register gadget driver (bind)
● Hardware powered, enumeration starts
● Gadget driver returns descriptors (setup)
● Gadget driver returns interfaces configuration
● Do real work (data transfer) until disconnect
● Gadget driver unloaded (unbind)
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Existing Gadgets

● Ethernet
● Enumerate to the host as an Ethernet device
● Can easily be bridging, routing, or firewalling 

access to other networks
● Interoperability with hosts running Linux, MS-

Windows among others
● Possibility to set parameters such as MAC address, 

IP configuration or DHCP use thanks to the 
bootargs if using a boot firmware like U-Boot
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Existing Gadgets

● GadgetFS
● Provides User-Mode API
● Each endpoint presented as single I/O file 

descriptor
● Normal read() and write() calls
● Async I/O supported
● Configuration and descriptors written into files

Note that user mode gadget drivers do not necesarily need to 
be licensed according to the GPL.
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Existing Gadgets
● File-backed Storage

● Implements the USB Mass Storage Class
● Up to 8 disk drives can be set
● Store file or block device is called the “backing 

storage”
● Backing storage requires preparation

– If a file is used, it must created with its desired size before 
launching the driver

– If a block device, it must match host reaquirements (DOS 
partition for MS-Windows host)

● The backing storage must not change while FBS is 
running, only the host should access it
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Existing Gadgets

● Webcam
● Acts as a composite USB Audio and Video Class 

device
● Provides a userspace API to process UVC control 

requests and stream video data

● Serial Gadget
● Useful for TTY style operation
● Supports a CDC-ACM module option
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Existing Gadgets

● MIDI
● Exposes an ALSA MIDI interface
● Both recording and playback support

● GadgetZero
● Useful to test device controller driver
● Helps verify that the driver stack pass USB-IF (for 

USB branding)
● On the host side, useful to test USB stack
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Design your own Gadget
● 3 main operations to consider

● Hardware
● Functional
● Endpoints
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Design your own Gadget
● First implement the register/unregister functions

● usb_gadget_probe_driver

– Resgistration of the usb_gadget_driver
– Responsible for binding the gadget driver and powering up 

the device
● usb_gadget_unregister_driver

– Responsible for unbinding the gadget from the functional 
driver and powering down the device

● Then define callbacks hardware related
● Fill usb_ep_ops and usb_gadget_ops
● Not necessary to support all functions
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Design your own Gadget

● Implement the control request handles (ep0)
● Gadget driver handles only a part of it
● The rest is routed to the class driver
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Design your own Gadget
● Power Management requests

● Comes from the PDC to the Gadget
● The Gadget must pass the events to the class driver

● Once enumeration is done, class driver requests 
usb_request structure for IN/OUT transfers
● Gadget receives data in interrupt routine (OUT)

– Only when the expected amount is received the Gadget 
calls the complete function

● Gadget sends data to the PDC (IN)
– Wait send completion to inform the class driver
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Design your own Gadget
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Demo: Hardware

BeagleBoard xM
● ARM™ Cortex™-A8 1000 MHz
● USB connectivity:

● 4 host ports
● 1 OTG port (used as device)



 

30Gary Bisson - ELC 2012

Demo: Software

● Bootloader
● U-boot 2011.12 r4

● Kernel
● 3.0.17 r115c

● Root filesystem
● Console image

– Custom recipe (lighttpd)
● Additional modules

http://www.angstrom-distribution.org/demo/beagleboard/u-boot-beagleboard-2011.12-r4.img
http://www.angstrom-distribution.org/demo/beagleboard/uImage-3.0.17-r115c-beagleboard-20120125152700.bin
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Conclusion

● Easy to implement
● Hardware independent
● Scalability
● Large panel of existing gadgets
● Awareness of limitations
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Questions?
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Appendix: Files

The files used for this experiment should be 
attached with the presentation

● Rootfs:
● Custom recipe provided if rebuild is necessary

● Additional modules:
● Instructions to recompile them

● Demo script
● Lighttpd configuration file
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Appendix: References

● Linux-USB Gadget API Framework: General 
presentation.

● USB Gadget API for Linux: Full description of the API.
● Essential Linux Device Drivers (Sreekrishnan 

Venkateswaran) : General device driver book 
containing a useful USB section. 

● Bootstrap Yourself with Linux-USB Stack (Rajaram 
Regupathy): Very detailed and easy-to-read book about 
Linux-USB.

http://www.linux-usb.org/gadget/
http://www.kernel.org/doc/htmldocs/gadget.html
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