

1Gary Bisson - ELC 2012

Useful USB Gadgets on Linux

February, 2012

Gary Bisson
Adeneo Embedded

Embedded Linux Conference 2012

2Gary Bisson - ELC 2012

Agenda

● Introduction to USB

● USB Gadget API

● Existing Gadgets

● Design your own Gadget

● Demo

● Conclusion

3Gary Bisson - ELC 2012

Who am I?

● Software engineer at Adeneo Embedded
(Bellevue, WA)
● Linux, Android
● Main activities:

– BSP adaptation
– Driver development
– System integration

4Gary Bisson - ELC 2012

Context and objectives

● General knowledge of the API
● Focused on USB not general driver development
● Nothing on the host side

● Case study
● Using a generic embedded device, see how we can

create a USB Gadget

● Show potential
● How to fulfill every need

5Gary Bisson - ELC 2012

Universal Serial Bus

● Industry standard developed in the mid-1990s
● Defines the cables, connectors and protocols used for

connection, communication and power supply
between computers and electronic devices

● 2 billion USB devices were sold each year (as of
2008)

6Gary Bisson - ELC 2012

Universal Serial Bus

● Benefits:
● Replace lots of old buses
● Automatic configuration
● Multiple speeds
● Reliable

● Limits:
● Distance
● Peer-To-Peer
● Broadcasting

7Gary Bisson - ELC 2012

Universal Serial Bus

● Architecture:
● Master-Slave protocol
● Up to 127 devices addressable
● Can be hot-plugged
● Identification to the host
● Supports high speeds
● Multifunction device possibility

8Gary Bisson - ELC 2012

Universal Serial Bus

● Description:

9Gary Bisson - ELC 2012

Universal Serial Bus

● Endpoints
● Source and Sink of data
● Uniquely identifiable
● Unique direction (except setup)

10Gary Bisson - ELC 2012

Universal Serial Bus

● 4 transfer types:
● Control

● Configuration and control information
● Interrupt

● Small quantities time-sensitive data
● Bulk

● Large quantities time-insensitive data
● Isochronous

● Real-time data at predictable bit rates

11Gary Bisson - ELC 2012

Typical Device Driver

● Device Firmware Driver
● Hardware specific routines
● USB interrupts/events

● Chapter 9
● Enumeration process
● Transfer data to upper layer

● USB Class Driver
● Defines the behavior
● Provides configuration

12Gary Bisson - ELC 2012

Gadget API
● Provides essential infrastructure
● Similar to Chapter 9 in typical USB device software
● Handles USB protocol specific requirements
● Flexible enough to expose more complex USB device

capabilities

13Gary Bisson - ELC 2012

Gadget API vs. Linux-USB API

● Similarities
● Share common definitions for the standard USB messages,

structures and constants
● Use queues of request objects to package I/O buffers
● Both APIs bind and unbind drivers to devices

● Differences
● Control transfers
● Configuration management

=> Thanks to similarities, Gadget API supports OTG

14Gary Bisson - ELC 2012

Gadget API
Lower boundary:
● handling setup requests (ep0 protocol responses)

possibly including class-specific functionality
● returning configuration and string descriptors
● (re)setting configurations and interface altsettings,

including enabling and configuring endpoints
● handling life cycle events, such as managing bindings

to hardware, USB suspend/resume, remote wakeup,
and disconnection from the USB host

● managing IN and OUT transfers on all currently
enabled endpoints

15Gary Bisson - ELC 2012

Gadget API
Upper layer:
● user mode code, using generic (gadgetfs) or application

specific files in /dev
● networking subsystem (for network gadgets, like the

CDC Ethernet Model gadget driver)
● data capture drivers, perhaps video4Linux or a scanner

driver; or test and measurement hardware
● input subsystem (for HID gadgets)
● sound subsystem (for audio gadgets)
● file system (for PTP gadgets)
● block i/o subsystem (for usb-storage gadgets)

16Gary Bisson - ELC 2012

Gadget API – Main structures

struct usb_gadget – represents a gadget device
➢ usb_gadget_ops – contains callbacks for hardware operations

struct usb_ep – device hardware management
➢ usb_ep_ops – contains callbacks for endpoints operations

struct usb_gadget_driver – device functions
management (bind, unbind, suspend etc...)

struct usb_request – USB transfers management

17Gary Bisson - ELC 2012

Gadget API – Main functions
General operations (usb_gadget_x()):

● probe_driver / unregister_driver

● set_selfpowered / clear_selfpowered

● vbus_connect / vbus_disconnect

● connect / disconnect

● frame_number

Endpoint operations (usb_ep_x()):

● autoconf / autoconf_reset

● enable / disable

● alloc / free

● queue / dequeue

● set_halt / clear_halt

● fifo_status / fifo_flush

Decriptor operations:

● usb_descriptor_fillbuf

● usb_gadget_config_buf

18Gary Bisson - ELC 2012

Gadget API

Driver life cycle:
● Register driver for a particular device controller
● Register gadget driver (bind)
● Hardware powered, enumeration starts
● Gadget driver returns descriptors (setup)
● Gadget driver returns interfaces configuration
● Do real work (data transfer) until disconnect
● Gadget driver unloaded (unbind)

19Gary Bisson - ELC 2012

Existing Gadgets

● Ethernet
● Enumerate to the host as an Ethernet device
● Can easily be bridging, routing, or firewalling

access to other networks
● Interoperability with hosts running Linux, MS-

Windows among others
● Possibility to set parameters such as MAC address,

IP configuration or DHCP use thanks to the
bootargs if using a boot firmware like U-Boot

20Gary Bisson - ELC 2012

Existing Gadgets

● GadgetFS
● Provides User-Mode API
● Each endpoint presented as single I/O file

descriptor
● Normal read() and write() calls
● Async I/O supported
● Configuration and descriptors written into files

Note that user mode gadget drivers do not necesarily need to
be licensed according to the GPL.

21Gary Bisson - ELC 2012

Existing Gadgets
● File-backed Storage

● Implements the USB Mass Storage Class
● Up to 8 disk drives can be set
● Store file or block device is called the “backing

storage”
● Backing storage requires preparation

– If a file is used, it must created with its desired size before
launching the driver

– If a block device, it must match host reaquirements (DOS
partition for MS-Windows host)

● The backing storage must not change while FBS is
running, only the host should access it

22Gary Bisson - ELC 2012

Existing Gadgets

● Webcam
● Acts as a composite USB Audio and Video Class

device
● Provides a userspace API to process UVC control

requests and stream video data

● Serial Gadget
● Useful for TTY style operation
● Supports a CDC-ACM module option

23Gary Bisson - ELC 2012

Existing Gadgets

● MIDI
● Exposes an ALSA MIDI interface
● Both recording and playback support

● GadgetZero
● Useful to test device controller driver
● Helps verify that the driver stack pass USB-IF (for

USB branding)
● On the host side, useful to test USB stack

24Gary Bisson - ELC 2012

Design your own Gadget
● 3 main operations to consider

● Hardware
● Functional
● Endpoints

25Gary Bisson - ELC 2012

Design your own Gadget
● First implement the register/unregister functions

● usb_gadget_probe_driver

– Resgistration of the usb_gadget_driver
– Responsible for binding the gadget driver and powering up

the device
● usb_gadget_unregister_driver

– Responsible for unbinding the gadget from the functional
driver and powering down the device

● Then define callbacks hardware related
● Fill usb_ep_ops and usb_gadget_ops
● Not necessary to support all functions

26Gary Bisson - ELC 2012

Design your own Gadget

● Implement the control request handles (ep0)
● Gadget driver handles only a part of it
● The rest is routed to the class driver

27Gary Bisson - ELC 2012

Design your own Gadget
● Power Management requests

● Comes from the PDC to the Gadget
● The Gadget must pass the events to the class driver

● Once enumeration is done, class driver requests
usb_request structure for IN/OUT transfers
● Gadget receives data in interrupt routine (OUT)

– Only when the expected amount is received the Gadget
calls the complete function

● Gadget sends data to the PDC (IN)
– Wait send completion to inform the class driver

28Gary Bisson - ELC 2012

Design your own Gadget

29Gary Bisson - ELC 2012

Demo: Hardware

BeagleBoard xM
● ARM™ Cortex™-A8 1000 MHz
● USB connectivity:

● 4 host ports
● 1 OTG port (used as device)

30Gary Bisson - ELC 2012

Demo: Software

● Bootloader
● U-boot 2011.12 r4

● Kernel
● 3.0.17 r115c

● Root filesystem
● Console image

– Custom recipe (lighttpd)
● Additional modules

http://www.angstrom-distribution.org/demo/beagleboard/u-boot-beagleboard-2011.12-r4.img
http://www.angstrom-distribution.org/demo/beagleboard/uImage-3.0.17-r115c-beagleboard-20120125152700.bin

31Gary Bisson - ELC 2012

Conclusion

● Easy to implement
● Hardware independent
● Scalability
● Large panel of existing gadgets
● Awareness of limitations

32Gary Bisson - ELC 2012

Questions?

33Gary Bisson - ELC 2012

Appendix: Files

The files used for this experiment should be
attached with the presentation

● Rootfs:
● Custom recipe provided if rebuild is necessary

● Additional modules:
● Instructions to recompile them

● Demo script
● Lighttpd configuration file

34Gary Bisson - ELC 2012

Appendix: References

● Linux-USB Gadget API Framework: General
presentation.

● USB Gadget API for Linux: Full description of the API.
● Essential Linux Device Drivers (Sreekrishnan

Venkateswaran) : General device driver book
containing a useful USB section.

● Bootstrap Yourself with Linux-USB Stack (Rajaram
Regupathy): Very detailed and easy-to-read book about
Linux-USB.

http://www.linux-usb.org/gadget/
http://www.kernel.org/doc/htmldocs/gadget.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

