I

Adapting Your Network
Code for IPv6

There’s No Place like ::1/64 ".

Mike Anderson ‘
Chief Scientist ’1

"“]E[I[IE[I I"I_”(The PTR Group, Inc.

¢ ["-II-'EI'E"[:E http://www.theptrgroup.com

mailto: mike@theptrgroup.com

What We Will Talk About

#IPv6 history

#Why convert to IPv6?

#IPv6 Addressing

#Coexisting with IPv4

#IPv6 commands

#Typical server/client code flow
#1Pv4 vs. IPv6 APIs

#Transitioning to IPv6 and testing your
readiness

#Summary

N 2T

IPvb History

#Back in the early 1990s, the
IETF foresaw the exhaustion IPNG anathe 00
of the 32-bit IPv4 address fhig > el
space o JE

» IPng project was born in 1994

#IPv6 was finalized in December
of 1998

» RFC 2460

#There actually was a test framework
known as IPv5

» But, it was never deployed

SFO-ELC-IPv6-3 Copyright 2012, The PTR Group, Inc.

N 2T

IPv4 Address Issues

+#IPv4 (RFC 791) uses a 32-bit address
space
» Seemed like enough in 1981
#Originally split into different “class”
addresses
» Class A (7/24),B(14/16), C (21/8)
+#As we started to run out, the IETF
introduced CIDR

» Addresses were expressed in addr/X format
- E.g., 192.168.101.130/25 (255.255.255.128)

» NAT became the rule of the day

SFO-ELC-I1Pv6-4 Copyright 2012, The PTR Group, Inc

N 2T

Characteristics of the IPv4 Internet

#Today’s IPv4-based Internet is a confusing
jumble of middle devices

» Firewalls, NAT boxes, load balancers, VPN tunnel
servers and more

#It’s almost impossible to get to a particular
device on the Internet directly

» This either a bug or a feature depending on your
perspective

+#Each middle device introduces latency in
communications

» Frequent rewriting of packets as they transit the
‘net

SFO-ELC-IPv6-5 Copyright 2012, The PTR Group, Inc.

N 2T

Reasons for Switching to IPv6

#We’ve run out of IPv4 addresses

#|Pv6 is being mandated by most
governments
» We probably can’t ignore this one forever ©
#We want to regain end-to-end transparency

» Reduction of latency is important
for streaming media applications

#Core gateways are being over-burdened by
address bloat

#|Pv6 has security mechanisms built in
» IPsec encryption

SFO-ELC-1Pv6-6 Copyright 2012, The PTR Group, Inc.

N 2T

Whoops!
#After forecasting that we'd run (S

¥ Mearest Exhaustion (APNIC)

out of addresses for the past
decade, we finally did it!
#Did the Internet stop?
» Nope
#However, the RIRs are getting

aggressive about reclaiming
unused address space

» Not an issue if you're hiding behind a NAT
box

SFO-ELC-IPv6-7 Copyright 2012, The PTR Group, Inc.

N 2T

IPv6 is a Simpler Protocol

#1Pv4 is a complex protocol
» Many fields that need to be interrogated

#IPv6 has a fixed 40-octet length
» IPv4 ranged from 20-60 octets

#I1Pv6 moved IPv4 options to additional
headers

Flow Label

bit
: 0-3 4-7 8-13 1415 |16-18 19-31
offset
Payload Length
Differentiated Explicit
. Header . .
0 Version Services Code |Congestion Total Length
Length , . :
Point Notification
32 Identification Flags Fragment Offset
64 Time to Live Protocol Header Checksum
96 Source IP Address
128 Destination IP Address
160 Options (if Header Length > 5)
160
o Data
192+

Copyright 2012, The PTR Group, Inc.

SFO-ELC-IPv6-8

IPvb Addresses

+# IPv6 addresses are certainly more complex
» 128-bit IPv6 vs. 32-bit IPv4
+# Special addresses include:
» ::1 (Loopback IPv4 127.0.0.1)
» .- (unspecified a.k.a. 0.0.0.0/INADDR_ANY)
+# IPv6 does not support broadcast
» Only multicast

+# IPv6 link-local addresses can be based on you
hardware MAC address

» MAC: 5¢:26:0a:26:76:dc

» IPv6: fe80::5e26:aff:fe26:76dc/64
- EUI-64 address

+# Auto assigned addresses via SLAAC or DHCP6

SFO-ELC-1Pv6-9 Copyright 2012, The PTR Group, Inc.

N 2T

IPvb Addresses #2

+# Example (these are all equivalent):
» 2008:0db8:0000:0000:0000:0000:1978:57ac
» 2008:0db8:0000:0000:0000::1978:57ac
» 2008:0db8:0:0:0:0:1978:57ac
» 2008:0db8::1978:57ac
» 2008:db8::1978:57ac
An IPv6 address is enclosed in brackets
» http://[2008:0db8::1978:57ac]/
» https://[2008:0db8::1978:57ac]:443/
» These things cry out for DNS
+# Representation of IPv6 network in CIDR notation

» 2008:0db8:1234::/48

-+ 2008:0db8:1234:0000:0000:0000:0000:0000 through
2008:0db8:12 34 fff: fFff.fiFf:FiFf:fiFf

SFO-ELC-IPv6-10 Copyright 2012, The PTR Group, Inc.

N 2T

IPv4 /IPv6 Co-Existence

#For those O/Ses that support IPv6, most
support “dual stack”

» Both IPv4 and IPv6 are resident and can route
packets

+#If you have an IPv6 device and must route
across IPv4, there are tunneling
approaches

» 6to4, Toredo, 6in4 and more

#There are also tunnel brokers

» Tunnel endpoints to bypass IPvb-ignorant
ISPs

SFO-ELC-IPv6-T11 Copyright 2012, The PTR Group, Inc.

N 2T

IPv6 Commands

#Most of your favorite commands exist
with a "6" appended

» ping6, tracerouteb, iptables6, elcC.
#Many O/S variants already have IPv6
support
» Linux, OS/X, Windows

#Some RTOSes support IPv6
» VxWorks, ThreadX, QNX, OSE, LynxOS
» However, many others do not...

SFO-ELC-1Pv6-12 Copyright 2012, The PTR Group, Inc.

N 2T

Typical IPv4 Code Flow

#Server:
» socket(..) - Opens a socket
» bind(...) - Binds a local address to the socket

»listen(..) - Advertise waiting on connections
» accept(..) - Wait on the connections
» If TCP read(..) /write(..) or recv(..) /send(..)
» If UDP recvfrom(...) /sendto (...)

#Client:
» socket(..) - Opens a socket
» connect () - Connect to the server
» If TCP read(...) /write(..) or recv(..)/send(...)
» If UDP recvfrom(..) /sendto (...)

SFO-ELC-1Pv6-13 Copyright 2012, The PTR Group, Inc.

N 2T

The Good News...

#The code flow for IPv6 is identical to that
of IPv4

#The address structures in the API calls
need to change to handle the 128-bit
addresses

#The charges are related to those APIs that
expose the size of the IP address or
manipulate the address in some way

» Especially, those that handle name to address
resolution

SFO-ELC-IPv6-14 Copyright 2012, The PTR Group, Inc.

N 2T

Strategies

#Since many O/Ses support dual stack,
IPv4 code will continue to run for the
foreseeable future

» Therefore do nothing

#We could start developing IPv6-only code
» The simplest conversion approach
#However, IPv4 is expected to still be with
us for the next 15-20 years

» So, we probably want to create IP-agnostic
code

- Can support either address type

SFO-ELC-I1Pv6-15 Copyright 2012, The PTR Group, Inc.

N 2T

Dual Stack Operation IPv6-Only

IPv6
Application

IPv6
3ffe:a00:d17:1::10

IPv4 mapped
:FFFF:192.168.101.10

dual-link Ethernet

IPv4 client IPv6 client
192.168.101.10 3ffe:a00:d17:1::10

SFO-ELC-IPv6-16 Copyright 2012, The PTR Group, Inc.

N 2T

Porting Applications to IPv6-only

#As we’ve seen, IPv6 follows the same flow
as IPv4 applications

» The sockaddr in structure becomes
sockaddr in6

» Address family becomes AF_INET6/PF_INET6
» Most of the rest of the calls stay the same

#I1f an application embeds the address in
the protocol (e.g., FTP and NTPv3), then
they need more rework

SFO-ELC-IPv6-17 Copyright 2012, The PTR Group, Inc.

N 2T

APl Comparison

IPv4 (AF_INET) IPv6 (AF_INETO)
Data Structures PE_INET PF_INET6

in addr in6é addr

sockaddr in sockaddr iné

sockaddr sock storage

Address conversion gethostbyname () getnameinfo ()

functions gethostbyaddr () getaddrinfo()
Name/address inet aton() inet pton()
functions inet addr()

inet ntoa() inet ntop ()

Red functions work with both IPv4 and IPv6

SFO-ELC-1Pv6-18 Copyright 2012, The PTR Group, Inc.

_N

LPTR

Dual Stack Operation IPv4/IPv6

IPv4/IPv6
Application

dual-link Ethernet

IPv4 client IPv6 client
192.168.101.10 3ffe:a00:d17:1::10
SFO-ELC-IPv6-19 Copyright 2012, The PTR Group, Inc. ‘l PTR

|IPv4 Structures

include <netinet/in.h>
// IPv4 AF INET sockets:

struct sockaddr in {
short sin family;
unsigned short sin port;
struct in addr sin_addr;
char sin zero[8];

};

struct in _addr {
unsigned long s_addr;

};

// e.g. AF_INET, AF INET6

// e.g. htons (3490)

// see struct in addr, below
// zero this if you want to

// load with inet pton()

// All pointers to socket address structures are often cast to pointers
// to this type before use in various functions and system calls:

struct sockaddr {
unsigned short sa_ family;

char sa data[l4];

};

SFO-ELC-1Pv6-20 Copyright 2012, The PTR Group, Inc.

// address family, AF xxx
// 14 bytes of protocol address

ALPTR

|IPvo Structures

// IPvé AF INET6 sockets:

struct sockaddr in6 {

u_intlé t sin6 family; // address family, AF INET6

u _intlé t sin6é_port; // port number, Network Byte Order
u_int32 t sin6_ flowinfo; // IPv6 flow information

struct in6_addr sin6_addr; // IPv6 address

u int32 t sin6_scope id; // Scope ID

};

struct in6_addr {
unsigned char s6 _addr[16]; // load with inet pton()

}i
// General socket address holding structure, big enough to hold either
// struct sockaddr in or struct sockaddr iné6 data:

struct sockaddr storage {
sa family t ss family; // address family

// all this is padding, implementation specific, ignore it:

char __ss padl[_SS PADISIZE];
int6é4 t _ ss align;
char __ss _pad2[_SS PAD2SIZE];
i
SFO-ELC-IPv6-21 Copyright 2012, The PTR Group, Inc.

— T rv

Example IPv4 Server Set Up

struct sockaddr addr;
int newFd;
int s = socket (PF_INET, SOCK STREAM, O);
memset (&addr, 0, sizeof (addr));
struct sockaddr in * ia = (struct sockaddr in*) &addr;
ia->sin family = AF INET;
ia->sin port = htons (5002);
bind (s, &addr, sizeof (struct sockaddr in));
listen (s, 5);
while (1) {
memset (&addr, 0, sizeof (addr));
socklen t alen = sizeof (struct sockaddr);
newFd = accept (s, &addr, é&alen);
pthread create (&pt, NULL, &process, (void *) &newFd);

SFO-ELC-IPv6-22 Copyright 2012, The PTR Group, Inc.

ALPTR

Example IPv6 Server Set Up

struct sockaddr addr;
int newFd;
int s = socket (PF_INET6, SOCK STREAM, O);
memset (&addr, 0, sizeof (addr));
struct sockaddr in6é * ia = (struct sockaddr iné6*) &addr;
ia->sin6 family = AF INET6;
ia->sin6 port = htons (5002);
bind (s, &addr, sizeof (struct sockaddr iné6)) ;
listen (s, 5);
while (1) {
memset (&addr, 0, sizeof (addr));
socklen t alen = sizeof (struct sockaddr);
newFd = accept (s, &addr, é&alen);
pthread create (&pt, NULL, &process, (void *) &newFd);

SFO-ELC-IPv6-23 Copyright 2012, The PTR Group, Inc.

ALPTR

IPv4 Client Set Up

struct sockaddr addr;

struct sockaddr in *ia;

int s = socket (PF_INET, SOCK STREAM, O0);
memset (&addr, 0, sizeof (addr));

ia = (struct sockaddr in¥*) &addr;

ia->sin family = AF INET;

ia->sin port = htons (5002) ;

ia->sin _addr.s addr = htonl (INADDR LOOPBACK) ;

connect (s, &addr, sizeof (struct
sockaddr in));

process (s) ;
close (s);

SFO-ELC-I1Pv6-24 Copyright 2012, The PTR Group, Inc.

_N

IPv6 Client Set Up

struct sockaddr addr;

struct sockaddr in6é *ia;

int s = socket (PF _INET6, SOCK STREAM, O0);
memset (&addr, 0, sizeof (addr));

ia = (struct sockaddr iné6*) &addr;
ia->sin6 family = AF INET6;

ia->sin6 port = htons (5002);

ia->sin6 addr.s6 addr = in6addr loopback;

connect (s, &addr, sizeof (struct
sockaddr in6)) ;

process (s) ;
close (s);

SFO-ELC-IPv6-25 Copyright 2012, The PTR Group, Inc.

_N

Name to Address Translation

+#+getaddrinfo(..)
» Pass in string (address and/or port)

» Optional hints for address family, type and
protocol

- Flags:

— AI PASSIVE, AI CANNONNAME, AI NUMERICHOST,
AI NUMERICSERV, AI V4MAPPED, AI ALL, AI ADDRCONFIG

» Returns a pointer to a linked list of addrinfo
structures

- Allocates memory for storing the returned addresses

freeaddrinfo(...)
» Frees memory allocated by gettaddrinfo (...)

SFO-ELC-IPv6-26 Copyright 2012, The PTR Group, Inc.

N 2T

Name to Address Translation #?2

int getaddrinfo (const char *node,
const char *service,
const struct addrinfo *hints,
struct addrinfo **res);

struct addrinfo {

int ai flags;

int ai family;
int al_ socktype;
int al protocol;
size t al addrlen;
struct sockaddr *ai addr;

char *al canonname;

struct addrinfo *ai next;

SFO-ELC-IPv6-27 Copyright 2012, The PTR Group, Inc.

_N

!{_F=”77=?

Address to Name Translation

++getnameinfo(...)
» You pass in v4 or vb address and port
» Size indicated by salen argument

» Size for name and service buffers specified via
NI _MAXHOST, NI _MAXSERV

» Flags:

* NI NOFQDN, NI NUMERICHOST, NI NAMEREQD,
NI NUMERICSERV NI DGRAM

» Returns hame of host

int getnameinfo (const struct sockaddr *sa,
socklen t salen,

char *host, size t hostlen,
char *serv, size t servlen,
int flags);

SFO-ELC-IPv6-28 Copyright 2012, The PTR Group, Inc.

_}!!{_F=”77=?

Example Address Resolution

#include <sys/types.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/socket.h>
#include <netdb.h>

#define BUF SIZE 500

int main(int argc, char *argv][])
{
struct addrinfo hints;
struct addrinfo *result, *rp;
int sfd, s;
struct sockaddr storage peer addr;
socklen t peer addr len;
ssize_ t nread;
char buf[BUF SIZE];

if (argc '= 2) {
fprintf (stderr, "Usage: %s port\n", argv[0]);
exit (EXIT FAILURE) ;

SFO-ELC-IPv6-29 Copyright 2012, The PTR Group, Inc.

— T rv

Example Address Resolution #2

memset (&hints, 0, sizeof (struct addrinfo)) ;

hints.
hints.
hints.
hints.
.ai_canonname = NULL;
.ai_addr = NULL;

hints.

hints
hints

ai family = AF UNSPEC; /* Allow IPv4 or IPv6 */

ai socktype = SOCK DGRAM; /* Datagram socket */

ai flags = AI_ PASSIVE; /* For wildcard IP address */
ai protocol = 0; /* Any protocol */

ai_pext = NULL;

s = getaddrinfo (NULL, argv[l], &hints, &result);

if (s

= 0) {

fprintf (stderr, "getaddrinfo: %$s\n", gai_strerror(s));
exit (EXIT FAILURE) ;

}

/* getaddrinfo() returns a list of address structures.
Try each address until we successfully bind(2) .
If socket(2) (or bind(2)) fails, we (close the socket
and) try the next address. */

for (rp = result; rp != NULL; rp = rp->ai next) {
sfd = socket(rp->ai_family, rp->ai_socktype,

rp->ai_protocol) ;

if (sfd == -1) continue;
if (bind(sfd, rp->ai_addr, rp->ai_addrlen) == 0) break; /* Success */
SFO-ELC-I1Pv6-30 Copyright 2012, The PTR Group, Inc.
N_eTe

Example Address Resolution #3

close(sfd) ;
}

if (rp == NULL) { /* No address succeeded */
fprintf (stderr, "Could not bind\n") ;
exit(EXIT_EAILURE);

}

freeaddrinfo (result) ; /* No longer needed */
/* Read datagrams and echo them back to sender */

for (;;) {
peer addr len = sizeof(struct sockaddr storage) ;
nread = recvfrom(sfd, buf, BUF SIZE, O,
(struct sockaddr *) &peer addr, &peer addr len);
if (nread == -1) continue; * Ignore failed request */

char host[NI_MAXHOST], service[NI MAXSERV];

s = getnameinfo ((struct sockaddr *) &peer addr,
peer addr len, host, NI MAXHOST,
service, NI _MAXSERV, NI NUMERICSERV) ;

SFO-ELC-1Pv6-31 Copyright 2012, The PTR Group, Inc.

_N

LPTR

Example Name Resolution #4

i1f (s == 0)
printf ("Received %1d bytes from %s:%s\n",
(long) nread, host, service);
else

fprintf (stderr, '"getnameinfo: %$s\n",
gai strerror(s));

if (sendto(sfd, buf, nread, O,
(struct sockaddr *) é&peer addr,
peer addr len) != nread)
fprintf (stderr, "Error sending response\n") ;

SFO-ELC-IPv6-32 Copyright 2012, The PTR Group, Inc.

_N

World IPv6 Day and Follow-On

+#June 8, 2011
was World IPv6 Day

of IPv6 readiness

» http://isoc.org/wp/worldipveday/
» Major vendors tested IPv6

#June 6, 2012 is the goal for permanently
enabling IPv6 on major servers like
Google, Yahoo!, Akamai, etc.

SFO-ELC-1Pv6-33 Copyright 2012, The PTR Group, Inc

N 2T

Testing Your IPv6 Readiness

#There is a test site: http://test-ipv6.com

Test your IPv6 connectivity.

J Summary | | Tests Run | | Technical Info | | Share Results / Contact |

@ Your IPv4 address on the public internet appears to be 68.100.143.100

@ Your IPv6 address on the public internet appears to be 2001:0:53aa:64¢:1835:6116:bb9b:709b
: Your IPv6 service appears fo be: Teredo

(unknown result code: teredo-ipvdpref)

@ World IPvE day is June 8th, 2011. No problems are anticipated for you with this browser, at this location. fmare info]

(3 Congratulations! You appear to have both IPv4 and IPv6 internet working. If a publisher publishes to IPv6, your browser will connect using IPv6. Note: Your browser appears to
prefer IPv4 over IPv6 when given the choice. This may in the future affect the accuracy of sites who guess at your location.

L/
@ Your DNS server (possibly run by your ISP) appears to have no access to the IPv6 intemet, or is not configured to use it. This may in the future restrict your ability to reach IPv6-
=" only sites. [more info]

1 0/1 0 for your IPv4 stability and readiness, when publishers offer both IPv4 and IPv6

9/1 0 for your IPv6 stability and readiness, when publishers are forced to go IPv6 only

Click to see test data

SFO-ELC-IPv6-34 Copyright 2012, The PTR Group, Inc.

N 2T

Summary

#For devices that are not connected to the
Internet, embedded developers can probably
ignore IPv6 for another few years

#For developers of middle boxes and mobile
platforms, IPv6 will be of growing
Importance

» Major carriers already mandate that any *new*
device will have IPv6 required

#The use of dual-stacks represents the
smoothest transition path
» Albeit with the overhead of extra memory

s Fortunately, conversion of software to
support IPv6 isn’t likely to be a cliff

SFO-ELC-1Pv6-35 Copyright 2012, The PTR Group, Inc.

N 2T

