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EXECUTIVE SUMMARY 

The Department of Energy’s Leadership Computing Facility, located at Oak Ridge National 
Laboratory’s National Center for Computational Sciences, recently polled scientific teams that had large 
allocations at the center in 2007, asking them to identify computational science requirements for future 
exascale systems (capable of an exaflop, or 1018 floating point operations per second). These requirements 
are necessarily speculative, since an exascale system will not be realized until the 2015–2020 timeframe, 
and are expressed where possible relative to a recent petascale requirements analysis of similar science 
applications [1].  

Our initial findings, which beg further data collection, validation, and analysis, did in fact align with 
many of our expectations and existing petascale requirements, yet they also contained some surprises, 
complete with new challenges and opportunities. First and foremost, the breadth and depth of science 
prospects and benefits on an exascale computing system are striking. Without a doubt, they justify a large 
investment, even with its inherent risks. The possibilities for return on investment (by any measure) are 
too large to let us ignore this opportunity.  

The software opportunities and challenges are enormous. In fact, as one notable computational 
scientist put it, the scale of questions being asked at the exascale is tremendous and the hardware has 
gotten way ahead of the software. We are in grave danger of failing because of a software crisis unless 
concerted investments and coordinating activities are undertaken to reduce and close this hardware-
software gap over the next decade. Key to success will be a rigorous requirement for natural mapping of 
algorithms to hardware in a way that complements (rather than competes with) compilers and runtime 
systems. The level of abstraction must be raised, and more attention must be paid to functionalities and 
capabilities that incorporate intent into data structures, are aware of memory hierarchy, possess fault 
tolerance, exploit asynchronism, and are power-consumption aware. On the other hand, we must also 
provide application scientists with the ability to develop software without having to become experts in the 
computer science components.  

Numerical algorithms are scattered broadly across science domains, with no one particular algorithm 
being ubiquitous and no one algorithm going unused. Structured grids and dense linear algebra continue 
to dominate, but other algorithm categories will become more common. A significant increase is 
projected for Monte Carlo algorithms, unstructured grids, sparse linear algebra, and particle methods, and 
a relative decrease foreseen in fast Fourier transforms. These projections reflect the expectation of much 
higher architecture concurrency and the resulting need for very high scalability. The new algorithm 
categories that application scientists expect to be increasingly important in the next decade include 
adaptive mesh refinement, implicit nonlinear systems, data assimilation, agent-based methods, parameter 
continuation, and optimization. 

The attributes of leadership computing systems expected to increase most in priority over the next 
decade are (in order of importance) interconnect bandwidth, memory bandwidth, mean time to interrupt, 
memory latency, and interconnect latency. The attributes expected to decrease most in relative priority are 
disk latency, archival storage capacity, disk bandwidth, wide area network bandwidth, and local storage 
capacity. These choices by application developers reflect the expected needs of applications or the 
expected reality of available hardware. One interpretation is that the increasing priorities reflect the desire 
to increase computational efficiency to take advantage of increasing peak flops [floating point operations 
per second], while the decreasing priorities reflect the expectation that computational efficiency will not 
increase. Per-core requirements appear to be relatively static, while aggregate requirements will grow 
with the system. This projection is consistent with a relatively small increase in performance per core 
with a dramatic increase in the number of cores. 

Leadership system software must face and overcome issues that will undoubtedly be exacerbated at 
the exascale. The operating system (OS) must be as unobtrusive as possible and possess more stability, 
reliability, and fault tolerance during application execution. As applications will be more likely at the 
exascale to experience loss of resources during an execution, the OS must mitigate such a loss with a 
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range of responses. New fault tolerance paradigms must be developed and integrated into applications. 
Just as application input and output must not be an afterthought in hardware design, job management, too, 
must not be an afterthought in system software design. Efficient scheduling of those resources will be a 
major obstacle faced by leadership computing centers at the exascale.  

Leadership systems must evolve in the next decade into more capable and productive 
science-producing systems by applying strong software engineering philosophies to systems capable of 
good end-to-end computing. Users must be able to ask “what if” questions to help drive science to find 
the needle in the haystack, which will require a paradigm shift.  

Data analytics will empower scientists to ask these “what-if” questions, providing software and 
hardware infrastructure capable of answering these questions in a timely fashion. Strong data 
management will not just become important; it will become an absolute at the exascale. These trends are 
already evident on the internet when we look at tools like Google desktop, which have begun to 
revolutionize desktop computing by allowing users to find information in files that were previously 
untapped and unknown. These technologies must move into leadership computing and must be 
encouraged to work on the largest analysis machines. 

Just like computing hardware requires disruptive technologies for acceleration of natural evolutionary 
paths, so too will algorithm, software, and physical model development efforts need disruptive 
technologies to ensure accelerated science application development and readiness for the exascale. This 
document identifies several areas that need focused and enhanced research and development in order to 
provide disruptive technologies for science application. These include automated diagnostics, hardware 
latency, hierarchical algorithms, parallel programming models, solver technology and innovative solution 
techniques, accelerated time integration, model coupling, and middleware library performance. 

After a brief introduction and summary of key science drivers, this document summarizes exascale 
application requirements and presents key requirements for application models and algorithms, 
application software, system software and hardware, and data analytics. It concludes with 
recommendations for those areas in need of increased and focused research and development investment 
to ensure the readiness of exascale applications.   

 
 
 

1. INTRODUCTION AND SCIENCE DRIVERS 

Requirements are conditions or capabilities needed by users to solve problems and achieve objectives. 
They are also conditions or capabilities that must be met or possessed by a system to satisfy a standard or 
specification. Both definitions apply for computational science requirements that are deemed essential for 
the design, procurement, deployment, and operation of leadership computing systems at the Department 
of Energy (DOE’s) Leadership Computing Facility (LCF), located at Oak Ridge National Laboratory’s 
National Center for Computational Sciences (NCCS). Eliciting, analyzing, validating, and managing these 
requirements is crucial for success, especially for leadership computing systems beyond the horizon 
(>3 years). Exascale computing systems (capable of an exaflop, or 1018 floating point operations per 
second) are more than three years away, but they expected to be available and deployed in the 2015–2020 
timeframe. With a speculative eye toward exascale computing systems, the NCCS Scientific Computing 
Group has collected and performed an initial discerning analysis of leadership computational science 
requirements. Analyzed in this document are the following: 
• The science objectives and impacts possible on exascale systems; 
• The possibilities and plans for physical models and numerical algorithms possessed by the scientific 

applications; 
• The software opportunities and challenges; 
• Desirable attributes for system hardware and system software; and 
• Key characteristics of data analytics and work flow required to ensure high scientific productivity. 
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A similar analysis was recently performed in 2006 for computational science requirements at the 

petascale (capable of a petaflop, or 1015 floating point operations per second) [1], where the focus was on 
the 1–3-year horizon and leadership systems in the 0.10–1.0 petaflop range. The baseline for the 
collection and analysis of exascale requirements contained herein started from the existing petascale 
requirements [1], but there are differences between the petascale and exascale requirements, 
opportunities, and challenges. These have been identified as a result of recent surveys, interactions, and 
interviews with key computational scientists (see Appendix A) and a series of town hall meetings 
organized by DOE [2]. The salient features of the resulting requirements for exascale systems are 
contained in this document.  

By articulating these requirements and using them to manage and arbitrate decisions, the NCCS will 
better align LCF systems with the needs and goals of the science projects using these resources. LCF 
requirements for the NCCS apply to the entire end-to-end analysis process that scientists follow when 
using the NCCS facilities. This process comprises system hardware, system software, the integrated 
development environment, and the problem-solving environment that includes data analysis, 
management, and visualization (i.e., data analytics). We expect that effective requirements development, 
management, and planning will positively influence the design, procurement, deployment, and operation 
of an NCCS system by providing a measurable improvement in the quality, quantity, or fidelity of 
breakthrough science simulation applications. For requirements to be useful to the NCCS, they must be 
actionable and as quantitative as possible without being solutions themselves. In reality, requirements 
flow in both directions: Applications impose requirements on the LCF systems, and the LCF systems in 
turn impose requirements upon the applications. 

To start, consider the science drivers, objectives, and impacts possible with an exascale computing 
resource (Table 1). Science prospects and benefits exist in material science, earth science, energy 
assurance, and fundamental science, to name a few (for more detail, see [3]). Because large-scale 
computing is at the brink of another revolution (computing capability growth is accelerating), and because 
all key science domains are now developing, using, and relying on computational science tools for 
exploration and discovery, never before has computational science been presented with such an exciting 
opportunity . We are indeed at a tipping point for computational science and its role in accelerating and 
enabling scientific discovery. Examples of the possibilities outlined in Table 1 include: 
• Synthesizing nanoparticles for a variety of designed tasks (e.g., energy storage); 
• Understanding and designing high-temperature superconductors; 
• Sequestering carbon in a predictable and manageable way; 
• Predicting decadal climate outcomes to aid in preparing for climate change; 
• Characterizing and bounding the coupled earth system, including its socio-economic linkages and 

dependencies; 
• Designing catalysts for a wide variety of industrial processes; 
• Using reliable, whole-device simulation of the multinational ITER fusion reactor [4] for efficient 

design and operation; and 
• Deciphering the chemical evolution of the galaxy and the place of supernovae. 

 
These and many other science drivers are detailed in Table 1 and references 1–3. Based on these 

drivers, their possibility of success, and their impact, it is clear that an exascale computing system will 
have an enormous societal return on investment when objectives associated with these science drivers are 
achieved.  
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Table 1. Select science drivers for leadership computing at the exascale 

Opportunity 
Application 

area Science driver Science objective Impact 
Material 
science 

Nanoscale 
science 

Understand 
synthesis of alloy 
nanoparticles with 
potential impact 
for design of new 
catalysts 

Define the thermodynamics of 
compositions of alloy nanoparticles 

Magnetic data storage; 
economically viable ethanol 
production; energy storage 
via structural transitions in 
nanoparticles 

Physics of 
interacting 
fermions on a 
lattice 

Explain the fundamental mechanism 
of high-temperature 
superconductivity within a minimal 
model of interacting lattice fermions

Macroscopic quantum 
effect at elevated 
temperatures; power 
transmission and electronics

Earth Science Environment Carbon 
sequestration in 
geologic 
formations 

Model dissipation of supercritical 
CO2 injected in the subsurface 
accounting for fingering phenomena 
in kilometer-scale basin simulations 

Carbon management via 
active capture and storage 

 Climate Decadal climate 
prediction 

Cloud-resolving (1–5 km) 
atmosphere; longer time integration 
(100–300 years, 1000-year spinups); 
larger ensembles (5–20) 

Understand and prepare for 
committed climate change 

  Characterize and 
bound the coupled 
earth system 

Maintain tolerable time-integration 
rates while increasing model 
resolution and complexity; integrate 
models and observations; model at 
the process level biogeochemical 
cycles and coupled physical and 
biogeochemical system 

Understand and predict 
stability and sustainability 
of rain forests, polar ice and 
ice sheets, agricultural 
ecosystems, precipitation, 
methane hydrates, and 
extreme weather; quantify 
mitigation strategies 

  Dynamical 
linking of socio-
economic and 
climate responses 

Couple infrastructure, climate, 
demographic, informational, and 
energy economic models to predict 
adaptation as communities react to 
stresses on infrastructure systems 
and propose potential policies 

Identify future energy 
infrastructure needs 

Chemistry Chemistry Systematic, large-
scale exploration 
of optimal 
materials for 
catalysis or 
nuclear material 
separation agents 

Combine density functional theory 
with evolutionary search for 
complex materials or an accurate 
combinatorial approach to screen 
the best separation material out of 
O(103) compounds 

Virtual design of catalysts 
and separating agents 

Energy 
assurance 

Bioenergy Biomass 
recalcitrance 

Understand the complexity of plant 
cell wall structure and its 
relationship to recalcitrance via 
large-scale (e.g., microbial and plant 
cell wall structures and 
cellulosomes) simulations of 
10-100M atoms over ms timeframes

The most important current 
barrier to the emergence of 
a cellulosic biofuels 
industry 
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Table 1 (continued) 

Opportunity 
Application 

area Science driver Science objective Impact 
Energy 
assurance 
(continued) 

Combustion Understanding “flameless” 
combustion of diverse fuels 
at high pressure in a 
turbulent environment 
relevant to advanced 
fuel-efficient, low-emission 
engine concepts 

Direct simulation of 
nonconventional mixed-mode, 
turbulent combustion of biofuels 
under compression ignition aero-
thermo-chemical regimes 
accounting for emission using 
statistical moments and models 
for particulate matter 

New combustion 
systems designed to 
use alternative fuels 
with high efficiency 
while meeting 
stringent 
requirements on 
emissions 

Fusion Reliable, whole-device 
modeling of ITER 

Coupling of auxiliary heating, 
MHD dynamics, and plasma 
core and edge codes 

ITER design and 
operation 

Nuclear 
energy 

A virtual simulator for 
facilities within an 
operating closed fuel cycle 

An integrated set of models and 
simulations of the complete set 
of physical processes and 
facilities within an operating fuel 
cycle 

A decision-making 
tool to help predict 
the outcome of 
changes made to the 
system as it operates 

Fundamental 
science 

Astrophysics Detailed simulations of 
core-collapse supernovae, 
including nucleosynthesis, 
gravitational waves, and 
neutrino signatures 

Perform core-collapse 
simulations with Bolztmann 
neutrino transport and nuclear 
kinetics capable of isotopic 
evolution for a wide range of 
stars 

Understand the 
chemical evolution of 
the galaxy and the 
place of supernovae 

 Nuclear 
physics 

Decipher the evolution in 
time of fission and fusion 
processes 

Use time-dependent 
coupled-cluster theory to 
investigate the time evolution of 
“below the barrier” events to 
deduce fragment mass and 
energy distribution 

Nuclear energy and 
fusion reactors 

 Accelerator 
physics 

Optimize and design future 
particle accelerators for 
better efficiency at lower 
costs and develop advanced 
accelerator concepts 

Include electromagnetic, thermal 
and mechanical effects for the 
ILC RF unit to determine 
optimal linear accelerator design 

Increased return on 
investment of large 
DOE accelerator 
facilities 

ILC = International Linear Collider 
MHD = Magnetohydrodynamics 
RF = Radio frequency 
 
 
 

2. MODEL AND ALGORITHM REQUIREMENTS 

Application models drive the need for specific numerical algorithms and software implementations. 
Often, these requirements are predetermined by the features and specifications found in specific systems, 
with system attributes such as peak speed or node memory capacity constraining the functional attributes 
available to a model. As a model is implemented on a future system, attributes such as the following are 
all influenced by the choice of system: 
• Model state variables (how many planned); 
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• Model characteristics (partial differential equations [PDEs] vs. ordinary differential equation [ODEs]; 
deterministic vs. stochastic; formulation of equations; etc.); 

• The presence of multiple, simultaneous phenomena and the required degree of coupling; 
• The domain of dependence (local with specific patterns, global, etc.); 
• Data dependency (degree of parallelizability); and 
• Resolution, complexity, and duration and/or ensemble size.  

 
Once a physical model has been postulated, the application developer must apply one or more 

algorithms to it in order to generate numerical solutions. For the applications we highlight here, the 
physical models tend to be sets of coupled linear and nonlinear PDEs and ODEs. Applications lead to 
algorithms, meaning application model and algorithm requirements are closely tied. A useful 
characterization of algorithms prevalent today is the so-called Seven Dwarfs of Colella [5]. Table 2 
demonstrates this approach for the algorithms expected to play a key role within select scientific 
applications at the exascale. 

 
Table 2. Algorithms expected to play a key role within select scientific applications at the exascale, 

characterized according to a seven dwarfs classification 

Opportunity 
Application 

area 
Structured 

grids 
Unstructured 

grids FFT

Dense 
linear 

algebra 

Sparse 
linear 

algebra Particles
Monte 
Carlo 

Material 
science 

Molecular 
physics 

  X X  X X 

Nanoscale 
science 

X   X  X X 

Earth science Climate X X X  X X X 
Environment X X   X X X 

Energy 
assurance 

Combustion X   X  X  
Fusion X X X X X X X 
Nuclear energy  X  X X   

Fundamental 
science 

Astrophysics X X  X X X  
Nuclear physics    X    
Accelerator 
physics 

 X   X   

QCD X      X 
Engineering 
design 

Aerodynamics X X  X X   

FFT = Fast Fourier Transform 
QCD = Quantum chromodynamics 

 
Several trends are noteworthy in the Seven Dwarfs categorization of codes in Table 1: 

• The seven algorithm types are scattered broadly among science domains, with no one particular 
algorithm being ubiquitous and no one algorithm going unused. 

• Structured grids and dense linear algebra continue to dominate, but other algorithm categories will 
become more common. 

• Compared to the Seven Dwarfs for current applications [1], the table projects a significant increase in 
Monte Carlo and increases in unstructured grids, sparse linear algebra, and particle methods, as well 
as a relative decrease in FFTs. These projections reflect the expectation of much-greater parallelism 



7 

in architectures and the resulting need for very high scalability. Load balancing, scalable sparse 
solver, and random number generator algorithms will be more important. 

• Some important algorithms are not captured explicitly in the Seven Dwarfs. Categories expected by 
application scientists to be of growing importance in 2010–2020 include adaptive mesh refinement, 
implicit nonlinear systems, data assimilation, agent-based methods, parameter continuation, and 
optimization. 
 
As we approach the petascale and plan for the exascale, we will see several challenges arising from 

the sheer number of coupled equations and systems, as well as the apparent ability to significantly 
increase the spatial, temporal, and state variable resolution in these simulations. Some of these hurdles 
will resemble today’s challenges. Others will be fundamentally new, as one or more of the “seven dwarfs” 
kernels become relatively more important or prevalent. To deal with possible new challenges and 
opportunities provided by future architectures it is imperative that collaborations and close interactions 
occur between computer scientists, computational scientists, numerical mathematicians, and domain 
scientists to investigate new algorithms that might be more appropriate for the highly parallel hybrid HPC 
architectures anticipated for exascale systems, rather than the currently used algorithms that are still 
largely based on experience with serial machines (albeit with adaptations to parallel architectures.) 

 
 

3. SOFTWARE REQUIREMENTS 

The opportunities and challenges faced by computational scientists in an exascale computing 
environment are enormous. We already have a glimpse of the future of computing, with the proliferation 
of heterogeneous, functionality-specialized processors with hierarchical memory. The hardware also 
appears to be headed down that road, and the supercomputers of the next decade will no doubt incorporate 
this heterogeneous model into their architectures. Successful use of exascale resources promises great 
scientific advances, but enabling users to achieve this level of effectiveness will be difficult. In order to 
evolve with the systems, applications will have to follow multiple paths, with some being rewritten, 
others being augmented, and still others being newly developed. 

The days of the “hero-developer” are long over. Not only does this model not scale to the enormous 
size and complexity of even today's production codes, no single person can be expected to adequately 
understand and address the depth and breadth of the issues associated with creating high-quality 
applications for these platforms. These goals can be accomplished only by computer scientists (including 
language specialists, compiler writers, runtime system developers, performance experts, etc.), algorithm 
developers, code developers, and end-user scientists working in a tightly integrated manner. 

The role of the computer scientist will be to develop a means of interface between the heterogeneous 
computer and the developer and end-user scientists. Computer scientists must develop a set of software 
tools that allow a natural mapping of algorithms onto a diverse set of architecture capabilities. For 
example, these tools must include a useful and helpful debugger, because as machines grow in size, print-
statement debugging loses its effectiveness. The manner in which developers can express ideas must 
complement the requirements of the compiler and runtime system. Currently, the prevailing approach is 
based on low-level constructs supported by current technologies. While this approach is expected to 
remain portable across emerging and future architectures (in the sense that code will run, although 
suboptimally), we already see constraints on performance. The fundamental problem is that low-level 
constructs overconstrain the compiler and runtime system, preventing use of architecture-specific 
capabilities. 

It is important to recognize that this does not rule out these mechanisms; by raising the level of 
abstraction, they can become options beneath the layer of abstraction. Examples of this approach are well 
known in popular libraries: ScaLAPACK [6] moves data about the distributed memory environment 
through the BLACS [7], which may be configured to use an interprocess communication protocol. Zoltan 
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[8], a package for partitioning data among the processors, is based on a similar approach, allowing for 
experimentation of algorithms.  

Abstraction enables incorporation of intent into the organization of the data structures. Memory could 
also be organized in a manner that exploits architecture capabilities. This has been done manually [9], but 
it is too labor-intensive for the code developer. Asynchronous capabilities for managing data flow should 
be developed, allowing for concurrent computation with disk operations (check-pointing, visualization, 
etc.). Previous attempts have been hindered by a lack of hardware support. Multiple processing elements 
in emerging architectures may be exploited to realize this capability. 

This approach also enables the inclusion of fault tolerance with regard to both algorithmic and 
hardware issues [10]. For example, a process asks for data using a “gather” command, and that data may 
be moved using any available protocol.  

These tools must also enable algorithmic experimentation at scale; an algorithm that works well at 
even the petascale may work poorly at the exascale. Power consumption is not constant, so power-aware 
algorithms are being explored. New approaches to existing and emerging questions must be developed. 
Current models require heroic software development projects, impeding this sort of experimentation. 

Leadership computing application requirements, opportunities, and challenges are consistent with the 
observations laid out earlier this year in a series of town hall meetings [2]: 
• Application development and maintenance tools and practices need to fundamentally change; 
• Productivity improvement is an important metric and guide for tool and software choices; 
• Fault tolerance and verification and validation (V&V) software components must be used to improve 

reliability and robustness of application software; 
• Knowledge discovery techniques and tools should be explored to help with bug detection, simulation 

steering, and data feature extraction and correlation; and 
• A holistic view of application data (from input to archival) is needed to most effectively deliver tools 

for the end-to-end workflow performed by scientists.  
 
A single set of software tools will in general not be appropriate for all applications. Instead, 

functional views should provide mechanisms for different aspects of development and different types of 
algorithms. Coupling of models must be seamlessly enabled by the programming languages and models. 
It is imperative that the new software stacks have the capability to reuse legacy code where appropriate.  
The number of man-years invested by federal funding agencies in current software capabilities cannot be 
ignored. In addition, practical considerations (e.g., programmatic deliverables) will prevent development 
teams from investing the time that would be necessary to reinvent these applications with completely new 
technologies. 

 
 

4. SYSTEM REQUIREMENTS 

System requirements are requirements that specify system hardware and software needs. Application 
needs cover hardware footprints, from memory usage and memory patterns to communication usage and 
patterns to input and output (I/O) usage and all derived metrics in between (like memory and interconnect 
bandwidths and latencies). Managing the various hardware resources is the job of the system software, 
and thus the application hardware requirements imply requirements at various levels of system software. 
Of particular importance are requirements for the operating system and job-management system. 

4.1 SYSTEM HARDWARE 

A given LCF system has many attributes that uniquely characterize it relative to other systems, but 
12 attributes in particular are useful to consider from an application’s perspective and have been used for 
current LCF systems. These attributes are listed in Table 3. For each of these 12 attributes, certain 
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behaviors and properties of a given application may highlight the need for one particular attribute relative 
to another. Table 3 summarizes application behaviors and properties that serve as drivers for system 
attributes.  

 

Table 3. Science application behavioral and algorithmic drivers for leadership system attributes 

Leadership 
computing 

system attribute 

Application algorithms 
driving a need for this 

attribute 
Application behaviors driving a need  

for this attribute 
Node peak  
flops 

Dense linear algebra, 
FFT, sparse linear 
algebra, Monte Carlo 

Scalable and required spatial resolution low; would benefit 
from a doubling of clock speed; only a problem domain that 
has strong scaling, completely unscalable algorithms; 
embarrassingly parallel algorithms. 

Mean time to 
interrupt 

Particles, Monte Carlo Naïve restart capability; large restart files; large restart R/W 
time. 

WAN bandwidth Long time evolution, 
multiphysics, multiscale 

Community data/repositories; remote visualization and 
analysis; data analysis. 

Node memory 
capacity 

Dense linear algebra, 
sparse linear algebra, 
unstructured grids, 
particles 

High DOFs per node, multi-component/multi-physics, volume 
visualization, data replication parallelism, restarted Krylov 
subspace with large bases, subgrid models. 

Local storage 
capacity 

Particles, out-of-core 
algorithms 

High-frequency/large dumps, out-of-core state, debugging at 
scale. 

Archival storage 
capacity 

Long-time evolution, 
multiphysics, multiscale 

Large data (relative to local storage) that must be preserved 
for future analysis, for comparison, for community data (e.g., 
EOS tables, wind surface, and ozone data); expensive to 
recreate; nowhere else to store. 

Memory latency Sparse linear algebra, 
unstructured grids 

Random data-access patterns for small data. 

Interconnect 
latency 

Structured grids, particles, 
FFT, sparse linear algebra 
(global), Monte Carlo 

Global reduction of scalars; explicit algorithms using nearest-
neighbor or systolic communication; interactive visualization; 
iterative solvers; pipelined algorithms. 

Disk latency Out-of-core algorithms Naïve out-of-core memory usage; many small I/O files; small 
record direct-access files. 

Interconnect 
bandwidth 

FFT and other spectral 
methods, coupled models 

Large messages, global reductions of large data; implicit 
algorithms with large DOFs per grid point. 

Memory 
bandwidth 

Sparse linear algebra, 
unstructured grids 

Large multidimensional data structures and indirect 
addressing; data copying; library calls, requiring data copies if 
algorithms require data retransformations; sparse matrix 
operations; efficient utilization of many-core processors. 

Disk bandwidth Out-of-core algorithms Reads/writes large amounts of data at a relatively low 
frequency; read/writes large amounts of large intermediate 
temporary data; well-structured out-of-core memory usage. 

DOF = Degree of freedom 
EOS = Equation of state 
R/W = Read/write 
WAN = Wide area network 

 
Qualitative prioritization of these system attributes for each domain science is shown in Table 4. 

Attributes that are likely to increase in priority in 2010–2020 relative to today are marked with “+”, and 
the ones that are most likely to decrease in relative priority are marked with “–”. Each application area is 
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constrained to have four areas “+” and four “–”. The “Summary” column gives the sum of “+” and “–” 
across applications. 

 
 
Table 4. Relative prioritization of twelve leadership system attributes for relevant science domains 

System  
attribute Climate 

Nuclear 
theory Fusion Chemistry Combustion

Accelerator 
physics Biology

Materials 
science Summary

Node peak 
flops 

– +  + + – – + +1 

MTTI  +    +  + +3 

WAN network 
bandwidth 

– – + +  + – – –1 

Node memory 
capacity 

– +   – +   0 

Local storage 
capacity 

 + –  –    –1 

Archival 
storage 
capacity 

  –   –  – –3 

Memory 
latency 

+ –  – +  + + +2 

Interconnect 
latency 

+ –  – – + + + +1 

Disk latency –  –  – – – – –6 

Interconnect 
bandwidth 

+ + + + +  +  +6 

Memory 
bandwidth 

+  +  +  + + +5 

Disk 
bandwidth 

  – + – – –  –3 

MTTI = Mean time to interrupt 
 
The summary column shows that the attributes expected to increase most in priority are interconnect 

bandwidth, memory bandwidth, MTTI, memory latency, and interconnect latency, in that order. The 
attributes expected to decrease most in relative priority are disk latency, archival storage capacity, disk 
bandwidth, WAN network bandwidth, and local storage capacity. It is unclear whether these choices by 
application developers reflect the expected needs of applications or the expected reality of available 
hardware. One interpretation is that the increasing priorities reflect the desire to increase computational 
efficiency to take advantage of increasing peak flops, while the decreasing priorities reflect the 
expectation that computational efficiency will not increase. The relative future priority of local and 
archival storage capacity and bandwidth in Table 4, qualitatively estimated at lower relative priority 
(and/or less available), is not perfectly aligned with the detailed, demanding I/O and storage requirements 
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spelled out in section 5, which is an area of obvious and increasing priority on exascale systems. Relative 
to Table 4, an alternative analysis for Table 3 that supports section 5 is to at least maintain the current I/O 
capacity and bandwidth (in a relative sense) in future exascale systems. These two leadership system 
attributes (storage capacity and bandwidth) need further scrutiny, planning, and quantification. 

An example of moving from qualitative to more quantitative runtime requirements is the analysis of 
what currently constitutes a single simulation for selected application codes. Such analysis helps to 
validate the importance of system attributes for these codes. Table 5 presents current typical development 
characteristics and runtime requirements of a single simulation for selected application codes on the 
NCCS LCF systems [1]. 

 
Table 5. Typical development characteristics and runtime requirements of a single simulation for selected 

application codes on the NCCS LCF systems circa June 2006 

Science 
domain Code Code attributes 

Job size 
(nodes, 
time) 

Storage 
capacity needs 
(local, archive) 

Node 
memory 
capacity 

needs 

Number of 
queue dwell 
times for full 
simulation 

Accelerator 
design 

Omega3D 9 years old, 173-K C++ 
LOC, 12 developers 

128–256,
24 hours 

1 TB, 
12 TB 

8 GB 3–4 

Astrophysics CHIMERA Components 10–15 years 
old, 5 developers, F90 

128–256,
24 hours 

300 GB, 
2 TB 

≥2 GB 10–15 

Vulcan2D 9 developers, F90 48, 
24 hours 

300 GB, 
5 TB 

2 GB 30 

Climate CCSM Components 20 years old, 
690 K Fortran LOC, over 

40 developers 

250, 
24 hours 

5 TB, 
10 TB 

2 GB 10–30 

Combustion S3D 16 years old, 100 K Fortran 
LOC, 5 developers 

4000, 
24 hours 

10–20 TB, 
300 TB 

1 GB 7–10 

Fusion GTC 7 years old, ~30 developers 4800, 
24 hours 

10 TB, 
10 TB 

2 GB 4–5 

Nuclear 
physics 

CCSD 3 years old, 10 developers, 
F90 

200–1000,
4–8 hours 

300 GB, 
1 TB 

2 GB 1 

CCSD = Coupled-cluster singles and doubles 
CCSM = Community Climate System Model 
GB = Gigabytes 
TB = Terabytes 
GTC = Gyrokinetic Toroidal Code 
LOC = Lines of code 

 
The recent “Modeling and Simulation at the Exascale for Energy and the Environment” report [2] 

provides a summary of runtime requirements for 2015; a balanced system will require on the order of 
150 GB/s of injection bandwidth, 1.5 petabytes (PB)/s global bandwidth, and 500 nanoseconds latency. 
This document also reports that applications will require 0.5–2 bytes/flop of memory bandwidth and at 
least 2–4 GB of memory per CPU [central processing unit] core. The memory-per-core requirement is 
close to the current application requirements reported in Table 5. The implication is that per-core 
requirements will be relatively static while the aggregate requirements will grow with the system. This 
projection is consistent with a relatively small increase in performance per core, with a dramatic increase 
in the number of cores. 

The continuing growth of potential computation rate will continue to strain I/O requirements. One 
rule of thumb for application I/O is that it consumes <5% of total run time, including time for checkpoints 
that may dump 10–50% of the physical memory. At the exascale, such a checkpoint is on the order of 
petabytes and requires terabytes per second of bandwidth. The resulting scratch file system could require 
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250,000 disks [2] to provide such bandwidth. It is unclear if I/O bandwidth and volume can feasibly keep 
up with increases in computation rate. The priority expectations from application developers, in Table 4 
above, may indicate that I/O does not need to keep up, or just that it is not expected to. Options exist for 
easing memory and I/O requirements, including recomputing instead of storing, in-memory 
checkpointing, performing data analysis during computation, and overlapping I/O with computation. 

I/O capability may lose further ground because of disruptive technologies that could accelerate the 
availability of exascale computation. Potentially disruptive hardware technologies include 
three-dimensional chips and memory, optical processor connections, optical networks, customized 
processors, and more optimal packaging on chip dies, node boards, and within cabinets. 

4.2 SYSTEM SOFTWARE 

The applications interact with the underlying hardware through the glue provided by the system 
software. As the time and memory consumed by the system software are unavailable to the application, 
the continuing trend to higher parallelism at multiple levels (increase in the number of processing nodes, 
multiple levels of memory and cache, and the number of compute cores per node) requires that the system 
software be as unobtrusive as possible. The execution of daemons and background tasks can introduce 
variability between different processes, which can severely impact parallel performance. Even a small 
amount of “jitter” can cause a dramatic increase in operations that require global communication [11, 12]. 

A second issue with system software that will increase in importance for highly parallel systems and 
applications is general stability, reliability, and fault tolerance during application execution. Applications 
may be more likely to experience loss of resources during a run. The system software can mitigate these 
losses with a range of responses from redistributing that task (most likely with aid from the application) to 
simply notifying the application of the failure. As stated in [2]: “With the potential that exascale systems 
will be having constant failures somewhere across the system, application software isn’t going to be able 
to rely on checkpoint/restart to cope with faults. … For exascale systems, new fault tolerance paradigms 
will need to be developed and integrated into both existing and new applications.” 

Beyond resource availability, efficient scheduling of those resources is a major obstacle faced by 
leadership-computing centers. Existing schedulers may have been designed for contexts other than 
leadership computing and may not support the priorities, work flow, or scale of leadership computing. 
Design mismatches can appear as a lack of robustness of the schedulers (e.g. slow response time, 
intrusive daemons) and in problematic configuration issues. The growing need to manage expanded work 
flows and schedule multiple phases of those workflows complicates the situation. Just as I/O must not be 
an afterthought in hardware design, job management must not be an afterthought in the design of system 
software. 

 
 

5. DATA ANALYTICS REQUIREMENTS 

Data analytics are required to extract scientific results from simulations performed on leadership-class 
systems. This can be achieved by combining strong software engineering philosophies with systems 
capable of end-to-end computing, where “end-to-end” refers to the entire process, from computing to I/O 
(both disk and tape) to analytics systems to scientific results. The users must be able to ask the “what-if” 
questions that drive their scientific inquiry. Getting answers to these questions from massive simulation 
data is indeed akin to finding a needle in the haystack. 

An excellent way to understand long-term data analytics requirements is to first examine the leading 
scientific applications currently running on leadership systems, understand their short-term requirements, 
and extend into future.  

Most large-scale simulation application development and usage follow a common process.  They start 
with a thought and use mathematics to translate this thought into equations. The equations are then 
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transcribed into code. The user then runs the code and writes out information to disk. After going back 
and forth verifying the code, the user can begin to validate the code. Once the validation process is 
complete (or at least mature), the user can finally run predictive simulations. As the science evolves, 
better models are produced, allowing the scientific community to run good approximations to these first-
principles calculations, which in turn aids in the process of augmenting the codes with additional 
equations or parameters, which begins the process again. 

Usually the focus is on flops and network bandwidth, but in science-driven analytics for the next 20 
years we must seriously consider methods to shield scientists from this level of detail. We must push for a 
closer integration of database technologies with parallel and out-of-core techniques. We advocate for a 
new computing environment in which scientists can ask, “What if I increase the pressure by a factor of 
ten,” and have the analytics run the appropriate codes to examine the effects of such a change. 

We also expect within the next two decades for the paradigm to change, from one in which we must 
load all data onto a large machine to perform analytics to one in which we stream the data from disk/tape 
and apply the data analysis and visualization routines. This change is necessary because datasets are 
growing exponentially large. For example, simulations by fusion scientists (using the GTC code) will 
start producing data at a rate of about 60 GB every minute. Although this rate may not appear 
overwhelming at first glance, it amounts to more than 600 TB of data produced in less than a week. If the 
researchers knew exactly what to look at within the data, this requirement could easily be reduced by 
perhaps a factor of 1,000. The problem is that if scientists knew exactly what they were looking for, they 
could build a much smaller model of the code and then run this on a much smaller number of processors. 
Science is about discovery, and we need to enable this discovery in exascale computers. 

In many fields, the data management challenges will heighten as we begin coupling codes. These 
multiscale, multiphysics codes will begin to dominate the high-end computing platforms as we move 
toward exascale computing. The analytics and data management problems are compounded by multiple 
authorship (e.g., the CCSM climate model) and the explosion in dataset size. Fortunately, the actual 
number of features in the data does not increase exponentially, but rather increases linearly with the 
quantity of physical processes in the simulation. 

We must be proactive in designing an analytics system directly coupled to our computing platform. 
Scientists need to be able to extract subsets of data before it initially hits disk, and perhaps also after it is 
on tape. Workflow automation techniques can apply on smaller systems, behind the scenes, continuously 
streaming data from tape to disk and from disk to analytic systems. 

One final piece of the puzzle is that we need to enable the science community to examine its data for 
validation and predictive capabilities in these codes. This means that we need scientists to be able to work 
with prototyping systems (e.g., IDL, Matlab, R) to prototype their analysis. Using the streaming 
techniques mentioned above, scientists can then deploy their software on these advanced computing 
resources and do their science. Higher-level users will then want to look at the suite of software created 
by the science community to ask “what-if” questions, which can then make use of the software 
infrastructure on the complex computing resources. Allowing users to interact with the data—without 
requiring an understanding of arcane technical concepts such as parallel file systems or parallel 
algorithms—will enable us to reach new levels of science. This can be possible if we think about how to 
make these environments more conducive for doing science. 

In order to make this vision into a reality, we must look at the entire pipeline of data analysis, from 
application data writing to analysis activities. This process may itself be analyzed by collecting 
requirements from each current application, determining the following: 
• The desired analysis tools and algorithms (visualization, data mining, etc.), 
• File system storage needs per simulation, 
• The maximum desired write time as a percentage of simulation time, and 
• Archival storage needs per simulation. 
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Given the above, several important application-specific data analysis requirements directly follow—
for example, output bandwidth (gigabytes per second) from the leadership computing system to local 
storage. The most demanding data management requirements often come from applications that 
incorporate multiphysics and multiscale models. This kind of coupling leads to high dimensionality in 
evolved quantities (e.g., radiation fields, chemical and nuclear species, and particle phase spaces). Many 
applications also tend to involve long-time evolutions. Therefore, large multidimensional datasets are 
output at many regular intervals to allow for analysis of time-dependent correlations and the overall 
evolution of the modeled systems. The particular science objectives for these types of applications are 
often directly related to a set of resolution requirements—in time, space, ensemble, and multivariate—
which in turn determines the overall quantity and size of datasets output. This scaling also holds for the 
I/O requirements for checkpoint (restarts). The infrastructure requirements for the LCF stemming from 
these application requirements ultimately set the scale of the scientific simulations that can be performed 
on the system. It also constrains the set of knowledge discovery and data analysis activities that can be 
performed on the resultant simulation data. 

The I/O requirements for LCF systems can be broken down into two distinct categories, namely, 
those required to 
• Output results in the form of restart dumps and other analysis files, and 
• Postprocess data files for analysis and visualization. 

 
The output portion of I/O requirements can be estimated for the LCF by examining the needs of the 

largest data-producing codes on the current systems, currently CHIMERA, GTC, S3D, T3P/Omega3P, 
and POP [1]. Output of the codes can be in two categories: restarts and analysis. On the 250 TF systems 
some of these codes, GTC for example, will be producing 1 GB/minute (analysis data), and this amount is 
projected to double. The need to verify these simulations against experiments had engendered this data 
explosion. Researchers using codes such as S3D want the ability to write out 3 PB, which is 100 times the 
amount of data they are currently writing, but they are currently limited by the I/O bandwidth, their 
analysis pipeline, and the lack of storage. Scientists would also like an environment in which they can 
easily switch from synchronous I/O techniques to asynchronous techniques and in situ visualization 
techniques. Ideally, they want to maintain a certain quality of service to maintain <5–10% overhead for 
I/O for the life of their simulation. These demands are usually made by scientist who desire lots of 
metadata-rich output, but because of fluctuations on the I/O system due to other users, I/O can sometimes 
eat up 25% of their compute time. This limits the amount of science they can run on the machine because 
of the limited availability of leadership computing resources. As a result, they are left with less time for 
additional simulations, or for running the current simulation further in time. 

For scientists to process this large amount of data on a machine of reasonable cost, we must focus on 
out-of-core routines coupled with data-streaming techniques. We need fast access to tape such that 
scientists can ingest the raw data from a day of simulation runs in a day of analytics. Understanding the 
end-to-end processes that scientists currently undertake can inform our hardware requirements for the 
future.  

In order to give a more quantitative example of data analytics requirements, consider an exaflop 
machine with 100 PB of main memory, with typical application restart outputs approaching 10% of the 
available memory every hour, or roughly 10 PB/hour. The analysis output from the simulations will 
approach similar levels. Together, the checkpoint and analysis output will amount to 20 PB/hour. Typical 
execution time per week from these very large data-producing codes will most likely never exceed one 
full week per month on the entire machine. This allows the requirements to be estimated as follows: 
• Disk Bandwidth. To handle the burst from 20 PB of output per hour with <10% overhead, we need 

to write out 20 PB/360 s, or about 50 TB/s. Asynchronous I/O has the potential to reduce the 
sustained bandwidth required to 20 PB/3600 s, or about 5 TB/s while the application still experiences 
less than 10% overhead. We must have quality of service to ensure this during the lifetime of the run.  

• Disk Capacity. The scratch has to be able to hold the data produced by a simulation for at least 



15 

3 weeks since the time it was performed. The volume of data that will be produced by a typical 
simulation will be about 20 hours/day for 5 days at 20 PB/hour, or 2 exabytes (EB). We will need 
approximately 6 exabytes of scratch space to hold simulation data for 3 weeks. 

• Tape Bandwidth. As mentioned earlier, the data generation rate is 5 TB/s. However, not all the 
checkpoint data will need to be archived. Furthermore, not all applications will be performing I/O at 
the peak level predicted earlier. Therefore, it is estimated that a sustained tape-write bandwidth of 
1 TB/s will be required to match the data generated by the simulations. A read bandwidth that is 
higher than write bandwidth is desirable, since it expedites the analysis workflow when it is time to 
revisit the archived data. For that reason, a read bandwidth of 2 TB/s is recommended.  

• Analytics Machine Memory. Given that one needs to read in multiple time slices and multiple 
variables, one would assume that the analytics machine will have to contain about 1/100 of the total 
memory of the entire dataset. We will assume that with out-of-core and streaming capabilities 
introduced in the software stack we will have to handle a few correlation lengths and a correlation 
time. We must approximate this amount of memory as approximately 1/100 of the total amount of 
data/timestep and about 1/100 the total amount of data (for all timesteps). This gives us a reduction of 
four orders of magnitude. This gives us an estimate of 200 TB, or about 1/500 of the memory on a 
100 PB exascale computer. Another way to examine this is to figure that we need approximately the 
same amount of memory for one full timestep of analysis data. Since some codes will actually use the 
majority of their restart files as analysis data (e.g., the S3D code), this says that we will need about 
10 PB of data. Luckily, the checkpoint data produced by such codes is only about 1/40 of total 
memory on the production platform. This reduces our memory constraint to about 2.5 PB of memory. 
Thus, the memory requirement can vary from 200 TB to 2.5 PB of memory. 

• Analysis Machine, Type of Memory. For fast prototyping of analysis routines, users have frequently 
requested shared memory machines. This allows them to quickly prototype machines without 
worrying about living in the memory constraints of massively parallel processing. This can be 
accomplished in two ways: fat nodes with “large-enough” memory, and fully shared memory 
machines. If shared-memory machines with 200 TB of memory are too costly, then minimally it 
would be reasonable to assume we would like to split this amount of memory between at most 8–10 
machines, so that one could look at a “large-enough” region of degrees of freedom (spatial degrees, 
degrees in variables, etc.). This puts the minimal amount of shared memory necessary at about 20 TB 
of memory.  

• Latency, bandwidth. Analysis routines are generally more sensitive to latency, since these routines 
usually have not been optimized as much as the large simulations. The bandwidth needs to be 
“fast enough.” It is reasonable to assume that the injection bandwidth needs to be equal to the exaflop 
machine, and the latency needs to be at least 2 times better. 
 
Clearly a paradigm shift must occur for researchers to find the needle in the haystack. Analytics is the 

place where LCFs truly need blue-collar computing. We need to empower scientists to ask “what-if” 
questions and have the software and hardware infrastructure capable of answering these questions in a 
timely fashion. Strong analysis, visualization, and workflow are important. Strong data management will 
not just become important—it will become an absolute must as we move into the age of exascale 
computing. We can already see these trends in the computing world by looking at companies like Google. 
Google desktop has revolutionized desktop computing by allowing us to find information that might have 
otherwise gone undetected. These types of technologies are moving into leadership class computing and 
must be made to work on the largest analysis machines.  
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6. ACCELERATING DEVELOPMENT AND READINESS 

The anticipated requirements described in the previous sections motivate research and development 
(R&D) in a wide range of areas. The following section suggests cross-cutting R&D themes designed to 
meet the most prominent and critical unresolved challenges resulting from these requirements. 

6.1 AUTOMATED DIAGNOSTICS 

Improved diagnostics are a growing need across the spectrum of high-performance computing (HPC) 
activities, including but not limited to scientific inquiry, application development, system administration, 
network administration, hardware maintenance, cybersecurity, center management, and future hardware 
and software design. The required growth in size and complexity of software and systems may only be 
feasible through aggressive automation of diagnostic instrumentation, collection, and analysis. Drivers for 
automated diagnostics include performance analysis, application verification, software debugging, 
hardware-fault detection and correction, failure prediction and avoidance, system tuning, and 
requirements analysis. 

6.2 HARDWARE LATENCY 

Whereas aggregate computation rate, parallelism, and bandwidth should improve significantly over 
the coming years, hardware latencies are unlikely to see similar improvement. In addition to software 
strategies to mitigate high latencies, hardware improvements could reduce latencies for targeted 
operations or improve the prospects for latencies to be hidden through overlap with other operations. 
Possibilities include fast synchronization mechanisms on chip, in memory, or over networks, along with 
smart networks that can accelerate or offload higher-level latency-sensitive operations, like global 
floating-point reductions. 

6.3 HIERARCHICAL ALGORITHMS 

One reaction to latency stagnation has been to increase the depth of the memory hierarchy, a trend 
that is likely to continue at wide-ranging levels of the hierarchy. Heterogeneous computing is beginning 
to create a process hierarchy, in addition to deepening the memory hierarchy further still. As systems 
continue to grow in complexity, the need to tolerate failures could bring redundancy from the archive and 
filesystem level (RAID) to the memory level. Applications will require algorithms that are aware of the 
system hierarchy and can adjust to it. In addition to the now-common strategies of cache blocking, hybrid 
data parallelism, and file-based checkpointing, algorithms may need to include dynamic decisions 
between recomputing and storing, fine-scale task-data hybrid parallelism, and in-memory checkpointing. 

6.4 PARALLEL PROGRAMMING MODELS 

The requirements in this document motivate specific improvements for parallel programming models 
and libraries: arbitrary task/data parallel hierarchy and minimized synchronization. As described above, 
the memory hierarchy of HPC systems continues to deepen, but current programming models still target 
one level of the memory hierarchy at a time. For example, a hybrid-parallel application uses the source 
language for instruction-level parallelism, OpenMP for multi-processor intra-node parallelism, and 
message-passing interface (MPI) for inter-node parallelism. New levels of the memory hierarchy are 
mapped to one of the existing levels of parallelism or ignored. The levels of parallelism within the 
application are mapped to a specific, distinct level of the programming model and are difficult to modify. 
An improved programming model would allow the application developer to identify an arbitrary number 
of levels of parallelism within an application and map them onto hardware hierarchies at runtime, perhaps 
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dynamically. Models continue to be coupled into larger models, driving the need for arbitrary hierarchies 
of task and data parallelism. Finally, latency stagnation drives the need for minimized synchronization, or 
alternately maximized asynchrony. 

6.5 SOLVER TECHNOLOGY AND INNOVATIVE SOLUTION TECHNIQUES 

It is safe to make two broad assumptions: 
• Scientists will continue to desire to solve more ambitious problems, with simulations run at higher 

resolutions and on longer time scales. Models will continue to incorporate an increasing number of 
coupled phenomena. 

• The machines will look quite different than they do today; for example, the number of processor cores 
will likely be in the millions and the number of cores per socket could be in the hundreds. Given 
current projections about future architectures, contention for memory bandwidth among the CPU 
cores within a socket will become a major performance hurdle. 
 
In terms of what these might mean in practical terms for the solver community, many scientists will 

take advantage of massive increases in computing power by adding more coupled processes to their 
models. As many of these processes are strongly and nonlinearly coupled, operator-splitting schemes will 
become problematic, and in many cases fully implicit formulations will become necessary. For many such 
problems, one of the most promising approaches is Newton-Krylov-type methods [13] that utilize 
physics-based preconditioning. 

Physics-based preconditioners algebraically decouple certain phenomena that we know—based on 
our knowledge of the physics—to be somewhat loosely coupled. One of the attractions of these 
preconditioners is that they can enable us to use efficient operator-split solvers from existing highly 
efficient codes without introducing errors due to decoupling into our solutions (because we decouple only 
in the preconditioner). This code reuse aspect is important because many scientific teams must minimize 
the time spent reengineering their existing code infrastructure for the exascale. In addition to this benefit, 
physics-based preconditioners can enable use of Jacobian-free methods that save memory and 
computational cost by avoiding explicit calculation of the Jacobian, use of scalable multilevel solvers on 
subsets of the problem, and many other techniques. There are many settings in which physics-based 
preconditioners have not been thoroughly explored; hence significant research effort is warranted. 

Since it is likely that many of the simulations at the exascale will utilize implicit schemes, and 
because solver costs tend to increase with increasing simulation fidelity (which scientists will surely 
increase as we move to the exascale), it seems a given that solvers for the linear systems that arise will 
assume even greater importance. Based on projections about the type of architecture that an exascale 
machine might have, we see two major concerns that are significantly more worrisome than at the 
petascale: 
• First, because global communication operations across millions of processors will be prohibitively 

expensive, solvers will have to eliminate global communication where feasible and mitigate its effects 
where it cannot be avoided. Research on more effective local preconditioners will become a very high 
priority. 

• Second, if increases in memory bandwidth continue to lag the number of cores being added to each 
CPU socket, further research into ways to effectively trade flops for memory loads/stores is 
warranted. An example of such a technique is storing sparse matrices as collections of dense blocks 
(elements of which may be zero) rather than of individual elements. This has been done to a limited 
extent, but further research on, for example, means to automatically select the optimal block size for 
performance with a given problem/architecture combination is desirable. Another technique of more 
theoretical interest is the use of block Krylov methods. Traditional Krylov methods solve a linear 
system Ax = b by building a space one basis vector at a time from which increasingly better 
approximate solutions are extracted. A block Krylov method solves a block linear system AX = B, 
expanding the space by k vectors (where k is the block size) at each iteration. Block methods 
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typically require fewer iterations than traditional Krylov methods but tend to require more total flops; 
they require fewer memory accesses, however, because they allow multiple matrix-vector products to 
be computed for each access of the matrix A. Block Krylov methods have enjoyed some success, but 
their widespread adoption has been limited by some theoretical issues. First, because solutions for the 
different right-hand sides generally converge at different rates, there is a need for deflation to remove 
the converged right-hand side from the block system. However, our understanding of the numerical 
difficulties involved is not complete. Second, although block Krylov methods are a natural choice 
when presented with a linear system with several right-hand sides, in many simulation codes we only 
have one right-hand side. A block Krylov method can still be helpful in such cases if appropriate 
additional right-hands are chosen, but methods to choose these vectors are still a matter of open 
research. 
 
In short, the need for scalable linear and nonlinear solvers and eigensolvers will continue as the size 

and complexity of simulations grow. On future architectures, algorithms must be considered that might be 
significantly flops-inefficient in return for efficiency in memory loads and stores and global 
communication operations. The requirements include multilevel methods, preconditioners, adaptive mesh 
refinement, irregular meshes, Newton-Krylov methods, and complex-mesh generation. The various solver 
technologies need development and tuning within the context of the memory and process hierarchies and 
latency stagnation described above. Novel techniques should also be investigated. An example is the 
easily parallelized Monte Carlo method (popular for radiation transport as well as in various ab initio 
approaches), which could prove useful in a many-core environment as a linear or nonlinear solver or even 
as a deterministic solver of partial differential equations (e.g., Navier-Stokes equations). 

6.6 ACCELERATED TIME INTEGRATION 

Many applications require dramatic increases in the length of simulated time, but the exponential 
increase in single-process performance over the last few decades has stalled, and increasing parallelism 
does little for the serialized time dimension. Increasing resolution can exacerbate the problem by 
requiring shorter time steps for numerical stability. Complimentary strategies for acceleration of time 
integration include fully implicit methods (aided by solver technology), pipelined-in-time and parallel-in-
time algorithms, and compact shape-preserving bases. The latter areas are relatively undeveloped and 
offer unknown potential. The urgency of progress grows as single-process performance stagnates and 
even declines.  

6.7 MODEL COUPLING 

Models continue to be combined and coupled into more complete and complex models. These 
coupled models require effective methods to implement, verify, and validate the couplings, which can 
occur across wide spatial and temporal scales. The coupling requirements drive the need for robust 
methods for downscaling, upscaling, and coupled nonlinear solving. Data assimilation is of growing 
importance, with the rapidly expanding volume of high-quality data from satellites, sensors, and new 
experiments. Evaluation of the accuracy and importance of couplings drives the need for methods for 
validation, uncertainty analysis, and sensitivity analysis of these complex models. The scientific payoff 
from future simulations depends on such evaluation. 

6.8 MAINTAINING CURRENT LIBRARIES 

Most current HPC applications rely upon libraries, particularly MPI and often BLAS, LAPACK, 
FFTW, ScaLAPACK, PETSc, or Trillinos. Such reliance is likely to continue and grow, so these libraries 
must continue to perform as HPC systems grow in parallelism and complexity. Promising new 



19 

architectures will need these libraries, particular the baseline of MPI and the BLAS, to be viable targets. 
The libraries must be tuned and updated to achieve the performance potential of such new architectures. 

 
 

7. SUMMARY 

An important (and in retrospect, obvious) lesson learned in this process is simple: Application 
requirements must be elicited for periods extending at least two leadership system deployments in the 
future to allow for more creative, unconstrained thinking and planning. Current leadership computing 
facilities are focused tactically on the next system upgrade (usually one to two years away) as well as the 
next system delivery (usually two to three year away). The time period beyond the next system delivery is 
therefore three years or greater in the future. By exploring system and software requirements in this 
timeframe, we are able to pose questions without being constrained by the impending arrival of specific 
systems. 

It is this more speculative thinking and planning that leads to new and innovative strategic plans and 
solutions beyond the horizon. To give a specific example, this process drives researchers to think about 
how to formulate and implement algorithms and software for totally new math libraries rather than how to 
tweak the performance of existing math libraries. 

Leadership class facilities must engage in a regular and evolving applications requirements process 
that is rigorous and quantitative. This process is difficult and time-consuming, yet necessary. 
High-consequence decisions about current and future systems informed by this process will help to 
deliver systems best suited for accelerating scientific discovery and understanding. 

The establishment of a formal, rigorous, and useful requirements management process is very 
challenging when applied to breakthrough science applications for leadership computing. At this level, 
the research is by its very nature exploratory and high risk. The requirements process must always evolve, 
continuing to improve as guided by lessons learned, just as this document must be a living document, ever 
changing to keep up with the applications themselves. Computational science requirements for leadership 
computing flow both ways—LCF systems set requirements for the science applications just as the science 
applications must set requirements for the LCF systems. 
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APPENDIX 
 

QUESTIONNAIRE ON SCIENTIFIC APPLICATION REQUIREMENTS FOR  
LEADERSHIP COMPUTING IN THE NEXT DECADE 

Members of the Scientific Computing Group in the National Center for Computational Sciences 
(NCCS) Leadership Computing Facility (LCF) at Oak Ridge National Laboratory (ORNL) surveyed 
numerous computational scientists in a broad range of scientific domains and asked them to speculate on 
requirements for their scientific application(s) on Leadership Computing platforms in the next decade 
(2010–2020). A large fraction of the information, guidance, and plans outlined in this document is derived 
from the answers provided in these surveys from this expert community of leading computational 
scientists. Without their insight, knowledge, and experience, the application requirements outlined in this 
document would not have nearly the fidelity or significance. 

Time constraints did not permit all 2007 ORNL LCF INCITE Projects to respond to this survey, but 
the following list of scientists were solicited and able to participate: Pratul Agarwal, Valmor de Almeida, 
Jeff Candy, Jackie Chen, David Dean, John Drake, Tom Evans, Robert Harrison, Lei-Quan Lee, Peter 
Lichtner, Tommaso Roscilde, Benoit Roux, Thomas Schulthess, Ed Uberbacher, Phil Locascio, Patrick 
Worley, Fred Jaeger, Anthony Mezzacappa, William Tang, Wei-li Lee, and Don Batchelor (omission of 
any names on this list is unfortunate and unintensional). 

The survey questions are itemized below. 
 

• What are some possible science drivers and urgent problems that would require Leadership 
Computing in 2010–2020? Please provide bullet items. 
 

• What are some looming computational challenges that will need resolution in 2010–2020? Please 
provide bullet items. 
 

• What are some sample science objectives and outcomes that Leadership Computing could enable in 
2010–2020? Please provide bullet items. 
 

• What are some improvement goals for science-simulation fidelity that Leadership Computing could 
enable in 2010–2020? Please provide bullet items, in terms of absolute resolution, relative increases, 
additional physical processes, etc. 
 

• What are some possible changes in physical model attributes for Leadership-Computing applications 
in 2010–2020? Please provide bullet items, in terms of numbers of dimensions, numbers of state 
variables, numbers of diagnostic variables, etc. 
 

• What major software-development projects could occur in your application area in 2010–2020? 
Please provide short descriptions and implications for Leadership Computing. 
 

• What major algorithm changes could occur for your applications in 2010–2020? Using the “seven 
dwarfs” categorization, indicate which dwarfs might be added or eliminated: structured grids, 
unstructured grids, fast Fourier transforms (FFTs), dense linear algebra, sparse linear algebra, 
particles. Monte Carlo, and other: 
 

• What libraries and development tools may need to be developed or significantly improved for 
Leadership Computing in 2010–2020? Please provide bullets summarizing the new capabilities 
needed. 
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• How might system-attribute priorities change for Leadership Computing for your application? For the 

following system attributes for Leadership Computers, please select four that are most likely to 
increase (+) in priority in 2010–2020 and four that are most likely to decrease (–), relative to today: 
node peak flops; mean time to interrupt (MTTI), wide-area network (WAN) bandwidth, node memory 
capacity, local storage capacity, archival storage capacity, memory latency, interconnect latency, disk 
latency, interconnect bandwidth, memory bandwidth, and disk bandwidth. 
 

• In what ways might or should your workflow in 2010–2020 be different from today? Please provide a 
short description or bullets.  
 

• Are there any “disruptive technologies,” “game changers,” or “revolutions” that might affect your 
Leadersip Computing applications? Please provide short descriptions or bullets. 
 
 


