
Routing Heterogeneous CCI Subnets
Scott Atchley

Technology Integration Group, NCCS
Oak Ridge National Laboratory

Oak Ridge, TN, USA
atchleyes@ornl.gov

Abstract—This electronic document is a “live” template and
already defines the components of your paper [title, text, heads,
etc.] in its style sheet.

Keywords—Common Communication Interface; CCI; routing;
networking; heteroneneous; overlay networks

I. INTRODUCTION
This design document describes something.

II. MOTIVATION
Networking technologies for use in local-area networks

(LAN) have improved performance (e.g. reduced latency
and/or increased throughput) as well as reduced the workload
on the host’s processors. Wide-area networking (WAN) still
relies mostly on Sockets using TCP or UDP. The downside to
Sockets is that it does not lend itself to these advances in
networking technology.

III. DEFINITIONS
In order to discuss the various goals, requirements, and the

design, we need to define some frequently used terms:

A. Transport
A transport is a combination of networking hardware and

software that provides end-to-end communication. It may use
generic hardware and software (e.g. Ethernet and Sockets) or
specialty hardware and software (e.g. InfiniBand and Verbs).

B. Subnet
For the purposes of this document, a sub-network (i.e.

subnet) is a collection of networked hosts that are visible to one
another using a given transport.

C. Autonomous System
An Autonomous System (AS) is an independent

organization, which determines its internal routing topology
and policy. Each AS terminates at the edge of the wide-area
network (WAN). We use the terms AS and organization
interchangeably.

D. WAN
Wide-area network. WANs may be public (shared) or

private (dedicated) networks.

E. Peering
Routing between Autonomous Systems over the WAN.

F. Router
A router is a process that connects to two or more subnets

(within an AS or between two AS) and provides
communication between them.

G. Endpoint
In CCI, an endpoint is a process’ virtual instance of a

network interface card (NIC). The endpoint is the source and
destination of all network traffic. An endpoint is per process,
not per peer (i.e. a single endpoint can communicate with any
number of peer endpoints).

H. Connection
A CCI connection denotes the ability of two CCI endpoints

to communicate. A routed connection is the end-to-end
connection that spans two or more transport connections.

I. OS-Bypass
OS-bypass is the ability of a process to directly access

network hardware without going through the kernel. These
accesses may include data movement or status updates (e.g.
events).

J. Zero-Copy
Zero-copy is the ability to move data directly between a

user-space application and a network adapter without
intermediate copies, especially copying to/from the kernel.

K. Messages/Messaging
CCI’s Messages (MSG) is a method of communication

using a small, unexpected message semantic. Applications can
use MSGs for control messages and for bulk data movement
rendezvous protocols.

L. Remote Memory Access
CCI’s Remote Memory Access (RMA) is a method of

communication using a one-sided semantic. RMA is designed
for bulk data movement.

With certain transports, CCI can use zero-copy and OS-
bypass to improve performance. With other transports (notably,
Sockets), CCI implements RMA in software and cannot use
zero-copy or OS-bypass.

M. RMA Completion Message
Because a RMA is one-sided operation, a process may need

to alert the peer process when the RMA operation is complete.
CCI provides the ability to send a MSG when a RMA
completes to notify the remote process.

IV. GOALS AND REQUIREMENTS
We identified the following goals and requirements:

A. Goals
The primary goal for CCI routing is to provide end-to-end

communication over heterogeneous networks across local-area
networks and wide-area networks. One usage scenario is
moving data from a simulation on a leadership class system
across the local-area network, over the wide-area network to
another DOE facility, across its local-area network, and finally
into a cluster for analysis and/or visualization. Such a scenario
could transit five or more heterogeneous networks: a high-
performance interconnect within the leadership class system,
the local-area network, the wide-area network, the second
facility’s local-area network, and the cluster’s high-
performance interconnect.

The secondary goal for CCI routing is to take advantage of
the highest performing networking stack on each network. We
could simply use Sockets and take advantage of the routing
capabilities of the IP stack. Because of the design of Sockets
precludes OS-bypass and zero-copy techniques, we need to use
the non-Sockets APIs for the networks that provide those
capabilities. CCI provides the ability to exploit each network’s
capabilities, but CCI does not provide by itself a common
address space for routing.

Our last goal is to provide that common address space to
enable routing with minimal impact on the current CCI API
and implementations. Ideally, current CCI implementations
would not need any modifications to support routing.

B. Requirements
We have identified the following requirements:

1) Route between heterogeneous networks
CCI currently supports multiple networks including

Sockets/UDP, Sockets/TCP, Verbs/InfiniBand, GNI/Gemini,
and Portals/SeaStar with additional transports under
development by collaborators.

2) Route between organizations
CCI routing needs to support routing between different

organizations (i.e. distinct administrative domains).

3) Support routing to/from private sub-networks
Most of the CCI TransPorts (CTP) use an IPv4 address as

part of the name for an endpoint, but typically these are private,
non-routable addresses and the address is used for connection
setup only. Each networking stack has unique addressing
conventions for the underlying communication and do not lend
themselves to a common addressing scheme.

4) Support multiple routers between networks
Allowing multiple routers enables improved throughput by

aggregating bandwidth, improved fault-tolerance by
eliminating a single point-of-failure, and reduced congestion by
load balancing over multiple links.

5) Support multiple metrics to determine the best route
The routing design should allow organizations to determine

the routing policy best suited to the local needs. These might
include shortest path (i.e. fewest hops), network maximal

throughput (i.e. choose higher bandwidth networks over lower
bandwidth networks), network hardware capabilities (i.e. favor
networks that provide hardware/software acceleration over
traditional Sockets), etc.

6) Provide the ability to set static routes
Static routes are useful for testing as well as for ensuring

the use of dedicated resources.

7) Minimal modifications to the CCI programming
interface

Applications should not need to be rewritten to use CCI
routing.

8) Minimal modifications to existing CTP implementations
The CCI TransPorts should not need to be modified. This

requirement assumes that routing will use the CTPs as they
currently exist and implement the routing protocols on top of
the CTPs.

9) Routers need to run in user-space
All current implementations of CCI only provide user-space

libraries. Organization policy might require that some routers
be run in privileged mode (i.e. a user-space process run as root
or other special user).

C. Non-requirements
Equally important to the design is to identify non-

requirements (i.e. items outside of the scope of the project).

1) Router auto-discovery
For traditional routable networks (i.e. Ethernet), routers use

broadcast to discover other routers. Clients may also use
broadcast to either discover routers or request networking
configuration information (e.g. DHCP) that contains router
information. Broadcast may be expensive or even not available
on some large systems.

2) Internet-sized scaling
This does not mean that routing should not cross the wide-

area network. It simply means that CCI routing is an example
of overlay routing on top of existing networks, including the
Internet. Because the need to scale is less than that of the
Internet as a whole, some of the solutions may trade-off
scalability for increased performance, for example.

3) Forwarding through an AS
Each organization is an end destination in the overlay

network. We do not need to provide forwarding through an AS
(e.g. ORNL->ANL->Livermore). Not requiring forwarding is
also an example of item 2 above.

A corollary of this non-requirement is that all subnets
within an organization are reachable from all other subnets
within the organization via one or more network hops. It will
not be legal to have two or more subnets connect to the WAN
from an organization that cannot route to each other within the
organization. If this were allowed, it would require forwarding
over the WAN. If an organization has such subnets, the
organization could use multiple AS numbers to allow WAN
routing between their distinct subnets.

4) Multi-pathing

CCI provides a connection-oriented semantic. During the
establishment of a connection, routers may be able to choose
from multiple routers for the next hop. Once the connection is
established, however, all messages will travel over the selected
set of routers. The underlying networks may provide multiple
links (e.g. Gemini, bonded Ethernet), but the connections
between routers and between routers and hosts will originate
and terminate at the same CCI endpoints within a specific
connection.

V. CCI ROUTING OVERVIEW
As mentioned in section IV, the goals include routing

across heterogeneous networks between distinct organizations.
Fig. 1 shows four hypothetical organizations with one or more
subnets each and all organizations are connected to the WAN.
Two of the organizations, labeled AS3 and AS4, have a
dedicated link separate from the public WAN.

For the purposes of routing, each organization determines
its routing topology and policy. We use the term Autonomous
System (AS) to describe such an organization. Each AS is
assigned a unique 32-bit ID. The limited number of anticipated
participating organizations should allow manual assignment of
AS IDs.

Within an AS, each subnet is also assigned a 32-bit ID. This
ID is only unique within the AS. Different organizations may
use the same subnet IDs. Therefore, a specific subnet will have
a globally unique combination of AS ID and subnet ID.

In Fig. 1, AS1 might represent a campus-wide IP network
and thus only it has a single subnet (SN1). It only requires a
router at the border between the SN1 and the WAN.

AS2 depicts multiple Ethernet broadcast domains and this
organization prefers the Ethernet CTP. Since the Ethernet CTP
requires a common Ethernet broadcast domain (EBD), this
organization has to provide routers between each EBD.

Fig. 2 looks more closely at AS3. This organization has
three subnets: a campus wide Ethernet network (SN1), a
storage-area InfiniBand network (SN2), and a leadership class
compute system with a high-performance interconnect (SN3).
Each subnet in AS3 has one or more routers providing
connectivity to other subnets. For example, the compute
system’s subnet 3 is connected to subnets 1 and 2 via router 4
(R4). In addition to its WAN connectivity via router 1 (R1),
AS3 also has a dedicated WAN link to AS4. This link is only
valid for traffic originating or terminating at AS4 and cannot be
used for forwarding to other organizations.

Figure 1. Multiple organzations (i.e. Autonomous Systems) each with multiple subnets.

AS4 has a campus-wide network, a storage-area network,
and a couple of HPC systems.

A. Local Routing
Local routing is within an organization (or intra-AS). All

subnets share the same AS ID. If the AS ID and the subnet ID
for two endpoints are the same, the communication does not
require routing at all. If the subnets have different subnet IDs,
then routing is required over one or more routers within the
organization, but not over the WAN.

B. WAN routing
If the AS IDs differ between two endpoints, routing over

the WAN is required. The routers in one organization do not
need, however, the complete (global) routing information for
the entire path, as we will see in section VI.

VI. ROUTE DETERMINATION
In this section, we will look closer at the details of routing.

Each router within an organization will need to have the same
route map. The map indicates to which subnets each router
connects directly as well as the path from any subnet to every
other subnet within the organization. For example, a router that
connects to three subnets will have three (or more) network
adapters and it will have at least one CCI endpoint per subnet.

Clients of the routing service will never have the map and
will not be involved in the building of the routing map. Each
client will have a static list of routers available within the
device description in its CCI configuration file. The client will
randomly choose a router.

Using the organization shown in Fig. 2, we can develop the
routing map and given hypothetical network bandwidth for
each subnet, we can determine which routes are preferred.

AS3 has three subnets, a public WAN link, and a dedicated
WAN link to AS4. Assume that SN1 is a campus-area 10 Gb/s
Ethernet broadcast domain. All hosts connected to SN1 can
communicate directly with each other. All four routers connect
to SN1 and can communicate with each other over SN1. SN2
might be a storage-area network using InfiniBand QDR, which
has a data rate of 32 Gb/s. Only routers 3 and 4 connect to SN2.
SN3 is within the HPC system and has a throughput of 64 Gb/s.
SN3 is only connected to router 4. Lastly, router 2 also has
WAN connectivity to AS4 over a dedicated 100 Gb/s Ethernet
link.

A. Building the complete route map
For this organization, we want to build routes from every

subnet to every other subnet. A route will be an ordered list of
one or more subnet IDs. For connections between endpoints on
the same subnet, no routing is required and the route list is
empty.

The routing table can then be thought of as a NxN table
where N is the number of subnets. The left column will be the
array of originator subnets of connections and the top row will
be the array of destination subnets for connections. The
intersection of the row N and column M will contain the
ordered list of subnet IDs from subnet N to subnet M.

Altogether, AS3 has five subnets (SN1-3, WAN, and WAN
to AS4). Its routing table will have five rows by five columns.

Figure 2. A detailed look at AS3 which has three subnets and four routers.

We will label the rows and columns 1, 2, 3, W*, and W4 for
the five subnets.

1) Local subnet (no routing)
As mentioned previously, if the AS ID and subnet ID

match, then we do not need to use routing. Since all routing
maps are specific to an AS, the AS ID is the same for all
subnets in the map. Therefore, we can identify which entries in
the table that will not have any routes.

In our example, the first cell is at row 1 and column 1 for
subnet 1 in both cases, which does not require routing and is
empty (as are 2:2, 3:3, W*:W*, and W4:W4). Also, since AS3
has two WAN links and since we do not forward through
organizations, entries for W*:W4 and W4:W* are empty as
well.

2) Single hop routes
When subnets are directly connected via a router, the route

uses a single hop. We use them to initialize the routing table.

For example, router 2 connects subnet 1 and subnet 2. For
the entry at row 1 and column 2 (1:2), we enter 1,2 and at row
2 and column 1 (2:1), we enter 2,1. We continue with each
router’s direct connections.

3) Multiple hop routes
Once all the single-hop routes are entered, we need to build

routes between non-directly connected subnets. We will build
these routes starting with the single-hop routes and combining
them until we find all of the possible routes from one subnet to
another. To avoid loops when computing routes, if we
encounter a subnet ID a second time, we discard the route.

Looking at our previous example, routing from subnet 3 to
the WAN could use the following routes:

• 3,1,W*

• 3,2,1,W*

Routing from WAN to subnet could use the reverse of these
two routes. No other routes exist from subnet 3 to the WAN
without incurring a loop.

In addition to loop detection, we will discard routes that
contain a shorter route. In the above example, the route 3,1,W*
is contained within 3,2,1,W*. Since no edge (i.e. subnet) can
have a zero cost to traverse, the longer route that contains a
valid shorter route can never cost less than (or even equal to)
the shorter route. Our completed route table for AS3 is shown
in Table 1.

TABLE I. ROUTES FOR AS3

 SN1 SN2 SN3 W* W4

SN1 — 1,2 1,3 1,W* 1,W4

SN2 2,1 — 2,3 2,1,W* 2,1,W4

SN3 3,1 3,2 — 3,1,W* 3,1,W4

W* W*,1 W*,1,2 W*,1,3 — —

W4 W4,1 W4,1,2 W4,1,3 — —

Note that there are no loops since all subnets 1, 2, and 3 are
all directly connected to each other. And since we discard
longer routes that contain valid shorter routes, the table for AS3
only has one route in each cell.

B. Choosing between multiple routes
If we encounter any loops when building the complete

routing table, multiple routes will exist between some of the
subnets. Likewise, if an organization has private WAN links in
addition to the public WAN link, multiple routes will exist
between some subnets and other organizations. The
administrator will be able to choose between multiple metrics
to determine which route should be used. Initially, we intend to
provide bandwidth (based on link-rate, not dynamically
available throughput), network capabilities (e.g. native RMA
support), latency, and hop count.

When choosing routes, we will use Dijkstra's Algorithm to
find the shortest path in a graph. For our usage, each vertex in
the graph represents one or more routers that connect two or
more subnets. The edges are the subnets. For subnets that
cannot be transited (i.e. the subnet can only be at the beginning
or end of a route), they are represented by an edge with a vertex
only at one end. When dealing with non-transiting subnets, the
other vertex will represent the end node.

The algorithm is a minimizing function. The goal is to find
the least cost path between any two nodes. At least one of our
metrics, bandwidth, needs to be converted. Ideally, the routing
algorithm would choose the highest bandwidth network
available. In CCI, the device information includes link-rate
expressed in bits per second. To convert link-rate to a usable
metric, first convert this rate to gigabits per second (Gb/s) and,
second, divide a fixed, larger value by the Gb/s. For example, if
the fixed value is 1 terabit per second (1 Tb/s or 1,000 Gb/s)
and if the device has a link-rate of 10 Gb/s, then the metric for
subnet connected to this device would be 100 (1,000/10). For a
device capable of 100 Gb/s, the metric would be 10. Given a
choice between a subnet with a metric of 100 (10 Gb/s) versus
10 (100 Gb/s), the algorithm will choose the lower value and
pick the faster 100 Gb/s subnet.

Back to our example, if the application wishes to
communicate between on node on AS3’s subnet 3 and a node
at AS 4, it could use either the public WAN connected to router
1 or the private WAN link connected to router 2. Both routes
transit subnet 3 followed by subnet 1.

In our example, subnet 3 has a fast HPC interconnect with a
link-rate of 64 Gb/s, subnet 2 is 10 Gb/s Ethernet as is the
public WAN, and the private WAN to AS4 is 100 Gb/s. If we
convert these, the bandwidth metric value for subnet 3 is 15
(rounding down), subnet 1 and the public WAN are 100 each,
and the private WAN is 10.

The two routes are then scored. The route through the
public WAN traverses subnet 3, subnet 1, and the public WAN
for a score of 215 (15 + 100 + 100). The route through the
private WAN traverses subnet 3, subnet 1, and then the private
WAN for a score of 125 (15 + 100 + 10). The traffic will flow
over the private WAN.

This is optimal from AS3’s policy, but may not necessarily
be optimal from AS4’s point of view. For example, if the
destination node is directly connected the subnet inside AS4
connected to the public WAN, routing within AS4 may prefer
using the public WAN router than the private WAN router.
This is another example of a trade-off between optimal routing
versus the complexity of ensuring a globally consistent routing
map.

Fig. 3 shows a loop within an organization. There are two
valid routes from the client to the server. One route traverses
subnets 1, 2, and 8 while the other traverse subnets 1, 5, 6, and
8. If the routing metric is hop-count, which is commonly used
in traditional IP routing, then the first route will be selected.

If the routing metric is highest bandwidth, we will compute
the cost of each route using the converted bandwidth. Table 2
shows the link-rate and the metric based on 1 Tb/s divided by
the link-rate.

TABLE II. BANDWIDTH ROUTING METRIC

Subnet Link-rate (Gb/s) Metric

1 10 100

2 10 100

5 32 31

6 32 31

8 10 100

To determine the cost of a route, we sum the converted
link-rate metric for each subnet traversed. The route that uses
subnets 1, 2, and 8 has a total cost of 300. The route that passes
over subnets 1, 5, 6, and 8 has a total cost of 262 making this
the preferred route.

Bandwidth alone does not tell the whole story. CCI
supports multiple networks including Sockets (UDP/IP and
TCP/IP). Most high-performance networks provide IP or
Ethernet encapsulation as well. This means that CCI can
communicate over a network using its native low latency, zero-
copy, and OS-bypass interface and over Sockets on top of this
interface. The native interface will always perform better than
the Sockets interface, but the link-rate is identical. In order to
recognize this fact, the routing information will include
whether the interface supports zero-copy and OS-bypass. When
computing the bandwidth metric, we will convert the link-rate
to the bandwidth metric and then, if the route does not use
zero-copy and OS-bypass, we will double the metric (in effect
dividing the link-rate by half). This will bias the routing
decision to use subnets with these capabilities over subnets that
do not.

VII. IMPLEMENTATION OVERVIEW
In order to provide routing, we will need to make some

modifications to CCI and we will have to implement the router
application.

A. CCI Modifications to Support Routing
One of the requirements is to make minimal changes to the

existing CCI API and transports to support routing. First, we
will need to provide address space and router information for
each device and, second, we will need to add a new routing
transport.

1) Providing address space information
Currently, each endpoint can communicate only with other

nodes reachable by the underlying network. For the Sockets
based transports, these may be private subnets or they may be
publicly addressable nodes. For all other transports, they will
be private, but possibly quite large, subnets. As described
above, we will provide a common address space for CCI using
the AS ID and subnet ID pair.

In addition to having the address space information is not
enough, each device’s endpoints will need to know about the
available routers since we will do not require router auto-
discovery as mentioned in section IV.

Fortunately, CCI already has a mechanism to pass arbitrary
information for each device using the CCI configuration file
(i.e. config file). The purpose of the config file is to allow a
system administrator to describe which devices should be used
and information about the devices. The config file uses a
standard INI format with device names and keyword/values
pairs for additional information.

The CCI spec only mandates two items when describing a
device: a device name and the transport responsible for the
device. Transports are free to support additional keyword/value
pairs. Transports ignore keywords that they do not understand.
Using this feature, we can add three keywords to each device:
AS ID, subnet ID, and router.

We will impose some constraints on these keywords. First,
all three must be present and must have valid values to be
useful for the device. The lack of any of the three keywords or
valid values will prevent routing. Second, the AS and subnet
keywords must only be specified once per device (i.e. no
multiple values). Third, the router keyword must contain a
value with a valid URI for the given transport. For example, if
the device’s transport is Verbs, the URI must be recognizable
by the Verbs transport. Fourth, the router keyword may be
included multiple times to specify the availability of multiple
routers.

Figure 3. Multiple routes between client and server.

2) Routing transport
Routing will require managing end-to-end state for

connections and communications. Adding support for routing
within the current and future transports would require
significant changes. Instead, we can avoid modifying current
transports completely by implementing a new routing transport
that manages this state and uses existing transports for actual
communication.

This transport will rely on the underlying transport’s send
and receive buffers, but it will need to have its own completion
queue to indicate when end-to-end events have completed.

3) Endpoint creation
When creating an endpoint, CCI will bind the endpoint to a

specific device. Since routing is an overlay on top of actual
devices and transports, we will use the flags argument to
cci_create_endpoint() to indicate that the application
wishes to enable routing support. This flag will invoke the
routing transport, which will initialize its state and then create
an endpoint using the underlying transport. All subsequent CCI
calls will then use the routing endpoint, which will pass calls
through to the underlying endpoint and manage the end-to-end
state as needed.

Without routing, each endpoint has a transport recognizable
URI that includes a transport prefix, node identifier, and
endpoint id (e.g. port in IP networks). Examples of valid non-
routing endpoint URIs include:

• sock://host:port

• verbs://ip_address:port

• eth://mac_address:ep_id.

The routing endpoint will create a URI using a distinct
prefix (e.g. cci://), the AS ID, subnet ID, and then the
underlying URI’s node identifier and endpoint id.

For example, a Cray GNI endpoint URI without routing
might be gni://10.101.50.37:6744. If the application passes the
routing flag to cci_create_endpoint(), the routable
URI would be cci://32:126:10.101.50.37:6744, where 32 is the
AS ID, 126 is the subnet ID, and the rest is the node identifier
and endpoint id.

B. CCI Routers
The routing applications will implement the topology

discovery and route selection while using CCI for all
communication between routers and between routers and CCI
routing clients. A router must have devices on two or more
subnets. Routers will not use the CCI routing transport since
they only need to manage communications on their local
subnets.

Routers must have a CCI config file that specifies which
devices to use. If this router needs to provide forwarding over a
subnet to another router, the device description for that subnet
must include one or more router keywords to determine to
which routers it should connect.

In addition to the CCI config file, the router must
understand the order of the routing metrics preferred by the
local organization. This may be implemented via command line
arguments, a config file, etc.

When the router starts, it will open an endpoint on each
device in the config file. For each device, it will connect to
every router described by the router keyword. When routers
connect, they will exchange information about the subnets that
they support. A router information record is shown in Table III.

Using these records, they begin to build the network
topology. The routers then forward all newly received records
to their existing peer routers. This recursive exchange of
reachability information permits the routers to build the
complete topology as described in section VI. As the topology
is built, the routers also compute the forwarding table. If loops
are detected, the router computes the preferred route based on
the local administrative policy (e.g. bandwidth, latency, hop-
count, etc.). Once the router begins building the forwarding
table, the router is ready to accept connections from routing
clients.

TABLE III. ROUTER INFORMATION RECORD

AS ID

Subnet ID

Instance

Rate (Gb/s) Caps URI Len

URI

Although the routers do not use the CCI routing transport,
the routers and the routing transport will need to implement a
common protocol for connection establishment, handling
MSGs ad RMA, and reporting of their completion events.

C. Managing End-to-End State
Both the CCI routing transport and the router daemons will

need to manage three types of communication state: connection
setup, messages, and remote memory access.

1) Connection setup
CCI uses a three-way handshake when establishing unicast

connections. The client initiates a connect call which sends a
connect request to the server. The server receives the connect
request and chooses to accept or reject it. The response is sent
back to the client. Lastly, the client acknowledges the response.

The end-to-end connect must accomplish the same while
initiating connections at each hop. The client’s routing
transport will connect to one of the routers included in the
device’s conf_argv array and send a connect request which
includes the final destination. The router will look up the best

32 bits

route and the URI of a router at the next hop. It will then
connect to it and forward the destination URI. Each router
repeats this until it reaches a router on the last subnet. That
router connects to the server. When the server application
accepts or rejects, the server’s routing transport will send an
end-to-end reply back to the client. Lastly, the client will
acknowledge the reply.

As with non-routing CCI, the handshake will negotiate the
connection’s max send size for MSGs, which might be lower
than the device max send size for either the client and/or server.

2) Messages
Once the connection is established, the two processes can

begin exchanging messages. Since CCI establishes connections
between peers, the router simply has to associate the two local
connections (the one from the client direction and the other in
the server direction). Thus, when a MSG arrives on one, it
simply forwards to the other without need for any lookup or
route computation.

When the last router gets the send completion event, it will
send an end-to-end ack back to the client. When the client’s
routing transport receives this message, it will generate the
send completion for the send.

Since the routers will be managing many connections, their
shared receive queues may be temporarily busy. It will be
important for the underlying transports to handle intermittent
receiver-not-ready (RNR) responses until the congestion clears.

3) Remote Memory Access
The RMA path is a little more complicated than the MSG

path. In general, performing an RMA requires three steps. First,
the initiator and target register some local memory. Second, the
target passes its RMA handle to the initiator using a MSG.
Third, when the initiator has the target’s RMA handle, it can
then initiate the RMA. The RMA will either write (i.e. put) data
from the initiators memory into the target’s memory or read
(i.e. get) from the target’s memory to the initiator’s memory.

The design for routing of RMAs must cope with multiple
issues. First, the routers need to register memory before they
can participate in a RMA. They will need to register the
memory with each device for which they will be forwarding.
Second, RMAs may be arbitrarily large (i.e. as large as system
memory). Third, routers may not have as much memory as the
initiator or the target. Lastly, when forwarding the RMA, the
next router may not have enough memory available to continue
the RMA, especially if it is attempting to initiate an RMA to
the current router.

To address these issues, the router daemons will need to do
the following. When each router starts, it will need to register
memory for use in forwarding RMAs. To address the issue
where the RMA length is larger than the router’s registered
memory as well as the need to service multiple RMAs from
different clients, routers will fragment RMA requests to a
consistent fragment size (e.g. 1 MB or 4 MB). Routers will
allow multiple fragments from the same RMA request to
progress if there is enough memory available, but each router
will reserve one fragment for each peer router. The reserved
fragment will prevent deadlock in the case where two routers

need to exchange RMAs, but have no memory available, which
would cause the RMAs to timeout and fail. The routers will
need to negotiate the fragment size when they establish their
inter-router connections.

As part of the routing protocol shared between the routing
transport and the router daemons, RMA writes and reads will
be modified.

a) RMA write protocol
The initiator’s routing transport will not know where to put

the RMA write data in the router’s memory space. Since only
the router will know which memory fragments are available for
forwarding, the router will need to read the data from the
initiator.

To minimize state on the router, however, the initiator’s
routing transport will manage the fragmentation of the RMA
and send RMA write requests to the router for each fragment.
The router’s preferred fragment size can be sent to the client
during the connection handshake. When the router has one or
more fragment-sized memory buffers available, it will RMA
read the data from the initiator. The router then sends a RMA
write request for each fragment to the next router along the
path. Each router continues to forward the fragments to the
next router. When the last router receives a fragment, it will
RMA write the data to the target’s memory space, thus
maintaining the one-sided (i.e. passive) semantics from the
target’s perspective. The last router will be responsible for
sending an end-to-end ack back to the initiator to indicate that
the fragment was delivered. The ack will need a cookie that
was sent in the RMA write request to indicate which fragment
was completed. Once all fragments are delivered, the initiator’s
routing transport will generate the RMA completion event.

If the RMA includes a completion MSG, the initiator’s
routing transport send the completion message using the
standard MSG path after receiving the end-to-end ack for all of
the RMA fragments. This also avoids requiring any overall
RMA state on the routers and this ensures that the completion
MSG arrives after all the fragments have been completed.

b) RMA read protocol
The RMA read protocol is similar to the RMA write

protocol in that the initiator’s routing transport will manage the
fragmentation of the RMA, but it will send RMA read requests.
Each router will forward RMA read request to the next router
until it arrives at the last router. The last router will then RMA
read the data from the target to ensure the one-sided semantics
of the RMA read.

Once a router has read the data, it will send a RMA read
reply message to the next router along the path back to the
initiator. When the next router has a memory buffer available,
it will read the data from the previous router. When the router
closest to the initiator has the fragment, it too sends a RMA
read reply message to the initiator who then reads the data
from the router. Alternately, the router could RMA write the
data to the initiator and use a completion message to indicate
the fragments arrival.

Completion messages will be handled as in the RMA Write
case.

