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I.  INTRODUCTION 
This design document describes something. 

II. MOTIVATION  
Networking technologies for use in local-area networks 

(LAN) have improved performance (e.g. reduced latency 
and/or increased throughput) as well as reduced the workload 
on the host’s processors. Wide-area networking (WAN) still 
relies mostly on Sockets using TCP or UDP. The downside to 
Sockets is that it does not lend itself to these advances in 
networking technology. 

III. DEFINITIONS 
In order to discuss the various goals, requirements, and the 

design, we need to define some frequently used terms: 

A. Transport 
A transport is a combination of networking hardware and 

software that provides end-to-end communication. It may use 
generic hardware and software (e.g. Ethernet and Sockets) or 
specialty hardware and software (e.g. InfiniBand and Verbs).  

B. Subnet 
For the purposes of this document, a sub-network (i.e. 

subnet) is a collection of networked hosts that are visible to one 
another using a given transport. 

C. Autonomous System 
An Autonomous System (AS) is an independent 

organization, which determines its internal routing topology 
and policy. Each AS terminates at the edge of the wide-area 
network (WAN). We use the terms AS and organization 
interchangeably. 

D. WAN 
Wide-area network. WANs may be public (shared) or 

private (dedicated) networks. 

E. Peering 
Routing between Autonomous Systems over the WAN. 

F. Router 
A router is a process that connects to two or more subnets 

(within an AS or between two AS) and provides 
communication between them. 

G. Endpoint 
In CCI, an endpoint is a process’ virtual instance of a 

network interface card (NIC). The endpoint is the source and 
destination of all network traffic. An endpoint is per process, 
not per peer (i.e. a single endpoint can communicate with any 
number of peer endpoints). 

H. Connection 
A CCI connection denotes the ability of two CCI endpoints 

to communicate. A routed connection is the end-to-end 
connection that spans two or more transport connections. 

I. OS-Bypass 
OS-bypass is the ability of a process to directly access 

network hardware without going through the kernel. These 
accesses may include data movement or status updates (e.g. 
events). 

J. Zero-Copy 
Zero-copy is the ability to move data directly between a 

user-space application and a network adapter without 
intermediate copies, especially copying to/from the kernel. 

K. Messages/Messaging 
CCI’s Messages (MSG) is a method of communication 

using a small, unexpected message semantic. Applications can 
use MSGs for control messages and for bulk data movement 
rendezvous protocols. 

L. Remote Memory Access 
CCI’s Remote Memory Access (RMA) is a method of 

communication using a one-sided semantic. RMA is designed 
for bulk data movement. 

With certain transports, CCI can use zero-copy and OS-
bypass to improve performance. With other transports (notably, 
Sockets), CCI implements RMA in software and cannot use 
zero-copy or OS-bypass. 

M. RMA Completion Message 
Because a RMA is one-sided operation, a process may need 

to alert the peer process when the RMA operation is complete. 
CCI provides the ability to send a MSG when a RMA 
completes to notify the remote process. 



IV. GOALS AND REQUIREMENTS 
We identified the following goals and requirements: 

A. Goals 
The primary goal for CCI routing is to provide end-to-end 

communication over heterogeneous networks across local-area 
networks and wide-area networks. One usage scenario is 
moving data from a simulation on a leadership class system 
across the local-area network, over the wide-area network to 
another DOE facility, across its local-area network, and finally 
into a cluster for analysis and/or visualization. Such a scenario 
could transit five or more heterogeneous networks: a high-
performance interconnect within the leadership class system, 
the local-area network, the wide-area network, the second 
facility’s local-area network, and the cluster’s high-
performance interconnect. 

The secondary goal for CCI routing is to take advantage of 
the highest performing networking stack on each network. We 
could simply use Sockets and take advantage of the routing 
capabilities of the IP stack. Because of the design of Sockets 
precludes OS-bypass and zero-copy techniques, we need to use 
the non-Sockets APIs for the networks that provide those 
capabilities. CCI provides the ability to exploit each network’s 
capabilities, but CCI does not provide by itself a common 
address space for routing. 

Our last goal is to provide that common address space to 
enable routing with minimal impact on the current CCI API 
and implementations. Ideally, current CCI implementations 
would not need any modifications to support routing. 

B. Requirements 
We have identified the following requirements: 

1) Route between heterogeneous networks 
CCI currently supports multiple networks including 

Sockets/UDP, Sockets/TCP, Verbs/InfiniBand, GNI/Gemini, 
and Portals/SeaStar with additional transports under 
development by collaborators. 

2) Route between organizations 
CCI routing needs to support routing between different 

organizations (i.e. distinct administrative domains). 

3) Support routing to/from private sub-networks 
Most of the CCI TransPorts (CTP) use an IPv4 address as 

part of the name for an endpoint, but typically these are private, 
non-routable addresses and the address is used for connection 
setup only. Each networking stack has unique addressing 
conventions for the underlying communication and do not lend 
themselves to a common addressing scheme. 

4) Support multiple routers between networks 
Allowing multiple routers enables improved throughput by 

aggregating bandwidth, improved fault-tolerance by 
eliminating a single point-of-failure, and reduced congestion by 
load balancing over multiple links. 

5) Support multiple metrics to determine the best route 
The routing design should allow organizations to determine 

the routing policy best suited to the local needs. These might 
include shortest path (i.e. fewest hops), network maximal 

throughput (i.e. choose higher bandwidth networks over lower 
bandwidth networks), network hardware capabilities (i.e. favor 
networks that provide hardware/software acceleration over 
traditional Sockets), etc. 

6) Provide the ability to set static routes 
Static routes are useful for testing as well as for ensuring 

the use of dedicated resources. 

7) Minimal modifications to the CCI programming 
interface 

Applications should not need to be rewritten to use CCI 
routing. 

8) Minimal modifications to existing CTP implementations 
The CCI TransPorts should not need to be modified. This 

requirement assumes that routing will use the CTPs as they 
currently exist and implement the routing protocols on top of 
the CTPs. 

9) Routers need to run in user-space 
All current implementations of CCI only provide user-space 

libraries. Organization policy might require that some routers 
be run in privileged mode (i.e. a user-space process run as root 
or other special user). 

C. Non-requirements 
Equally important to the design is to identify non-

requirements (i.e. items outside of the scope of the project). 

1) Router auto-discovery 
For traditional routable networks (i.e. Ethernet), routers use 

broadcast to discover other routers. Clients may also use 
broadcast to either discover routers or request networking 
configuration information (e.g. DHCP) that contains router 
information. Broadcast may be expensive or even not available 
on some large systems. 

2) Internet-sized scaling 
This does not mean that routing should not cross the wide-

area network. It simply means that CCI routing is an example 
of overlay routing on top of existing networks, including the 
Internet. Because the need to scale is less than that of the 
Internet as a whole, some of the solutions may trade-off 
scalability for increased performance, for example. 

3) Forwarding through an AS 
Each organization is an end destination in the overlay 

network. We do not need to provide forwarding through an AS 
(e.g. ORNL->ANL->Livermore). Not requiring forwarding is 
also an example of item 2 above. 

A corollary of this non-requirement is that all subnets 
within an organization are reachable from all other subnets 
within the organization via one or more network hops. It will 
not be legal to have two or more subnets connect to the WAN 
from an organization that cannot route to each other within the 
organization. If this were allowed, it would require forwarding 
over the WAN. If an organization has such subnets, the 
organization could use multiple AS numbers to allow WAN 
routing between their distinct subnets. 

4) Multi-pathing 



CCI provides a connection-oriented semantic. During the 
establishment of a connection, routers may be able to choose 
from multiple routers for the next hop. Once the connection is 
established, however, all messages will travel over the selected 
set of routers. The underlying networks may provide multiple 
links (e.g. Gemini, bonded Ethernet), but the connections 
between routers and between routers and hosts will originate 
and terminate at the same CCI endpoints within a specific 
connection. 

V. CCI ROUTING OVERVIEW 
As mentioned in section IV, the goals include routing 

across heterogeneous networks between distinct organizations. 
Fig. 1 shows four hypothetical organizations with one or more 
subnets each and all organizations are connected to the WAN. 
Two of the organizations, labeled AS3 and AS4, have a 
dedicated link separate from the public WAN. 

For the purposes of routing, each organization determines 
its routing topology and policy. We use the term Autonomous 
System (AS) to describe such an organization. Each AS is 
assigned a unique 32-bit ID. The limited number of anticipated 
participating organizations should allow manual assignment of 
AS IDs. 

Within an AS, each subnet is also assigned a 32-bit ID. This 
ID is only unique within the AS. Different organizations may 
use the same subnet IDs. Therefore, a specific subnet will have 
a globally unique combination of AS ID and subnet ID. 

In Fig. 1, AS1 might represent a campus-wide IP network 
and thus only it has a single subnet (SN1). It only requires a 
router at the border between the SN1 and the WAN. 

AS2 depicts multiple Ethernet broadcast domains and this 
organization prefers the Ethernet CTP. Since the Ethernet CTP 
requires a common Ethernet broadcast domain (EBD), this 
organization has to provide routers between each EBD. 

Fig. 2 looks more closely at AS3. This organization has 
three subnets: a campus wide Ethernet network (SN1), a 
storage-area InfiniBand network (SN2), and a leadership class 
compute system with a high-performance interconnect (SN3). 
Each subnet in AS3 has one or more routers providing 
connectivity to other subnets. For example, the compute 
system’s subnet 3 is connected to subnets 1 and 2 via router 4 
(R4). In addition to its WAN connectivity via router 1 (R1), 
AS3 also has a dedicated WAN link to AS4. This link is only 
valid for traffic originating or terminating at AS4 and cannot be 
used for forwarding to other organizations. 

 
Figure 1. Multiple organzations (i.e. Autonomous Systems) each with multiple subnets. 

 



AS4 has a campus-wide network, a storage-area network, 
and a couple of HPC systems. 

A. Local Routing 
Local routing is within an organization (or intra-AS). All 

subnets share the same AS ID. If the AS ID and the subnet ID 
for two endpoints are the same, the communication does not 
require routing at all. If the subnets have different subnet IDs, 
then routing is required over one or more routers within the 
organization, but not over the WAN. 

B. WAN routing 
If the AS IDs differ between two endpoints, routing over 

the WAN is required. The routers in one organization do not 
need, however, the complete (global) routing information for 
the entire path, as we will see in section VI. 

VI. ROUTE DETERMINATION 
In this section, we will look closer at the details of routing. 

Each router within an organization will need to have the same 
route map. The map indicates to which subnets each router 
connects directly as well as the path from any subnet to every 
other subnet within the organization. For example, a router that 
connects to three subnets will have three (or more) network 
adapters and it will have at least one CCI endpoint per subnet. 

Clients of the routing service will never have the map and 
will not be involved in the building of the routing map. Each 
client will have a static list of routers available within the 
device description in its CCI configuration file. The client will 
randomly choose a router. 

Using the organization shown in Fig. 2, we can develop the 
routing map and given hypothetical network bandwidth for 
each subnet, we can determine which routes are preferred. 

AS3 has three subnets, a public WAN link, and a dedicated 
WAN link to AS4. Assume that SN1 is a campus-area 10 Gb/s 
Ethernet broadcast domain. All hosts connected to SN1 can 
communicate directly with each other. All four routers connect 
to SN1 and can communicate with each other over SN1. SN2 
might be a storage-area network using InfiniBand QDR, which 
has a data rate of 32 Gb/s. Only routers 3 and 4 connect to SN2. 
SN3 is within the HPC system and has a throughput of 64 Gb/s. 
SN3 is only connected to router 4. Lastly, router 2 also has 
WAN connectivity to AS4 over a dedicated 100 Gb/s Ethernet 
link. 

A. Building the complete route map 
For this organization, we want to build routes from every 

subnet to every other subnet. A route will be an ordered list of 
one or more subnet IDs. For connections between endpoints on 
the same subnet, no routing is required and the route list is 
empty. 

The routing table can then be thought of as a NxN table 
where N is the number of subnets. The left column will be the 
array of originator subnets of connections and the top row will 
be the array of destination subnets for connections. The 
intersection of the row N and column M will contain the 
ordered list of subnet IDs from subnet N to subnet M. 

Altogether, AS3 has five subnets (SN1-3, WAN, and WAN 
to AS4). Its routing table will have five rows by five columns. 

 
Figure 2. A detailed look at AS3 which has three subnets and four routers. 



We will label the rows and columns 1, 2, 3, W*, and W4 for 
the five subnets. 

1) Local subnet (no routing) 
As mentioned previously, if the AS ID and subnet ID 

match, then we do not need to use routing. Since all routing 
maps are specific to an AS, the AS ID is the same for all 
subnets in the map. Therefore, we can identify which entries in 
the table that will not have any routes. 

In our example, the first cell is at row 1 and column 1 for 
subnet 1 in both cases, which does not require routing and is 
empty (as are 2:2, 3:3, W*:W*, and W4:W4). Also, since AS3 
has two WAN links and since we do not forward through 
organizations, entries for W*:W4 and W4:W* are empty as 
well. 

2) Single hop routes 
When subnets are directly connected via a router, the route 

uses a single hop. We use them to initialize the routing table. 

For example, router 2 connects subnet 1 and subnet 2. For 
the entry at row 1 and column 2 (1:2), we enter 1,2 and at row 
2 and column 1 (2:1), we enter 2,1.  We continue with each 
router’s direct connections. 

3) Multiple hop routes 
Once all the single-hop routes are entered, we need to build 

routes between non-directly connected subnets. We will build 
these routes starting with the single-hop routes and combining 
them until we find all of the possible routes from one subnet to 
another. To avoid loops when computing routes, if we 
encounter a subnet ID a second time, we discard the route. 

Looking at our previous example, routing from subnet 3 to 
the WAN could use the following routes: 

• 3,1,W* 

• 3,2,1,W* 

Routing from WAN to subnet could use the reverse of these 
two routes. No other routes exist from subnet 3 to the WAN 
without incurring a loop. 

In addition to loop detection, we will discard routes that 
contain a shorter route. In the above example, the route 3,1,W* 
is contained within 3,2,1,W*. Since no edge (i.e. subnet) can 
have a zero cost to traverse, the longer route that contains a 
valid shorter route can never cost less than (or even equal to) 
the shorter route. Our completed route table for AS3 is shown 
in Table 1. 

TABLE I.  ROUTES FOR AS3 

 SN1 SN2 SN3 W* W4 

SN1 — 1,2 1,3 1,W* 1,W4 

SN2 2,1 — 2,3 2,1,W* 2,1,W4 

SN3 3,1 3,2 — 3,1,W* 3,1,W4 

W* W*,1 W*,1,2 W*,1,3 — — 

W4 W4,1 W4,1,2 W4,1,3 — — 
 

Note that there are no loops since all subnets 1, 2, and 3 are 
all directly connected to each other. And since we discard 
longer routes that contain valid shorter routes, the table for AS3 
only has one route in each cell. 

B. Choosing between multiple routes 
If we encounter any loops when building the complete 

routing table, multiple routes will exist between some of the 
subnets. Likewise, if an organization has private WAN links in 
addition to the public WAN link, multiple routes will exist 
between some subnets and other organizations. The 
administrator will be able to choose between multiple metrics 
to determine which route should be used. Initially, we intend to 
provide bandwidth (based on link-rate, not dynamically 
available throughput), network capabilities (e.g. native RMA 
support), latency, and hop count. 

When choosing routes, we will use Dijkstra's Algorithm to 
find the shortest path in a graph. For our usage, each vertex in 
the graph represents one or more routers that connect two or 
more subnets. The edges are the subnets. For subnets that 
cannot be transited (i.e. the subnet can only be at the beginning 
or end of a route), they are represented by an edge with a vertex 
only at one end. When dealing with non-transiting subnets, the 
other vertex will represent the end node. 

The algorithm is a minimizing function. The goal is to find 
the least cost path between any two nodes. At least one of our 
metrics, bandwidth, needs to be converted. Ideally, the routing 
algorithm would choose the highest bandwidth network 
available. In CCI, the device information includes link-rate 
expressed in bits per second. To convert link-rate to a usable 
metric, first convert this rate to gigabits per second (Gb/s) and, 
second, divide a fixed, larger value by the Gb/s. For example, if 
the fixed value is 1 terabit per second (1 Tb/s or 1,000 Gb/s) 
and if the device has a link-rate of 10 Gb/s, then the metric for 
subnet connected to this device would be 100 (1,000/10). For a 
device capable of 100 Gb/s, the metric would be 10. Given a 
choice between a subnet with a metric of 100 (10 Gb/s) versus 
10 (100 Gb/s), the algorithm will choose the lower value and 
pick the faster 100 Gb/s subnet. 

Back to our example, if the application wishes to 
communicate between on node on AS3’s subnet 3 and a node 
at AS 4, it could use either the public WAN connected to router 
1 or the private WAN link connected to router 2. Both routes 
transit subnet 3 followed by subnet 1. 

In our example, subnet 3 has a fast HPC interconnect with a 
link-rate of 64 Gb/s, subnet 2 is 10 Gb/s Ethernet as is the 
public WAN, and the private WAN to AS4 is 100 Gb/s. If we 
convert these, the bandwidth metric value for subnet 3 is 15 
(rounding down), subnet 1 and the public WAN are 100 each, 
and the private WAN is 10. 

The two routes are then scored. The route through the 
public WAN traverses subnet 3, subnet 1, and the public WAN 
for a score of 215 (15 + 100 + 100). The route through the 
private WAN traverses subnet 3, subnet 1, and then the private 
WAN for a score of 125 (15 + 100 + 10). The traffic will flow 
over the private WAN. 



This is optimal from AS3’s policy, but may not necessarily 
be optimal from AS4’s point of view. For example, if the 
destination node is directly connected the subnet inside AS4 
connected to the public WAN, routing within AS4 may prefer 
using the public WAN router than the private WAN router. 
This is another example of a trade-off between optimal routing 
versus the complexity of ensuring a globally consistent routing 
map. 

Fig. 3 shows a loop within an organization. There are two 
valid routes from the client to the server. One route traverses 
subnets 1, 2, and 8 while the other traverse subnets 1, 5, 6, and 
8. If the routing metric is hop-count, which is commonly used 
in traditional IP routing, then the first route will be selected. 

If the routing metric is highest bandwidth, we will compute 
the cost of each route using the converted bandwidth. Table 2 
shows the link-rate and the metric based on 1 Tb/s divided by 
the link-rate. 

TABLE II.  BANDWIDTH ROUTING METRIC 

Subnet Link-rate (Gb/s) Metric 

1 10 100 

2 10 100 

5 32 31 

6 32 31 

8 10 100 
 

To determine the cost of a route, we sum the converted 
link-rate metric for each subnet traversed. The route that uses 
subnets 1, 2, and 8 has a total cost of 300. The route that passes 
over subnets 1, 5, 6, and 8 has a total cost of 262 making this 
the preferred route. 

Bandwidth alone does not tell the whole story. CCI 
supports multiple networks including Sockets (UDP/IP and 
TCP/IP). Most high-performance networks provide IP or 
Ethernet encapsulation as well. This means that CCI can 
communicate over a network using its native low latency, zero-
copy, and OS-bypass interface and over Sockets on top of this 
interface. The native interface will always perform better than 
the Sockets interface, but the link-rate is identical. In order to 
recognize this fact, the routing information will include 
whether the interface supports zero-copy and OS-bypass. When 
computing the bandwidth metric, we will convert the link-rate 
to the bandwidth metric and then, if the route does not use 
zero-copy and OS-bypass, we will double the metric (in effect 
dividing the link-rate by half). This will bias the routing 
decision to use subnets with these capabilities over subnets that 
do not. 

VII. IMPLEMENTATION OVERVIEW 
In order to provide routing, we will need to make some 

modifications to CCI and we will have to implement the router 
application. 

A. CCI Modifications to Support Routing 
One of the requirements is to make minimal changes to the 

existing CCI API and transports to support routing. First, we 
will need to provide address space and router information for 
each device and, second, we will need to add a new routing 
transport. 

1) Providing address space information 
Currently, each endpoint can communicate only with other 

nodes reachable by the underlying network. For the Sockets 
based transports, these may be private subnets or they may be 
publicly addressable nodes. For all other transports, they will 
be private, but possibly quite large, subnets. As described 
above, we will provide a common address space for CCI using 
the AS ID and subnet ID pair. 

In addition to having the address space information is not 
enough, each device’s endpoints will need to know about the 
available routers since we will do not require router auto-
discovery as mentioned in section IV. 

Fortunately, CCI already has a mechanism to pass arbitrary 
information for each device using the CCI configuration file 
(i.e. config file). The purpose of the config file is to allow a 
system administrator to describe which devices should be used 
and information about the devices. The config file uses a 
standard INI format with device names and keyword/values 
pairs for additional information. 

The CCI spec only mandates two items when describing a 
device: a device name and the transport responsible for the 
device. Transports are free to support additional keyword/value 
pairs. Transports ignore keywords that they do not understand. 
Using this feature, we can add three keywords to each device: 
AS ID, subnet ID, and router. 

We will impose some constraints on these keywords. First, 
all three must be present and must have valid values to be 
useful for the device. The lack of any of the three keywords or 
valid values will prevent routing. Second, the AS and subnet 
keywords must only be specified once per device (i.e. no 
multiple values). Third, the router keyword must contain a 
value with a valid URI for the given transport. For example, if 
the device’s transport is Verbs, the URI must be recognizable 
by the Verbs transport. Fourth, the router keyword may be 
included multiple times to specify the availability of multiple 
routers. 

 
Figure 3. Multiple routes between client and server. 



 

2) Routing transport 
Routing will require managing end-to-end state for 

connections and communications. Adding support for routing 
within the current and future transports would require 
significant changes. Instead, we can avoid modifying current 
transports completely by implementing a new routing transport 
that manages this state and uses existing transports for actual 
communication. 

This transport will rely on the underlying transport’s send 
and receive buffers, but it will need to have its own completion 
queue to indicate when end-to-end events have completed. 

3) Endpoint creation 
When creating an endpoint, CCI will bind the endpoint to a 

specific device. Since routing is an overlay on top of actual 
devices and transports, we will use the flags argument to 
cci_create_endpoint() to indicate that the application 
wishes to enable routing support. This flag will invoke the 
routing transport, which will initialize its state and then create 
an endpoint using the underlying transport. All subsequent CCI 
calls will then use the routing endpoint, which will pass calls 
through to the underlying endpoint and manage the end-to-end 
state as needed. 

Without routing, each endpoint has a transport recognizable 
URI that includes a transport prefix, node identifier, and 
endpoint id (e.g. port in IP networks). Examples of valid non-
routing endpoint URIs include: 

• sock://host:port 

• verbs://ip_address:port 

• eth://mac_address:ep_id. 

The routing endpoint will create a URI using a distinct 
prefix (e.g. cci://), the AS ID, subnet ID, and then the 
underlying URI’s node identifier and endpoint id. 

For example, a Cray GNI endpoint URI without routing 
might be gni://10.101.50.37:6744. If the application passes the 
routing flag to cci_create_endpoint(), the routable 
URI would be cci://32:126:10.101.50.37:6744, where 32 is the 
AS ID, 126 is the subnet ID, and the rest is the node identifier 
and endpoint id. 

B. CCI Routers 
The routing applications will implement the topology 

discovery and route selection while using CCI for all 
communication between routers and between routers and CCI 
routing clients. A router must have devices on two or more 
subnets. Routers will not use the CCI routing transport since 
they only need to manage communications on their local 
subnets. 

Routers must have a CCI config file that specifies which 
devices to use. If this router needs to provide forwarding over a 
subnet to another router, the device description for that subnet 
must include one or more router keywords to determine to 
which routers it should connect. 

In addition to the CCI config file, the router must 
understand the order of the routing metrics preferred by the 
local organization. This may be implemented via command line 
arguments, a config file, etc. 

When the router starts, it will open an endpoint on each 
device in the config file. For each device, it will connect to 
every router described by the router keyword. When routers 
connect, they will exchange information about the subnets that 
they support. A router information record is shown in Table III. 

Using these records, they begin to build the network 
topology. The routers then forward all newly received records 
to their existing peer routers. This recursive exchange of 
reachability information permits the routers to build the 
complete topology as described in section VI. As the topology 
is built, the routers also compute the forwarding table. If loops 
are detected, the router computes the preferred route based on 
the local administrative policy (e.g. bandwidth, latency, hop-
count, etc.). Once the router begins building the forwarding 
table, the router is ready to accept connections from routing 
clients. 

TABLE III.  ROUTER INFORMATION RECORD 

 

AS ID 

Subnet ID 

Instance 

Rate (Gb/s) Caps URI Len 

URI 

 

Although the routers do not use the CCI routing transport, 
the routers and the routing transport will need to implement a 
common protocol for connection establishment, handling 
MSGs ad RMA, and reporting of their completion events. 

C. Managing End-to-End State 
Both the CCI routing transport and the router daemons will 

need to manage three types of communication state: connection 
setup, messages, and remote memory access. 

1) Connection setup 
CCI uses a three-way handshake when establishing unicast 

connections. The client initiates a connect call which sends a 
connect request to the server. The server receives the connect 
request and chooses to accept or reject it. The response is sent 
back to the client. Lastly, the client acknowledges the response. 

The end-to-end connect must accomplish the same while 
initiating connections at each hop. The client’s routing 
transport will connect to one of the routers included in the 
device’s conf_argv array and send a connect request which 
includes the final destination. The router will look up the best 

32 bits 



route and the URI of a router at the next hop. It will then 
connect to it and forward the destination URI. Each router 
repeats this until it reaches a router on the last subnet. That 
router connects to the server. When the server application 
accepts or rejects, the server’s routing transport will send an 
end-to-end reply back to the client. Lastly, the client will 
acknowledge the reply. 

As with non-routing CCI, the handshake will negotiate the 
connection’s max send size for MSGs, which might be lower 
than the device max send size for either the client and/or server. 

2) Messages 
Once the connection is established, the two processes can 

begin exchanging messages. Since CCI establishes connections 
between peers, the router simply has to associate the two local 
connections (the one from the client direction and the other in 
the server direction). Thus, when a MSG arrives on one, it 
simply forwards to the other without need for any lookup or 
route computation. 

When the last router gets the send completion event, it will 
send an end-to-end ack back to the client. When the client’s 
routing transport receives this message, it will generate the 
send completion for the send. 

Since the routers will be managing many connections, their 
shared receive queues may be temporarily busy. It will be 
important for the underlying transports to handle intermittent 
receiver-not-ready (RNR) responses until the congestion clears. 

3) Remote Memory Access 
The RMA path is a little more complicated than the MSG 

path. In general, performing an RMA requires three steps. First, 
the initiator and target register some local memory. Second, the 
target passes its RMA handle to the initiator using a MSG. 
Third, when the initiator has the target’s RMA handle, it can 
then initiate the RMA. The RMA will either write (i.e. put) data 
from the initiators memory into the target’s memory or read 
(i.e. get) from the target’s memory to the initiator’s memory. 

The design for routing of RMAs must cope with multiple 
issues. First, the routers need to register memory before they 
can participate in a RMA. They will need to register the 
memory with each device for which they will be forwarding. 
Second, RMAs may be arbitrarily large (i.e. as large as system 
memory). Third, routers may not have as much memory as the 
initiator or the target. Lastly, when forwarding the RMA, the 
next router may not have enough memory available to continue 
the RMA, especially if it is attempting to initiate an RMA to 
the current router. 

To address these issues, the router daemons will need to do 
the following. When each router starts, it will need to register 
memory for use in forwarding RMAs. To address the issue 
where the RMA length is larger than the router’s registered 
memory as well as the need to service multiple RMAs from 
different clients, routers will fragment RMA requests to a 
consistent fragment size (e.g. 1 MB or 4 MB). Routers will 
allow multiple fragments from the same RMA request to 
progress if there is enough memory available, but each router 
will reserve one fragment for each peer router. The reserved 
fragment will prevent deadlock in the case where two routers 

need to exchange RMAs, but have no memory available, which 
would cause the RMAs to timeout and fail. The routers will 
need to negotiate the fragment size when they establish their 
inter-router connections. 

As part of the routing protocol shared between the routing 
transport and the router daemons, RMA writes and reads will 
be modified. 

a) RMA write protocol 
The initiator’s routing transport will not know where to put 

the RMA write data in the router’s memory space. Since only 
the router will know which memory fragments are available for 
forwarding, the router will need to read the data from the 
initiator. 

To minimize state on the router, however, the initiator’s 
routing transport will manage the fragmentation of the RMA 
and send RMA write requests to the router for each fragment. 
The router’s preferred fragment size can be sent to the client 
during the connection handshake. When the router has one or 
more fragment-sized memory buffers available, it will RMA 
read the data from the initiator. The router then sends a RMA 
write request for each fragment to the next router along the 
path. Each router continues to forward the fragments to the 
next router. When the last router receives a fragment, it will 
RMA write the data to the target’s memory space, thus 
maintaining the one-sided (i.e. passive) semantics from the 
target’s perspective. The last router will be responsible for 
sending an end-to-end ack back to the initiator to indicate that 
the fragment was delivered. The ack will need a cookie that 
was sent in the RMA write request to indicate which fragment 
was completed. Once all fragments are delivered, the initiator’s 
routing transport will generate the RMA completion event. 

If the RMA includes a completion MSG, the initiator’s 
routing transport send the completion message using the 
standard MSG path after receiving the end-to-end ack for all of 
the RMA fragments. This also avoids requiring any overall 
RMA state on the routers and this ensures that the completion 
MSG arrives after all the fragments have been completed. 

b) RMA read protocol 
The RMA read protocol is similar to the RMA write 

protocol in that the initiator’s routing transport will manage the 
fragmentation of the RMA, but it will send RMA read requests. 
Each router will forward RMA read request to the next router 
until it arrives at the last router. The last router will then RMA 
read the data from the target to ensure the one-sided semantics 
of the RMA read. 

Once a router has read the data, it will send a RMA read 
reply message to the next router along the path back to the 
initiator. When the next router has a memory buffer available, 
it will read the data from the previous router. When the router 
closest to the initiator has the fragment, it too sends a RMA 
read reply message to the initiator who then reads the data 
from the router. Alternately, the router could RMA write the 
data to the initiator and use a completion message to indicate 
the fragments arrival. 

Completion messages will be handled as in the RMA Write 
case.


