

The Common Communication Interface (CCI)

Presented by: Galen Shipman Technology Integration Lead Oak Ridge National Laboratory

Collaborators: Scott Atchley, George Bosilca, Peter Braam, David Dillow, Patrick Geoffray, Brice Goglin, Ken Matney, Ron Minnich, Jeff Squyres, Geoffroy Vallee

Sockets in Data Centers

- Sockets is the de-facto standard Application Programming Interface (API) in networking
 - Portable, robust, simple
- Commonly uses TCP or UDP on the wire
- Designed in the 1980s
 - Relatively slow and lossy networks
 - Limited host concurrency

The Sockets API Has Problems

- Difficult to leverage networking innovations:
 - Semantics incompatible with zero-copy techniques
 - No portable support for asynchronous operations
 - Poor scalability with per-peer buffering and polling
- A bottleneck on application performance
 - Bad at 10GbE, worse at 40GbE or 100GbE

Breaking the Bottleneck

- Need an alternative programing interface to reap the benefits of high-speed Ethernet
- Experiences from high performance interconnects:
 - Techniques: OS-bypass, zero-copy, scalability
 - Vendor-neutral ecosystem through an open API

A Modern Network API

- Common Communication Interface (CCI)
 - Performance: low latency, high throughput, low CPU overhead, efficient multi-thread and NUMA
 - Scalability: no per-peer resources
 - Robustness: connection-oriented model
 - Portability: network and vendor neutral
 - Simplicity: compact API, event-driven
- A modern paradigm for modern Ethernet
 - A simple, flexible and logical API

CCI Basics

- Endpoints
 - Virtualized instance of a device
- Connections
 - Allows granular control of reliability and ordering attributes
- Communication
 - Small Messages
 - Remote Memory Access

Endpoints and Connections

Endpoints

- Complete container of resources
- An event driven model
 - Application may poll or block
 - Events include send, recv, connection establishment, etc.
 - Events may contain resources (buffers for small messages)

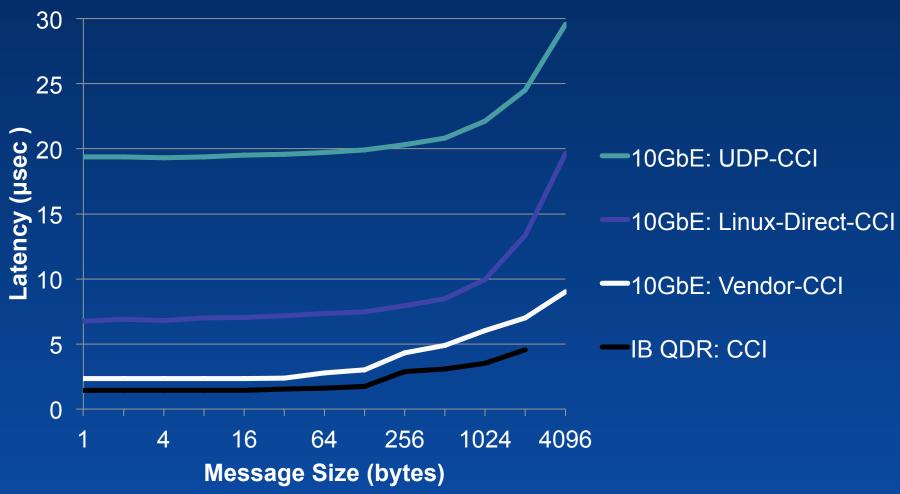
Connections

- Per peer a single endpoint can handle many connections
- Scalable, no per-peer send/recv buffers or event queues

Communication

Small Messages

- Always buffered on both send and receive side
- Library manages buffers, not the application
- Message may be processed in-place


Bulk Data

- RMA communication for bulk-data transfer
- Zero-copy when available
- No implicit order for efficient link aggregation
 - explicit fence
- May be combined with delivery of a remote Event

CCI Unleashes Modern Ethernet Performance

Smooth Transition

- CCI will not replace Sockets overnight
 - Both are complementary in data centers
 - Migrate performance-sensitive, intra-application communication to CCI

CCI	Sockets
Application controls both sides of the communication	Application controls only one side of the communication
Performance gain worth the porting effort	Existing implementation is good enough
East-West traffic	North-South traffic

Competition: Verbs API

- Designed and driven by InfiniBand
- Incredibly Complex API
- Portability issues between IB and iWARP
- Limited scalability
 - per-QP resources, memory footprint
- Vendor specific semantics
 - Limits portability
 - Raises the bar for breaking into the market

Our Approach

- CCI defines the API not the software stack
 - Free to innovate under a common API
- BSD-style license
 - Easy to commercialize your derivative work
 - Easy to leverage existing code base
 - Protects your IP
- Apache-style contributor agreement
 - Protects the entire CCI community

Current Partners

Conclusion

- Sockets API cannot leverage modern
 Ethernet NICs capabilities
- We propose CCI, a novel communication interface built on over a decade of high performance networking experience
- CCI allows application to fully benefit from modern Ethernet networks
- CCI enables an open, vendor-neutral high performance Ethernet ecosystem

Questions?

Visit http://cci-forum.com

Galen Shipman gshipman@ornl.gov

This work is sponsored in part by the Office of Advanced Scientific Computing Research (ASCR); U.S. Department of Energy. The work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC under Contract No. De-AC05-00OR22725.