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Applications are increasingly data-
driven distributed services. 

•  These applications may control only one  side of the pipe…  
–  Common language: IP on the wire, Socket interface on the host. 
–  Applications: web services, media delivery, trading exchange. 
–  Not going away, way too much legacy. 

• Or both sides of the pipe 
–  No required wire protocol or programing interface. 
–  Applications: back-ends, database, storage 

•  Memcached, Big Table, Cassandra. 
–  Socket interface hinders networking innovation. 
–  Many vendor-specific interfaces available (dead or alive). 



3 

What if you control both sides ? 
 
• Application developers either: 

–  Stick with Sockets. 
•  See substantially less benefit from current generation network technologies. 

–  Lock themselves with a vendor-specific interface. 
–  Support a number of different interfaces. 

•  Requires deep expertise in multiple low-level network APIs 

• Network vendors either: 
–  Port Sockets on their low-level interface. 

•  Limited performance. 
–  Push their interface as the solution. 

•  Everybody loves a good lock-in. 
–  Support a number of different applications. 

•  High support costs relative to potential revenue for niche applications. 
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Sockets 

• Most widely used 
–  Simple API 
–  Robustness (failure tolerant) 
–  Implicit buffering 
–  Ubiquitous  

• Unable to exploit many of the features of current-generation 
networking technologies  
–  Cannot support zero-copy 
–  Does not scale 

•  In time: linear polling or interrupts. 
•  In space: per socket resources. 
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MPI 

•  Designed as a bridge between application developers’ and network 
vendors’ needs in the High Performance Computing market  
–  Standardization began nearly two decades  ago  

•  MPI is the de-facto standard in HPC, Why not elsewhere? 
–  High level of complexity  

•  200+ functions in MPI-1, 300+ in MPI-2 
–  Original standard ignored dynamic environments 

•  Added later but not widely adopted  
–  Rigid fault model 

•  Common fault case is abort execution of entire distributed application  
•  Robust fault tolerance requires use of MPI dynamic process management 

(see above)  
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Specialized APIs abound 

•  OFA Verbs  
–  High level of complexity, vendor 

lock-in is a concern 
•  Cray/Sandia’s Portals 

–  Highly specialized interface targeted 
towards HPC (MPI, SHMEM, UPC) 

•  Qlogics’s PSM 
–  Highly specialized interface targeted 

towards MPI  
•  Myricom’s MX 

–  Highly specialized interface targeted 
towards MPI  

•  IBM’s LAPI and DCMF 
–  Limited support outside of IBM 

network technologies 

•  DAPL 
–  Limited support outside of iWARP 

capable devices  
•  LBL’s GASnet 

–  Designed specifically for the needs 
of UPC 

•  ARMCI 
–  Designed specifically for the needs 

of Global Arrays 
•  LNET 

–   Designed specifically for the needs 
of Lustre. 

•  BMI 
–  Designed specifically for the needs 

of PVFS 
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Summing up the landscape 

Sockets	   MPI	   Specialized	  APIs	  

Portability	   ✔	   ✔	   ✗	  

Simplicity	   ✔	   ✗	   Varies	  

Performance	   ✗	   ✔	   ✔	  

Scalability	   ✗	   ✔	   Varies	  

Robustness	   ✔	   ✗	   Varies	  
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Bridging two communities  

Application Developers 

Networking Technology 
Vendors 
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CCI design goals  

•  Performance 
–  Can leverage OS-bypass, zero-copy, one-sided, async ops. 

•  Portability 
–  Developers have limited resources. 
–  Avoid vendor lock-in through a vendor neutral API. 

•  Simplicity 
–  Must not be so complicated that only experts can use it. 
–  Complexity tends to increase code size and maintenance cost. 

•  Scalability 
–  Dynamic process management: peers come and go – not statically known a 

priori. 
–  Time (polling) and space (buffer) cannot grow linearly with number of peers. 

•  Robustness 
–  Need to contain faults to a single peer (i.e. fault isolation). 
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CCI Overview 

• Endpoints 
• Connections 
• Communication 

–  Active Messages 
–  Remote Memory Access 
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CCI Endpoints 

• Virtualized instance of a device – src/sink of communication 
• Complete container of resources – queues and buffers 
• An event driven model 

–  Application may poll or block 
–  Events include send, recv, connection establishment, etc. 
–  Events may contain resources such as buffers 

•  Resource ownership transfers to the application when the event is retrieved 
–  May be returned out of order 

Intel E7 
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CCI Connections 

•  Per peer - a single endpoint can handle many connections 
•  Scalable  

–  no per-peer send/recv buffers  
–  no per-peer event queues  

•  May have multiple connections to the same peer 
•  Use client/server connection model similar to Sockets 
•  Represents reliability and order attributes 

–  Reliable with Ordered completion (RO) 
–  Reliable with Unordered completion (RU) 
–  Unreliable with Unordered completion (UU) 

•  Multicast Send (MC_TX)   
•  Multicast Receive (MC_RX) 

Facebook data center 
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Active Messages 
• Always buffered on both send and receive side  
•  Library manages buffers, not the application 
• Events only, no handlers on receives  

–  True handlers are the devil incarnate  
–  Event includes pointer to data and the connection (peer) 

• Message may be processed in-place 
–  Even forwarded in-place 

• May be copied out if needed long term 
•  Limited in size 

–  Ideally MTU size to avoid segmenting/reassembly 
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Remote Memory Access (RMA) 

• RMA communication for bulk-data transfer 
–  Zero-copy when available 
–  One-sided operation 
–  Active message model used for RMA synchronization 

• Requires explicit memory registration 
–  Provides broad portability 
–  Simplified security model  

• No intra-message or inter-message order guarantee 
–  No last byte written last 

• Optional inter-message ordering fence 
• May be combined with immediate delivery of AM  
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Status and Evaluation 

•  Three Four proof-of-concept implementations 
–  Sockets, MX, Portals 3.3, Native SeaStar 

•  Sockets 
–  Uses UDP with one socket per endpoint, Implements reliability when 

required 
–  Implements AM, RMA Write 

•  MX 
–  Implements AM only 

•  Portals 3.3 
–  Implements multiple endpoints using match bits 
–  Implements AM, RMA Write, Read, and Fence 

•  Native SeaStar 
–  Implements AM only 
–  Working on adding RMA  
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CCI/MX Performance 
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CCI/Portals Performance 

-200
-100

 0
 100
 200
 300
 400
 500

 1  2  4  8  16  32  64  128  256  512  1024  2048  4096  8192

C
C

I O
ve

rh
ea

d 
[n

s]

Message Size (bytes)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

Ti
m

e 
[µ

s]

Active Message Latency (1/2 RTT) on Portals/SeaStar

Portals Copy
Portals Bind

CCI
CCI Thread-Safe

MPI

-500
 0

 500
 1000
 1500
 2000

 1  2  4  8  1
6

 3
2

 6
4

 1
28

 2
56

 5
12

1K
B

2K
B

4K
B

8K
B

16
KB

32
KB

64
KB

12
8K

B

25
6K

B

51
2K

B

1M
B

2M
B

4M
B

C
C

I O
ve

rh
ea

d 
[n

s]

Message Size (bytes)

 10

 100

 1000

Ti
m

e 
[µ

s]

RMA Latency (RTT) on Portals/SeaStar

Portals Write
CCI Thread-Safe Write

Portals Read
CCI Thread-Safe Read



18 

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 1  2  4  8  16  32  64  128  256  512  1024  2048  4096

Ti
m

e 
[µ

s]

Message Size (bytes)

Pingpong Latency (1/2 RTT) on SeaStar

Portals Copy
Portals Bind
CCI/Portals

Native CCI/SeaStar

Native SeaStar Performance 

Caveats: Portals provides matching and thread-safety 
Portals running on CNL, not Catamount 
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Benefits of a common bridge  
 

Application Developers 
•  Decrease complexity 
•  Port once, run everywhere  
•  Encourage competition among 

vendors 
–  Fosters innovation  
–  Improves cost effectiveness 

•  Mitigates technical and business 
risk of single vendor solution 

Network Technology Vendors 
•  Increases total addressable 

market 
–  Deliver performance to the masses  

•  Ability to expose innovation 
through a modern API 

•  Reduces costs  
–  Eliminate per application support  
–  Leverage community development 

of core API  
–  Enables an ecosystem 
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Conclusion 

•  Distributed apps need 
–  Performance - low latency, high throughput 
–  To support transient peers and to isolate peer failures 
–  To support large numbers of peers with bounded resources 
–  Portable, simple programing interface 

•  CCI aims to satisfy these needs 
–  Uses endpoints to bound time and space resources 
–  Uses connections to provide peer fault isolation 
–  Uses low-overhead active messages for small/control messages 
–  Uses RMA for bulk movement and one-sided semantics 
–  Provides good performance 
–  Simple API 

•  CCI Next steps 
–  Finish fleshing out TCP and native Portals implementations 
–  Work is underway to provide Cray GNI, IBM Blue Gene, and InfiniBand Verbs 

support   
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Call for participation! 

• We are a bunch of engineers 
–  We don’t have a website 
–  We don’t have a logo 
–  We don’t have a glossy white-paper 
–  But… We do have deep expertise in communication libraries 

• We also have a community development model 
–  Code is currently hosted on a private git-hub  
–  License model is BSD/Apache style license  
–  Contributor agreement is Apache style 

•  If you want to help contribute please contact us 


