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Abstract

In this paper we extend previous role concepts for modelling structural and behavioural

modification of objects during their life-time. Published approaches allow to add roles

to an object but either treat these roles in isolation or have problems defining the

interaction of all simultaneously existing roles of the same object.

The first contribution of our paper is the definition of a conceptual model introducing a

semantics of "roles" as well as a semantics of "objects with roles". When talking about

"objects with roles" we view a conceptual object as the hierarchy of all its

simultaneously existing roles and define how these roles interact. Each role provides a

different "perspective" of the full object. The behaviour of an object depends on its

current roles and on the perspective from which it is regarded. Acquisition of new roles

extends the interface of each perspective, but does not alter its behaviour with respect to

previously available operations.

The second main result of our work is that roles can be expressed in terms of known

object-oriented concepts, without recoursing to role-specific extensions. We show how

our conceptual model can be mapped to class-based, typed models extended by a

single, well-known concept: object-based inheritance. In such models objects never

change class but achieve the desired effect by changing their object-level inheritance

relationships. Thus "objects don't migrate".
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1. Introduction

Objects in real world are subject to ongoing structural and behavioural changes, which need to
be adequately reflected in computational models. This is an especially challenging problem for
database management systems, whose objects are typically long-lived and thus need repeated
adaptation to changes in the real world. Whereas object-oriented databases opened the way for
integrated modelling of structural and behavioural aspects of an entity, their strength is static
classification, rather than dynamicity. For instance, they can express that a student is a person,
but they do not capture the notion that a person may become a student, an employee, a parent,
etc.

During its life-time an object can play many roles. The problem has early been recognised by
researchers working on object-oriented data bases and database programming languages and
various proposals for modelling changing behaviour have been published1. Role playing has
also been described as object migration, i.e. varying membership of a database object in a set of
classes related by inheritance. Acquiring and abandoning roles is interpreted as acquiring and
abandoning class membership while retaining one unique identity for an object.

However, it has been argued by [WRS91/94] that generally retaining the identity of an object
during "migration" raises a classification paradoxon, which can best be explained by consider-
ing the problem of counting objects. In the object migration view, a person that travels each
day by train would be represented by an instance of PERSON that repeatedly acquires and
looses membership in the PASSENGER subclass. Since it always retains its object identifier the
object would count as only one passenger. However, if we want to determine the number of
tickets sold, the most frequented connections, etc. we need to count ten passengers where we
counted one person. Then we have to give PASSENGER instances their own identifiers, differ-
ent from each other and from PERSON identifiers. In this view, we may have different instances
of different classes coincide in time and space, e.g. ten different PASSENGER instances
"coincide" with the same PERSON instance.

In [Scio89], [WJS94], [WJS94] models were proposed in which each role of an object is itself
an object with an own identity. A role object shares the properties of the object that plays this
role (the player) by forwarding to the player all messages that it cannot answer itself. However,
different sibling roles are not aware of each other and the player object is not aware of any of
its roles. This raises an identification paradoxon since now accessing all properties of a concep-
tual object having many roles requires a set of object identifiers, contradicting the widely ac-
cepted definition of identifier ([KhCo86]), which requires that one unique identifier allows ac-
cess to the whole object.

Even role models that retain one unique identity for an object do not provide a satisfactory
solution. They either allow to access an object as a whole, but do not define the semantics of
dynamic binding when different "most specialised" roles could potentially answer a message
(e.g. [FBC+87]), or restrict access to an object to be always through one of its roles (e.g.
[ScSw89], [RiSc91], [ABGO93], [LiDo94]). In the latter approaches, only a "slice" of the whole
conceptual object can be viewed from the perspective of a role. In principle, they face the same
problem as approaches that explicitly allow different object identifiers: there is no unique

                                                
1 We shall comment in detail on related work in section 6.
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identifier, that can be used to access the whole object. Instead, one needs to "navigate" through
different roles of an object using a set of implicit identifiers, <objectId, role>.

The main contribution of our paper with respect to role modelling is to show that these
apparent contradictions can be reconciled. We present a model in which a conceptual object is
regarded as the set of all its simultaneously existing roles. Each role provides a different
"perspective" of the conceptual object. All perspectives provide access to the full conceptual
object and thus share the same interface, but with possibly different behaviour. Acquisition of
new roles extends the interface of each perspective, but does not alter its behaviour with respect
to previously available operations. Besides of being perspective-dependent, object behaviour
may also be context-dependent, in the sense that the static type of a variable is interpreted as a
default perspective of that variable on the objects that it references. Classes can be related by
role hierarchies and inheritance hierarchies, which can be orthogonally combined, making role
playing inheritable and instances of role classes substitutable by instances of their subclasses.

Moreover, we show how our conceptual model can be mapped to a class-based, typed model
essentially extended by a single concept: object-based inheritance. In this model, roles are rep-
resented by distinct objects that appear as a whole by mutually "inheriting" from each other.
Objects never change class but extend their interface by changing their object-level inheritance
relationships. Thus "objects don't migrate".

The paper is structured as follows. In the next section we illustrate the intended functionality of
our role model on an example. We do not formalise the role model directly but define two vari-
ants of "object-based inheritance" (section 3), present their integration into a typed, class-based
object-oriented model (section 4), and show how this model can express the intended role
model (section 5). In section 6 we give a detailed account of related work, classifying previous
approaches and showing how they can be expressed in our base object model.

2. Yet Another Role Model!?

In this section we shall informally describe a our role model, illustrating its functionality on an
example. In our view an entity of the real world can be described by one essential role, which is
present as long as the entity exists, and a (possibly empty) set of transient roles1, which it can
acquire or abandon dynamically. An entity can play different roles simultaneously or in se-
quence. The most familiar essential role is probably "being a person". Some particular person,
Sally, might become a student, cease to be a student, then become an employee, and later on a
parent. Sometimes, she may become ill or unemployed for some period.  

Whenever an entity interacts with other entities, one of its roles dominates the others, determin-
ing the perceivable behaviour at that moment. We equivalently say that an entity is always per-
ceived from the perspective of one of its roles. Each perspective presents the full entity, includ-
ing all the properties defined for any of its current roles. The dominant role is implicitly de-
termined by the context or explicitly by requests from outside.  For instance, when Sally goes
to the doctor she will automatically behave in her role as patient. Even in her patient role, Sally
will still be able to answer questions about her employer or her children. When her child comes
to her, asking for a candy, she will temporarily switch to her role as parent, react accordingly,
and then come back to her default role in the current context.

                                                
1 Note that, although they are called transient, these roles "persistent" in the sense that they may be stored

in the database and accessed like any other "persistent" object.
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Roles can be unrelated to each other, or refinements of each other. More precisely, roles can be
organised in a partial order having the essential role as greatest element. We call a role that is
smaller (bigger) with respect to the partial order a subrole (superrole). Incomparable roles are
called sibling roles. The semantics of the partial order is that every role, r, is a specialisation of
its superroles in the sense that, when an entity is regarded from the perspective of r, the be-
haviour of r overrides the behaviour of any superrole. On the other hand, r can use methods of
sibling roles or subroles, but cannot modify their semantics. For instance, when Sally becomes
engaged in a conversation about education while in the doctor's waiting room (i.e. in her pa-
tient role), she will take the same opinion as in her role as parent.

Sometimes external requests addressed to an entity might not be specific enough to be an-
swered at all, or to be answered as desired. In our opinion the requesting entity might prefer a
general answer over no answer, and no answer (resp. being forced to state the request more
precisely) over a useless one. E.g., when the doctor's receptionist asks a patient for his phone
number she will in general get the private phone number of the person and might have to ask
explicitly for the office phone number. However, she will have little interest in the phone num-
ber of the French restaurant that the patient has recently discovered in his gourmet role.

Graphical notation. To ease the extension of a database schema, each type of role should be
independently specifiable as a class. Classes should be related by semantic relationships indicat-
ing whether a class specifies a dynamic specialisation (role) or a static specialisation (partition)
of another class. According to these principles, we would like to represent Sally's situation as
depicted in fig. 1.

PERSON

MAN WOMANEMPLOYEE PARENT

isRoleClassOf

employee
role

parent
role

person
role

PATIENT

patient
role

isRoleOf

Sally

...
Class
hierarchy

Role
hierarchy
representing
Sally

inheritance

role playing
(class level)

role playing
(object level)

instantiation

Legend

patient perspective

Fig. 1: Conceptual representation of combined inheritance and role hierarchy

Note how the class hierarchy statically specifies potential roles (PATIENT, EMPLOYEE,
PARENT) of an essential concept (PERSON) by the isRoleClassOf relationship and at the same
time specifies static partitions (MAN, WOMAN) of the same concept by inheritance. Since in our
approach objects do not migrate along inheritance hierarchies, a person can be either a man or
a woman, but can become a patient, employee, parent, etc. We can extend this design by adding
new role classes or subclasses to any class, taking advantage of the orthogonal combination of
inheritance and role playing: role playing is inheritable and instances of any subclass of a role
class may be used in that role (e.g. a WOMAN instance in the PERSON role).

Why no dedicated role model? We could now proceed by formalising the sketched function-
ality as a dedicated role object model. However, we will follow another way, defining a more
general model first and showing then how it can express the intended functionality. Stepping
back a bit, this choice follows from our aims. In order to solve the classification paradoxon de-
scribed in the introduction, we have to represent each role of a conceptual entity by a distinct
object, as indicated in fig. 1. However, to make each of the role objects appear as the same con-
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ceptual object, all role objects must "inherit" in some way from each other. This cannot be the
standard, class based inheritance, since it would replicate attributes and would apply to all in-
stances of a class, whereas role playing is an object-specific property. Thus, we need some form
of "inheritance" between objects. However, we do not want to give up the benefits of classes,
class-based inheritance and typing. Thus, we obviously need a model that integrates classes,
types, and class-based as well as object-based inheritance. We will define such a model in the
next two sections.

3. Delegation and Consultance

In this section we shall define two variants of object-based inheritance, delegation ([Lieb86],
[UnSm87], [SmUn95], [Scio89], [Cham93]) and consultance ([KRC91]), used in class-free,
object-based systems. In both cases an object, called the child, may have modifiable references
to other objects, called its parents. Messages that cannot be executed by the message receiver
are automatically forwarded to its parents. When a suitable method is found, it is executed, after
binding its self parameter to the (initial) message receiver. This automatic forwarding with
binding of self to the receiver is called delegation (cf. fig. 2). In contrast, automatic forwarding
with binding of self to the object in which the method was found (the method holder) is called
consultance1.

self

delegation

... ...

message
receiver

method
holder

message
receiver

self

method
holder

consultance

... ...

Fig. 2. Different effect of delegation and consultance on self

Intuitively, delegating a message means asking another object to do something on behalf of the
message receiver, i.e. as the message receiver would do it, whereas consultance means asking
another object to do something as it knows how.

person =
phone# = 550055

...

Object "empJohn"

name = John
phone# = 669966

...
currentPhone#  = {  self.phone# }

Object "persJohn"

parent reference

Delegation
 empJohn.currentPhone#

 ⇒  550055

Consultance
empJohn.currentPhone#

⇒  669966

Fig. 3: Different result of the same message for consultance and delegation

Let us consider the example illustrated in fig. 3, where the object empJohn references its parent
object persJohn in the attribute person. The message empJohn.currentPhone# cannot be an-
swered by empJohn, since it contains no method for currentPhone#. Therefore the message is

                                                
1 To avoid confusion, note that the term delegation is often used in a non-standard way in literature,

denoting consultance ([LTP86], [GSR94]) or variants of consultance ([Stro87], [WJS94], [ABGO93]).
Also the term object-based inheritance is often used in literature in a more restricted sense, mostly
denoting static forwarding relationships between objects, e.g. static delegation in [Nier89| and static
consultance in [HaNg87].
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forwarded to persJohn. When the method for currentPhone# is found in persJohn, its self will
be bound to the message receiver, empJohn, if delegation is used, and to the method holder,
persJohn, if consultance is used. Thus, the subsequent message self.phone# will return John's
office phone number in the first case, and his private phone number in the second case.

Note that in the case of consultance, the phone# method1 of empJohn "overrides" the one of
persJohn for the message empJohn.phone#, but not for the message empJohn.currentPhone#.
With delegation we would always get the employee phone number. For delegation, overriding
applies to explicit receiver messages, as well as to messages to self. For consultance it only has
effect for explicit receiver messages. To stress this distinction we talk about replacement in
connection with consultance and reserve overriding for delegation (and class-based inheri-
tance).

Delegation, consultance, and roles. In section 2. we mentioned that subroles should appear as
specialisations of their superroles. Thus they must "inherit" from their superroles such that their
methods override methods of the superroles for all messages, including messages to self. This is
exactly what has been introduced as delegation.

On the other hand, a role should "inherit" from subroles and sibling roles but must not spe-
cialise the "inherited" behaviour, i.e. methods of the role may replace but not override methods
of sub- and sibling roles.  This is exactly the effect of consultance.

Summarising, it appears that a natural way to achieve the functionality sketched in section 2 is
to represent objects with roles by object hierarchies in which each object representing a role
delegates to a superrole object and consults subrole objects. The interaction of sibling roles is
indirect, via their common superrole. Note that, with respect to self, the effect of delegating a
message to an object, super, which itself consults another object, sibling, is the same as directly
delegating to sibling.

4. Darwin2 : Combining Class-based and Object-based Inheritance

Having defined our notion of object-based inheritance we now proceed to show how it can be
integrated in a typed, class-based environment. The following discussion is restricted3 to the
aspects that are essential for understanding the representation of roles and the composition of
independently developed role hierarchies described in the next two sections. We assume that the
reader is familiar with the notions of class, instance, and class-based inheritance ([ABW+90],
[Wegn89]).

Classes and Objects. Each object is a direct instance of one most specific class and an implicit
instance of all its superclasses. Classes specify the interface of their instances, their attributes
(variables), and the implementation of methods (operations) specified in the interface. All at-
tributes, local variables, parameters and method bodies have a statically declared type.

                                                
1 In most object-based ("prototype-based") systems there is no distinction between attributes and methods.

Each attribute name can be used as a method to read its value.

2 We regard our model as an evolution from two fundamentally different families of object-oriented systems
to a new "species", that will also have its share in the "struggle for survival". We have therefore named it
in honour of Sir Charles Darwin, who founded the theory of the evolution of species.

3 More details can be found in [Knie94, 96].
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Inheritance and Delegation1. Classes may (multiply) inherit from superclasses. In addition,
objects may delegate to other objects referenced by their delegation attributes. Delegation at-
tributes have to be declared in an object's class. If class C declares a delegation attribute of type
T we say that C delegates to T and that

• C is a declared child class of T and of each of T's subclasses, and

• T is a declared parent class of C and of each of C's subclasses.

The parent classes of a class are the union of its declared parent classes and their subclasses.
Please note that "class C delegates to class T" is just a shorthand for saying "class C defines that
its instances delegate to instances of T". E.g. in fig. 4, class C delegates to class D and therefore
a C instance may delegate to a D1 instance. Note how delegations allows sharing of the same
parent object by different child objects: both B instances delegate to the same D2 instance and
(indirectly) consult the same E instance.

Class
hierarchy
(static)

Object
hierarchies
(dynamic)

D

D1 D2 ECBA

inheritance instantiation

delegation
(class level)

delegation
(object level)

Legend

consultance

(class level)

consultance

(object level)

Fig. 4: Graphical notation and example of class hierarchy and corresponding object hierarchies

There are two essential differences between classes related by inheritance and delegation:

• delegation extends the interface, but not the structure (i.e. the set of attributes) defined by
the child class and

• each direct instance of a child class is distinct form each direct instance of a parent class, e.g.
in fig. 4, no instance of C is an instance of D (but every instance of D1 is an instance of D).

Types. A type specifies an interface, i.e. a set of method signatures. In purely inheritance-based
models, the type of an instance corresponds to the signature of the methods defined by its class
(and its superclasses). Delegation has the effect of extending this interface by the interfaces
defined for the declared parent classes. In the following, we shall use the term type in this ex-
tended sense. We require the type of a declared child class to be a subtype of each of its de-
clared parent classes, with respect to the same subtyping condition that must hold between sub-
classes and superclasses. We depart from the standard condition that parameter types must be
contravariant and result types covariant with respect to the corresponding method signature of a
supertype ([CaWe85], [CCHO89]). Instead, we require non-variance, i.e. identical signatures for
all methods with the same name.

                                                
1 For ease of presentation, we shall only talk about delegation in the remainder of this section. However,

everything said applies equally to consultance, unless stated otherwise. All definitions explicitly made for
delegation have their consultance counterparts (e.g. consultance attribute).  
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Mandatory and Optional Attributes. An attribute is called mandatory if it must always have a
non-nil value, optional otherwise. This distinction is especially important for delegation at-
tributes. The above extension of the type notion is statically safe only if delegation attributes
are mandatory. Allowing a delegation attribute to be optional requires run-time checks for all
messages that need to be delegated via this attribute (i.e. that are not defined locally). Note that
this is a different kind of check than the usual run-time checks in purely inheritance-based
systems: it tests that an object exists, not that it belongs to a certain class). Both kinds of check
may be used in our model, due to the coexistence of subclassing and optional delegation at-
tributes, which allow to statically capture the potential structure of dynamically evolving object
hierarchies. Role modelling is a good example hereof (cf. section 5).

Cyclic Delegation. Delegation hierarchies may contain cycles, provided that at least one arc in
the cycle corresponds to an optional attribute. Cyclic delegation is the reason why we use a
non-variant subtyping rule. However, since contravariant parameter redefinition is seldom ex-
ploited in practice, we think that giving it up is a reasonable price for enabling cyclic delega-
tion, which is the basic ingredient for a more powerful category of role models (cf. 6, 7.).

Static and Dynamic Delegation. Since a delegation attribute can reference any value that con-
forms to its declared type, assignment to a delegation attribute can be used to change the be-
haviour of an object at run-time by changing its parent object(s). If desired, we can restrict del-
egation to be static, by allowing assignments to selected attributes only in special constructor
and destructor methods, i.e. at the beginning and end of an object's "life". Both variants are
necessary for capturing role semantics. Dynamic delegation is required for modelling that an
object may acquire and abandon roles repeatedly. Static delegation is required for modelling
that a role of one object cannot become a role of another object.

Renaming. If different superclasses of a class C contain conflicting methods these methods are
automatically renamed in the context of C by appending the suffix as<Class> to the origi-
nal method name. The <Class> part of the suffix is the direct superclass from which the
method is inherited. Renamed methods can be redefined in C. Then they override the corre-
sponding original definitions. The same mechanism is applied to solve conflicts between meth-
ods in different declared parent classes. In that case the <Class> part of the suffix is the de-
clared parent class to which the method is delegated.

Note that no renaming is required for a method that is defined in a superclass and in a parent
class. There is no conflict among such definitions since methods defined in an object's class
(and its superclasses) are considered part of that object and thus override the corresponding
methods from parent objects. A more precise definition of overriding is presented and discused
in the next section.

Overriding and Delegation1. Let c be an instance of a class C, delegating to p, an instance of
class P, and let DP be the nearest superclass of P that is a declared parent class of C, as illus-
trated in fig. 5. Then the methods of C and of C´s superclasses override the methods of P
contained in the interface of DP. The additional methods introduced in P are only replaced (cf.
3.), but not overridden by methods from C.

                                                
1 Note that this is the only aspect of our discussion that is not applicable to consultance. By definition,

consultance does not allow overriding but just replacement (cf 3).
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This rule is motivated by the desire to be able to integrate independently developed subclasses
and child classes of the same class into one hierarchy, without fear of undesired side-effects.
E.g. in fig. 5a, different definitions of method x were independently introduced in two classes,
C and P, that may have been developed and compiled independently, knowing only DP but not
each other. Therefore it is very unlikely that the different deffinitions of x have the same se-
mantics and overriding would silently change the semantics of x relied upon by methods from
P.

Consider for instance the message c.b. After unsuccessfully searching C, the message will be
delegated to p, the method found in P will be executed, the message self.x will be sent, and the
search will start again in class C (because self = c). If methods from C were allowed to override
all methods from P the local definition of x would replace the one from P. This could produce
very obscure and hard to locate run-time erors during the execution of methods from P.

DP

b = ...

b = {  self.x }
x = ...

P

x = ...

C

c p

DP

b = ...
x  = .. .

b = {  self.x }
x = ...

P

x = ...

C

c p

common
origin
of x

Fig. 5a: Independently introduced methods: Fig. 5b) Methods with common origin:

no overriding, just replacement (cf. 3) overriding enabled

In contrast, in fig. 5b, method x was first introduced in class DP, and then redefined in C and P.
Both redefinitions of x most likely have a compatible semantics, since they both modify the
same original definition. Therefore overriding is allowed and necessary, to implement c as a
specialisation of p.

Change-aware compilation. The overriding rule used in Darwin could also be stated as: "The
methods of c override the methods of p that have the same name and a common origin." In ex-
ample 5b the common origin of method x is the class DP.

Now suppose that fig. 5a illustrates our initial database schema whereas 5b is a latter one. After
the addition of method x to class DP the independently introduced definitions of x in class C
and P will appear to have a common origin in DP. Thus the message c.b will silently change its
semantics, since the definition for x from A will be executed instead of the one from P. Note
that this is a more general instance of a problem that already occurs in purely inheritance-based
systems, where a method added to a superclass (e.g. in a new release of a library) would silently
be overridden by a  previously existing, identically named method in a self-written subclass.

The problem arises if the compiler determines the origin of a method only by looking at the
current state of the program. Therefore we use change-aware compilation: for every compiled
source class, the compiler records the origin of every method of that class. It always compares
the currently computed origins with the stored information from the previous compilation. If
the origin appears to have moved "up" in the class hierarchy, the compiler conservatively as-
sumes that the added definition has a different semantics from previously existing ones, since it
is not guaranteed that the programmer of the changed class was aware of the existence of the
same method in subclasses / child classes.
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Such cases are treated by automatically renaming the added definition in the context of each
subclass / child class that already posessed a definition of the method.. In our example, the
definition of x added to class DP would be renamed in the context of class P and C, thus
maintaining the initial semantics of the program.

Renaming versus Overriding. Obviously, renaming is not just a means to resolve multiple in-
heritance / delegation conflicts, but can also be used to statically enforce or avoid overriding. In
essence, renaming provides static, fine-grained control over which method definitions are con-
sidered semantically compatible.

As shown in table 1, most of the problems raised by the integration of independently developed
classes can be treated by a combination of automatic and manual renaming. Automatic
renaming implements conservative default strategies, intended to avoid undesired interactions
of independently developed / changed parts of a program. It is reported to the schema designer,
who may decide to alter the generated renaming declarations if they do not match the intended
semantics of the class. Thus, automatic renaming eases the joint use of different independently
developed (super- / parent) classes by reducing the amount of "integration work" that has to be
performed manually. However, renaming is a program transformation and can therefore
express only decisions that can be made statically, by inspecting a program's code. It is
therefore complemented by our special overriding rule, which decides dynamically1 whether
overriding may take place.

Problem T r e a t m e n t

de fau l t  ( a u t o m a t i c ) tuning  ( m a n u a l )

mult ip le  inher i tance  conf l ic t renaming change of renaming statements

mult ip le  delegat ion  conf l ic t renaming change of renaming statements

avoid overriding between

•  class and super- /declared parent class ---

(overriding allowed)

insertion

of renaming statement

•  class and super- /declared parent class

(after schema change)

renaming

(no overriding)

deletion

of renaming statement

•  class and potential parent class run-time check

(no overriding)

---

Table 1: Treatment of multiplicity conflicts

Summarising, the main extension of the Darwin model with respect to purely inheritance-based,
strongly typed models, is the introduction of a static, class-level declaration of dynamically
modifiable "inheritance" relations between individual instances. Object-level inheritance can be
either delegation ([Lieb86]) or consultance ([KRC91]). Both relations can be either mandatory
or optional, allowing to statically specify fixed as well as potential structures of object hierar-
chies created at run-time.  The existence of different kinds of class hierarchies (inheritance,
declared delegation, declared consultance) enables independent modelling of different aspects
of a concept. Renaming, change-aware compilation, and a special overriding rule allow auto-
matic, semantics-preserving integration of independently developed classes.

                                                
1 In [Knie94] it is shown that implementation of the overriding rule boils down to an integer comparison at

run-time.
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5. Back to Roles

In this section we show how easy it is to define the semantics of the role model sketched in sec-
tion 2, using the features of the Darwin model. Mapping of the common features, classes and
inheritance, is one-to-one, i.e.

a) Every class in a role schema is part of the corresponding Darwin schema.

b) If S isSubclassOf C in a role schema,
then S isSubclassOf C in the corresponding Darwin schema.

We only have to define the Darwin counterparts for the class-level isRoleClassOf relation and
the object-level isRoleOf relation of the role model:

c) If R isRoleClassOf P in a role schema, then in the corresponding Darwin schema
• R delegates to P via a mandatory, static delegation attribute, "playerP", added to R,
• P consults R via an optional, dynamic delegation attribute, "roleR", added to P.

If r and p are instances of the classes R and P, respectively, the above definition implies that the
r isRoleOf p relation at the object level is represented by the corresponding playerR attribute in
r and the roleP attribute in p. Fig. 6 shows the result of mapping the role schema illustrated in
fig. 1, to a Darwin schema.

MAN WOMANEMPLOYEE PARENT

delegatesTo

... PATIENT

PERSON

consults

Class
hierarchy

Object
hierarchy

For graphical
notation see
fig. 4.

var
aPatient: PATIENT

var
Sally: PERSON

Fig. 6: Darwin representation of the role schema from fig. 1 ("Sally's example").

The above mapping precisely defines the semantics of the notions introduced in section 2. One
conceptual entity is represented as a virtual object made up by a hierarchy of mutually inherit-
ing physical objects, each representing a different role. The identifier of each of the physical
objects acts as the perspective of the corresponding role on the virtual object. The identifier of
the conceptual object is the identifier of the object representing the essential role. In fig. 6 for
instance, the identifier of the PATIENT object acts as the PATIENT perspective on the con-
ceptual object "Sally". The identifier of "Sally" is the identifier of its WOMAN object. The stan-
dard equality of object identifiers tests for identical roles. The correspondence of different ob-
ject identifiers to the same conceptual entity is checked by the message,

 obj.conceptuallyIdenticalTo(otherObj),

which tests the identity of the essential roles of obj and otherObj. Thus our model supports
both notions of counting described in the introduction, solving the discussed classification and
identification paradoxa.
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illness  : ILLNESS
player  : PERSON

illness()  = ...

PATIENT

phone# : STRING
player  : PERSON

phone#()  = ...

EMPLOYEE

phone# : STRING
roleAsEmployee  : EMPLOYEE
roleAsPatient  : PATIENT

becomeEmployee(...)  = ...
becomePatient(...)  = ...
becomeParent(...)  = ...
phone#()  = ...
businessCard()  = {... self.phone# ...}
phone#AsEmployee()  = ...
phone#AsEmployee renames  EMPLOYEE::phone#

PERSON

Attributes and methods in  italic  style are generated
automatically when a conceptual scheme is translated
to its Darwin representation.

Fig. 7: Details of class definitions for classes from fig. 6.

Darwin's typing rules imply that a perspective presents a partial view of a conceptual object, if
only messages that are statically safe for the corresponding role are allowed, and a full view of
the object, if run-time checking for existence of roles (non-nil optional "role" attributes) is al-
lowed. Supporting the second position is easy, since provision of run-time checking and / or
exception handling mechanisms is needed anyway for correct treatment of role dropping
([FBC+87], [Zdon90], [ABGO93]). Furthermore, use of implicitly defined combinatorial types
([Knie96]) can significantly reduce the amount of run-time type-checking. Note that the stati-
cally safe interpretation coincides with the restricted interpretation of perspectives in most pub-
lished role models, while the second interpretation is an extension over all known approaches
(cf. section 7).

For each of the messages visible from the perspective of a given role, its behaviour is deter-
mined by the definition of consultance, delegation, overriding, and replacement. For instance,
the class hierarchy from fig. 6 and the class definitions illustrated in fig 7, produce the
behaviour described in the comments of the following application program fragment:

var Sally : PERSON; //  "Sally" has static Type "PERSON"

var aPatient : PATIENT; //  "aPatient" has static Type "PATIENT"

...

Sally.becomeParent(...); // "becomeRole()" is an automatically generated method of each player class.

Sally.becomePatient(...); // If the receiver object does not yet have the role Role, it adds a corresponding

// parent object and initializes it with the provided parameter values.

aPatient := Sally; // Run-time check. A reference to the PATIENT role of Sally is assigned to the

// variable "aPatient". From now on, Sally is implicitly viewed in her PATIENT role.

// The situation after this assignment is illustrated in fig. 6.

aPatient.illness(); // Statically safe. Solved locally in PATIENT role.

aPatient.phone#(); // Statically safe. Delegated to PERSON role.

aPatient.phone#AsEmployee; // Statically safe. Delegated to PERSON role.

// Calls renamed method that has been redefined for PERSON role.

aPatient.AsEmployee.businessCard(); // Run-time check. Now, aPatient is explicitly viewed in his EMPLOYEE role.

// Delegated from EMPLOYEE to PERSON role. Returns the employee's phone#!

Note that the fact that a person might have two office phone numbers, an official one for busi-
ness issues, and another one for private issues, is modelled by renaming and redefining in the
person role the phone# method of the employee role. Thus the person role and all the non-
employee roles delegating to it will use the "private" office phone number when calling
phone#AsEmployee. If the "official" office phone-number is desired, then the employee
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view can be explicitly requested, using the automatically generated role casting method
([ABGO93]) asEmployee. Note however, that a message like

aPatient.AsEmployee.phone#

is not statically bound to the method defined in the EMPLOYEE class. If the object that repre-
sents the employee role is an instance of a subclass of EMPLOYEE, dynamic binding will select
its specific method.

We close this section without discussing role acquisition, role dropping, role inspection, and role
casting. In all these aspects we share the view of [ABGO93] and provide corresponding opera-
tions, whose implementation is straightforward in the presented model.

6. Related Work

Roles had already been proposed as extensions of the network data model ([BaDa77]) and have
since then received much attention in the context of the relational data model and semantic data
models as a means for modelling structural aspects and relationships among entities (e.g.
[BBMP95]). The advent of object-oriented data models, focusing on integration of data and
operations, allowed to additionally capture the intimate relation between role changes and
behavioural changes. There are two main aspects in this field: definition of the message passing
semantics of objects with roles in a given state of the world, and definition of legal migration
patterns ([Su 91]), i.e. sequences of legal role changes. Our paper focuses on the first aspect,
providing a reference model, Darwin, in which existing approaches can be expressed, com-
pared, and extended. We give an overview of the variations of message passing semantics found
in literature and classify known approaches (7.1), before discussing related work in detail (7.2).
The relation of Darwin to migration patterns is discussed in section 7.3.

6.1.            Message Passin        g Semantics: A Classification

Roles of objects and objects with roles. Regarding message passing semantics, published papers
reflect two contrasting attitudes, which we call "roles of objects" and "objects with roles". In the
former ones, objects may acquire new roles but the behaviour that can be perceived through
previously existing references to the extended object does not change. These approaches
represent distinct, independent, external perspectives on an object, also called aspects
([RiSc91]) or views ([ScSw89]). In contrast, in the "objects with roles" approaches, the be-
haviour perceivable through existing object references changes when roles change, reflecting
the interpretation of roles as integral parts of an object. The perceivable change may be either a
modification of the behaviour of already available operations (specialised behaviour) or a
modification of the set of available operations (new behaviour), or both. Table 2 summarises
the possible alternatives.

Interfaces and dynamic binding. The message passing semantics supported by a particular role
model is determined by its handling of interfaces and dynamic binding. In all typed ap-
proaches published to date interfaces are fixed. Some untyped approaches ([Scio89], [GSR94])
allow the interface of a role to be extended by the interface of its current player, but not by the
interface of sibling or descendant roles. Since a role of one player cannot sensibly become a
role of another player1 we also count these approaches as supporting only fixed interfaces. The

                                                
1 However, in [Scio89] there is no way to prevent arbitrary changes of player objects.  
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work of [Perni90] is the only one that appears to support variable interfaces. However, there is
no notion of overriding in that model and dynamic binding is replaced by parallel execution of
all selectable methods from all available roles. To the best of our knowledge, our approach is
the first one that allows variable interfaces in a typed language without restricting dynamic
binding.

receiver role
A) fixed set of operations

 with fixed behaviour

most specialized
subrole of

receiver role

B1) fixed set of operations
 with specializable behaviour

Interface
visible through an object reference

fixed variable
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yn
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rit
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...

B2) extensible set of operations
 with fixed behaviour

B3) extensible set of operations
 with specializable behaviour

Table 2: Variants of "objects with roles" (A) and "roles of objects" (B1 to B3)

resulting from different ways of dynamic binding and interface handling.

With respect to dynamic binding published papers diverge on the question whether methods in
subroles override methods in the message receiving role. One class of approaches give highest
priority to the message receiving role, another one to its most specialised subrole. The first al-
ternative guarantees fixed behaviour of an object seen in a certain role, whereas the second al-
lows to express that the existing behaviour in a given role may be specialised when subroles are
acquired. Each of the existing approaches only support one of these semantics. In contrast,
both semantics can be expressed in Darwin. An example of B2 semantics (cf. table 2) and of its
mapping to Darwin is our reference role model (chapter 2 and 6). Modelling of B1 semantics
(specialisable behaviour) in Darwin is shown in the discussion of Fibonacci (cf. 7.2). B3 se-
mantics is a combination of B1 and B2 and can be expressed accordingly. Therefore our object
model allows to define variants of the isRoleClassOf and isRoleOf relations with different
dynamic binding semantics and to let the schema designer choose the appropriate relation for
each pair of role classes in his application.

Perspectives. The "roles of objects" approaches are motivated by the desire to represent differ-
ent independent perspectives on one object. There are two prerequisites for modelling inde-
pendent perspectives: the existence of simultaneous sibling roles and of selective references to
individual roles.

Simultaneous sibling roles can be expressed either by one object that is an instance of different
most specific classes or by different objects that are each instances of one most specific class. In
the latter case each object represents one role and the corresponding object identifier (oid) can
be used as a reference to that role. If, on the other hand, objects are multiple instances, there is
only one oid for the whole object, i.e. all its roles. Therefore, when using object identifiers as
object references there is no way to selectively refer to different roles. The first approach that
postulated one unique identity for all the roles of an object but, nevertheless, allowed references
to specific roles ("aspects") was described in [RiSc91]. The Melampus data model replaced the
traditional view that references are object identifiers by a more fine-grained notion that allows
references to specific "chunks" of structure and behaviour within an object. The interaction of
the different notions of objects and references is summarised in table 3. The field labelled "---"
is a theoretically possible but useless combination: when the different roles of a conceptual
entity are represented by separately referenceable, different objects there is no use for an addi-
tional "subatomic" level of reference refinement.
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fixed,
unique perspective

multiple perspectives

Simultaneous sibling roles by

Multiple instantiation,
single object

(  object ≈ set of roles)

Single  instantiation,
multiple objects

(object ≈ role)
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s
---

multiple perspectivesoid

oid + role

Table 3: Relationship between "perspectives", object references,

and different ways to achieve simultaneous sibling roles

Perspectives and contexts. The static type of an object reference may be seen as determining
an implicit, default perspective on an object in a certain context. In different contexts the same
object reference may be interpreted differently, leading to context-specific behaviour of an
object. This holds for all kinds of systems, whether they allow explicit multiple perspectives or
not. For instance, context-dependent behaviour is achieved by the "preferred class dispatching
rule" of [BeGu95], in a system based on objects that are multiple instances and are referenced
by one unique oid. However, systems that allow references to different roles, may explicitly
switch the perspective. Thus they offer the programmer more control on the behaviour of ob-
jects, allowing to explicitly request a specific behaviour instead of the default one in a given
context. Corresponding predefined operation are, e.g. role casting in [ABGO93] and role
switching in [GSR94].
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B3/aB1/a

B3/c

B3/b

B1/c

B1/b

B2/a

B2/c

B2/b

A/c

A/a  A/b

Proposals in "interesting" categories

A / c ) [Scio89], [ScSw89], [Zdon90]1, [RiSc91],

[GSR94], [WJS94]2.

B1/a) [ACO85], [StZd89], [Zdon90]1,

[WJS94]2

B1/b) [FDC+87], [ABG091], [BeGu95].

B1/c) [VeCa93], [ABGO93], Darwin

B2/a,b,c).No approaches known yet.

B3/a,b,c).No approaches known yet.

Each semantics can be expressed in Darwin.

Examples are shown in section 6 (B2/c seman-

tics) and section 7.2 (A/c and B1/c semantics)

Table 4:  Overview of related work, classified with respect to message passing semantics.

The categories A, B1, B2, B3 introduced in table 2 are refined by the categories a, b, c, d, resulting from the

classification with respect to availability of simultaneous sibling roles and multiple perspectives.

                                                
1 [Zdon90] discusses "global type changes" with category B1/a semantics and "local type changes" with

category A/c semantics.

2 [WJS94] discusses "static partitions" with category A/a semantics, "dynamic partitions" with category
B1/a semantics and "roles" with category A/c semantics.



gk@cs.uni-bonn.de IAI-TR-96-11 15

Classification. Let us now classify our own and previous work according to the semantic crite-
ria introduced above. Table 4 gives an overview of all approaches that described their message
passing semantics in enough detail in order to determine their membership in exactly one cate-
gory. Not all semantic categories shown in the table are possible and meaningful. Category A/a,
for instance, is not interesting for the purpose of our discussion, since it corresponds to the
"traditional" definitions of object-oriented programming, which have no notion of "roles",
"aspects", "perspectives", or "views". Category A/b is possible but not meaningful: if one can
only reference the object but not its roles, the object cannot specialise its behaviour, and does
not extend its interface, addition of roles has no noticeable effect. Category d is impossible
because multiple perspectives depend on existence of simultaneous sibling roles.

I'm grateful for any comments on the proposed classification
and for suggestions on how to classify other approaches

(e.g.[Pern90], [Papa91], [MaOd92], [NRE92], [NgRi92], [Cham93], [LiDo94])

6.2.            Message Passing Semantics: A closer look

In this section we shall discuss in more depth the work referenced in the above overview table.
Of the ten "interesting" semantic categories, those allowing to view an object from multiple
perspectives are obviously more expressive than those that support only one fixed perspective.
Therefore (and for lack of space) we shall focus our discussion in the following on approaches
in the four c) categories, which support multiple perspectives and also cover the distinction
between "roles of objects" (A/c) and the different interpretations of "objects with roles" (B1/c,
B2/c, and B3/c). A notable exception, which will also be disscussed, is [BeGu90], which
achieves context-dependent behaviour without using an explicit notion of perspectives.

Roles of objects – Category       A/c   

The "roles of objects" approaches focus on the semantics of roles, viewing each role (and its
superroles) separately from each other (sub- and sibling) role simultaneously played by an
object. These approaches are motivated by the desire to represent different independent aspects
/ views of one object. All references are to a specific role. The only way for a programmer to
"see" all properties of a conceptual entity at a given time is to explicitly manage a set of refer-
ences to different roles of the same object.

Single object, multiple interfaces, no inheritance

Some "roles of objects" approaches represent one conceptual entity be one object that main-
tains its identity when changing roles. In these approaches references to roles are different from
object identifiers.

Views. [ShSw89] allow one object to have multiple, independent interfaces and to be
alternatively regarded through one of them, providing different behavioural perspectives
("views") of an object. Although it preserves the identity of the object, each view allows to
access only a part the object. There is no notion of inheritance or subtyping between interfaces,
and no dynamic binding. There is also no provision for acquiring new interfaces.

Aspects. Dynamic acquisition of new interfaces is provided by the aspects mechanism of the
Melampus data model ([RiSc91]). However, there is still no reuse of aspects by inheritance, and
as a side-effect no dynamic binding. Also there are no restrictions on aspect acquisitions. An
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aspect may hide methods of its base aspects, resulting in extensions of an object that do not
conform to (i.e. are a subtype of) its previous type.

Multiple objects, single instantiation, inheritance

Most "roles of objects" approaches represent conceptual objects by a set of physical objects.
Each physical object represents one role of the conceptual object and is an instance of one
most specific class. Messages that cannot be answered by the message receiving role (object)
are forwarded to its superroles (superobjects).

Sciore. The Vision database system of [Scio89] has a purely prototype- and delegation-based
data model with no notion of class and type. Classes are simulated by "prototype" objects
delegating to the other prototype objects representing superclasses. Instantiation is simulated by
cloning (copying) a prototype and all its parent prototypes. Thus, a conceptual object is always
split into subobjects, e.g. a woman would be represented by a female object delegating to a
person object, instead of only one WOMAN instance (cf. first row of table 5). Due to the
integration of delegation with classes and inheritance the Darwin-based modelling of the same
message passing semantics requires no artificial splitting of objects  (e.g. Sally as a person is
represented by exactly one object). This  better expresses the application semantics, since
delegation is only used if there is a potential for role change or sharing of common roles. Also
the system is more efficient, since object hierarchies are smaller, speeding dynamic binding of
delegated messages.

Gottlob & al. The model of [GSR94] is implemented in Smalltalk ([GR89]), based on the
ability to create classes at run-time and to treat messages as first-class objects. Consultance is
implemented by redefining the doesNotUnderstand: aMsg method such that it forwards
aMsg to an object referenced by an instance variable. Each role class is dynamically created as
a subclass of the predefined class RoleType. As a consequence of this implementation and of
Smalltalk's single inheritance role classes cannot inherit from other classes. Thus, there is no
way to express that different role classes have a common structure. For instance, the example
illustrated in fig. 8 could be expressed in Darwin but not in the model described in [GSR94].
The example models that only women can be mothers and only man can be fathers. If
PARENT were modelled as a role of PERSON (as required by [GSR94]) any combination of
role subclasses, e.g. female fathers and male mothers, would be allowed at run-time.
Alternatively, one would have to manually duplicate the PARENT and PERSON properties in
their respective subclasses, contradicting the two main goals of object-orientation, good
conceptual modelling and reuse.

Man

Person

Woman
Father

Parent

Mother

Fig 8: Role classes must have superclasses in order to express common features that are not roles.

In order to model situations like the one depicted in figure 9a [GSR94] introduced the notion
of qualified roles. The fact that a project manager can manage different projects is represented
by letting the same person have two project manager roles, which are instances of the same
class. In order to distinguish the different instances the class must define a special instance vari-
able named qualifier, which at run-time must have a unique value in every instance. We did not
include this concept into our reference role model, because, in our opinion, it needlessly
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complicates the model. Figure 9b illustrates how we alternatively recommend to model the in-
tended semantics. The general rule is that one object always has one role of one type and mul-
tiplicity is modelled by an association with a corresponding cardinality. In fig. 9b, for instance,
the project manager pm manages two projects, p1 and p2. We would use different project man-
ager objects only to express that the behaviour as a manager of one group of projects is differ-
ent from the behaviour as a manager of another group of projects. But then each project man-
ager object would be an instance of a different class, implementing a different project manager
behaviour. This alternative does not work well for non-binary relationships. E.g. if an
employee can work for different companies and has different positions in each company it is
better to represent EMPLOYEE as a qualified role class and specifically link each of the
different employee roles of the same person to their specific companies and jobs.

pm1

pm2

Employee

e

ProjectManager

Employee

epm

ProjectManagerProject
1+

p1

p2

Fig. 9a: "Qualified roles": a manager of different Fig 9b: Alternative representation:

projects is represented by different manager objects one manager associated to different projects

(The continuous dark arrows are "player" references.) (Dashed arrows are "normal" object references.)

Wieringa & al. The approach of [WRS94] models roles using a forwarding mechanism that is
a very restricted, compile-time version of consultance. If no method for the message
receiver.msg is defined in the static type of receiver, then the parser replaces the
receiver by its parent object whose static type has a method definition. In the example from fig.
10, a message g.msg would be replaced by g.parent.parent.msg if msg is defined in
class PERSON but not in class STUDENT and GRADUATED. This compile-time replacement
has the effect of statically  binding msg to its definition in the PERSON role. Note that this is
slightly  more general as static binding to the definition in the PERSON class: if class MAN
redefines msg, then the redefined version would be executed. However, redefinitions of msg in
subclasses of GRADUATED and STUDENT (e.g. in UNIVERSITY) would be ignored. Thus in
[WSR94] the parent/player attributes are not semantically distinct at run-time from any other
attributes. This  is illustrated by normal object references (dashed arrows) in fig. 10 and table 5.

WOMAN MAN

STUDENT

g u m

COLLEGE UNIVERSITY

GRADUATED

PERSON

Fig. 10: Compile-time delegation / consultance statically binds messages to a specific role.

Using Darwin as a common framework, the following table shows how much of the semantics
of Sally's example (fig. 1) would be expressible in the discussed "roles of objects" approaches
that support dynamic binding, resp. reuse of roles by inheritance / delegation. Class names are
abbreviated by their first letters. In the column "original representation" we show the original
semantics, not the original notation. In order to simplify the presentation and ease comparison
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the various original notations have been translated to the notation introduced in fig. 1 and 4. In
addition, "normal" object references are indicated by dashed arrows.

Roles of objects

(single instantiation, multiple objects)

Approach Original representation
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Semantically equivalent

Darwin representation
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Table 5: Existing "roles of objects" approaches that support dynamic binding

and their different semantics illustrated by their mapping to Darwin

Objects with roles

The only variant of "objects with roles" that has been considered in literature corresponds to
category B1 in table 2, i.e. objects that have a fixed interface but specialise their behaviour
when subroles are added. The approaches of this category that allow multiple sibling roles to be
played simultaneously – category B1/c in table 4 – are based on multiple instantiation resp.
multiple type membership.

Category B1/b: Fixed interface, specializable behaviour, simultaneous sibling roles, no perspectives

Fishman & al. Iris ([FDC+87]) was apparently the first system that gave up the single most
specific instantiation restriction. Iris objects may acquire and lose types retaining their identity.
Methods in most specialised types override methods in more general types, but there is no
criterion for deciding which method to select if no unique most specialised type that contains a
selectable method exists. There is no perspective-or context-dependent behaviour.

Bertino & Guerrini. In a recent paper [BeGu95] compared different options for dynamic
binding of messages to instances of multiple most specific classes in the context of the
deductive, object-oriented database language Chimera ([CeMa93]). Their preferred class
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approach is based on defining a total order among classes, prioritising based on the static type
of an object, which induces a total order among the run-time types / classes of an object that is
exploited for method dispatch. As an alternative the argument specificity approach was
considered, a method inspired by techniques for multi-method dispatch1. Each of these
alternatives has its particular strength and deficiencies. In particular, the argument specificity
approach does not allow context-dependent behaviour, is only partially applicable, and not
type-safe. The preferred class approach remedies these drawbacks, but is too coarse grained,
since defining an ordering on classes, all methods from a higher priority class will be preferred
to methods from lower priority classes. It is not possible to define, e.g. that for method m the
implementation from class A will be preferred whereas for method n the implementation from
class B will be preferred. In contrast, our approach allows fine-grained, method-specific
resolution of multiplicity by renaming, allows context- and perspective-dependent behaviour, is
generally applicable, and type-safe (partially using run-time checks).

Category B1/c:  Fixed interface, specializable behaviour, perspectives

We know of only two approaches that combine "perspectives" with "objects with (specialisable)
roles". The probably best-known one, used in the interactive database programming language
Fibonacci ([ABGO93]), will be discussed in this section. The approach of [VeCa93] has
(appears to have) the same message passing semantics. It extends the work done on Fibonacci
by treatment of dynamic aspects of role changes and will therefore be discussed in the section
"7.3 Migration patterns".

Fibonacci is the successor of Galileo ([ACO85]) and Nuovo Galileo ([ABGO91]). In Fibonacci
objects can be regarded from the perspective of each of their current roles and each role, r, may
use methods defined for its subroles, if the methods had already been defined for r. Thus
subroles do not extend the interface of their superroles. Their use by superroles is restricted to
specialise already existing behaviour.

When there are different most specific subroles, the method to answer a message is selected
from the one acquired last2. Making method dispatch dependent on the role acquisition history
introduces a significant degree of nondeterminism and was therefore not included in our refer-
ence role model. However, if this behaviour is desired, it can be expressed in Darwin by a vari-
ant of consultance that we call forced consultance. Whereas consultance only forwards messages
for locally undefined methods, forced consultance always forwards received messages, ignoring
local definitions. Fibonacci's message interpretation mechanism can be expressed by letting
subroles delegate to superroles and each superrole forcedly consult its last acquired subrole (cf.
fig. 11). Whenever a new subrole is added, the consultance attribute of each of its superroles
has to be redirected towards the new role. E.g., in fig. 11 the consultance attribute of object p
references the object e, which represents the newly acquired employee subrole. Before the
acquisition of e the consultance attribute referenced the student subrole, s. This change of

                                                
1 Note that, unlike in [NRE92] and [NgRi92] for instance, the argument specificity approach is an adapta-

tion of criteria for multi-method dispatch to a data model in which methods are defined within, not outside
of classes.

2 In order to ensure type safety, the type of the last acquired role must be a subtype of the types of all other
roles added simultaneously.
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consultance relationships is reflected in Fibonacci by dynamic restructuring of object-specific1

dispatch tables.

Objects with roles, variant B1 c)

(fixed interface, specialisable behaviour, different perspectives)

Approach Original example Semantically equivalent

Darwin representation

[ABGO93]:
type-based,

dynamic dis-

patch table re-

structuring

Employee Student

p

e

s

Person
isRoleClassOf

isRoleOf

Person

Employee Student

p

s

e

delegatesTo

forcedly
consults

delegatesTo forcedly
consults

Fig. 11: Fibonacci's semantics expressed in Darwin.

"Forced consultance" is represented by consultance links with hollow heads (  ).

Note how the specialisation semantics is statically captured by the class-level definition of an
optional "forced consultance" attribute in every role class2, together with automatically created
role acquisition / deletion methods, which manipulate the attribute at run-time. By our type
rules instances of child classes may be used where instances of declared parent classes are ex-
pected, e.g. the consultance attribute of p may reference an EMPLOYEE instance instead of a
PERSON instance. However, only PERSON messages will be accepted by the type-checker.

The above mapping shows that regarding self-reference semantics we share the position taken
in Fibonacci, despite differences in terminology3. Also, the ability to provide different imple-
mentations for the same role type is present in both approaches. In Fibonacci it is achieved by
providing different constructor functions for objects of the same type, in our model it is
achieved by subclassing role classes.

In [ABGO93] the problem of extending an object with independent roles in a sound and sen-
sible way has been described as the essential motivation for one of the primary design choices,
"cousin role independence".

"Suppose that a type Person has two different subtypes Student and Employee, and that both of them

add a property PersonalCode to the supertype. The two personal codes have unrelated semantics, and

maybe even a different type. Let john be created as a Person and later on extended, first to Student

with code 100200 and then to Employee with code 'jhn698'. In a language with late binding and with-

                                                
1 Fibonacci's dispatch tables are actually "role-acquisition-history-specific". The implementation optimizes

storage consumption by letting all objects that have acquired the same roles in the same order share one
dispatch table.

2 The figure is only intended for illustrating the principle of the mapping. In practice, the consultance
attribute and the corresponding methods do not need to be manually defined in every role class, as
suggested by the illustration. They are defined only once in the class RoleWithSpecializableBehaviour  and
may be inherited by every role class that should have B1/c semantics (cf table 4).

3 Fibonacci's notion of type-level inheritance corresponds to our notion of delegation and Fibonacci's
notion of delegation corresponds to forced consultance. In our terminology the "cousin roles" of Fibonacci
are called "sibling roles".
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out roles, johnAsStudent answers 'jhn698' to a message personalCode, or johnAsEmployee answers

100200, because the objects always exhibit a uniform behaviour. This is both a semantic error and a

type-level error."

The above problem is solved in Fibonacci, by interpreting roles as perspectives. In Fibonacci,
johnAsStudent correctly answers 100200 and johnAsEmployee correctly answers 'jhn698'.
However, the message john.PersonalCode is disallowed, and its possible semantics is left
open. In our role model (chapter 2 + 6) the message is legal (subject to a run-time check for
role availability) and its semantics is well-defined. The two definitions of PersonalCode will
automatically be recognised to be semantically different, due to their different origin. The se-
mantics of PersonalCode visible to PERSON instances will always be the one of the role class
added first to the schema (independent of the role acquisition history of individual objects).
The other definition will be accessible for PERSON instances in a renamed form, e.g.
PersonalCodeAsEmployee, if the EMPLOYEE role class has been added after the STUDENT role
class. The automated mechanisms ensure that joint use of independently developed classes does
not change their semantics and leads to no type-level errors. However, the schema designer is
free to explicitly specify other strategies (e.g. like the ones of [ScNe88]), by changing the
definition of the automatically generated methods and renaming specifications.

In [ABGO93] the creators of Fibonacci motivate why they consider that "cousin role indepen-
dence" excludes inheritance between cousin roles.

"The message interpretation mechanism, ensures, in a word, that there is neither interference nor inher-

itance between cousins. This is very important, since in general when an object is extended with two

cousin roles (e.g. a Person with Student and Employee), if the same method is defined in all the three

roles, the two cousins can specialise it with two subtypes T' and T'' of the type T assigned by the fa-

ther to that method, but there is no subtype relation between T' and T'', which implies that inheritance

between cousins would be unsound not only with respect to the modelling principles, but also with

respect to the language typing rules."

Regarding typing, we do not face the above-mentioned problem, since our type rules require
non-variance, i.e. equality of the signatures of common methods in player classes and role
classes. Regarding modelling principles, we think that providing "holistic" perspectives of an
object, which include all the properties of all its current roles, is often a more faithful modelling
of reality then restricting perspectives to present only an excerpt of an object. Moreover, it
solves the classification / identification paradoxon described in the introduction. We give the
programmer the freedom to decide what he needs in a given context. With strictly static type-
checking a perspective presents only a part of an object. With run-time checking for role avail-
ability an holistic view is possible.

6.3.           Legal       Role Histories

In real life there are many constraints on the roles that an object may play. For instance,

(1) a person may not be male and female, neither simultaneously, nor in sequence,

(2) only male persons can become fathers and only female persons can become mothers,

(3) a person that once became a parent cannot ever abandon this role.
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Although most researchers have pointed out the significance of expressing such constraints,
only a few tackle the problem and the approaches in this area are very heterogeneous. They
range from explicit general constraint management ([Su90], [BeGu95]) over constraints in the
form of Eiffel-style conditions and invariants ([VeCa93]) to fixed sets of predefined, role-spe-
cific constraints expressed by special semantic relationships between objects ([Papa90]) or
special built-in operations ([LiDo94]). The other extreme is marked by the Vision database
system of [Scio89], where objects are not constrained in any way and can change their structure
and behaviour at run-time in unpredictable and inconsistent ways.

In most approaches we are aware of there is no distinction between role-playing and inheritance
(e.g. [BeGu95], [VeCa93]) or role-playing and subtyping (e.g. [ABGO93]). Therefore explicit
constraints are the only way to express restrictions on role changes. Integrating constraints as
first-class citizens into a language is certainly the most general solution to the problem at hand.
Unfortunately, explicitly specified constraints cannot be used for disambiguating method
dispatch – at least it is unclear how this could be done in an convenient way.

In contrast, by distinguishing between static, class-level inheritance and dynamic, object-level
delegation, Darwin uses two conceptual hierarchies, which unambiguously define the message
passing semantics and at the same time implicitly express simple constraints. For instance, con-
straints like (1) can be expressed by making MAN and WOMAN subclasses, not role classes, of
PERSON (c.f. fig. 1). The integration of delegation with classes and types, allows to statically
constrain the semantically meaningful object hierarchies at run-time. Modelling of constraint
(2) is shown in fig. 8. For expressing condition (3) and other, more complex conditions, addi-
tional machinery is required. However, this is an issue that is orthogonal to the variants of mes-
sage passing semantics discussed in this paper. Any of the approaches followed in literature
could be integrated into our framework.

7. Conclusions

In this paper we have pointed out that most of the problems of modelling dynamic change of
behaviour implied by changing roles of an object can best be tackled in the framework of an
object-oriented data model, that has no role modelling specific properties. We have defined the
Darwin model, which integrates the well-known notions of type, class, instance, and inheritance
with another notion already known for about ten years but never used in the context of typed,
class-based systems: object-based dynamic inheritance. Furthermore, we have analysed the in-
gredients that make up the message passing semantics of a role model and have defined corre-
sponding semantic categories. Using the Darwin model as a common framework, we have been
able to express and compare previous role models from different categories, stating precisely
their distinctions with respect to message passing semantics. Our classification defines a set of
further categories which have not yet been proposed but which can be expressed with the con-
cepts of Darwin.  

This added power was demonstrated by defining a new role model, which solves the apparent
classification / identification paradoxon present in previous appraoches. The proposed role
model appears to be the first one that allows unrestricted coexistence of the notions of perspec-
tives, roles of objects and objects with roles. Each role can either present a restricted perspective
of an object or a global perspective that includes all the properties available to all the roles of
an object at a given moment. In both cases the behaviour that can be perceived from the per-
spective of different roles can still be different due to dynamic binding.
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The only aspect that seems to require going beyond types, classes and inheritance is modelling
of legal role acquisition patterns. Although Darwin can implicitly express simple constraints,
more powerful solutions must still be explored, and might require explicit constraint manage-
ment as a further extension.

The extension of traditional object-oriented models by object-based inheritance is more then
just a vehicle for expressing the semantics of a variety of role models and extending the state of
the art in this domain. It is a general model for sharing in object-oriented systems, which can be
used for modelling flexible solutions in many other domains of increasing significance to
database technology (e.g. versioned objects [Katz90]). At the same time it has an efficient
implementation that exploits the state of the art implementation techniques for strongly typed
class-based object-oriented languages. Thus it promotes the easy extension of a system with
high-level conceptual modelling concepts by simple mappings to a powerful base language and
the independent optimisation of the base language implementation. Therefore we suggest
extensions along the lines of Darwin as a means to achieve maximum expressiveness of a
language without the need to burden its compiler and run-time system with many special
purpose concepts. We are following this approach by implementing all of the described role
modelling functionality as a high-level graphical schema design / CASE tool that will automati-
cally generate corresponding "Darwin code". Independently, we are implementing an extension
of the language Java ([GoMc95], [SUN95]) that conforms to the Darwin model, adapting the
implementation techniques from [Knie94] to the special architecture of the Java environment.
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