
Delegation for Java:

API or Language Extension?

- Technical Report IAI-TR-98-5, May 1998 -

(Extension of a letter to JavaSoft commenting on its
 “Proposal for an Object Aggregation / Delegation API”

May 26th, 1997)

Günter Kniesel
Universität Bonn

Institut für Informatik III
Römerstr. 164
D-53117 Bonn

fax: +49-228-73-4382
phone: +49-228-73-4511

e-mail: gk@cs.uni-bonn.de
http://javalab.cs.uni-bonn.de/research/darwin

Abstract

The failed attempt of JavaSoft to incorporate an “Object Aggregation / Delegation

API” into its newest JavaBeans model has demonstrated impressively the high

necessity and also the notorious difficulty of incorporating delegation into typed

class-based languages. Although JavaSoft's proposal has been withdrawn due to

public criticism of its limitations, the general issue is still relevant: is it possible to

define a “one size fits all” standard API for delegation, and if not, is there any

real alternative to such an API?

This paper explores both questions. It shows that on one hand, all API-level

solutions have serious drawbacks related to functional limitations, simulation costs

and sensitiveness to change. On the other hand, recent work has demonstrated that

integration of dynamic delegation into a class-based, statically typed language

with subtyping is feasible in theory and practice in spite of contradictory claims in

literature. However, since an efficient implementation is still missing we can just

recommend an API-level compromise and invite researchers worldwide to join

efforts for a high-performance implementation of dynamic delegation.

Keywords

design patterns, dynamic delegation

IAI-TR-98-5: “Delegation for Java: API or Language Extension?” Page 1

1 Introduction
Traditionally, object-oriented programming is centered around the notions of classes,

instantiation, inheritance and encapsulation which date back to Simula 67 ([4]) and

Smalltalk 80 ([8]). Twenty years after the creation of Simula, Liberman's language

DELEGATION ([20]) marked the beginning of a new paradigm of object-oriented

programming, prototype-based programming. Prototype-based languages focus on

working with concrete objects instead of abstract classes. They give up the notion of class

and replace static, class-based inheritance by dynamic, object-based inheritance, also

known as delegation.

Although the advantages of delegation-based programming over class-based

programming in terms of flexibility and unanticipated reuse were widely recognized

from the beginning, work on the relationship of class- and delegation-based systems has

mainly been centered around the question whether particular features of one paradigm

can or cannot be simulated in the other one. Especially regarding the simulation of

dynamic delegation in traditional class-based systems, the last ten years have seen a

proliferation of various language specific idioms ([2]) and general design patterns [7],

[12], [10]). Although these proposals shed light on some interesting technical aspects,

they often neglected the cost of simulations in terms of program clarity, good design,

reusability, error-safety and time spent by programmers on simulations rather then on

the essence of an application. Also some of the proposed simulations are not faithful,

they only approximate the full functionality of delegation.

The limitations of simulation approaches suggest that the integration of delegation

into typed, class-based object models might be a more promising way to increase the

flexibility and expressive power of object-oriented languages. However, a series of recent

theoretical papers claim that a type-safe combination of delegation with subtyping, let

alone typed dynamic delegation, is impossible ([1], [5], [6]))

This paper explores both alternatives. On one hand, it reviews, compares and

extends existing simulation techniques, trying to achieve a simulation that is as faithful as

possible. On the other hand, it sketches the DARWIN model ([17]), which achieves the

“impossible” type-safe integration of dynamic delegation into a class-based model with

unrestricted subtyping. Finally, it compares the extended model with the discussed

simulations and gives some recommendations for current “best practice” and future

research.

2 Delegation
The language concept called “delegation” was originally introduced by Lieberman

([20]) in the framework of a class-free (prototype-based) object-model. An object, called

the child, may have modifiable references to other objects, called its parents. In this

paper delegation parents are also called delegatees and delegation children are called

delegators, to avoid confusion that might arise from the multiply overloaded meaning of

child and parent. Messages for which the message receiver has no matching method are

IAI-TR-98-5: “Delegation for Java: API or Language Extension?” Page 2

automatically forwarded to its parents. When a suitable method is found in a parent

object (the method holder) it is executed after binding its implicit self parameter, which

refers to the object on whose behalf the method is executed. Automatic forwarding with

binding of self to the initial message receiver is called delegation (figure 1). Automatic

forwarding with binding of self to the method holder is called consultation ([19]).The

keyword this always refers to the method holder.

self

delegation
... ...

message
receiver

method
holder

message
receiver

self, this

method
holder

consultation
... ...

this

FIGURE 1 Different effect of delegation and consultation on self

Intuitively, delegating a message means asking another object to do something on

behalf of the message receiver, i.e. as the message receiver would do it, whereas

consultation means asking another object to do something as it knows how. Technically,

delegation is a variant of inheritance whereas consultation is just an automatic form of

message sending.

Delegation is a language concept that should be well distinguished from an

implementation technique which is also called delegation by many authors: writing a

method that only sends one message to an object referenced by an instance variable –

this message typically has the same signature as the method that contains it. To avoid

confusion, we call this explicit resending. This is the technique underlying all API-level

simulations of delegation.

3 API-level Simulations
In this section we list the requirements for a faithful simulation of delegation, discuss two

alternative classes of simulation approaches and evaluate them with regard to the stated

requirements.

3.1 Requirements for a Simulation

A faithful simulation of delegation in a strongly-typed, class-based language must meet

the following technical (1-3) and usability (4-5) requirements:

(1) The information about self, the initial receiver of a delegated message, must

be propagated to delegatee objects.

(2) All messages otherwise sent to this in delegatees have to be redirected to

self, in order to give delegator objects a chance to override methods of

delegatee objects.

(3) Static type safety must be guaranteed.

IAI-TR-98-5: “Delegation for Java: API or Language Extension?” Page 3

(4) The simulation must not require modifications to delegator classes and their

subclasses when methods are added to delegatee classes.

(5) The simulation must enable unanticipated reuse. In particular, it must not

depend on the assumption of a certain structure of the class- or object-level

delegation hierarchy, e.g.

• that a delegatee object will be shared only by a fixed number of

delegators,

• that only certain classes will ever be used as delegatees, or

• that delegation will not be recursive.

Depending on the technique for meeting the first requirement, simulation

approaches can broadly be classified into two categories:

• storing of references to self in the delegatee and

• passing of self as an additional argument of delegated messages.

In [10] these two categories are called the stored pointer and the passed pointer model.

In the remainder of this chapter the essence of these techniques will be summarized and

additional aspects beyond those treated in [10] will be discussed. Such additional aspects

are the functional limitation of the stored pointer model with respect to multiple

delegators and recursive delegation, as well as the limitation of both models with respect

to static typing and evolution of the class hierarchy. The latter aspect is discussed in

detail on the example of the passed pointer model.

3.2 Storing references to delegators

In the Glasgow proposal1, the method for simulating the treatment of self that

characterizes delegation was to explicitly store a reference to the delegator in the

delegatee. This works well only in the most restricted application scenario

• when there is just one delegator per delegatee (delegatees are not shared),

• and the delegator is the initial message receiver (no recursive delegation).

delegatee

self

initial
message
receiver

(self)

obj1

obj2

Fig. 1 One single delegator: Only scenario in which storing of self reference works well

1 For the Glasgow Specification see [14]. Other approaches in the stored pointer category can be
found e.g. in [10, 11, 12].

IAI-TR-98-5: “Delegation for Java: API or Language Extension?” Page 4

With multiple delegators (fig. 2) the delegatee would not know which delegator is

self, if corresponding information were not passed dynamically as a message argument.

But if explicit passing as an argument is required anyway, storing delegators makes no

sense at all. Without dynamic information about the current self one can only hardwire

a fixed interaction protocol in the code of the parent object by predetermining which

messages are sent to obj2 and which to obj3. But that is not delegation

parent

forwarder1

initial
message
receiver

(self)

obj1

obj2 obj3

parent

forwarder2

FIGURE 2 Multiple delegators / shared delegatee: Which delegator sent me this message?
Which one is self?

Recursive delegation can be modeled by storing in each delegatee a direct

reference to self (fig. 3). Then delegatees cannot be used on their own as message

receivers: When messages were sent (not forwarded) to delegatees, the stored self

reference would point to the wrong object (fig. 3b).

delegatee

self

initial
message
receiver

(self)

obj2

obj3

delegatee obj1

delegatee

self

initial
message
receiver

(self)obj2

obj3

delegatee obj1

FIGURE 3a) Recursive delegation implemented by b) The drawback: messages sent to delegatees

storing a direct reference to self in every delegatee are addressed to the wrong self

One could avoid this effect by including a setDelegator() method in the public

interface of delegatees. However, this would complicate the clients of delegatee objects,

requiring to duplicate the number of messages sent: if d is the delegatee object then,

instead of d.msg(),

• "normal” clients of d have to send the messages d.setDelegator(d); d.msg();

• "delegating” clients of d that are not themselves delegatees have to send the

messages d.setDelegator(this); d.msg();

• assuming that mySimulatedSelf is the name of the instance variable referring

to their simulated self, “delegating” clients of d that are themselves

delegatees have to send the messages d.setDelegator(mySimulatedSelf);

d.msg();

just to ensure that (simulated) self is set correctly. This “solution” is clumsy, ineffi-

cient, error-prone and incompatible with multi-threaded execution: during execution of

any delegatee method, concurrent calls to setDelegator() have to be disabled, thus

disabling any concurrent execution of delegatee methods (which all have to be preceded

by a call to setDelegator()).

IAI-TR-98-5: “Delegation for Java: API or Language Extension?” Page 5

Summarizing, storing references to delegators in delegatees has a very limited applicabi-

lity. Sharing of one delegatee by multiple delegators cannot be expressed at all and

recursive delegation can only be modeled with significant run-time costs and an amount

of simulation code that makes the approach highly error-prone and sensitive to change.

3.3 Passing of self as a message argument

When delegatees do not store delegator references, their methods1 have to be extended

by an additional, explicit “sSelf” parameter with the convention that

• “normal message sending” passes the receiver object as the sSelf argument,

i.e. every message object.msg(arg) is replaced by

object.msg(object,arg),

• messages to self / this are redirected to sSelf, i.e. every message

msg(arg) or this.msg(arg) is replaced by sSelf.msg(sSelf,arg)), and

• simulation of delegation passes the current value of sSelf further up the

delegation hierarchy, i.e. delegation is simulated by the forwarding message

delegatee.msg(sSelf,arg).

parent

parent . n(object)

object . p(object)

object . m(object)

object

simulatedSelf

sender receiver delegatee

FIGURE 4 Simulation of normal message sending and delegation by passing self as message
argument

The interaction between a message sender, a message receiver (self), and a

delegatee in this approach is illustrated in figure 4. The message object.msg(object)

results in the “delegated” message parent.n(object) and in the subsequent message

object.p(object) sent back to the actual value of sSelf. The actual value of the

sSelf argument is shown with each message. The names of formal arguments are shown

as role names.

This approach works for shared delegatees as well as for recursive delegation.

Moreover, due to the first rule of the above message sending convention, instances of

delegatee classes can be used on their own as message receivers, not just as delegatees.

Of the technical requirements stated above (3.1) the only one that is still to be met is

1 Only the methods for messages that can be delegated to the object. In an API-level simulation
these are only the public methods. In a language extension also protected methods could be
included, making delegator classes equivalent to subclasses with respect to their inheriting and
overriding capabilities.

IAI-TR-98-5: “Delegation for Java: API or Language Extension?” Page 6

type-safety. The remainder of this section explores the wide-ranging implications of

typing for the simulation and its usability.

3.3.1 The type of self

If the declared type of sSelf were one fixed delegator type (as suggested in the Glasgow

proposal), then delegation from any other delegator type would be excluded by the type

checker. resulting again in a very restricted model (non-shared delegatees, non-recursive,

non-extensible). Moreover, delegatees which expect sSelf to be of a delegator type

could not be used on their own, because the application of the above “normal message

sending” rule would be vetoed by the type-checker (because the delegatee would not

substitutable for a sSelf parameter of delegator type).

A better alternative is to declare sSelf to be of an interface type1 that corresponds

to the interface of the delegatee class2 containing the method:

interface DelegateeInterface {
public aMethod(DelegateeInterface sSelf, ...);

}

class Delegatee implements DelegateeInterface {
public aMethod(DelegateeInterface sSelf, ...) {...}

}

 Delegator classes implement at least the DelegateeInterface. Therefore any

instance of a delegator class can be passed in the sSelf argument, making delegatee

classes independent of their potential delegators and hence reusable in non-anticipated

contexts.

In Java the substitutability of delegators for delegatees has to be made explicit by

declaring delegator interfaces as extensions of delegatee interfaces:

interface DelegatorInterface extends DelegateeInterface {

... };

The basic approach to typing sSelf using Java interfaces (or purely abstract

classes in other languages) is illustrated in figure 5. I1 is the DelegateeInterface, I2

is the DelegatorInterface, C1 is a delegatee class, and C2 is a delegator class.

1 In C++ Java interfaces translate to purely abstract classes, interface extension is derivation of a
purely abstract subclass and interface implementation is derivation of a concrete subclass.

2 It might appear as a drawback of this solution that delegatees cannot send messages to sSelf that are
specific to a particular delegator type. If really needed, one can work around this restriction with
run-time type checks. However, one should use this technique sparingly, since it again makes the
delegatee dependent on certain delegator types.

IAI-TR-98-5: “Delegation for Java: API or Language Extension?” Page 7

C2

m(self: I1)

<<interface>>

I2

delegatee m(self: I1)

C1

m(self: I1)

...

Legend

Standard UML notation
for classes,
interfaces,

method signatures,
aggregation,

inheritance and
interface conformance

<<interface>>

I1

FIGURE 5 Typing of the self parameter (first approximation)

A delegator class must contain one method for every signature defined in the

delegatee interface. This method will either implement local behavior or forward the

received message to the delegatee object (forwarding method). If class C2 does not

provide local behavior for aMethod(...) it will appear as follows:

class C2 implements I2 {

// “parent” is the object to which messages are forwarded:
 I1 parent;

// A forwarding method:
public aMethod(I1 sSelf, ...) { parent.aMethod(sSelf,...);
}

}

3.3.2 Method overriding in delegator classes and their subclasses

Whereas message forwarding can be trivially implemented as shown above, method

overriding is more complicated, due to strong typing. A local method in class

Delegator will more often than not need to call other methods that are specific to

Delegator, respectively DelegatorInterface. However, the type-checker will veto

any such attempt on the premise that the declared type of sSelf is

DelegateeInterface. Therefore, any local implementation will need a dynamic type

check (resp. a checked type cast) in the first place to verify whether the current value of

sSelf is an object of type DelegatorInterface. For instance, a delegator class C2 that

provides own behavior for method m() from the delegatee interface I1 will appear as

follows:

class C2 implements I2 {

 I1 parent;

public m(I1 sSelf) {
 I2 selfI2 = (I2) sSelf; // this cast always succeeds

 ... // local implementation
 selfI2.n(...); // ... that uses selfI2

}

IAI-TR-98-5: “Delegation for Java: API or Language Extension?” Page 8

Methods that perform a type cast in order to adjust the type of sSelf are called

casting methods and are depicted in diagrams by a down-arrow (ß) next to the method

signature. It is worth noting that in a delegator class the type cast will always succeed:

(1) If the local method was activated by a message to sSelf from a delegatee

then the receiver object is sSelf. The cast will succeed because an object can

always be cast to its own type. The cast merely recovers type information that

was lost while forwarding sSelf up the delegation hierarchy.

(2) If the local method was activated by a forwarding message from a delegator,

then the cast will also succeed, since by the construction of the simulation

(figure 5) every delegator has a type which is a subtype of all its (immediate

and recursive) declared delegatee types.

Similarly, the type cast will always succeed in casting methods of subtypes of

declared delegator types (provided that the delegator is not simultaneously a delegatee):

consideration (1) still holds for delegator subtype instances (the scenario of

consideration (2) does not apply).

3.3.3 Method overriding in subtypes of declared delegatee types

The situation is subtly different if we consider method overriding in nontrivial subtypes

of declared delegatee types. Then the scenario of consideration (2) is applicable but the

consideration does not hold:the dynamic type of sSelf is no subtype of the type of the

current delegatee object because the interface of the delegatee object contains messages

that are not in the dynamic type of sSelf. Thus the cast of sSelf to the delegatee type

will fail.

Consider for instance the scenario illustrated in figure 6. The delegatee class C1

has a subclass (C11) whose type (I11) is a subtype of the declared delegatee type (I1).

An instance of the delegator class C2 delegates to an instance of C11. Obviously, the type

of the child object (I2) is not a subtype of the parent object's type (I11) because the

method n() is not contained in I2.

IAI-TR-98-5: “Delegation for Java: API or Language Extension?” Page 9

sSelf

11

(self: I1)

2 11

2

elegatee (self: I1)

1

(self: I1)

(self: I11)

(self: I11)

m(...)

<<interface>>

I2

<<interface>>

I1

<<interface>>

I11

 n(...) !

FIGURE 6 Overriding in subclasses of delegatee classes / subtypes of delegatee types

Thus a casting method m() in C11 will always produce a run-time error due to the

inadmissible cast at the beginning of the method:

class C11 implements I11 {

public m(I1 sSelf) {
 I11 selfI11 = (I11) sSelf; // This cast will fail!!!

 ... // local implementation
 }
}

Obviously, messages specific to C11 (resp. I11) can only be sent to this, not to

sSelf:

class C11 implements I11 {

public m(I1 sSelf) {
 sSelf.m(...); // message from I1 is sent to sSelf

 ...
 this.n(...); // message from I11-I1 is sent to this
 }
}

In general, messages defined in the static type of this but not in the static type of

sSelf (e.g. in I11-I1) can only be sent to this. The distinction between these two

message receivers has to be hard-coded into overriding methods in subclasses of

delegatee classes.

Class hierarchy evolution. If programs were static, unchangeable entities, this

situation would be acceptable. However, programs typically evolve. A type like I11,

which is a subtype of a declared delegatee type might become itself a declared delegatee

type when new types and classes are added to the program (cf. figure 7). We have to be

prepared for such changes in the structure of the delegation hierarchy if our simulation

is not to break in the next release of the program. In general, all modifications of other

IAI-TR-98-5: “Delegation for Java: API or Language Extension?” Page 10

parts of a program that do not affect the interface of a given class should not require

changes in the implementation of that class ([22]).

In the light of these aims, the possible addition of new delegator classes poses

serious problems to the simulation. Changes of the program may lead to situations where

the same delegatee object may have delegators of different, unrelated types. Then the set

of messages that can be sent to sSelf varies depending on the type of delegator object,

which is known only at run-time. Thus, when we write an overriding method within a

subclass like C11, we cannot statically determine which messages may be sent to sSelf

and which may only be sent to this.

For instance figure 7, shows the program from figure 6 extended by a delegator

type (I3) and a delegator class (C3) whose declared delegatee type is I11. Now the

object c11 can also have c3 as delegator and in the context of messages delegated from

c3 it would have to send the message n() back to sSelf=c3, which contains a more

specialized method definition than c11.

It is therefore necessary to find a way of determining dynamically the most specific

common supertype (MSCS) of the dynamic type of this and of sSelf: all messages

defined in the MSCS are safe for sSelf, whereas all other messages in the type of this

are safe only for this. E.g. in the case of sSelf=c2 and this=c11 the MSCS is I1

whereas for sSelf=c3 and this=c11 it is I11.

11

(self: I1)

C21 C11

2

2

elegatee

1

(self: I1)

1

(self: I1)

(self: I11)

I11

(self: I11)

(...) !

m(...) !

C3

3

elegatee
...

(self: I11)

(self: I11)

C3

n(...) !

(...) !

FIGURE 7 Example of program structure evolution that should not require changes in existing classes

Java offers two mechanisms to determine the MSCS of this and sSelf:

• dynamic type checks and

• method overloading that preserves dynamic binding.

Dynamic type checking. Let the class in which to include the overriding method

be the N-th one in its inheritance hierarchy (counting the root class as number 1). Then

dynamic checking would amount to an N times nested “if-then-else”, iterating from the

current class up the inheritance hierarchy until a check succeeds. In the case of success a

IAI-TR-98-5: “Delegation for Java: API or Language Extension?” Page 11

local method implementation that uses a specific distribution of messages to sSelf and

to this would be called:

class C1n implements I1n {

public m(I11 sSelf, args) {
if (sSelf instanceOf I1n) {

implementation sending all messages to sSelf, none
to this
} else {

if (sSelf instanceOf I1n-1) {
implementation sending messages from I1n-1 to
sSelf, others to this
} else { ...

if (sSelf instanceOf I11) {
implementation sending messages from I11 to sSelf,
others to this

} ... }
}

}

Overloading1. In the overloading approach each of the above dynamic checks for

a certain type would be replaced by a method whose sSelf argument has the

corresponding type. Then dynamic binding of messages forwarded from delegators

automatically selects the method with the most specific type ([9], §15.11.2).

class C1n implements I1n {

public m(I11 self, args) {
// implementation sending messages from I11 to self, others to
this

}

public m(I12 self, args) {
// implementation sending messages from I12 to self, others to
this

}
...
public m(I1n self, args) {

// implementation sending messages from I1n to self, none to this
}

}

What's gained? The dynamic type checking approach involves worst case run-

time costs that are linear in the depth of the inheritance hierarchy. In contrast, method

overloading has zero run-time cost. However, neither approach can be recommended,

since the main expense of both approaches is hidden in the number of additional

overloaded definitions of each single method. Their number is linear in each class,

quadratic along an inheritance path and exponential within an inheritance hierarchy:

• The number of overloaded versions of each locally overridden method in a

class at depth N in the inheritance hierarchy is N-1 (the class contains N

1 This part of the simulation would work well in Java but not in C++ or other languages that
statically bind overloaded methods. In such languages only the dynamic checking approach could be
used.

IAI-TR-98-5: “Delegation for Java: API or Language Extension?” Page 12

method definitions of which one has the original signature and the others are

overloaded versions).

• The worst case sum of overloaded definitions of each method along an

inheritance path of depth N is i
i N

−
=
∑ 1
1..

.

• The worst case sum of overloaded definitions of each method within an

inheritance hierarchy of depth N with b subclasses per class is ()
..

i bi

i N

− ∗
=
∑ 1
1

.

The most serious drawback is not the sheer number of methods in itself but the

fact that each overloaded version is textually identical to the other N-1 local versions, up

to the message receivers. The programmer needs to manually “patch” N-1 copies of a

method in order to adjust which messages are sent to sSelf and which are sent to this,

depending on the type of sSelf. This implies the need to manually propagate each

change of a method to N-1 local copies, rendering reuse ad absurdum.

This problem is common to the overloading and the dynamic casting approach:

each method body in the overloading approach corresponds to an identical block of

code in one of the success branches of the dynamic checking code. Furthermore, the

base problem of typing sSelf and its implication on the simulation is not typical to the

passed pointer model, it appears also in the stored pointer model. This variation was not

worked out in detail simply due to the limited applicability of the stored pointer model.

We may conclude that the search for a faithful simulation of delegation has

reached a dead end. Aiming for an approach that fosters reuse in that it does not require

changes of existing classes when new classes are added, we have obtained a “solution”

that is highly sensitive to changes within a class because each change must be consistently

performed in N copies of a block of code. So we have traded undesirable inter-class

dependencies for equally undesirable intra-class dependencies plus excessive simulation

costs.

4 Evaluation and Comparison of Simulations
In the previous chapter we have reviewed the two basic approaches for simulating

delegation in statically typed class-based languages, known as the stored pointer model

and the passed pointer model. Both models rely on aggregation and explicit resending of

messages within forwarding methods. Of the requirements listed in section 3.1 they

achieve the technical ones (1-3) at the cost of neglecting most usability aspects (4-5).

The main common disadvantages of the discussed simulations are:

• the need to anticipate the use of a class as a delegatee and to build in

“hooks” that allow the correct treatment of self for resent messages. Classes

that do not provide such hooks cannot be used as delegatees.

• the need to anticipate which messages in a class can be overridden in delegator

classes (i.e. which ones are sent to sSelf) and which ones can only be

IAI-TR-98-5: “Delegation for Java: API or Language Extension?” Page 13

redefined in subclasses (i.e. which ones are sent to this). We have shown that

no acceptable solution exists for this problem in current typed class-based

languages. Both possible “solutions”, using either dynamic type checks or

method overloading, lead to the same explosion of code size and maintenance

costs.

• the need to edit (or at least recompile) a “delegating” class when the interface

of one of its superclasses or delegatee classes changes (e.g. addition of a

method). This introduces two variants of the “syntactic fragile base class

problem”:

− Fragile superclass: If a superclass is extended by a method that is

forwarded in the subclass, the forwarding method must be deleted and the

subclass recompiled, otherwise the new inherited behavior would not take

effect in the subclass.

− Fragile delegatee class: Changes to the delegatee's interface require

adding/deleting forwarding methods in delegator classes in order to

propagate the change.

In both cases, existing compiled code of subclasses / delegator classes is

invalidated.

• the tedious and error-prone process of writing forwarding methods, casting

methods, explicit interface definitions and explicit subtyping relations among

interfaces. This problem could partly be alleviated by “intelligent”

development environments – nevertheless, a language design with well-defined

semantics is preferable to dependence on the availability and “intelligence”

of a particular tool.

Each of the individual simulation techniques has additional weaknesses:

• Storing a reference to self in delegates has a very limited applicability.

Sharing of one delegate by multiple delegators cannot be expressed at all.

Recursive delegation can only be simulated with significant added run-time

costs and an amount of simulation code that makes the approach highly error-

prone and sensitive to change.

• Passing a reference to self as an argument of forwarded messages is

generally applicable but requires to extend the interface of methods in pre-

existing classes / types by one extra argument.

The absence of a standard convention how to simulate delegation is another main

problem because components made according to different conventions cannot be

deployed together. The risk of standardizing immature conventions was demonstrated by

JavaSoft's proposal for an“Object Aggregation and Delegation Model” (initially

IAI-TR-98-5: “Delegation for Java: API or Language Extension?” Page 14

contained in the Glasgow Proposal, [14]), which was dropped as result of public criticism

of its limitations.

In the light of the above evaluation only the generally applicable passed pointer

model appears to be an acceptable candidate for a standard simulation. However, due to

their extensive common problems all simulations are acceptable only as a compromise as

long as no language-level implementation of delegation is available.

5 Lava: Java with Delegation
In a language-level implementation the cost of using delegation reduces to adding the

keyword delegatee to a variable declaration in the delegator class. In listing 1 our

running example is rewritten in LAVA, an extension of Java with dynamic delegation:

class Delegator {

// The keyword delegatee tells the system that all
// locally unimplemented messages from the interface of
// Delegatee are delegated to the object referenced by
// “parent”:
delegatee Delegatee parent;

// Overriding of a method from “parent”. No change of
// signature (i.e. no explicit sSelf parameter) is required:
public aMethod(args) { ... }

}

LISTING 1 In Lava the use of delegation boils down to the addition of one keyword to a variable
declaration. Nothing else is required from the programmer (e.g. no explicit forwarding and type casting

methods, no interface declarations, no anticipation of the use of a class as a delegatee,
no rewriting of existing classes in order to become delegatees, etc.)

 Implementing delegation as a first class language concept makes it trivially simple

to use because all aspects that had to be manually simulated before are now dealt with by

the language. This includes the automatic generation of forwarding methods, the correct

handling of self and typing.

The main aspects of the “impossible” combination of delegation with subtyping

are informally described in [18] (and partly in [15]). The language design can be found

in [3]. Early ideas for a C++-style implementation are presented in [15], the

implementation of an extended Java run-time system in [21]. A detailed description of

object model, typing, language design, implementation and use is forthcoming in [17].

6 Simulation or Language Extension?
The LAVA design sketched above avoids all of the problems of API-level simulations:

• it is generally applicable (static / dynamic delegation, simple / recursive

delegation, shared / non-shared delegatee, optional / mandatory delegatee,

transient / persistent delegators, sequential / concurrent execution),

• it avoids the need to anticipate which classes can be used as delegatees, or to

rewrite existing classes in order to turn them into potential delegatees,

IAI-TR-98-5: “Delegation for Java: API or Language Extension?” Page 15

• it avoids the need to manually implement delegation in every pair of delegator

and delegatee classes by writing forwarding and casting methods and

replacing all messages to self by messages to an explicit sSelf receiver

object,

• it avoids the need to manually write interface definitions in order to enable

substitutability of delegators for delegatees,

• it avoids “syntactically fragile superclasses and delegatee classes”,

• it avoids accidental overriding of methods with identic signature but unrelated

semantics when independently developed classes become part of the same

delegation hierarchy ([18], [16], [15]).

The language extension offers a well-defined semantics and minimizes the

workload of the programmer while enabling maximal reuse and extensibility. Therefore

we propose a design along the lines of LAVA as the method of choice for introducing

delegation into Java and any other typed class-based language.

However, the efficiency of the prototypical implementation described in [3, 15, 21]

is still unacceptable for a commercial production programming language. Additional

efforts are to be undertaken towards a high-performance implementation that integrates

modern compiler technology (e.g. [13]). We invite researchers worldwide to contribute

to these efforts. Until delegation becomes part of wide-spread production programming

languages the passed pointer simulation appears to be the only viable compromise.

7 Conclusions
The opportunity for increasing the flexibility and modelling power of class based

languages by simulating dynamic object-based inheritance (delegation) was recognised

long ago in the Smalltalk community. Whereas corresponding simulation techniques are

simple and meanwhile standard in dynamically typed object-oriented languages like

Smalltalk and Objective C, statically typed languages like Java and C++ lack easily usable

and commonly accepted “delegation patterns”. Components made using different

simulation patterns cannot be effectively used together and the amount of coding

required to implement the patterns and to modify the resulting software when further

classes / requirements are added varies widely. This is a major hindrance for the cost

effective production of reusable application software, since delegation patterns are at the

core of many other widely used design patterns (e.g. state, strategy, flyweight, visitor,

decorator).

In this context the contributions of this paper are two-fold:

• On one hand, the paper reviewed, extended and compared the different classes

of delegation patterns and gave a recommendation for a “preferred” pattern

along with criteria that will help programmers determine the most suitable

approach with respect to their specific application requirements.

IAI-TR-98-5: “Delegation for Java: API or Language Extension?” Page 16

• On the other hand, the paper sketched the desing of an extension of Java that

incorporates delegation as a first class concept overcoming the limitations that

characterize even the “best” simulation patterns. We hope that LAVA will be a

fruitful stimulation for other language designers and implementors.

8 References

[1] M. Abadi; L. Cardelli: A Theory of Objects. Springer, 1996.

[2] J.O. Coplien: Advanced C++: Programming Styles and Idioms. Addison-Wesley, 1992.

[3] P. Costanza: “Lava – Delegation in a Strongly Typed Programming Language – Language

Design and Compiler (In German: Lava – Delegation in einer streng typisierten

Programmiersprache – Sprachdesign und Compiler)”. Masters thesis, University of Bonn,

Computer Science Department III, 14. January 1998, 125 pages.

[4] O.J. Dahl; B. Myrhaug; K. Nygaard: “SIMULA 67 Common Base Language”. Norwegian

Computing Center, Oslo, Report.

[5] K. Fisher; J.C. Mitchell: “Notes on Typed Object-Oriented Programming”. In Proceedings of

TACS '94, LNCS 789, pp. 844-885. 1994.

[6] K. Fisher; J.C. Mitchell: “A Delegation-based Object Calculus with Subtyping”. In Proceedings

of 10th International Conference on Fundamentals of Computation Theory (FCT '95), vol. 965,

Lecture Notes in Computer Science, pp. 42-61. Springer, 1995.

[7] E. Gamma; R. Helm; R. Johnson, et al.: Design Patterns - Elements of Reusable Object-

Oriented Software. Reading, MA: Addison Wesley, 1995.

[8] A. Goldberg; D. Robson: Smalltalk-80: The Language. Reading, MA: Addison-Wessley, 1989.

[9] J. Gosling; B. Joy; G. Steele: The Java Language Specification. Addison Wesley, 1996.

[10] W. Harrison; H. Ossher; P. Tarr: “Using Delegation for Software and Subject Composition”.

IBM Research Division, T.J. Watson Research Center, Research Report RC 20946 (922722), 5

August 1997.

[11] F.J. Hauck: “Class-based Inheritance is Not a Basic Concept”. University of Nürnberg-Erlangen,

Computer Science Department, IMMD IV, Technical Report TR-14-6-93, July 1993.

[12] F.J. Hauck: “Inheritance Modeled with Explicit Bindings: An Approach to Typed Inheritance”,

Proceedings OOPSLA '93, ACM SIGPLAN Notices, vol. 28, no. 10 (1993), pp. 231-239.

[13] U. Hölzle: “Adaptive Optimization for SELF: Reconciling Hihg Performance With Exploratory

Programming”. PhD thesis, Stanford University, 1994,

[14] JavaSoft: “The Glasgow Model”. http://java.sun.com/beans/glasgow/.

[15] G. Kniesel: “Implementation of Dynamic Delegation in Strongly Typed Inheritance-Based

Systems”. Computer Science Department III, University of Bonn, Germany, Technical report

IAI-TR-94-3 0944-8535, October 1994.

[16] G. Kniesel: “Objects Don't migrate! - Perspectives on Objects with Roles”. Computer Science

Department III, University of Bonn, Germany, Technical report IAI-TR-96-11 0944-8535, Nov

1996.

[17] G. Kniesel: “Darwin - A Unified Model of Sharing for Object-Oriented Programming”. Ph.D.

thesis (forthcoming), University of Bonn, Computer Science Department III,

IAI-TR-98-5: “Delegation for Java: API or Language Extension?” Page 17

[18] G. Kniesel: “Type-safe Delegation for Dynamic Component Adaptation”. University of Bonn,

Technical Report (and position paper for workshop on component oriented programming,

ECOOP '98) IAI-TR-98-5, ISSN 0944-8535, May 1998.

[19] G. Kniesel; M. Rohen; A.B. Cremers: “A Management System for Distributed Knowledge Base

Applications”. In Verteilte Künstliche Intelligenz und Kooperatives Arbeiten (Distributed

Artificial Intelligence and Cooperative Work), W. Brauer; D. Hernández (Eds.), pp. 65-76.

Springer-Verlag, 1991.

[20] H. Lieberman: “Using Prototypical Objects to Implement Shared Behavior in Object Oriented

Systems”, Proceedings OOPSLA '86, ACM SIGPLAN Notices, vol. 21, no. 11 (1986), pp.

214-223.

[21] M. Schickel: “Lava – Design and Implementation of Delegation Mechanisms in the Java

Runtime Environment (In German: Lava – Konzeptionierung und Implementierung von

Delegationsmechanismen in der Java Laufzeitumgebung)”. Masters thesis, University of Bonn,

Computer Science Department III, 15. December 1997, 94 pages.

[22] A. Snyder: “Encapsulation and Inheritance in Object-Oriented Programming Languages”,

Proceedings OOPSLA '86, ACM SIGPLAN Notices, vol. 21, no. 11 (1986), pp. 38-45.

