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Why dynamic inheritance?
Rigidity Problem
• Class-based inheritance is too rigid.
• It cannot express dynamically evolving object structure and behaviour.
• The inherited interface and the inherited code are determined at compile-time.

Solution
• Only a part of the inherited interface is declared statically.
• The inherited code and part of the inherited interface is determined at run-

time.

Why object-based inheritance?
Granularity Problem
• Class-based inheritance is too coarse-grained.
• It cannot express variations of structure and behaviour among instances of

one class.
• It cannot express sharing of state between objects.

Solution
• Differences between instances of the same class can be expressed by letting

them inherit behaviour and state from instances of other different classes.
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� What is “Delegation”?
� “Delegation” is a shorthand for “object based, dynamic inheritance”.

� General Syntax
� object variable annotation delegatee

� General Effects
� automatic forwarding of method and variable accesses to delegatee
� binding of “this” to delegator within forwarded method invocations
� overriding of delegatee‘s methods by delegator
� the delegator class is a subtype of the declared delegatee type (e.g. in

all examples, EuroWrapper is a subtype of Finance)
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� Because it inherits from a fixed delegatee, the delegator
object provides the delegatee‘s interface throughout its
life time. Its dynamic type is EuroWrapper+Loan.

� Therefore the delegator can be passed in every context
where Loan instances are expected.variable of

type Loan

� Binding of “this” to the delegator
enables overriding:
During execution of the forwarded
message “interestRate()”, the
“amount()” message will be sent to
the delegator -thus the delegator’s
local implementation for amount()
will overrides the one of the
delegatee.

Fixed Delegation

Delegation

� Syntax
� object variable annotation final delegatee

� Additional Effects
� after instantiation the delegator never changes its delegatee
� the delegator object’s type is a subtype of the delegatee object’s type

� Code Example
� // EuroWrapper adapts Finance objects to Euro

// calculation by redefining their amount() method
class EuroWrapper {
    // Everything that is not declared locally will
    // be delegated automatically to _delegatee:

... final delegatee Finance _delegatee;
    // overriding behaviour:
  public double amount(){
     _delegatee<-amount() / ExchangeRate;

}
}

� Extended UML Example notation for delegation 

� What is Darwin?
� a model for class-based, statically typed, object-oriented languages with

object-based, dynamic inheritance (delegation)
� What is Lava?

� an extension of Java with object-based dynamic inheritance (delegation)
� Contributions

� static type-safety of object-based, dynamic inheritance
� easy modelling of object-specific behaviour and behaviour evolution

� non-monotonic (new behaviour can be acquired and abandoned)
� unanticipated, identity-changing (wrapper-/decorator-style)
� anticipated, identity-preserving evolution (state-/strategy-style)

� More Information
� http://javalab.cs.uni-bonn.de/research/darwin/
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Mutable Delegation
� Additional Problem

� Mutable delegation allows delegators to change their delegatees at any
time.

� Therefore messages specific for one particular delegatee type (e.g. Loan)
may not be sent to delegators via “this”.

� Solution: “Split self” approach
� “this”  refers to the object that initially received the delegated message
� “holder” refers to the object that executes the current method
� annotation “dynamicRoot” for classes and interfaces

� “this” has the annotated type in all subclasses (e.g. in the example
below it has type Finance in class Finance and all its subclasses)

� therefore methods that are not in the annotated type cannot be
invoked on this  (e.g. this.other would be illegal in class Loan),

� specific local methods can be invoked on holder, which is always of
local type (e.g. in class Loan holder has type Loan, so
holder.other is legal)

<<dynamicRoot>>
Finance

delegator:
EuroWrapper delegatee:Loan

this:Finance

� Because it can change its delegatees, the delegator object
only provides their common interface (Finance) throughout its
life time.

� Therefore (1) the delegator can only be passed into contexts
that expect Finance instances; (2) the type of “this” is
confined to Finance in all subclasses of Finance. This is
declared by the dynamicRoot annotation of Finance.
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� Now delegator may change
its delegatee at any time,
e.g.  to an instance of type
Bond,

� Therefore messages specific
for type Loan (e.g. other)
may not be sent to delegator
via „this“.
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explicit delegation (equivalent of super call)

http://javalab.cs.uni-bonn.de/research/darwin/
mailto:Guenter.Kniesel@cs.uni-bonn.de?subject=ECOOP2002Poster

