
Günter Kniesel
University of Bonn, Computer Science Department III

Römerstraße 164, D-53117 Bonn
Contact: Guenter.Kniesel@cs.uni-bonn.de

Darwin & Lava
– Object-based Dynamic Inheritance ... in Java –

JavaLab

Why dynamic inheritance?
Rigidity Problem
• Class-based inheritance is too rigid.
• It cannot express dynamically evolving object structure and behaviour.
• The inherited interface and the inherited code are determined at compile-time.

Solution
• Only a part of the inherited interface is declared statically.
• The inherited code and part of the inherited interface is determined at run-

time.

Why object-based inheritance?
Granularity Problem
• Class-based inheritance is too coarse-grained.
• It cannot express variations of structure and behaviour among instances of

one class.
• It cannot express sharing of state between objects.

Solution
• Differences between instances of the same class can be expressed by letting

them inherit behaviour and state from instances of other different classes.

EuroWrapper

Bond

interestRate()

interestRate()
amount()

Loan

interestRate()
other()

amount()

� What is “Delegation”?
� “Delegation” is a shorthand for “object based, dynamic inheritance”.

� General Syntax
� object variable annotation delegatee

� General Effects
� automatic forwarding of method and variable accesses to delegatee
� binding of “this” to delegator within forwarded method invocations
� overriding of delegatee‘s methods by delegator
� the delegator class is a subtype of the declared delegatee type (e.g. in

all examples, EuroWrapper is a subtype of Finance)

EuroWrapper
interestRate()

amount()

Loan

interestRate()
other()

amount()

this.amount()
this.other()

<<final>>

delegatee: Loan

interestRate()

Finance

this:Loan

� Because it inherits from a fixed delegatee, the delegator
object provides the delegatee‘s interface throughout its
life time. Its dynamic type is EuroWrapper+Loan.

� Therefore the delegator can be passed in every context
where Loan instances are expected.variable of

type Loan

� Binding of “this” to the delegator
enables overriding:
During execution of the forwarded
message “interestRate()”, the
“amount()” message will be sent to
the delegator -thus the delegator’s
local implementation for amount()
will overrides the one of the
delegatee.

Fixed Delegation

Delegation

� Syntax
� object variable annotation final delegatee

� Additional Effects
� after instantiation the delegator never changes its delegatee
� the delegator object’s type is a subtype of the delegatee object’s type

� Code Example
� // EuroWrapper adapts Finance objects to Euro

// calculation by redefining their amount() method
class EuroWrapper {
 // Everything that is not declared locally will
 // be delegated automatically to _delegatee:

... final delegatee Finance _delegatee;
 // overriding behaviour:
 public double amount(){
 _delegatee<-amount() / ExchangeRate;

}
}

� Extended UML Example notation for delegation

� What is Darwin?
� a model for class-based, statically typed, object-oriented languages with

object-based, dynamic inheritance (delegation)
� What is Lava?

� an extension of Java with object-based dynamic inheritance (delegation)
� Contributions

� static type-safety of object-based, dynamic inheritance
� easy modelling of object-specific behaviour and behaviour evolution

� non-monotonic (new behaviour can be acquired and abandoned)
� unanticipated, identity-changing (wrapper-/decorator-style)
� anticipated, identity-preserving evolution (state-/strategy-style)

� More Information
� http://javalab.cs.uni-bonn.de/research/darwin/

Darwin and Lava

Mutable Delegation
� Additional Problem

� Mutable delegation allows delegators to change their delegatees at any
time.

� Therefore messages specific for one particular delegatee type (e.g. Loan)
may not be sent to delegators via “this”.

� Solution: “Split self” approach
� “this” refers to the object that initially received the delegated message
� “holder” refers to the object that executes the current method
� annotation “dynamicRoot” for classes and interfaces

� “this” has the annotated type in all subclasses (e.g. in the example
below it has type Finance in class Finance and all its subclasses)

� therefore methods that are not in the annotated type cannot be
invoked on this (e.g. this.other would be illegal in class Loan),

� specific local methods can be invoked on holder, which is always of
local type (e.g. in class Loan holder has type Loan, so
holder.other is legal)

<<dynamicRoot>>
Finance

delegator:
EuroWrapper delegatee:Loan

this:Finance

� Because it can change its delegatees, the delegator object
only provides their common interface (Finance) throughout its
life time.

� Therefore (1) the delegator can only be passed into contexts
that expect Finance instances; (2) the type of “this” is
confined to Finance in all subclasses of Finance. This is
declared by the dynamicRoot annotation of Finance.

variable of type
Loan

variable of type
Finance

holder:Loan

this.amount()
holder.other()

� Now delegator may change
its delegatee at any time,
e.g. to an instance of type
Bond,

� Therefore messages specific
for type Loan (e.g. other)
may not be sent to delegator
via „this“.

delegator:
EuroWrapper

interest
Rate()

delegatee
classdelegator

class

explicit delegation (equivalent of super call)

http://javalab.cs.uni-bonn.de/research/darwin/
mailto:Guenter.Kniesel@cs.uni-bonn.de?subject=ECOOP2002Poster

