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Abstract

In this paper we introduce an object-oriented model that integrates class-based

inheritance and object-based, dynamic delegation in the framework of a static

type system and we show that implementation techniques for strongly typed,

inheritance-based languages can be adapted to handle dynamic delegation

efficiently. Our model and implementation scheme show how today's "production

programming" systems can be smoothly extended to support object-based

sharing and dynamically evolving objects, providing a degree of expressiveness

and flexibility that was previously known only in the context of dynamically

typed, prototype-based "exploratory  programming" systems.
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1. Introduction

Current object-oriented programming languages are not able to support both, rapid proto-
typing and production programming, equally well. Today the requirements of production
programmers are best fulfilled by strongly typed, inheritance-based1 languages ([Strou91],
[Meye92], [MMN93]) whereas exploratory programmers prefer type-free ([GR89]) or even
delegation-based ([LTP86], [Lieb86], [US87]) systems.

Delegation-based languages have introduced a uniform, type- and class-free object model and
the concept of delegation, a dynamically modifiable inheritance relationship between objects.
In the terms of the "Treaty of Orlando" ([SLU89]) delegation allows to express "unanticipated
sharing on an object-by-object basis", providing a degree of flexibility and expressiveness that
is lacking in the traditional object-oriented model based on static inheritance between classes.

The flexibility of object-based sharing by dynamic delegation is generally considered to be
incompatible with static type checking and with the implementation techniques used in
strongly typed, inheritance-based languages. This paper shows that delegation can be recon-
ciled with static typing, yielding a basis for more powerful, yet safe, production programming
systems and that static typing can be exploited to minimise the cost of method lookup in
dynamically changing delegation hierarchies. The proposed implementation is compatible with
"traditional" implementation techniques, showing how existing inheritance-based systems can
benefit from the power of dynamic delegation.

The paper is structured as follows. In section 2 we clarify the apparent confusion that shows up
in the literature about what delegation means. In section 3 we introduce a model that integrates
inheritance, delegation, and static typing. The power of the integrated model is demonstrated
on two examples, which are representative for two classes of problems that are not well suppor-
ted by purely inheritance-based systems. The implementation is discussed in section 4, starting
from the implementation scheme used in inheritance-based languages and gradually extending
it to accommodate dynamic delegation. Section 5 describes the layout of the auxiliary run-
time structures on which our implementation is based. Section 6 evaluates the space and run-
time performance of our approach and section 7 compares it to other work in this domain.

2. Delegation ≠≠≠≠ Message Sending

Whereas nowadays the notion of inheritance is familiar even to beginners in object-oriented
programming, the notion of delegation is overloaded in literature with three different
meanings. In all cases an object, called the child, may have (dynamically modifiable) pointers
to other objects, called its parents. E.g. in fig. 1a)-c) the object employeeJohn references its
parent personJohn in the attribute *person. Messages that cannot be answered by the child
object are forwarded to the parent(s). Semantic differences arise due to the different methods
of forwarding and the treatment of subsequent messages to self2.

                                                

1 Throughout the paper "inheritance-based" means "object-oriented languages based on classes and
inheritance" whereas "delegation-based" means "object-oriented languages based on prototypical objects
and delegation".

2 In most object-oriented languages self denotes the receiver of the message that is being evaluated. The
keywords current in Eiffel [Meye92]) and this in Simula ([DMN68]), BETA ([MMN93]) and C++
([Strou91]) have the same meaning.
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Our understanding of delegation is the one initially introduced in actor-based languages (e.g.
[Lieb86]) and used today in languages like NewtonScript ([Smit94a/b]), Cecil ([Cham93]), and
SELF ([US87]). Delegation means that messages that cannot be answered using the receiver's
message protocol are automatically forwarded to the parent(s) without changing self. When the
forwarded message is answered by executing a parent's method, every subsequent message sent
to self will be addressed to the receiver of the initial message. Hence the context of evaluation is
automatically maintained to be the initial message receiver. E.g in fig. 1a, the message
employeeJohn.currentPhone# cannot be answered by the object employeeJohn, since it con-
tains no method for currentPhone#. Therefore the message is delegated to personJohn. When
the method for currentPhone# found in personJohn is executed, and the message self.phone#
is sent, self is still bound to employeeJohn, such that the phone number of John as employee
(its office phone number) is returned. Intuitively, delegating a message means asking another
object to do something on behalf of the message receiver, i.e. as if the message receiver would
have done it.

name = John
phone# = 669966
...
currentPhone#  = {  self.phone# }

"person John"

*person  =
phone#  = 550055
...

"employee John"b)   implicit resend

 employeeJohn.currentPhone#
 ⇒  669966

name = John
phone# = 669966
...
currentPhone#  = {  self.phone# }

"person John"

*person  =
phone#  = 550055
...
currentPhone#  = {  person.currentPhone# }

"employee John"c)   explicit resend

 employeeJohn.currentPhone#
 ⇒  669966

name = John
phone# = 669966
...
currentPhone#  = {  self.phone# }

"person John"

*person  =
phone#  = 550055
...

"employee John"a)   delegation

 employeeJohn.currentPhone#
 ⇒  550055

Fig. 1: Different results of the same message for delegation (a) and resends (b and c)

If self is changed, referencing the parent object during the evaluation of forwarded messages,
all subsequent messages to self will ignore methods of the child (fig. 1b, 1c). Therefore the
(private) phone number of John is returned, although the object which represents John as an
employee was asked. Technically, we say that the receiver resends the message. Intuitively,
resending means that the parent object will evaluate the message as it knows how, disregarding
what the message receiver would have done.

There are two forms of resends, depending on whether message forwarding is done
automatically (fig. 1.b) or requires explicitly adding to the child one method for every
message that should be resent to the parent (fig. 1.c). In the former case we talk about implicit
resends, in the latter about explicit resends. Unfortunately the term "delegation" is (mis)used in
literature to denote both variants of resends, causing much confusion (delegation as implicit
resends: [LTP86], [Strou87], [GSR94]; delegation as explicit resends: [RBP+91], p. 244]).

3. Combining Inheritance and Delegation

In Delegation ([Lieb86]), SELF, Cecil, and NewtonScript delegation is used in conjunction with
a class-free object model, where every object is a self-contained entity (fig. 1), which may
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define (and change) its own structure and behaviour. Especially, each object may define
whether it has parents and who its parents are. We call this approach unconstrained delegation.  

Integration of unconstrained delegation in inheritance-based object-oriented models would
allow every instance to delegate, at any time, to any other object. In such a setting a compiler
could not know whether a message that is not defined in the class of the receiver will produce a
"message not understood" error at run time, or whether it will be answered by delegating to an
object whose class contains a definition. If safety is a concern, all such messages have to be
rejected by the type checker. This would have the effect of forbidding dynamic delegation
altogether. On the other hand, if we were to allow such messages, the responsibility for pro-
gram safety would be left to the programmer. Therefore requiring both, static type checking
and dynamic delegation, sounds like a contradiction. Typically, implemented languages that
combine delegation and typing restrict delegation to be static ([Cham93], [CL94]). Fortunately
it is possible "to have one's cake and eat (much of) it too", by reverting to a slightly restricted
form of dynamic delegation, that we call typed dynamic delegation.

3.1. Basic Notions

In this section we shall introduce the basic notions of typed dynamic delegation. The
presentation is oversimplified, since we restrict ourselves to the aspects that are essential for
understanding the special problems involved in the implementation of our integrated model.
We assume that the reader is familiar with the standard notions of class, instance, and class-
based inheritance that are common in most of today's object-oriented languages and systems
([Wegn89], [Snyd91], [Nier89], [GR89], [Stro91], [Meye92]). We also assume that inheritance
is based on overriding [CoPa89]) rather than extension ([BrCo90], [MMN93]).

In our model, as in many other existing systems, objects are instances of classes, classes may
inherit from each other, and all variables, parameters and method bodies have a statically
declared type. Additionally, objects (instances) may delegate to other objects by referencing
them in their delegation attributes. We talk about typed dynamic delegation if the existence
and the type of all delegation attributes of instances of a class, C, is declared in C. If class C
declares a delegation attribute of type T, we say that C delegates to T and that

• C is a declared child class of T and of each of T's subclasses, and

• T is a declared parent class of C and of each of C's subclasses.

Please note that "class C delegates to class T" is just a shorthand for saying "class C defines that
its instances and the instances of its subclasses delegate to instances of T or of T's subclasses"1.
E.g. in fig. 2, class B delegates to class C and therefore the object obj_b1, an instance of B1,
may delegate to the object obj_cm, an instance of Cm.

Each subclass of a declared parent (child) class of a class, X, is a potential parent (child) class
of X. The parent (child) classes of a class are the union of its declared and potential parent
(child) classes. E.g. in fig. 2b, the class D is a declared parent of C, C1, ..., Cm, the subclasses of
D are potential parents of C, C1, ..., Cm, and the subclasses of C are potential children of D, D1,
..., Dn.

                                                

1 Note that this is very different from saying that the object representing class C delegates to the object
representing class T.
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The ancestor (descendant) relation is the transitive closure of the parent (child) relation. The
declared ancestor (descendant) relation is the transitive closure of the declared parent (child)
relation.  The potential ancestors (descendants) of a class are the difference between its
ancestors (descendants) and its declared ancestors (descendants)1. E.g. in fig. 2, the classes C,
C1, ..., Cm, D, D1, ..., Dn,  are the ancestors of B, the classes C and D are the declared ancestors
of B, and the classes C1, ..., Cm, D1, ..., Dn, are the potential ancestors of B. Note that any
(declared or potential) new ancestor class of C1, ..., Cm, D1, ..., Dn, would also be a potential
ancestor class of B (but not a declared ancestor).

 

inherit s
f rom

declares
delegat ion at t ribute

CLASS
of  t ype

inst ance
of

delegates to
ob ject

obj_b 1 obj_c m obj_d n

... ... ...

C D

C1 Cm

B

B1 Bk D1 Dn

C0 D0B0

P
rogram
graph
(static)

O
bject

hierarchy
(dynam

ic)

Fig 2a: Graphical notation Fig. 2b: Example of program graph and object hierarchy

It will often be useful to regard a program as a directed graph consisting of class nodes
connected by inheritance edges and delegation edges (upper part of fig. 2b). A path in the
program graph that contains only inheritance edges is called an inheritance path. A path in the
program graph that ends with a delegation edge is called a delegation path.   

We say A is_a B, and call A a direct subclass of B, resp. B a direct superclass of A, if A is
connected to B by an inheritance path of length 1. We say A is_a* B, and call A a subclass of B
resp. B a superclass of A if A is connected to B by an inheritance path of length ≥ 1. The
inheritance hierarchy of a class is the subgraph of the program graph containing the class
itself and all its superclasses and subclasses. The delegation hierarchy of a class is the sub-
graph containing the class itself and all its ancestors and descendants.
For a class C we denote its inheritance hierarchy by C.inherHierarchy, and its delegation
hierarchy by C.delegHierarchy. The inheritance hierarchy belonging to an object consists of
its class, say C, and the superclasses of C.

All non-disjoint inheritance hierarchies of classes form an inheritance hierarchy of the
program graph. More precisely, two classes, X and Y, are in the same inheritance (delegation)
hierarchy of the program graph, if there exists a sequence of classes, C1, ..., Cn, with C1 := X
and Cn := Y, such that for all i ∈  {1, ..., n-1} the inheritance (delegation) hierarchies of class Ci
and Ci+1 have a non-empty intersection, or if X and Y are part of the inheritance (delegation)
hierarchy of classes that are in the same inheritance (delegation) hierarchy of the program
graph.

E.g. the program graph shown in fig. 2 contains three inheritance hierarchies (one of them is
B0, B, B1, ..., Bn,) and one delegation hierarchy (containing all classes except B0, C0, and D0).

The (own) protocol of a class is the set of all messages defined in the class and its superclasses.
The extended protocol of a class is the union of its own and its ancestors' protocols. The
delegated protocol is the difference of the extended protocol and the (own) protocol.

                                                

1 Note that this is more then just the transitive closure of the potential parent relation. E.g. it also includes
all declared ancestors of potential parents.
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The abstract protocol of a class, C, is the extension of its protocol by the selectors of all
messages that are sent to self in C or in C's superclasses. The delegated abstract protocol and
the extended abstract protocol are defined accordingly.

A class is concrete if all the self-messages sent in its methods are in its extended protocol. Only
concrete classes may be instantiated.

The following table contains the formal definitions of the notions introduced so far. In the
table, P denotes a program, and C, X, Y denote classes from P.

Notation Definition

C.superclasses := { Y | C is_a* Y }

C.subclasses := { Y | Y is_a* C }

C.declParents := ∪ X ∈ {C} ∪  C.superclasses  {Y | X delgates_to Y}
C.declChildren := ∪ X ∈ {C} ∪  C.superclasses  {Y | Y delgates_to X }
C.potParents := ∪ X ∈ C.declParents   X.subclasses

C.potChildren := ∪ X ∈ C.declChildren X.subclasses

C.parents := C.declParents ∪ C.potParents

C.children := C.declChildren ∪ C.potChildren

C.ancestors := C.parents ∪ (∪ X ∈ C.parents X.ancestors)
C.descendants := C.children ∪ (∪ X ∈ C.children X.descendants)
C.declAncestors := C.declParents ∪ (∪ X ∈ C.declParents X.declAncestors)
C.declDescendants := C.declChildren ∪ (∪ X ∈ C.declChildren X.declDescendants)
C.potAncestors := C.ancestors  \ C.declAncestors

C.potDescendants := C.descendants  \ C.declDescendants

C.inherHierarchy := C.subclasses    ∪   {C}  ∪  C.superclasses

C.delegHierarchy := C.descendants ∪   {C}  ∪  C.ancestors

P.inherHierarchies := {H ⊆  P | ∀ X, Y ∈  H: (∃  {C1, ..., Cn } ⊆  H:

(C1 =X ∧ Cn =Y ∧ ∀ i = 1,...,n-1:

  Ci .inherHierarchy ∩ Ci+1 .inherHierarchy ≠ ∅ ))}
P.delegHierarchies := {H ⊆  P | ∀ X, Y ∈  H: (∃  {C1, ..., Cn } ⊆  H:

(C1 =X ∧ Cn =Y ∧ ∀ i = 1,...,n-1:

  Ci .delegHierarchy ∩ Ci+1 .delegHierarchy ≠ ∅ ))}
Table 1: Summary of notation and definitions.

P denotes a program (i.e. a set of classes), and C, X, Y denote classes from P.
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3.2. Semantics and Use

A detailed discussion of the formal semantics of our model is outside the scope of this paper.
In this section we shall confine ourselves to the discussion of the peculiarities of our model that
are needed for understanding the implementation. We conclude the section with two examples
that illustrate typical application scenarios and show the added power of our model compared
to purely inheritance-based ones.

3.2.1. Overriding

In most inheritance-based systems (with the notable exception of Simula ([DMN68]) and
BETA ([MMN93])) methods in subclasses override methods in superclasses. Similarly, in
delegation-based systems, methods in child objects override methods in parent objects. The
joint use of two different hierarchies requires an adaptation of the rules for overriding. The
extension seems to be straightforward:

(a) a method defined in a class always overrides methods defined in its superclasses and

(b) a method defined in a class or in its superclasses always overrides methods defined in its
ancestor classes.

This rule would preserve the semantics of each of the "pure" models. Unfortunately, in practice
there is a catch in this intuitively and theoretically appealing solution. Application of the above
rule to the message obj_a.b would produce the same result in both examples from fig. 3. After
searching a definition for b in A, the message would be delegated to obj_b and the class B1

would be searched. The method found there would be executed, and the message self.x  would
be sent next. The search would start again in class A (self = obj_a) leading to the execution of
the local method for x instead of the one from B1. The problem lies in the subtle difference
between fig. 3a and fig. 3b.

B
b = ...
x = .. .

b = {  self.x }
x =   ...

B1

x = ...

A

obj_bobj_a  

B

b = ...

b = {  self.x }

x =   ...

B1

x = ...

A

obj_bobj_a

Fig. 3a: A::x overrides B1::x Fig. 3b) A::x may not override B1::x

In fig. 3a, method x was first "introduced" in class B, and was then independently redefined in
the descendant class A and in the subclass B1. The two redefined versions of x most likely have
a similar semantics, since they both modify the same original definition. Hence overriding
simply selects the method whose semantics is better suited for objects of type A.

In contrast, the different definitions of x in figure 3b were independently introduced in two
different classes, A and B1, that may have been developed and compiled independently, maybe
even by different programmers, or as parts of different libraries.  It is at least very unlikely that
they have the same semantics. Hence overriding would lead to a silent change of the meaning
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of x, whose effect would propagate to all methods from B1 that use x. This could produce very
obscure and hard to locate run-time errors.

In order to avoid such a silent change of meaning when independently introduced methods
accidentally have the same name, we use the following, modified rule for overriding:

(a) a method defined in a class always overrides methods defined in its superclasses and

(b) a method defined in a class or its superclasses only overrides methods defined in ancestor
classes, if the method's selector was already in the extended protocol of a declared
ancestor class.

In our example, the declared ancestor class is B. The condition that the method's selector must
be in the extended protocol of B says that the method may also be defined in a superclass of B
or a declared ancestor class of B.

3.2.2. Static Typing

In our model it is possible to check statically that only messages that are safe for the declared
type of a delegation attribute may be delegated via that attribute1. The validity of static type
checking is based on the assumption that delegation attributes do not have the value nil, i.e.
parent objects of the specified type, to which locally undefined messages can be delegated,
always exist. Ensuring this invariant requires run-time checks of assignments to delegation
attributes2 and garbage collection. If an attribute is assigned a non-nil value, garbage
collection will ensure that this value persists until the next assignment, i.e. the referenced object
will not inadvertently be disallocated due to some programming error.

Defining at class level the type of objects to which instances may delegate, may, at a first
glance, appear very restrictive compared to the use of delegation in untyped, prototype-based
systems. However, many interesting applications of dynamic delegation can be expressed by
typed delegation. In the next two sections we shall illustrate by typical examples how typed
delegation can be applied to problems whose solution is not supported by traditional, purely
inheritance-based object models.

3.2.3. Roles of Objects

A main weakness of purely inheritance-based systems, which has often been criticised
([SLU89], [Pern90], [NRE 92], [ABGO93], [GSR94]), is their failure to model dynamic
evolution of the world. One facet of dynamic evolution is the ability to acquire and play diffe-
rent roles. E.g. the fact that a person may become a student, and later, or simultaneously, an
employee, is an example of two different roles that can be played by persons. In the following
we will review the role modelling potential of three general-purpose mechanisms, multiple
inheritance, multiple instantiation, and explicit manipulation of object references. Then we will
show that typed delegation allows to do role modelling in a way that overcomes the difficulties

                                                

1 A detailed discussion of typing issues is contained in [Knie95].

2 These checks are not expected to have a significant effect on performance, since, even in dynamic
delegation systems, like Self, changes of parent attributes represent a minuscule fraction of the overall
computation done by a program.
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of these approaches, while being more widely applicable. A comparison of our approach to
specialised "role object models" will be done in chapter 6.

In languages where objects cannot change their class dynamically, multiple inheritance is often
abused for role modelling but it provides no solution, due to the combinatorial explosion of
the number of highly specialised "intersection subclasses" ([Scio89]) with ever decreasing
generality and reusability. In order to be prepared for every situation that might occur during
the lifetime of an object one always has to create instances of a "most specific" class, thus
wasting storage and obscuring the semantics of the application (fig. 4a).

EMPLOYEE STUDENT

PERSON

MAN WOMAN

Female
STUDENT

Male
STUDENT

Male
EMPLOYEE

Female
EMPLOYEE

aMan

Class
hierarchy

Individual
objects

Male

EMPLOYEE
STUDENT-

Female

EMPLOYEE
STUDENT-

Fig. 4a: Extreme multiple inheritance-based modelling
of a man that might become a student and/or an employee

If one resorts to instances of more general classes, a situation like the one illustrated in fig. 4b
could occur. A man that is simultaneously an employee and a student would be represented by
two unrelated objects, which duplicate the information about him as a male person. Keeping
this information consistent would be left as a burden to the application programmer, who
would have to code two messages whenever the redundant information must be updated, e.g.
aMaleEmployee.setAddress(...) and aMaleStudent.setAddress(...) for consistently changing the
address of the same person.

EMPLOYEE STUDENT

PERSON

MAN WOMAN

Female
STUDENT

Male
STUDENT

Male
EMPLOYEE

Female
EMPLOYEE

aMaleStudentaMaleEmployee

Class
hierarchy

Individual
objects

Fig. 4b: Alternative multiple inheritance-based modelling
of a man that is a student and an employee

Smalltalk allows any object to become any other object  (receiverObj become: otherObj,
[GR89]). This facility is based on an indirect reference model, where an object reference is an
index into a global table that contains the physical addresses of all objects in the system (fig.
4c). By changing one entry in the global table, all references to a certain object can be
redirected to another object.

This mechanism allows to achieve the desired effect only if the class of the receiver object is
related by inheritance to the class of the argument object. E.g. assuming the inheritance
hierarchy from fig 4c, one can model that a person becomes a student by creating a new
STUDENT instance, aStudent, copying common information from the existing PERSON
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instance, aPerson, to aStudent, and using the message aPerson become: aStudent to redirect all
references from the old object to the new one.  

EMPLOYEE STUDENT

PERSON

MAN WOMAN

Class
hierarchy

Objects

...

...

......

Object table

2.1.

Indirect
object
references

aStudentaPerson

Implementation

Application

...

Fig. 4c: Object reference manipulation used for modelling
a person that became a student

However, when the class of the old object is neither a sub- nor a superclass of the class of the
new object, uncommon attributes and methods of the old object will be lost. E.g. with the
inheritance hierarchy from fig. 4c, a man can only become an asexual student. There are two
more drawbacks of Smalltalk's "become" method: Allowing any object to become any other
object is conceptually unsound and the dependence on indirect addressing is generally
considered an unacceptable efficiency bottleneck for compiled languages.  

A more principled approach is taken in the database programming language "Chimera"
([CeMa 93]), which allows objects to be instances of different classes simultaneously (multiple
instantiation), and to change some of their classes along the type hierarchy (object migration).
In this model an instance of MAN may additionally become an instance of EMPLOYEE and of
STUDENT (cf. the instantiations 1, 2, and 3 in fig. 4d). However, since all classes that have a
common superclass may simultaneously contain the same object, there is no means to express
mutually exclusive instantiations, e.g. that a man cannot simultaneously be a woman (the
instantiation 4, shown by the dashed line in fig. 4d would be possible in addition to no. 1).

EMPLOYEE STUDENT

PERSON

MAN WOMAN

aMan

Class
hierarchy

Objects
3. 1. 4. ?!? 2.

Fig. 4d: Multiple instantiation in Chimera

Other semantic problems of this approach are due to the need to resolve conflicts between
methods with the same selector defined in different "most specific" classes. In [CeMa 93] it is
requested that "one of [the most specific subclasses] has to be distinguished for type checking
purposes, and determines which implementation of shared attributes is to be applied".
Unfortunately, this criterion is only applicable if the "distinguished" class is among the classes
defining the conflicting method. Otherwise it remains open how the conflict could be solved
(e.g. if in fig. 4d MAN is the distinguished class but only EMPLOYEE and STUDENT contain a
conflicting method). Further it is unclear how this approach can be implemented and compiled
efficiently, since there is no way to anticipate which class memberships will be acquired at run-
time by an object.
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In contrast to the previous approaches, we represent an entity and each of its roles explicitly by
individual objects1. E.g. in fig. 5, the conceptual object John is represented as a male person
by an instance of MAN (man1), as an employee by an instance of EMPLOYEE (emp1), and as a
student by an instance of STUDENT (student1). Since the classes EMPLOYEE and STUDENT
do not inherit from MAN, no "male person" information, is contained in their instances.
However, by delegating to man1, the objects emp1 and student1 can use the information of
man1 as if it were their own, e.g. the message emp1.set_address(...) would change the address
attribute of  the shared object man_1 and this change would immediately be visible to the role
student1.

EMPLOYEE STUDENTPERSON

MAN WOMAN

emp_1 man_1 student_1

Class
hierarchy

Object
hierarchy

Fig. 5: Combined modelling using inheritance and typed delegation

Thus the solution depicted in fig. 5 avoids all the problems of the purely inheritance-based
modelling (cf. fig. 4a,b): common information is factored out in a shared object that is
transparently accessed by delegation (relieving the programmer from the burden of manually
keeping track of object-specific sharing dependencies), objects are just as big as necessary, and
no proliferation of multiply inheriting classes is needed at all, since the possible combinations
of  simultaneous roles are expressed by the object-level delegation hierarchies.

In addition, the class-level declaration of delegation (dashed grey lines in fig. 5, cf. fig. 2)
allows to statically capture potential run-time dynamicity: immutable and mutually exclusive
aspects of a concept (e.g. the sex of a person) are modelled by inheritance, whereas transient
aspects (roles), and object-specific sharing are modelled by delegation. Thus the availability of
two class-level hierarchies, inheritance and delegation, provides the technical basis for better
conceptual modelling. E.g. the structure of our model of the person-student-employee
application (fig. 5) implicitly expresses the constraint that a person cannot simultaneously be
male and female.

Finally, the example also illustrates that our object model subsumes specialised "role object
models" e.g. the ones presented in [WRS94] and [GSR94]. The modelling techniques proposed
in these approaches are more powerful within our framework, since they benefit from the
advantages of delegation over simple resend mechanisms (cf. chapter 2). A more detailed
comparison of our approach to "role object models" is contained in chapter 6.

3.2.4. Dynamic Change of Behaviour

Another aspect of the added flexibility of our approach is the ability to model dynamic change
of behaviour. Change of behaviour via dynamic delegation is within the realm of typed
delegation since subtyping allows instances of a child class to delegate to objects that are
instances of declared parent classes or of their subclasses. The following example illustrates an
application of dynamic delegation.

                                                

1 In their analysis of prototype-based systems, [DMC92] called this a split-object representation. We keep
this terminology, although our system is not prototype-based.
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VIDEO
CONFERENCE

VIDEO IMAGE
DISPLAY

FAST DISPLAY HIGH  QUALITY

aFastDisplay

... ...

aStdDisplay

Class
hierarchy

Dynamic
object
hierarchy

STANDARD

aQualityDisplay
dynamic parent switching

aVideoConference

Fig. 6: Adaptation of behaviour to run-time conditions by switching of parent objects

In a video conferencing system, change of behaviour in response to run-time events is a
common requirement; e.g. when heavy processing slows down the graphic display below a
given rate, one would like to resort to a faster, though less accurate, video image display
method and to return to the standard display or even high resolution display if the circum-
stances are favourable. However, one would not like to clutter the video conferencing code with
permanent checks of the current conditions and case statements that explicitly call different
locally defined display methods. Also, simply resending the display message to some parent
object, parent.display, would often be inappropriate, since it would not allow to reuse the
display method of another object but adapt it to own needs by redefining messages sent to self
during execution of display.

Our model allows to use a single message, self.display, throughout the VIDEO CONFERENCE
class, and to delegate calls of display to a parent object (fig. 6). The VIDEO CONFERENCE
class only needs to provide methods that switch the parent reference between instances of
different subclasses of VIDEO_IMAGE_DISPLAY that implement different versions of the
display method. When necessary, a video conference object changes the value of its parent
attribute, e.g. to a FAST_DISPLAY instance. Everything else is done by dynamic binding.

4. Compilation of Inheritance and Delegation

We describe our implementation scheme as a stepwise extension of the state-of-the-art
compilation techniques for strongly typed, inheritance-based languages, which are briefly
reviewed in section 4.1. Section 4.2. describes the extension of the compiled method format.
The basic extensions of the dynamic binding scheme are introduced in section 4.3. Section
4.4. discusses the special treatment required for messages to self sent during the evaluation of
delegated messages. Finally (4.5) we show that multiple delegation, multiple inheritance, and
their joint use neatly fit into our framework, at conceptual as well as implementation level.

4.1. Compilation of Inheritance-based Languages

This section reviews the state-of-the-art compiled method format and dynamic binding scheme
which is used in strongly typed, inheritance-based languages, e.g. in C++ ([ES90]). Here we
limit ourselves to single inheritance. Multiple inheritance will be discussed in section 4.5.

A method of the form

selector(params) = { ... source code  ... }

is compiled as a function

renamed_selector(receiver, params) = { ... compiled code  ... },
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where renamed_selector guarantees uniqueness of compiled method code in the presence of
selector overloading and receiver denotes the object for which the method will be called at run-
time. The receiver argument is used as the environment for instance variable accesses and as
the addressee of all self messages in the body of the method.

A class is represented at run-time by a dispatch table that contains one entry for each selector
in its abstract protocol1. Every instance has a reference, dTable, to the dispatch table of its
class (fig. 7b). Every entry in the dispatch table references the compiled code that is to be
executed when instances of the class receive messages with the respective selector2. Inheritance
is trivially implemented by referencing the same code in all subclasses that do not redefine a
given method (e.g. method C::a in fig. 7b). If the method with selector sel is referenced at
position j in the dispatch table of class C, index(sel, C) = j, then it is referenced at the same
position in the tables of all subclasses of C, i.e.

∀  SC ∈  C.subclasses : index(sel, SC) = index(sel, C).

Thus the dispatch table structure of a class (type) is preserved in the dispatch tables of its sub-
classes (subtypes).

Class C
a = {...}
b = {...}

Class SC
b = {...}
d = {...}

subclass of

inst_sc inst_c

dTable(C)
 -->  C::a
 -->  C::b

1
2

dTable(SC)
 -->  C::a
 -->  SC::b
 -->  SC::d

1
2
3

dTable
...

dTable
...

inst_cinst_sc

Fig. 7a) Classes and instances Fig. 7b) Corresponding dispatch tables and (part of) object layout

Since the declared type, T, of each message receiver is known at compile-time, the uniform dis-
patch table layout allows constant-time dynamic binding. A message of the form

receiver.selector(args)

is compiled as an indirect procedure call where the first statement corresponds to the dynamic
binding of the message selector to the address of a compiled method and the second statement
calls the determined code with the suitable arguments.

method := receiver.dTable[index(selector,T)3] // dynamic binding

method(receiver,args) // procedure call

Code template 1: "Standard" dispatch method in typed, (single) inheritance-based languages

                                                

1 Whenever we talk of protocols in conjunction with dispatch tables we always mean the corresponding
abstract protocol version (cf 2.1.), even if this is not mentioned explicitly.

2 An entry of the form "-->Class::selector" represents a reference to the compiled code of the method with
selector selector defined in class Class.

3 In all pseudo-code expressions   underlining   indicates the statically known parts (constants).



13

This scheme only involves

• reading the "dispatch table" reference of the receiver: receiver.dTable

• adding the statically known offset of the message selector: [index(selector,T)]

• reading the code reference at that address: method := ...

• and calling the referenced code: method (receiver, args).

It was our main design goal to preserve this scheme exactly for the case that delegation is not
used and as closely as possible otherwise, for efficiency reasons as well as for compatibility
with most widely-used languages.

4.2. Extension of Compiled Method Format

If delegation is added, messages delegated to an ancestor object will sometimes need to access
variables of the ancestor (the delegatee), not of the message receiver. Therefore, in general,
compiled methods must have one more system-generated parameter, the delegatee. A method
of the form

selector(params) = {... source code ...}

is compiled as

renamed_selector(receiver, delegatee, params) = {... compiled code ...}.

The receiver argument denotes the initial receiver of the message, and is used as the addressee
of self messages in the compiled code, thus maintaining the scope of message lookup.

The delegatee argument is used as the scope of instance variable accesses, whenever messages
delegated to an ancestor object need to access variables of the ancestor. Note that we do not
make any assumptions on whether variable accesses are statically bound to the delegatee or
regarded as dynamically dispatched messages to self. The difference is only that in the first
case variable references will always access local variables of the delegatee, whereas in the
second case this will only happen for variables that are not contained in the receiver (resp. in
objects on the path from the receiver to the delegatee).

A message obj.selector(args) that is bound to a method from the class of obj, will result in a
function call of the form

renamed_selector(obj, obj, args).

When the message is delegated and bound to a method from an ancestor, obj2, the call will be

renamed_selector(obj, obj2, args).

Note that the delegatee parameter is only needed when a method is executed for a delegated
message. Otherwise the "standard" compiled code format could be used. We will come back to
this issue in section 4.4.3.
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4.3. Extension of Dynamic Binding

In order to implement dynamic delegation in a typed, inheritance-based system, the "classic"
dynamic binding scheme must be extended in various ways. In this section we shall discuss
why dynamic binding in the presence of delegation is harder than in inheritance-based systems
and we shall develop an efficient extension of the "classic" approach.

Consider the example from figure 8 and a variable x of declared type C. Clearly, the "classic"
dynamic binding scheme (4.1.) will continue to work for messages from C's own protocol, e.g.
the message x.b will be bound correctly, no matter whether x references the object child1 or
child2. The question is, how to treat messages that must be delegated, e.g. x.f? The method
E::f1, which is the only definition for f that is statically known for type C, can be overridden by
definitions in subclasses of E, D, or C. Which code is to be executed depends on the run-time
type of the message receiver and on the run-time types of its ancestor objects. E.g.

• "x := child1; x.f" should call SD::f whereas

• "x := child2; x.f" should call E::f.

Class C
a = {...}
b = {...}

Class SC
b = {...}
d = {...}

Class D
b = {...}

Class SD
b = {...}
f = {...}

Class E
f = {...}

child2

child1 ...var  x

declared delegation

inheritance
instantiation
obj. reference
actual delegation

Fig. 8: A combined inheritance and delegation hierarchy

Note that the "right" code to be executed originates from different inheritance hierarchies, and
the reference to it is located at different dispatch table positions within each hierarchy (f has
index 1 in E's hierarchy and index 2 in SD's hierarchy).

4.3.1. Extended dispatch tables

The main limitation of the classic scheme, illustrated by the above example, is that the dispatch
table of a class only contains entries for the selectors from its own protocol. Selectors from its
delegated protocol have no unique, statically known dispatch table indices. Thus the invariant
that assured dispatch table lookup in constant time does not hold for them. This problem can
be solved by introducing extended dispatch tables, which contain entries for all selectors in the
extended protocol of a class. Fig. 9 shows the extended dispatch tables created for the classes
from the previous example. The dispatch table entries that have been left incomplete (with a
question mark instead of a class name) will be treated in the next section.

The extended dispatch table of a class, X, contains an inherited section, corresponding to the
dispatch table of the superclass, a new section, for the new messages defined in X, and different
delegated sections, corresponding to the dispatch tables of its different declared parent classes.
E.g. in fig. 9 the extended dispatch table of class SC contains an inherited section (index 1 - 4)
and an own section (index 5). The inherited section corresponds to the extended dispatch table
                                                

1 "Class::selector" denotes the method with selector selector defined in class Class.
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of class C, and contains a delegated section corresponding to the extended dispatch table of C's
declared parent class D (index 3 - 4).

dTable(SD)

 ->  SD::b

 ->  SD::f

dTable(SC)

 ->  C::a

 ->  SC::b

 ->  SC::b

 ->  ?::f

 ->  SC::d

dTable(C)

 ->  C::a

 ->  C::b

 ->  C::b

 ->  ?::f

dTable(D)

 ->  D::b

 ->  ?::f

dTable(E)

->    E::f1

2

3

4

1

2

3

4

5

1

2

11

2

Fig. 9: Extended dispatch tables for the example from fig. 8. The patterns are the same as in fig. 8. Each
pattern highlights the dispatch table section corresponding to the protocol of one declared ancestor class.

For describing the structure of extended dispatch tables, we introduce two functions,
offset(C1,C2), and declaredOffset(C1,C2). They return the displacement of selector indices
from the dispatch table of class C2 within the dispatch table of class C1.

The partial function declaredOffset(C1,C2) is defined, if C2 is a declared
ancestor class of C1. It returns the last index before the beginning of C2's
section in C1's dispatch table. (e.g. in fig. 9, declaredOffset(C,D) = 2,
declaredOffset(D,E) = 1, declaredOffset(C,E) = 3).

C1 C2*

The total function offset(C1,C2) extends the definition of declaredOffset:

offset(C1, C2) :=

(1) if (C2 ∈  C1.superclasses) ∨ (C2 = C1)
then 0

(2) else if C2 ∈  C1.declAncestors
then declaredOffset(C1, C2)

(3) else if ∃  Super := nearestSuperclass(C2, C1.declAncestors)1

then declaredOffset(C1, Super)

(4) else if ∃  Sub := anySubclass(C2, C1.declAncestors)
then declaredOffset(C1, Sub)

(5) else "undefined"

C1

C2

*

C1 C2*

(2)

C2

C1 Super*

*

(3)

SubC1

C2

*
*

(4)

(1)

Case (1) expresses the trivial case that methods defined in C1 itself or in one of its superclasses
have offset zero within C1. Case (2) says that offset(C1, C2) = declaredOffset(C1, C2) if the
latter is defined. Case (3) says that all subclasses of a declared ancestor class, Super, use the
same delegated section within C1, hence their selectors have the same displacement as those of
the declared ancestor class (e.g. in fig. 9 offset(C,SD) = declaredOffset(C,D) = 2 = offset(C,D)).
Case (4) expresses that the methods inherited by a declared ancestor class, Sub, from its super-
class, C2, have the same displacement within the dispatch table of C1 as all other methods of
Sub. If C1 has different declared ancestors that are subclasses of C2 then the methods inherited
from C2 will be contained in the dispatch table section of each of them. Therefore one can
choose the offset of C2 to be the offset of any of these classes. This is done by the function

                                                

1 The function nearestSuperclass(class,setOfClasses) returns the class from setOfClasses that is reachable
from class via the shortest inheritance path.  
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anySubclass. A detailed example is contained in section 5.1 (fig. 15 and 17, and table 3 and
4).

Unlike in purely inheritance-based systems, a selector may have multiple indices in the dis-
patch table of a class, due to the simultaneous existence of an index in the dispatch table of the
superclass and of some parent class(es). The rule that locally / inherited methods generally
override those of the delegation parents is trivially implemented by referencing the local /
inherited code at all dispatch table positions assigned to the same selector1. E.g. in fig. 9 it was
assumed that b was already defined in a superclass of C: there is an entry for b in the inherited
dispatch table section and one in the delegated section. Both reference the local method for b.

In order to account for the existence of different indices for the same selector, the function
index(sel,Class) has been redefined to return sets of indices. With the functions index/2 and
offset/2 we can now specify the dependency between the structure of the extended dispatch
table of a class, C, and the structure of the dispatch tables of its subclasses / descendant classes.

If the selector sel has index i in the dispatch table of class C, i ∈  index(sel,C), then

(1) the dispatch table of each subclass of C has an entry for sel at index i, and

(2) the dispatch table of each descendant class, Desc, has an entry for sel at index
i+offset(Desc,C).

Condition (1) assures compatibility with the traditional dispatch table layout. It implies that
each dispatch table starts with the inherited section. The delegated sections as well as the new
section may be laid out in any order with respect to each other. Note however that, once fixed
for a class, the order of the new and the delegated sections must be preserved in the tables of its
descendants. This is implied by condition (2), which says that all indices of selectors from a
declared ancestor class are shifted by the same offset in the layout of a specific descendant's
dispatch table.

4.3.2. Customised Lookup Code

Extended dispatch tables assure that statically known indices exist for all selectors in the
extended abstract protocol of a class. However, for selectors from the delegated protocol that
are not locally redefined, there is no unique method definition that could be statically
referenced in the extended dispatch table. Which method is appropriate depends on the classes
of the receiver's ancestor objects. E.g. the message child1.f must be bound to SD::f whereas the
message child2.f must be bound to E::f (fig. 8/9).

The solution is to reference a short code sequence that will dynamically determine the right
method. It does so by "switching the lookup context" to the parent of the current object and by
applying then the usual dynamic binding scheme, taking advantage of the fact that the index
of the searched selector in the parent's extended dispatch table is statically known.

If no method for selector is defined in the class C (or its superclasses) the entries for selector in
the dispatch table of C will reference the customised lookup code obtained by specialising the
following procedure, delegate, on its statically known arguments (selector and parentType):

                                                

1 For the implementation of the exception introduced in 3.2.1. see section 4.4.2.
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delegate(receiver, delegatee, args, selector, parentType) = {

  delegatee := delegatee.parent // get parent object

  method := delegatee.dTable[index(selector, parentType)1] // standard dispatch

  method(receiver, delegatee, args)

}

Code template 2: Customised lookup code

The customised lookup code produced for the delegated messages from fig. 8. and 9. is shown
in the following table.

the table

of class

references at each

of the positions

the customised lookup code

C, SC index(f,C) = {4} delegatee.parent.dTable[2] (receiver, delegatee.parent, args)
D index(f,D) = {2} delegatee.parent.dTable[1] (receiver, delegatee.parent, args)

Table 2: "Customised lookup code" referenced in dispatch tables of classes from fig. 8 / fig. 9

Summarising, the referenced code is either the compiled code of the searched method - if the
method is defined within the current class or its superclass - or customised lookup code, if  the
searched method is delegated to a parent object. If the parent object does itself delegate the
searched method, its dispatch table will again reference customised lookup code. So the
"search" will proceed up the dynamic delegation hierarchy and stop at the first object whose
dispatch table entry references a "real" method.

Note that no real searching, i.e. no check of stopping criteria or conditional branching is per-
formed throughout. If native code compilation is performed the cost per customised lookup
code dispatch can be further reduced. E.g. the call contained in each customised lookup code
can be replaced by a jump and repeated passing of invariant arguments (receiver, args) and of
useless return addresses can be eliminated. The call at the message sending site already does all
necessary stack/register manipulation.

Compared to existing systems, our scheme implements dynamic delegation without the
expense of full run-time search of method dictionaries. The customised lookup code reduces
the lookup in each of the traversed dispatch tables to one access at a statically known index.
The time complexity of this "search" is linear in the number of parents, whereas the search
performed for dynamically delegated messages in SELF ([CUL89], [Hölz94a/c]), is linear in
the total number of selectors within the parents' hierarchies - which may be orders of
magnitude higher. Even if the SELF compiler used hashing instead of linear search, it would at
least need to dynamically compute the hash function and check for collisions, where we can
directly access a statically known index.

4.4. Messages to "self"

The basic schema presented in the last section needs to be extended for messages to self. In the
presence of delegation self may be any object

                                                

1 If index(selector,parent_type) contains more then one element, any of them may be used, since they
always reference the same code. With "weak customization" any negative index can be used (cf. 4.4.3.).
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• that is an instance of the current class or of one of its subclasses or

• that delegates to such an instance.

In the second case the receiver of a self message is different from the sender, unlike in
inheritance-based systems. When this happens the receiver's type will be unknown at compile-
time. Since the dispatch table index of a selector is only known if the receiver's type is known,
the selector index must be determined at run-time.

The next two subsections describe how this is done and what precaution must be taken to
guarantee the correctness of our method. The last subsection describes how any additional
overhead can be avoided when the sender and the receiver of a self message are equal (which is
always the case in purely inheritance-based systems).

4.4.1. Determination of selector indices

Thanks to the uniform structure of extended dispatch tables, a selector's index in the dispatch
table of self's class is the index in the dispatch table of some declared ancestor plus an offset
(cf. 4.3.1). For each class, C, the offsets of selector positions relative to the dispatch tables of
declared ancestor classes, offset(C,Anc), can be statically determined. These values are stored in
so called offset arrays, such that the offset determination at run-time is reduced to the constant
time needed for an array access.

The offset array of a class, C, stores the values offset(C,C1), ..., offset(C,Cn) for all classes, Ci,
whose instances may send self messages that might need to access C's dispatch table. Constant-
time access to the stored values is based on the fact that each class, Y,  has a statically known,
unique index in the offset arrays of all classes, Xj, for which offset(Xj,Y) is defined. This unique
index is called the offsetArrayIndex of the class Y and is denoted by Y.offsetArrayIndex.

The compilation of self messages is based on the use of offset arrays as an additional run-time
structure. The compiled representation of each class has been extended by an offset array
reference, which allows different classes to share the same offset array, and which is "nil" for
classes that do not delegate. The offset array reference is always located at index 1 of the
dispatch table. So we may use the dispatch table reference of instances to find the offset array,
avoiding the extension of the basic object layout with a special offset array reference (cf. fig.
11). With this preparation, the message

self.selector(args)

in the body of a method defined in class SC is compiled as shown in the code template 3.

index  := index(selector,SC) + // add index in sender class table

          self.dTable[1].[SC.offsetArrayIndex] // ... to offset in receiver table

method := self.dTable[index] // standard dispatch

method(self,args)

Code template 3: Offset array based dispatch of self messages (cf. fig. 11)

After this initial step, the rest of the dynamic binding process is as described in 4.3., i.e. the
called code is either the searched method code, or "customised lookup code".
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4.4.2. Determination of access safety

A problem with messages to self occurs if the class of the receiver object is a potential
descendant of the class of the message sender. In the example shown in fig. 10 the message
obj_a.b leads to a submessage self.x while self is still bound to obj_a. The difficulty is that
there is no index for x in the dispatch table of class A. If the above compilation scheme were
used indiscriminately, self messages whose selectors are not in the extended protocol of the
receiver's class, called (access) unsafe messages, would access the wrong index. The
determined index would either belong to some other method, or it would even point outside
the dispatch table.

B

b = ...

b = {  self.x }
x =   ...

B1

obj_b obj_cobj_a

...

A

...

C

B0

a = ...

obj_d

...

D

inheritance

declared delegation (class level)

run-time delegation (object level)

instantiation

Fig. 10: obj_a may receive self-messages from obj_b and obj_c that are unknown to A

Please note, that access safety is not identical to type safety. Access-safety asks whether the
selector of a message to self is statically known to the receiver object and whether its index in
the receiver's dispatch table can be determined from its index in the sender's dispatch table;
type safety asks whether the message will be answered without producing a "message not
understood" error. In our model of typed delegation, these are two distinct issues, as can be
easily checked in fig. 10: the selector x is statically unknown to class A; nevertheless, the
message self.x sent from obj_b while self = obj_a will produce no "message not understood"
error - after checking that it is access unsafe for obj_a, the message will be delegated to obj_b,
whose class contains a method for x. Since only concrete classes can be instantiated, every self
message is guaranteed to be defined either for the receiver object or for one of its ancestors.
Thus, self messages will never produce "message not understood" errors. However, this does not
assure access-safety.   

Access-safety cannot be decided statically, since it depends on the run-time type of self. E.g. in
fig. 10 self.x is access-unsafe with respect to self = obj_a but it is access-safe with respect to self
= obj_d. So, again, we need an efficient run-time test. Please note that access-unsafety is an
equivalent characterisation of the self messages to which the special overriding rule of section
3.2.2 applies (cf. fig 3). The detection and treatment of access-unsafe messages described in
the following thus implements our special rule for method overriding.

The test of access safety is based on the observation that a message will access a wrong index
iff its selector index in the sending class is bigger than the length of the accessed dispatch
table's section that corresponds to the dispatch table of the sending class.

By differentiating what is the accessed dispatch table's "section that corresponds to the sending
class", depending on the relative position of the sending and the accessed class in the
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delegation hierarchy, we get the following definition of the function maxSafeIndex(AC, SC). It
returns the highest selector index of the sender class SC that is safe wrt the accessed class AC
(or "undefined", if SC cannot access AC). In the definition of maxSafeIndex(AC, SC) we use
the auxiliary functions maxDTindex(class), which returns the maximum dispatch table index
of class, and nearestSuperclass(class, setOfClasses), which returns the class from setOfClasses
that is reachable from class via the shortest inheritance path.  A detailed example is contained
in chapter 5 (fig. 15  and 16, and table 3 and 4).

maxSafeIndex(AC, SC) :=

(1) if SC ∈  ({AC} ∪  AC.superclasses ∪   AC.declAncestors)
then maxDTindex(SC)

(2) else if ∃  Super = nearestSuperclass(SC, AC.declAncestors)
then maxDTindex(Super)

(3) else if (SC.subclasses ∩  AC.declAncestors) ≠ ∅
then maxDTindex(SC)

(4) else if (SC.inherHierarchy ∩  AC.ancestors) ≠ ∅
then 0

(5) else "undefined"

AC SC*

(1)

SC

AC Super*

*

(2)

SubAC

SC

*
*

(3)

Y

X*

*

AC

SC*
(4)

AC

SC

*
or

Case (1) expresses that if the sender class is a declared ancestor of the accessed class, or identi-
cal to the accessed class, then the accessed dispatch table section corresponds exactly to the
dispatch table of the sender class; hence the highest safe selector index is the highest index in
the sender's dispatch table. E.g. in fig. 10, maxSafeIndex(A,B) = 2.

Case (2) expresses that if the sender class is not itself a declared ancestor, but has superclasses
that are declared ancestors of the accessed class, then the accessed dispatch table section corres-
ponds exactly to the dispatch table of the "nearest" superclass of the sender class; hence the
highest safe selector index is the highest index in the dispatch table of that superclass. E.g. in
fig. 10, maxSafeIndex(A,B1) = maxSafeIndex(A,B) = 2.

Case (3) expresses that if neither (1) nor (2) holds, and if the sender class has subclasses that
are declared ancestors of the accessed class, then the accessed dispatch table section corres-
ponds to the dispatch table of one of these subclasses; hence every method defined for the
sender class will be safe with respect to the accessed class. Thus it suffices to set the highest safe
selector index to the highest index in the sender's dispatch table. E.g. maxSafeIndex(A,B0) = 1
in fig. 10. Note that this part of the definition is needed, in order to enable execution of
compiled superclass code on behalf of subclass instances (e.g. execution of self.a on behalf of
obj_b).

Case (4) expresses, that all self messages from sender classes that are ancestors of the accessed
class but are not in the inheritance hierarchy of a declared ancestor, are unsafe. E.g. in fig. 10,
all self messages from obj_c to obj_a are access unsafe.

Case (5) expresses that all classes that are not ancestor classes can never send self messages to
the "accessed class".
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Using the function maxSafeIndex, the test whether the message self.selector(args) in the code
of the sender class SC is access-unsafe wrt the dispatch table of the receiver class AC is:

safe(selector,SC,AC) := index(selector,SC) ≤ maxSafeIndex(AC,SC).

In order to speed the run-time test, we compute and store all maxSafeIndex values at compile-
time. For each class, AC, that is part of a delegation hierarchy, we define its safety array to
contain the maxSafeIndex values wrt each of its ancestor classes. A reference to the safety array
is contained at index 0 of AC's dispatch table. Like for offset arrays, each class has a unique
safetyArrayIndex in the safety arrays of all its descendant classes. Thus the above safety test can
be implemented for an object obj of class AC as

index(selector,SC) ≤ obj.dTable[0].[SC.safetyArrayIndex]

With this preparation, we can extend the compiled code generated for self messages by a
constant-time test for unsafe messages. If the message is unsafe, it is immediately delegated to
the next parent object and the check is repeated. Otherwise, the message is executed by
accessing the offset array and the dispatch table, as described in the previous section.

delegatee := self

while ( index(selector,SC) > delegatee.dTable[0].[SC.safetyArrayIndex] )

   do delegatee := delegatee.parent;

Code template 4: Safety check before dispatch of self messages

The above code template only describes the principle of safety checks. The access to the parent
(delegatee := delegatee.parent) requires knowledge of the offset at which the parent attribute
is located within the delegatee object (delegatee := delegatee[parentOffset]). Since the type of
the delegatee is statically unknown, the parentOffset must also be determined at run-time.

The standard solution "pattern" is to store the information at compile-time in a place where it
can easily be found at run-time. We think that the right place to store the parentOffset is the
offset array of a class. If offset arrays are extended to contain two-component entries,

offsetArrayEntry = { dTableOffset : integer; parentOffset : integer }

the parentOffset can be accessed using the dispatch table reference of the delegatee and the
statically known offsetArrayIndex of the sending class (cf. italic part of code template 5). On
superscalar processors this access is free: since there are no mutual data dependencies, it can be
done in parallel to the computation required anyway for the safety check.

delegatee := self

while ( index(selector,SC) > delegatee.dTable[0].[SC.safetyArrayIndex] )

   do { parentOffset := delegatee.dTable[1].[SC.offsetArrayIndex].parentOffset

         delegatee := delegatee[parentOffset]

        }

Code template 5: Full safety check, including dynamic determination of the parent attribute offset

Note that our solution is based on the assumption that the dispatch table reference is located at
the same statically known offset in all objects. This is a sensible assumption in pure object-
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oriented languages. In hybrid languages that are constrained to be compatible with their non-
object-oriented predecessors, like C++, the above assumption might be difficult to satisfy.

Fig. 11 gives an overview of all run-time structures involved in the dynamic binding of
messages to self. The meaning of the negative indices of the shown dispatch table will be
explained in the next section. A complete code template for the dynamic binding of self
messages is contained in the appendix.

S
C

's
 s

ec
tio

n

dispatch table of AC

offset Array of AC

...

...

variable object safety Array of AC

...

...

... ...

SC.SAI

...

...

... ...

SC.OAI

offset(AC,SC)

index(sel,SC)

compiled code...

sel = message selector
SC  = sender class
AC = accessed class
SC.SAI = SC.safetyArrayIndex
SC.OAI = SC.offsetArrayIndex

...

= memory access
= offset addition

-1
0
1

Fig. 11: Overview of run-time structures involved in the dynamic binding of messages to self

4.4.3. Weak Customisation

The main goal that shaped the design decisions described in the paper, was to avoid any kind
of run-time or storage penalty for programs that do not use delegation. The dispatch of self
messages described so far does not meet this goal, since the safety check and the offset
calculation are performed for all self messages, including messages sent by self. The equality
of the sender and receiver of self messages characterises the execution of non-delegated
messages. In order to incur no loss of performance of non-delegated messages, customisation
([CUL89]) is used. Two versions of each method are generated,

• a receiver version, which is called for messages that have been sent to an object, and

• a delegatee version, which is called for messages that have been delegated to an object.

The receiver version can be compiled as in the classic approach (cf. 4.1.):

• Since it is statically known that self is the object on whose behalf the method is executed, the
type of self is known, hence messages to self need no safety check and offset adjustment.

• Since it is statically known that the delegatee argument is equal to the receiver argument (cf.
4.2.), the delegatee parameter can be omitted from the parameter list of the receiver version
and from every call to a receiver version.  

The dispatch table of each class, C, now consists of two parts: one contains references to the
specialised  receiver versions the other contains references the delegatee versions. The receiver
version of a method is referenced at position index(sel,C) in the table, whereas the delegatee
version reference has the symmetric position, -index(sel,C). Thus the final layout of dispatch
tables is such that position 0 references the safety array, position 1 references the offset array,
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the indices > 1 reference the receiver versions, and the indices < -1 reference the delegatee
versions (fig. 11). This layout ensures compatibility with "inheritance-only" implementations,
since the structure of the receiver part and the code referenced therein corresponds exactly to
the outcome of the "standard" compilation scheme (4.1).  

All messages in the receiver version, and explicit messages in the delegatee version of a
method, are compiled to call only receiver versions. Delegatee versions are only called within
code for self messages in delegatee versions and within customised lookup code (cf. 4.4.2. and
4.3.2). The only necessary adaptation of the previous compilation scheme is the use of negated
dispatch table indices and of the additional delegatee argument when delegatee versions are
called. The corresponding, final scheme of the generated code is contained in the appendix.

We call our approach weak customisation since only two versions are generated for each
method. In contrast, strong customisation, e.g. in SELF, dynamically generates one specialised
version of a method for every receiver type, provided that at least one object of that type has
received a message with the corresponding selector. ([CUL89], p. 58: "Our SELF compiler [...]
compiles a different machine code method for each type of receiver that runs a given source
method.")

4.5. Multiple Inheritance and Delegation

The previous section concludes the introduction of new structures at the level of the run-time
system. This section shows that the presented structures and techniques allow to implement
additional functionality, especially that multiple inheritance and multiple delegation can be
added without requiring any further extensions.

4.5.1. Ambiguity Resolution

Since methods in a class override those in its superclasses and methods in superclasses override
methods in its parent classes (cf. 3.2.1.) conflicts can occur only between classes with the same
status. A selector is ambiguous within the scope of a class, C, either if

• a corresponding method definition is not contained in C but in different superclasses or if

• a corresponding method definition is neither contained in C nor in its superclasses but in
different declared parent classes of C.

Ambiguities are reported at compile-time and must be resolved by explicit local redefinitions
or by renaming of conflicting selectors. If conflicting selectors from different source classes
have the same semantics, a local redefinition, which overrides all conflicting definitions, is
possible. On the other hand,  renaming is the appropriate choice if conflicting selectors have
different semantics. Compared to automatic conflict resolution techniques like linearization
([DuHa91) and points of view ([Duge91]), renaming does not hide potential ambiguities. It is
also superior to explicit conflict resolution at the message sending site ([ES90], [Stro91]) in
various respects: the user of the multiply inheriting class does not need to know its super-
classes1, he is not forced to statically bind a call to the implementation in a specific class, and

                                                

1 The problems of the dependency on the inheritance structure of a class are described in detail in [Sny86].
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he is not forced to introduce additional classes just in order to hand-code a renaming scheme,
when needed (as proposed in [Stro94]).

Renaming also offers the most general and handy solution to a problem that is specific to our
model: when methods with the same name in a superclass and a parent class do not have the
same semantics, there must be a way to disable the standard overriding of the parent class
method by the superclass method. This can be easily achieved by renaming one of them.

When selector m from superclass1 A is renamed as ma, and selector m from superclass B is
renamed as mb, method definitions for the new names will consistently be used for self.m
messages sent in A and B, i.e. self.m sent in A will always be bound to a definition of ma,
whereas self.m sent in B will always be bound to a definition of mb. Thus each self message will
automatically maintain its semantic context. There is no need to introduce an explicit "sender
path tiebreaker rule" ([CUCH91]) for this purpose. No run-time overhead is involved in our
scheme since each of the new names can be statically bound to the dispatch table position
assigned to the old name in the corresponding superclass / parent class.

The next two sections describe how the dispatch table(s) of a class must be laid out in order to
be able to reuse compiled code inherited from different superclasses and parent classes.

4.5.2. Multiple Delegation

In the case of multiple delegation the dispatch table of a child class contains a delegated
section (cf. 4.3.1.) for each of its declared parent classes. An unambiguous message is always
delegated via the parent attribute whose declared type contains a definition. E.g. in the follo-
wing example, the message c.m is always delegated via the parent attribute p1, since p1 is stati-
cally known (by its type declaration) to reference an object that possesses a method for m.
Thus, for C instances, there is no conflict between the definition of m in E1 and D. Similarly,
c.n is always delegated via the parent attribute p2. In fig. 12. the definition of n from E1 will
be executed, since it is the most specific definition visible through p2.

D
m  =  ...

C
...

*p1 : D
*p2 : E

D1
n  =  ...

cd

E
n  =  ...

E1
n = ...

m  =  ...

e
p1

<- - m  --
p2

-- n -->

C = { *p1 : D, // C defines multiply delegating instances.

*p2 : E  } // The asterisks denote parent attributes.

c : C; ... // Declare object c, d, and e.

d = D1 new;  // Create instance of a subclass of D

e = E1 new; // Create instance of a subclass of E

c = C new(d,e); // Create C instance with parents d and e

c.n // Call c.dTable[index(n,E) + offset(C,E)]

c.m // Call c.dTable[index(m,D) + offset(C,D)]

Fig. 12: Multiple delegation hierarchy and ... corresponding example of source code and compiled code

The described behaviour is implemented by always dispatching unambiguous  messages via the
unique statically known index of the message selector in the receiver's dispatch table. E.g. the
explicit receiver message c.n will always access the index for selector n within E´s section of C´s
dispatch table, situated at position index(n,E) + offset(C,E), whereas c.m will access the index
index(m,D) + offset(C,D). Note that the same index will be accessed by self.n messages sent
from object e resp. object d (cf. 4.4).

                                                

1 The same is true for parent classes and any combination of superclasses and parent classes.
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4.5.3. Multiple Inheritance

In this section we will sketch the implementation scheme for multiple inheritance initially
developed by Krogdahl for Simula ([Krog84] [Krog85]) and adopted later, in a slightly
modified form in C++ ([Stro87], [ES90]) and other typed languages. The following summary
just tries to convey the basic principles needed to understand the orthogonality of the imple-
mentation of multiple inheritance and delegation, illustrated in the next section.

The implementation of multiple inheritance is based on the object layout illustrated in fig. 13.
The storage layout of instances of the multiply inheriting class, C, is determined by concatena-
ting the instance layout defined by the superclasses, B and D, and the layout defined by C. The
resulting object layout contains one dispatch table reference for each superclass, e.g. to table
BC for superclass B and to table DC for superclass D. There is no separate dispatch table for the
inheriting class C, but a section for the new selectors introduced in C is appended to one of the
superclass tables. E.g. in fig. 13, the new messages from C have been added to the dispatch
table BC. Note that the referenced dispatch tables have the same structure but are not identical
to the tables referenced by superclass instances. E.g. the DC table of class C differs from the
table of class D in its entries for the redefined method d.

Class B
a = {...}
b = {...}

Class C

b = {...}
d = {...}
e = {...}

obj_c

Class D
c = {...}
d = {...}

0

-(1+n+k)

 -->  D::c
 -->  C::d

1

2

1
2
3

dTable
varB1

...
varBn

varC1
...

varCk

dTable
varD1

...
varDm

instance of C

0

0
0

dTable(D C)

dTable(B C) = dTable(C)

 -->  D::c
 -->  D::d

1
2

dTable
varD1

...
varDm

instance of D

0
0

dTable(D)

Fig. 13: Object and dispatch table layout for a multiply inheriting class C.
The layout of a D instance and of D's dispatch table is included for comparison.

With single inheritance the value of a variable defined in a class can be accessed in all subclass
instances by adding the same offset to the object reference. This is no longer true if the above
instance layout is used. E.g. the value of varD1 is located at offset 1 in D instances, whereas in
C instances it has offset 1+n+k. Thus it is necessary to adjust the object reference whenever a C
instance is regarded as an instance of D, i.e. when it is assigned to a variable or passed as a
parameter of declared type D. This includes passing of the implicit self parameter to a method
inherited from D. The adjustment is done by adding the relative position of the D part within C
instances, usually called delta(C,D), to the object reference. The addition of this constant is
included by the compiler in the code generated for assignments, parameter passings, and
before the call of methods inherited from D.

When inherited methods are redefined in C, the adjustment has to be undone before calling the
redefined code, which expects its self argument to be a C instance. The need to undo the
adjustment cannot be predicted by the compiler.  Therefore dispatch tables had been extended
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by a second entry for every selector. If the adjustment does not need to be undone for the
current self object the additional "delta" entry is zero. Otherwise it is -delta(C,D). With this
extension, the dispatch method introduced in 4.1 becomes:

method := receiver.dTable[indexOfMethod(selector,T)] // dynamic binding

delta  := receiver.dTable[indexOfDelta(selector,T)] // undo adjustment

object := receiver + delta // ... of self reference

method(object,args) // procedure call

Code template 5: "Standard" dispatch method (including  multiple inheritance)

4.5.4. Multiple Inheritance and Delegation Combined

The above implementation scheme ensures that each access to an instance of a multiply
inheriting subclass always "sees" the right subobject resp. dispatch table, depending on the
declared type of the variable that references the instance. Therefore our limitation to one
superclass / dispatch table in the previous sections represents no restriction. Everything that was
said, equally applies to each superclass resp. dispatch table of a multiply inheriting class.

This orthogonality is illustrated in fig. 14a. Each instance of C will reference two dispatch
tables, one corresponding to class D (which includes a delegated section for the parent class E),
and one corresponding to class F (which includes a delegated section for the parent class G).

DE F

C

G

obj_c

delegated section for E
own section of D
own section of C

dTable(F C)dTable(D C)

delegated section for G
own section of F

instance of C

Fig. 14a: Mult. inher. from delegating classes ... and corresponding dispatch table layout

The dispatch table of a class that delegates to a multiply inheriting class contains one
delegated section for each dispatch table of the parent class. E.g. in fig. 14b, class C has only
one dispatch table, which contains two delegated sections, corresponding to the two dispatch
tables of class D. Correspondingly, the offset array of C has one entry for each dispatch table
of D.

E F

DC

obj_c

delegated section for E D

delegated section for F D

own section of C

instance of C

dTable(C )

Fig. 14b: Delegation to multiply inheriting class ... and corresponding dispatch table layout

Finally, if the class C is defined using multiple inheritance and multiple delegation simulta-
neously, the delegated sections for the different parent classes are all included in the dispatch
table that holds the new methods introduced in C. This is illustrated in fig. 14c.
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D E

C

G

F

obj_c

own section of D

delegated section for F
delegated section for G

own section of C

instance of C

dTable(E C)dTable(D C)

own section of E

Fig. 14c: Mult. inher. and mult. deleg. together ... and corresponding dispatch table layout

Due to these minimal adaptations, all previously introduced techniques are applicable to any
combination of (multiple) delegation and inheritance.

This section concludes the presentation of our proposal for the implementation of dynamic
binding in "typed delegation"-based systems. The next chapter discusses how to achieve a
storage efficient implementation of the additional run-time data structures on which our
dynamic binding scheme is based. Readers interested mainly in run-time aspects might want to
continue reading in chapter 6 and 7, where we evaluate the performance of our approach and
compare it to related work.

5. Layout of Auxiliary Run-Time Structures

The compilation of messages to self, described in section 4.4., is based on the use of two
auxiliary run-time structures, which have been added to the compiled representation of each
class in a delegation hierarchy: safety arrays and offset arrays. Safety arrays are used to
determine, whether a self message is access-safe with respect to a class (4.4.2.). If the message is
safe, the index to be accessed in the dispatch table of the respective class is determined using
the offset array (4.4.1).

In section 4.4 we simply assumed, that an implementation of auxiliary arrays exists that assures
constant-time access to the stored values. Naturally, we would also like to have a space efficient
implementation. So the requirements to be met are

1. access efficiency: for constant-time access, each class, Y,  must have a statically known,
unique index in the auxiliary arrays of all classes, Xj, for which f(Xj,Y)1 is
defined, and

2. space efficiency: each auxiliary array should contain neither unused nor redundant
positions.

In this chapter we shall discuss to which extent the second requirement can be met without
compromising the first one, on which our implementation scheme is built. We start with a brief
discussion of the drawbacks of a straightforward array layout and introduce an example that
will be used throughout this chapter for illustration of the discussed techniques. Then we
develop a solution that achieves optimal results for a large class of programs.

                                                

1 The safety array of a class, X, stores values of the function maxSafeIndex(X,Y) and its offset array stores
values of the function offset(X,Y). When we do not differentiate between safety and offset arrays, we
simply write f(x,y) instead of maxSafeIndex(x,y) or offset(x,y).
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5.1. What's the Problem?

In this section we assume a program that contains n classes, k delegation hierarchies of n1, ...,
nk classes, and nd classes that are not involved in any delegation hierarchy.

The simplest approach to implement auxiliary arrays is to use two matrices of size n2, where
each f(X,Y) value is indexed by unique row and column positions assigned to the argument
classes, X and Y. This representation clearly ensures constant time access, but it wastes a lot of
storage on undefined and redundant entries. If this naive approach were used in a large system
like Smalltalk, two matrices of 500*500 entries, consuming about 1 megabyte of storage1

would be needed for the representation of the (aprox. 500) predefined classes.

A first step to reduce the amount of wasted storage, is to create one matrix for each delegation
hierarchy and to include in each matrix only the classes involved in the corresponding
hierarchy. The use of many small matrices would reduce the total storage requirement from n2

to n1
2 + ... + nk

2, which could make a significant difference, since

n1
2 + ... + nk

2 << (n1 + ... + nk)2  = (n-nd)2 ≤ n2.

As illustrated in fig. 15-17, much storage is still wasted, since most matrix entries are either
undefined or redundant. Fig. 15 shows a sample program that will be used for reference
throughout this chapter, and fig. 16 and 17 show the safety matrices resp. the offset matrices
created for the two delegation hierarchies of the program. Each matrix row corresponds to an
auxiliary array and each column to an array index. Empty fields represent undefined values.
The maxSafeIndex and offset values have been calculated assuming that each of the classes
from fig. 14 define as many new methods as shown in table 3. Table 4 contains the
corresponding maxDTindex values (cf. 4.2.2. - for simplicity we ignored the dispatch table
positions reserved for the auxiliary array references and assumed that dispatch table indices
start at 1). The thick vertical lines separate the columns of classes from different inheritance
hierarchies, for easier comparison with subsequent figures.

In the remainder of this chapter we shall show that much better results can be achieved when
exploiting the semantics of auxiliary array entries and the relationships between the classes of a
program. We shall develop an algorithm that determines the layout of auxiliary arrays by
incrementally formalising the defining characteristics of auxiliary arrays, and the requirements
for access and storage efficiency stated above.

                                                

1 The total size of the matrix depends on the respective hardware architecture; we assumed that a matrix
entry is a short integer represented in two bytes.
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Fig. 15: Program graph containing two delegation hierarchies.
This example will be used for reference throughout this chapter.

new methods maxDTindex
A 1 J 1 1 S 4 A 1 J 1 1 S 4
B 1 K 1 T 1 B 2 K 1 2 T 7 = 4+1+2
C 1 L 1 U 1 C 3 L 21 = 12+1+8 U 8
D 4 M 1 V 1 D 4 M 2 2 V 9
E 1 N 1 W 2 E 13 = 4+1+2+6 N 1 3 W 1 0
F 5 O 1 X 1 F 5 O 1 4 X 1
G 1 P 4 Y 1 G 6 P 16 = 4+12 Y 2
H 1 Q 1 Z 2 H 7 Q 1 7 Z 3
I 8 R 1 I 19 = 8+11 R 30 = 16+1+13

Table 3: Number of new methods Table 4: Highest dispatch table index of each class, maxDTindex(C),
in each class from fig. 15 (cf. 4.4.2) corresponding to fig. 15 and table 3.
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Fig. 16: Naive implementation (5.1) of safety arrays for program graph from fig. 15.
Each matrix row corresponds to a safety array and each column to a safety array index.

The value maxSafeIndex(AC,SC) is contained in the array (row) of class AC at index (column) SC.
Empty fields represent undefined values.
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Fig. 17: Naive implementation (5.1) of offset arrays for program graph from fig. 15.
Each matrix row corresponds to an offset array and each column to an offset array index.

The value offset(AC,SC) is contained in the array (row) of class AC at index (column) SC.
Empty fields represent undefined values.
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5.2. Basic Definitions

5.2.1. Accessor Classes and Accessed Classes

In order to describe the relationship among the classes of a program wrt auxiliary arrays, we
define for each auxiliary array of a class, C, two sets, its accessors and its accessed classes.

The accessors of C's safety array, C.SAaccessors, are all classes whose methods, when executed,
may send self messages to instances of C. According to the definition of the maxSafeIndex
function (4.2.2.), these are all classes, Y, for which maxSafeIndex(C,Y) is not undefined, i.e. C
itself, its superclasses, ancestors, and the superclasses of the ancestor classes:

C.SAaccessors := {C} ∪  C.superclasses ∪  C.ancestors ∪  C.ancestorSuperclasses.

C.ancestorSuperclasses := ∪  A ∈ C.ancestors  A.superclasses.

The accessors of C's offset array, C.OAaccessors, are all classes, Y, for which offset(C,Y) is not
undefined, i.e. C itself, its superclasses, declared ancestor classes, and the subclasses of the
declared ancestors:

C.OAaccessors := {C} ∪  C.superclasses ∪  C.declAncestors ∪  C.ancestorSubclasses.

C.ancestorSubclasses := ∪ A ∈ C.declAncestors  A.subclasses.

With respect to safety arrays, the accessed classes of C are all the classes whose safety array
might be accessed by self messages sent from methods defined in C. According to the
definition of the maxSafeIndex function, these are all classes, X, for which maxSafeIndex(X,C)
is not undefined, i.e. C itself, its subclasses, descendant classes, and the descendants of its
subclasses:

C.SAaccessedClasses := {C} ∪  C.subclasses ∪  C.descendants ∪  C.subclassDescendants.

C.subclassDescendants := ∪  S ∈ C.subclasses  S.descendants.

The accessed classes of C wrt offset arrays, are all classes, X, for which offset(X,C) is not
undefined, i.e. the class itself, its subclasses, declared descendant classes, and the subclasses of
its declared descendants:

C.OAaccessedClasses := {C} ∪  C.subclasses ∪  C.declDescendants ∪  C.descSubclasses.

C.descSubclasses := ∪ D ∈ C.declDescendants  D.subclasses.

When we do not differentiate between safety and offset arrays, we simply write C.accessors and
C.accessedClasses:

C.accessors := C.SAaccessors ∪  C.OAaccessors.

C.accessedClasses := C.SAaccessedClasses ∪  C.OAaccessedClasses.
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5.2.2. Access Efficiency

The point in defining the above sets is that each class C must have a safety/offset array entry
for each of its accessor classes, and, for constant-time access to the stored values, each of the
accessed classes must have its entry for C at the same, unique index. Hence each class is
statically assigned one unique index in the safety arrays (and one unique index in the offset
arrays) of all its accessed classes. For safety (offset) arrays this index is called the
safetyArrayIndex (offsetArrayIndex) of the class. For each class C,

(1a) C.safetyArrayIndex (C.SAI) is the position at which the value maxSafeIndex(X,C) is
stored in the safety arrays of C's accessed classes:

∀ C: (∀ X ∈  C.SAaccessedClasses: X.safetyArray[C.SAI] = maxSafeIndex(X,C)).

(1b) C.offsetArrayIndex (C.OAI) is the position at which the value offset(X,C) is stored in the
offset arrays of C's accessed classes:   

∀ C: (∀ X ∈  C.OAaccessedClasses: X.offsetArray[C.OAI] = offset(X,C)).

When we do not distinguish between safety and offset arrays we write auxArrayIndex (AAI).

5.2.3. Significant Indices

In our implementation scheme (4.2.2.) each message accesses the auxiliary arrays of a class, C,
at the auxArrayIndex assigned to the class that textually contains the message. Hence the
indices that will be accessed at run-time, are the auxArrayIndex values of C's accessors. These
values define the set of significant indices of C's auxiliary arrays:

C.SAsignificantIndices :=  { X.auxArrayIndex | X ∈  C.SAaccessors }.

C.OAsignificantIndices :=  { X.auxArrayIndex | X ∈  C.OAaccessors }.

The last two definitions show that, in principle, the auxArrayIndex values determine the array
structure. However, for simplifying the following discussion, additional numbers, MaxIndex
(MaxI), MinIndex (MinI), MaxAccessorIndex (MaxAI), and MinAccessorIndex (MinAI), are in-
troduced for both kinds of arrays. The values C.MinI and C.MaxI delimit the range of signifi-
cant auxiliary array indices of the class C. The values C.MinAI and C.MaxAI delimit the range
of significant  auxiliary array indices of the accessors that are different from C. The safety /
offset array specific versions of the following definitions can be derived by substituting AAI by
SAI resp. OAI, and significantIndices by SAsignificantIndices resp. OAsignificantIndices.

C.MinI := min(C.significantIndices). C.MinAI := min(C.significantIndices \ {C.AAI}).

C.MaxI := max(C.significantIndices). C.MaxAI := max(C.significantIndices \ {C.AAI}).

5.3. Storage Efficiency

Now the requirement for storage efficiency can be stated precisely. A representation of
auxiliary arrays that achieves optimal storage efficiency must at least guarantee that for each
class, C   
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(2) all indices of the allocated auxiliary arrays are from the interval [C.MinI ... C.MaxI]

(3) every index in the interval [C.MinI ... C.MaxI] is significant, i.e.

∀ i ∈  [C.MinI ... C.MaxI] : i ∈  C.significantIndices.

(4) no index is redundant, i.e.

∀ C,C': ( ∀ X ∈  C.accessedClasses ∩ C'.accessedClasses: ( f(X,C) = f(X,C') )
⇒ 
C.auxArrayIndex = C'.auxArrayIndex

).

Condition (2) and (3) say that auxiliary arrays should contain no positions that will never be
accessed at run-time. Condition (4) says that two classes should have the same auxArrayIndex,
if they have the same function values for all common accessed classes. In the following we
shall discuss the implications of these conditions on the layout of auxiliary arrays and show
that even stronger conditions are required sometimes.

5.3.1. Elimination of Redundant Indices

Condition (4) defines an equivalence relation on the classes of a program. All classes that may
use the same auxArrayIndex are in the same equivalence class.

In our example the equivalence classes for offset arrays are {A, B, C}, {D, E}, {F, G, H}, {I},
{J, K, L, M}, {N, O}, {P, Q, R}, {S, T, U, V, W}, {X, Y, Z}. In each equivalence class there is
always one "top" element that is a superclass of all other elements. We use these "top" elements
as representatives and write the equivalence classes of our example as [A]R, [D]R, [F]R, [I]R, [J]R,
[N]R, [P]R, [S]R, [X]R. The index R indicates that these are equivalence classes induced by the
condition for elimination of redundancy, i.e. condition (4).

The equivalence classes for safety arrays are {A}, {B}, ..., {P}, {Q, R}, {S}, {T}, {U}, {V, W},
{X}, {Y, Z}. These classes have no "top" element, so we choose representatives randomly.
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Fig. 18: Redundancy-free offset arrays Fig. 19: Redundancy-free safety arrays
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Fig. 18 and 19 illustrate the different effect of the elimination of redundancy on offset arrays
and on safety arrays. Each column corresponds to one of the equivalence classes induced by
condition (4). For offset arrays, this first compactification step already results in a significant
reduction of storage consumption. For safety arrays, however, only a minimal reduction is
achieved.  

5.3.2. Elimination of Subsumed Indices

The unsatisfactory results for safety arrays, suggest that a stronger criterion than (4) is needed
for reducing their storage demand. Indeed, such a criterion exists. It is based on the semantic
of safety arrays, resp. of the maxSafeIndex values contained in them.

In order to understand the basic idea of the next compactification step, please recall that the
test whether a message is access safe wrt an accessed class, AC, is done by checking whether the
index of the message selector in the sending class, SC, is smaller than the maxSafeIndex of the
accessed class and the sending class (cf. 4.4.2.):

index(selector,SC) ≤ maxSafeIndex(AC,SC).

If this test succeeds for a certain selector and a given maxSafeIndex value, then it will also
succeed for the same selector and any bigger maxSafeIndex value. Thus one can replace the
"correct" maxSafeIndex value by a bigger one, provided that this change does not lead to
wrong results for other selectors from the sending class. This is always guaranteed, if all
selectors of the sending class are access safe wrt the accessed class, i.e. if the condition

(5) replaceable(AC,SC) := maxSafeIndex(AC,SC) = maxDTindex(SC)   

holds. We say that the maxSafeIndex value for SC is replaceable in the array of AC. In fig. 19
the non-replaceable values are marked with a grey pattern. All other values are replaceable.

We are interested in a replacement that allows to map different classes to the same safetyArray-
Index. Such a replacement is defined in the following, based on the notion of subsumption.
Two classes, X and Y, subsume each other if their maxSafeIndex values are equal or if the
smaller of both values is replaceable for all classes that are accessed either by X or by Y:

(6) subsumes(X,Y) := ∀ AC ∈  X.accessedClasses ∪  Y.accessedClasses:
( maxSafeIndex(AC,X) = maxSafeIndex(AC,Y) )

∨  ( maxSafeIndex(AC,X) < maxSafeIndex(AC,Y) ∧  replaceable(AC,X) )
∨  ( maxSafeIndex(AC,X) > maxSafeIndex(AC,Y) ∧  replaceable(AC,Y) ).

If X and Y subsume each other, their respective columns in the safety matrix can be melted into
one, which contains the bigger one of the respective maxSafeIndex values, for each of the
accessed classes, AC. We call this value the subsumingMaxSafeIndex of X and Y wrt AC:

(7) subsumingMaxSafeIndex(AC,X,Y) :=
if subsumes(X,Y) ∧  AC ∈  X.accessedClasses ∪  Y.accessedClasses
then max( {maxSafeIndex(AC,X), maxSafeIndex(AC,Y)} )
else "undefined".
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Now we can specify the desired replacement condition, sameIndex(X,Y). Two classes may share
the same safety array index,  if they subsume each other and if each other class subsumed by
one of them may also share the same index:

(8) sameIndex(X,Y) := subsumes(X,Y) ∧  ( ∀ Z: subsumes(X,Z) ⇒  sameIndex(Z,Y) )
 ∧  ( ∀ Z': subsumes(Y,Z') ⇒  sameIndex(Z',X) )

In general, there are different equivalence relations that can be built such that sameIndex(X,Y)
holds for all pairs of elements in every equivalence class. E.g. we can partition the classes from
our example into the sets

• {A, B, C}, {D, E}, {F, G, H}, {I}, {J, K, L, M}, {N, O}, {P, Q, R}, {S, T, U, V, W}, {X, Y, Z} or

• {A, B, C}, {D, E}, {F, G, H}, {I}, {J, K, N, O}, {L, M}, {P, Q, R}, {S, T, U, V, W}, {X, Y, Z}.

The reason is that the subsumes (and the sameIndex) relation is reflexive and symmetric but
not transitive. E.g.  subsumes(O,J) ∧  subsumes(J,M), but ¬subsumes(O,M), since the safety array
of R contains different non-replaceable values for O and M (fig. 19). Thus, in our example, we
have to decide whether J should be grouped together with M or with O.   

The criterion for deciding which equivalence relation to choose is based on the fact that

(9) for every program, one of the partitions of its classes induced by (8) wrt safety arrays
is identical to the partition induced by (4) wrt offset arrays.

This can be easily proved by expanding the definition of offset/2 in (4) and the definition of
subsumes/2 and maxSafeIndex/2 in (8). In our example, the first one of the possible partitions
induced by (8) is identical to the partition induced by (4) (cf. 5.3.1.).

Lemma (9) is of high practical value, since it allows to reduce the elimination of subsumed
indices from safety arrays to the elimination of redundant indices from offset arrays. This
enables a drastic simplification of the compiler, since only condition (4) must be checked.
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Fig. 18 (repeated): Redundancy-free offset arrays Fig. 20: Subsumption-free safety arrays

Figure 20 illustrates the result of eliminating subsumption in our example on the basis of
condition (4). Note the significant improvement over the state of the safety matrix in fig. 19.
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Figure 18 is repeated to illustrate the structural similarity of the offset matrix after elimination
of redundancy and the safety matrix after elimination of subsumption.  

If we used condition (4) as the basis of an algorithm, we would need to compute the full offset
matrix first, before starting to compute equivalence classes. Of course, we are interested in a
more direct and efficient way of deciding which classes may use the same auxArrayIndex.
Fortunately, the following equivalent version of condition (4) can be checked directly on the
program graph:

(4') Two classes, X and Y, may use the same auxArrayIndex if
a) there is an inheritance path X = C1, ..., Cn = Y of length ≥ 1, and
b) no class Ci in this path has a declared descendant class from which there are at least

two different paths to a class Cj ≠ Ci.

In our algorithm we employ (4') to construct a simplified graph, in which all class nodes that
use the same auxArrayIndex are collected into one (hyper)node. The (hyper)nodes are linked
by edges corresponding to the edges in the original graph. Fig. 21 shows the hypergraph
produced for our example. Note that the inheritance hierarchy J, K, L, M, N, O has been split
between N and K into two hypernodes, because there are two different paths (R→P→K and
R→N→K) from N's descendant R to N's superclass K.
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Fig. 21: Hypergraph constructed for the program graph from fig 15.

Note that each hypernode corresponds to an equivalence class induced by (4), resp. to a matrix
column in fig. 18 and 21 (equivalence class ≈ hypernode ≈ matrix column ≈ auxArrayIndex).

5.3.3. Elimination of Insignificant Inner Indices ("holes")

After elimination of redundant and subsuming indices, auxiliary arrays may still contain
"holes", i.e. insignificant indices between the lowest and the highest significant index (MinI and
MaxI). E.g. in fig. 20, the safety arrays of the classes I, J, K, L, and M contain undefined values
at the position [N]R and/or [P]R.

In order to eliminate these holes, as required by (3), the columns of the matrices must be
reordered, resp. the hypernodes must be numbered with other auxArrayIndices. However, it is
not obvious, whether a numbering algorithm that satisfies (3) exists and how it works. In order
to answer this question we first need some additional terminology describing the structure of
program graphs.
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Different paths in the program (hyper)graph are potentially conflicting,
if they have the same start node, and at most one path starts with an
inheritance edge1.

*

*

Potentially conflicting paths are confluent if they have the same end
node.

*

*

A group of potentially conflicting paths is hidden confluent with
another group of potentially conflicting paths if their end nodes are
pairwise equal.

*

*

*

*

Conflicting paths are either confluent paths or hidden confluent paths. It can be shown that

(10) in a program whose (hyper)graph contains no conflicting paths, full elimination of holes
is always possible,

(11) in a program whose (hyper)graph contains conflicting paths, full elimination of holes is
not possible, in general (only in some special cases).

Lemma (11) can be trivially proved by the counterexamples illustrated in fig. 22a) and 22b).
Each example shows one possible numbering and the array that would contain holes if this
numbering were used (i.e. the array of node D in fig. 22a and the array of node F2 in fig.
22b). For obvious reasons we cannot show all possible numberings of the two examples.
However, it should be easy for the reader to check that no hole-free numbering exists in either
case, as there are only a few structurally different numberings of each example. The examples
apply to both kinds of auxiliary arrays, since they contain only declared parent classes, such
that the accessors of safety arrays and of offset arrays are identical.
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Fig. 22: Counterexample for ... a) confluent paths b) hidden confluent paths

The proof of (10) is done in two steps. The idea is to show that

• in the absence of conflicting paths, a program's hypergraph can always be numbered such
that condition (12) and (13) hold, and that

• conditions (12) and (13) imply absence of holes (i.e. condition (3)).

We shall not go into the details of the proof, but limit ourselves to introduce condition (12) and
(13) and sketch an algorithm that produces a numbering that satisfies these conditions.

                                                

1 In the examples on the right hand an edge marked with an asterisk (*) represents a path of arbitrary length.
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(12) For all classes, X, involved in a delegation hierarchy X.auxArrayIndex is at most by 1
smaller / bigger than the minimum / maximum auxArrayIndex of X's accessors different
from X itself (cf. 5.2, definition of minAI and maxAI):   

X.minAI - 1 ≤ X.auxArrayIndex ≤ X.maxAI + 1.

The following figure gives some examples of numberings ruled out / allowed by (12). Only the
arrays containing holes are shown; "lightning" symbols indicate the places where (12) has been
violated.
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Fig. 23: Example of numberings... a,b) ... ruled out by (12) c)  ... allowed by (12)

Note that the numbering shown in 23c) is not ruled out by condition (12) although it produces
a hole at position 2 in the safety array of class E. Obviously condition (12) alone is too weak,
since it expresses only the dependency of a class from its accessor classes. The mutual
dependency of accessor classes that have a common accessed class is expressed by condition
(13):

(13) For all classes, X, involved in a delegation hierarchy, the auxArrayIndex of all end nodes
of maximal1 potentially conflicting paths that start at X is either
a) smaller than the auxArrayIndex of any other node on these paths, or
b) by 1 bigger than the auxArrayIndex of X, or
c) by 1 bigger than the auxArrayIndex of some parent node of X.

The following figure shows the three numberings of the graph from fig. 23c) that satisfy (12)
and (13). The maximal potentially conflicting paths are E→B→A and E→D→C. In all three
cases condition (13a) holds for the end node A. The numbering of end node C satisfies
condition (13b) in fig. 24a,c), and condition (13c) in fig. 24b).
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1 A path is maximal if its last node has no outgoing edge.
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Algorithm

From (12) and (13) we can derive a numbering algorithm that works on the hypergraph con-
structed according to (4'). For ease of understanding we shall first describe its simplest version,
which assigns safetyArrayIndices to the nodes of a hypergraph that contains no conflicting
path. Then offsetArrayIndices will be included into our numbering scheme. Finally the
modifications required for the treatment of graphs with conflicting paths will be added.

The algorithm iterates over all delegation hierarchies of the hypergraph. It maintains a counter,
nextSAI, which always contains the lowest safetyArrayIndex that has not yet been assigned to an
accessor class or an accessed class of the current hypernode. For every delegation hierarchy of
the hypergraph the counter is initialised to 0 and the numbering starts at the end node of a
maximal path (i.e. at a node with no outgoing edges)1. In our example (cf. fig. 21 and 25),
index 0 is assigned to the nodes [A]R and [X]R.

The numbering of any hypernode, H, starts by assigning the current value of nextSAI to it and
incrementing the counter. If the node multiply delegates, e.g. H = [D]R, its yet unvisited
ancestors are visited next, starting again with an end node2. In our example [F]R gets the
number 2. When the numbering of H and of all its ancestors is completed, the current value of
nextSAI is taken as the initial value for the recursive numbering of all children of H3. Note
that, when no conflicting paths exist, all children get the same number. The process is repeated
until all nodes have been numbered.

For including offsetArrayIndices into our numbering scheme, we need a second counter,
nextOAI, which always contains the lowest offsetArrayIndex that has not yet been assigned to an
accessor class or an accessed class of the current node. Since, in general, the accessors of the
offset array of a class are just a subset of the accessors of the safety array, we need to slightly
extend the algorithm. The subprocedure that numbers the ancestors of a multiply delegating
node, H, keeps track, which of the visited nodes are / are not accessors of H's offset array, and
returns the successor of the highest offsetArrayIndex assigned to an accessor of H. This value is
assigned to nextOAI before starting the numbering of child nodes.

Adaptation of the algorithm to graphs containing confluent paths requires that subclass nodes
are numbered before child nodes. E.g. in fig. 25 the nodes [I]R and [P]R were numbered only
after [J]R and [N]R. Thus their number is the successor of the biggest number assigned to any
node from the inheritance hierarchy of [J]R and [N]R (4 = 1+ max({2,3}). When a child node
that has already been numbered is visited again, and its number is smaller than the current
nextSAI value, the node is renumbered with the current value.
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Fig. 25 Numbering of hypernodes / equivalence classes (cf. fig. 19)

                                                

1 This node will be the only one in the current hierarchy for which condition (13a) holds.

2 This step enforces that condition (13c) holds for all end nodes whose number is not 0.

3 This step enforces that condition (12) holds for all nodes that are not end nodes.
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Figure 25 shows the numbering of the equivalence classes / hypernodes produced by our
algorithm for the hypergraph from fig. 21. The state of the auxiliary array matrices after
(re)numbering1 is shown in fig. 26. Note that the same auxArrayIndex has been assigned to
[I]S, and [P]S, further reducing the size of the matrices, and that there are no more "holes"
within the range of significant indices of any of the auxiliary arrays. The positions that were
"holes" in fig. 18 and fig. 20 (marked by a grey pattern), have been moved outside the
significant part of the respective arrays.

A version of the above algorithm that is correct wrt multiple inheritance can simply be derived
by replacing every occurrence of the term "class" by the term "dispatch table", since there is a
one to one correspondence between the dispatch tables of a multiply inheriting class and the
tables of its superclasses. Each table of a multiply inheriting class gets the auxArrayIndex of
the corresponding superclass table. Treatment of graphs containing hidden confluent paths will
not be discussed here, for the sake of brevity, since it can be derived from what has been
presented so far.
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Fig. 26a: Offset arrays after (re)numbering Fig. 26b: Safety arrays after (re)numbering

5.3.4. Elimination of Insignificant Leading Indices

In fig. 26 the arrays of the classes D, F, G, H and S still contain insignificant initial sections,
thus violating (2). Since arrays usually start at index 0, fulfilment of (2) requires a numbering
scheme that guarantees that for all classes MinI = 0. Unfortunately, in the presence of multiple
delegation, there exists no numbering that satisfies (1) and (2) simultaneously.  Figure 27
shows the minimal counterexample: no matter in which way the auxArrayIndex values 0, 1, and
2 are assigned to the classes A, B, and C, the MinI of either A or C will be non-zero.

                                                

1 The matrix columns in our examples are numbered from right to left.
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Fig. 27: In the presence of multiple delegation no numbering scheme exists
 that avoids arrays with an insignificant initial part.

It is, nevertheless, possible to satisfy (2) since we know in advance that the indices between 0
and MinI will never be accessed at run-time – they can safely be ignored. Indeed, only the
positions MinI to MaxI are physically allocated. All the range of significant indices is shifted
"downwards" by MinI positions: the entry that should be at MinI becomes the first entry (at
index 0), and so on, until the entry that should be at MaxI becomes the entry at index MaxI -
MinI. Each reference to the allocated array is statically "adjusted" to point MinI positions
before the first physically allocated element. Thus array accesses using the computed "virtual"
auxArrayIndices between MinI and MaxI are correct and require no index adjustment at run-
time. E.g. in fig. 27b the array of class C will be shifted by two positions, such that the only
significant entry will be allocated at index 0. The array reference of C will be set to point to
position -2 such that array accesses using the auxArrayIndex of C, 2, will find the correct value.

Fig. 28 shows the state of auxiliary arrays from fig. 26 after removal of insignificant initial
(and trailing) indices.
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Fig. 28a: Offset arrays after Fig. 28b: Safety arrays after
elimination of insignificant initial sections elimination of insignificant initial sections

5.3.5. Sharing of Auxiliary Arrays

After elimination of redundancy and subsumption, elimination of holes, and elimination of
insignificant initial / trailing sections, there is no way to further reduce the size of individual
arrays. However, we can still reduce their total size, by sharing the same array among different
classes, and by not allocating unused arrays.
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Sharing of offset arrays is possible between a declared parent class and all its subclasses that are
not themselves declared parent classes, since their offset arrays are identical. E.g. in figure 28a
the arrays of T, U, V and W are identical.

Sharing of safety arrays is possible between a declared child class and its declared ancestors,
since the safety array of a declared descendant contains the arrays of all its declared ancestors.
E.g. in figure 28b the array of J is contained in the array of I, and the arrays of B, and G are
contained in the array of E.

Both kinds of auxiliary arrays are only required for classes that are part of a delegation
hierarchy. Thus we do not need to allocate any arrays for the classes A, D, F, S, X, and Z, which
are outside the two delegation hierarchies of our example (cf. definition in 3.1).

The next figure shows the final state, containing only the physically allocated arrays. Each of
the classes in brackets shares the offset array of its superclass (fig. 29a), resp. the highlighted
part of the safety array of its declared parent class (fig 29b).
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5.4. Summary

Summarising, our auxiliary array layout guarantees constant-time access and almost optimum
space efficiency. The auxiliary arrays of each class have minimal size, except for one type of
programs (5.2.1). Their total size is minimised too, since classes share their auxiliary arrays
whenever possible: each declared child class shares its safety array with all its parent classes,
and each declared parent class shares its offset arrays with all its subclasses that are not
themselves declared child classes.

Even for programs that contain conflicting paths, which in general do not allow optimal results,
our layout scheme achieves a significant reduction of array size. For our example with 26
classes, the total size of safety arrays was reduced to 39 and the total size of offset arrays to just
23 elements, giving a total of 62 elements, which is just 4,7% of the 1352 (= 2*262) elements
needed by the naive, quadratic approach.

6. Evaluation: The Price to Pay

In this section we analyse the overall space and run-time costs of our implementation. The
discussion is of formal nature, since we currently have no complete prototype that can be used
for concrete measurements.
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6.1. Run-Time

In our analysis we distinguish implicit receiver messages, self.selector(args), and explicit
receiver messages, obj.selector(args). Implicit receiver messages may either be sent by self (as
in purely inheritance-based systems) or by one of its ancestors. Each message may either be
bound to a method in (the class of) the receiver or in (the class of) one of its ancestor objects.
These distinctions give rise to the six cases summarised in table 5 and discussed in the
following. In the table, VTBL stands for the cost of the "standard" dispatch technique (cf. 4.1,
4.5.2, and code template A.1 in the appendix), and L is the cost of a memory access (Load)

method definition found in dispatch table of

message  the receiver the receiver's n-th ancestor

explicit message VTBL VTBL + n*(VTBL + L)

self message

sent by self

VTBL VTBL + n*(VTBL + L)

self message

sent by an ancestor of self

VTBLAA VTBLAA + n*(VTBL + L)

Table 5: Run-time costs of dynamic binding compared to the costs of purely inheritance-based languages.
The costs of dynamic binding in inheritance-based languages is denoted by VTBL,

the cost of dynamically binding self messages using auxiliary arrays is denoted by VTBLAA (cf. text).

The two highlighted cases are the only ones that can occur in inheritance-based languages. In
both cases, the dynamic binding costs of our approach are identical to VTBL. Thus we have
achieved our main goal, to implement dynamic delegation in a way that does not involve any
run-time overheads for programs that do not use delegation.

When messages must be delegated the "customised lookup code" (cf. 4.3.2 and code template
A.2 in the appendix) iterates the VTBL dynamic binding on the chain of ancestor objects that is
statically known to contain a method definition. The cost of one customised lookup code
execution is VTBL + L, where L is the memory access for switching to the next parent object.
Thus the additional cost of a message delegated to the n-th ancestor object is n*(VTBL + L).

For self messages that are sent by an ancestor of self, an extension of the VTBL method was
required in order to enable safe and efficient dynamic binding when the type of self is
statically unknown (cf. 4.4. and code template A.3 in the appendix). The proposed extension,
which we call VTBLAA (for VTBL with Auxiliary Arrays), can be divided into five phases. The
initialisation part involves a single instruction. The safety check loop consists of the safety
check (SC) itself and the code for getting the next parent object (getParent), which includes
the dynamic determination of the position of the parent attribute within the current object.
Both operations are executed as often as the safety check fails. This number appears as fsc
(number of failed safety checks) in the following formulas. The loop ends with the first
successful safety check (SC). It is followed by the determination of local dispatch table indices
(DTIndices), the decision whether to access the receiver or delegatee version of the target
method (R?D), and the application of the VTBL dynamic binding (bind).

Thus the cost of getting the compiled code from the first dispatch table for which the message
is access safe is

(VTBLAA) 1+ fsc*(SC+getParent) + SC + DTIndices + R?D + bind.
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Expressing the above costs in terms of executed instructions would be a neglect of  modern
hardware architectures. On pipelined processors ( [SPARC92]) only the total number of cycles
can be an approximate measure, due to latencies involved in memory accesses and especially in
branch instructions. Refilling the processors pipeline with code from an unpredictable branch
target address involves a multi-cycle execution delay. E.g. [CaGr94] reported that the
elimination of the branch instruction in the VTBL method could lead to a performance
improvement of up to 66% for C++ programs. Recently, [DHV95] concluded a detailed
comparison of different dispatch methods. They showed that methods that contain no
unpredictable branches and whose instructions have few data dependencies can outperform
VTBL inspite of executing more instructions, since they do not incur branch penalties and can
execute independent instructions in parallel.

We have analysed our approach with the method described in [DHV95] and with respect to  the
P97 class of processors. The assumed characteristic of P97, which models the next generation
of processors ([DHV95]), is the ability to execute up to four instructions in parallel (but at
most two loads or one branch). All instructions, except memory accesses and branches, execute
in one cycle. In the following formulae L is the load latency and B is the branch latency. The
assembler code for the dispatch of self messages whose sender is an ancestor of self, and the
corresponding instruction schedule on P97 are contained in the appendix. From the schedule
we can see that the cycle costs of our code are

SC = 3L + 2,   getParent = L - 1,   DTIndices = 0,   R?D = 2,   bind = B + L + 1.

At a first glance, these results are astonishing:

• inspite of missing knowledge about self's type, the net cost for determining the dispatch
table indices (DTIndices) is zero,

• the net cost of getting the parent reference (getParent) is even less then a load instruction,

• and, although the VTBL method is used, the cost for the final binding to the target code
(bind) is less then the cost of VTBL, which is B + 2L + 1 ([DHV95]).

These results stem from the good exploitation of parallelism possible in our scheme due to the
relatively small number of data dependencies. DTIndices and the determination of the parent
reference offset can be done in parallel to the safety check. Scheduling of the remaining access
to the parent reference into the delay slot of the safety check branch instruction, produces the
surprising cycle count of less then a load latency for getParent. The additional subtraction for
accessing delegatee code during bind can be executed in parallel to the safety check branch.
Since the first step of VTBL, the access to the dispatch table, is already part of the safety check
loop, the cost of bind is VTBL-L = B+L+1.

Substituting these values into the above formula we get the cost of VTBLAA on P97:

(VTBLAAP97) 1 +  fsc*(3L + 2 + L – 1) + 3L + 2 + 0 + 2 + B + L + 1

 = fsc*(4L + 1) + B + 4L + 6.

Since VTBL is not applicable to cases that would produce failed safety checks, we have to
compare the cost of VTBLAA and VTBL when fsc = 0. It is
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(VTBLAAP97, fsc = 0) B + 4L + 6.

Thus, compared to VTBL, the dynamic binding of self messages when the type of self is
statically unknown involves a constant additional cost of 2L+5 = 11 cycles on a P97 processor
([DHV95]):

VTBLAAP97 = VTBLP97 + 2L + 5 = 1,85*VTBLP97

Summarising, even in programs that use delegation additional costs are only incurred by
delegated messages and subsequent self messages. For self messages sent during delegated
messages a constant overhead (of 11 cycles on P97) is incurred. For delegated messages the
overhead is linear in the number of searched parent objects, which, in general1, is statically
bounded. Note that the complexitiy of accessing a variable in an outer block by following the
origin / StaticFather reference in BETA / Simula ([MMN93], [KLLM93]) is also linear in the
number of parents / StaticFathers. Supporting the block concept of BETA requires a step from
constant to linear complexity, whereas supporting the much powerful concept of dynamic
delegation does not change the complexity class again.

6.2. Space

The size of a compiled program is the compiled code size plus the size of run-time data
structures.

In our approach the size of data structures is the size of dispatch tables plus the size of auxi-
liary arrays. As shown in chapter 5, the space costs involved in auxiliary arrays is small com-
pared to the costs of dispatch tables, since the former only depends on the number of classes in
a program whereas the latter depends on the number of methods. The theoretical upper bound
of auxiliary array size, totalNrOfClasses2, is unlikely to ever occur in non-trivial programs,
since the pathologic quadratic case requires the program graph to consist of one single chain
of delegating classes. In practice our dispatch table layout achieves order of magnitude
improvements, e.g. in the example used throughout chapter 5, less then 5% of the worst case
quadratic costs were needed.

Regarding the size of dispatch tables, the addition of the methods defined in the inheritance
hierarchies of parent classes to the dictionary of a delegating class has the same space
complexity as the implementation scheme for multiple inheritance (cf. 4.5.2.). If a class, C,
has n immediate superclasses and/or parent classes, whose dispatch tables have size S1, ..., Sn,,
and if S0 is the number of new methods defined in C itself, then its dispatch table will have size

SC = 3 + 2*(S0 + S1 + ... + Sn,).

Three words are required for the reserved positions of the dispatch table (safety array refe-
rence, offset array reference and a yet unused position). The factor 2 represents the duplication
of the dispatch table size due to weak customisation. The sum S0 + S1 + ... + Sn, is the size of
dispatch tables that corresponds to multiple inheritance. Note that in our system, this formula
                                                

1 For explicit receiver messages and self messages sent by self, the number of customized lookup code
executions, n, is statically bounded by the length of the delegation path from the class of the receiver to
the first declared ancestor class that contains a method definition. For self messages that are sent by an
ancestor of self, n is dynamically bounded by the length of the delegation path from self to the self
message sender. Even in the case of multiple delegation, no other paths need to be explored at run-time.
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equally applies to pure multiple inheritance, pure multiple delegation, and any combination of
them.

It is especially interesting to compare the last case to the purely inheritance-based modelling
used to simulate the same functionality (cf. fig. 4a and fig. 5). The dispatch tables of the
"intersection classes" needlessly duplicate the tables of their superclasses. Thus, when compa-
ring applications of equal functionality, the apparent double table size of our approach is
outweight by the size of the additional dispatch tables needed otherwise. Put differently, weak
customisation just "spends" the storage wasted otherwise on the dispatch tables of intersection
subclasses.

In our approach the compiled code is

• the code referenced by the "receiver part" of dispatch tables (which is exactly the code
generated by the VTBL method),

• the additional code referenced by the "delegatee part" of dispatch tables, and

• the additional customised lookup code (shared by delegatee and receiver parts).

The size of customised lookup code is only five instructions, which are generated for each
delegated method, and are reused throughout an inheritance hierarchy. It is hard to predict
how much this will contribute to overall program size, since it strongly depends on the degree
to which messages in the delegated protocol of a class are redefined locally.

The replacement of VTBL code by VTBLAA code, for each self message, increases the size of
code generated for self messages in the delegatee version of a method almost by a factor of 5
(22 instead of 5 instructions, cf. appendix). Assuming that  60-80% of the messages in a pro-
gram are self messages, the dispatch code size in delegatee versions increases 3,4 to 4,2 times
(3,4 = 0,6*5 + 0,4 and 4,2 = 0,8*5 + 0,2). Thus the total dispatch code size, which is the size of
dispatch code in receiver versions, codeSize(VTBL), plus the size of code in delegatee versions,
ranges between 4,4*codeSize(VTBL) and 5,2*codeSize(VTBL).

Summarising, our approach involves only a small increase of data structure size introduced by
the use of auxiliary arrays. This is in sharp contrast to the strong increase of code size.
However, since for VTBL data structure size dominates dispatch code size by a ratio of approx.
3:1 ([DHV95]), the code size increase will not increase the total compiled program size as
much as one might expect. If x is the overall dispatch related storage costs of a program
compiled with the VTBL method, the corresponding costs of our approach will be

 dataSize + codeSize

=  auxArraySize + dTableSize + receiverCode + delegateeCode + customizedLookupCodeSize

=  auxArraySize + 0,75x + 0,25x + 5,2*0,25x + customizedLookupCodeSize

=  2,3x + auxArraySize  + customizedLookupCodeSize.

Thus, assuming that the results reported in [DHV95] can be generalised, we expect a maximum
increase of dispatch related storage costs by a factor of 2,5 over the costs involved in purely
inheritance based programs of similar functionality.
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7. Related Work

In the domain of strongly typed, inheritance-based programming languages we are not aware
of any previous attempt to implement dynamic delegation, except the failed experiment with
"delegation through a pointer" described in [Stro87] and [Stro94]. "Delegation through a
pointer" was not really delegation but an implicit resending mechanism  (cf. 2) with a bunch of
additional restrictions, imposed by the aim to squeeze the concept into the implementation
scheme for multiple inheritance. In his retrospective evaluation ([Stro94], p. 272) Stroustrup
gives the following reasons for not including this concept into C++:

"Unfortunately, every user of this delegation mechanism suffered serious bugs and confusion.
Two problems appeared to be the cause [...]:
• Functions in the delegating class do not override functions of the class delegated to.
• The function delegated to cannot use functions from the delegating class or in other ways
‘get back’ to the delegating object.

[...] We also found examples where we wanted to have two objects delegate to the same
‘shared’ object. Similarly, we found examples where we needed to delegate [...] to an object of
a derived class1".

Our approach includes all the missing features, without compromising the "don't pay for what
you don't use" design rule promoted as one of the guiding design principles in [Stro94].

In the domain of untyped, delegation-based languages the most advanced implementation
techniques have been developed in the framework of the SELF project ([US87], [CUL89],
[CU91], [HCU91], [USCH92], [Hölz94a]). The implementors of SELF have demonstrated, that
pure object-oriented languages based on prototypes and delegation can be implemented
efficiently and that optimisation of compiled code quality and of compile time need not
contradict each other ([Hölz94b]). The work done in the design and implementation of the
SELF system was one main motivation and inspiration for the integration of delegation in
more conventional languages.

The SELF compiler is strongly based on customisation, inlining and dynamic recompilation.
These techniques are tuned for rapid prototyping within the SELF development environment
but they seem incompatible with production programming, especially with delivery of libraries
of reusable compiled code and of turn-key applications2. All optimizations are only applied if
parent slots are declared to be static. There is no compilation / optimisation of dynamic
delegation in SELF. To the best of our knowledge, the same is true for all other delegation-
based languages, ranging from efficiently compiled languages like Cecil ([Cham93])3, to
experimental language frameworks based on reflective architectures ([MC93], [DMC92])4.

                                                

1 In our terminology, it was not possible to "delegate" to an instance of a potential parent class (cf 3.1).

2 Although first steps towards the solution of the latter problem are described in [AgUn94].

3 In Cecil delegation is generally required to be static.

4 Reflection is a very powerful tool for object-oriented programming ([Coin87], [Ferb89]) but implementa-
tion techniques for reflective architectures that achieve similar performance as C++, Self or Cecil are still
unknown.
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Compared to SELF, our scheme implements dynamic delegation without the expense of full
run-time search of method dictionaries. The customised lookup code reduces the lookup in
each of the traversed dispatch tables to one access at a statically known index. The time
complexity of this search is linear in the number of parents, whereas the search performed for
dynamically delegated messages in SELF ([CUL89], [Hölz94a], [Hölz94c]) is linear in the total
number of selectors within the parents' hierarchies – which may be orders of magnitude
higher.  Even if the SELF compiler used hashing instead of linear search, it would at least need
to dynamically compute the hash function and check for collisions, where we can directly
access a statically known index. Note also, that in our approach only one delegation path will
be explored at run-time, even in the presence of multiple delegation, and the number of parent
objects on this path is, in general, statically bounded (cf. 6.1. and 4.5.1). Due to the missing
static type information there is no way how to achieve in SELF a similar reduction of the
search space, without additional run-time overhead1.

In the domain of object oriented database systems (OODB) there has been considerable work
on "role object models". The approach of [Scio89] "integrates" delegation and classes by simu-
lating classes in a prototype-based OODB environment. "Instances" are represented by multiple
delegating objects, one for the instantiated "class" and one for each "superclass", forcing an
extreme fragmentation of objects and use of delegation, where it is not necessary. Our
integrated model avoids this problem by allowing all features that should in the end be
permanently attached to one object to be modelled in an inheritance hierarchy, whereas
delegation is only used to express transient properties, as dynamic sharing relations between
different objects. Sciore also offers no hints how to achieve an efficient implementation.

Role object models that are conceptually much closer to our integrated model are presented in
[WRS94] and [GSR94]. Both allow two hierarchies, subclasses and role classes. In both
approaches the role hierarchy is based on implicit resends instead of delegation and there are
no considerations how an efficient implementation could be achieved2. Note that the

The only role model known to us that has a time-efficient implementation is the one
underlying the database language Fibonacci ([ABGO93]). The implementation is based on
creating a dispatch table for every object and dynamically modifying it when an object
acquires a new role. The storage demand and the need for dynamic dispatch table restructuring
of this approach is out of line with the needs of production programming languages. It also
appears that the model of Fibonacci is more restricted than ours, since it is based on only one
static (type) hierarchy. There is no equivalent to our statically declared delegation hierarchy,
which controls the roles that can be acquired at run-time by an object. The lack of this
structuring mechanism allows semantically incompatible roles to be played simultaneously.

We may thus conclude that our model is the first one that marries object-based delegation and
class-based inheritance in the framework of a static type system, and that our implementation
scheme is the first one that allows an implementation of dynamic delegation, in a way that is
compatible with the state-of-the art implementation techniques for object-oriented "production
programming" languages.  

                                                

1 In fact, the "sender path tiebreaker rule" ([CUCH91]) introduced in SELF version 2.0 achieved the same
effect, but it had to be enforced at run-time.

2 The model of [GSR94] is implemented in Smalltalk ([GR89]), based on the ability to create classes at
run-time and to treat messages as first-class objects. The model of [WRS94] is formulated in modal logic.
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8. Conclusions

In this paper we have shown how "mainstream", statically type-checked, inheritance-based
languages can be extended to include dynamic delegation. Delegation allows instances to
"inherit" from other instances. Hierarchies of delegating objects can be constructed an modi-
fied dynamically. Especially, objects can vary their behaviour at run-time by delegating to
another "parent" object (without compromising type safety). Combined delegation and inheri-
tance hierarchies can express dynamically changing roles of objects, obviating the need for
special purpose "role object models".

In spite of this added functionality, delegation can be implemented in a way that is compatible
with the efficient implementation techniques currently used in typed, inheritance-based langua-
ges. Extended dispatch tables preserve constant time dynamic binding within inheritance
hierarchies, even in the presence of delegation. For delegated messages, the full run-time
search of each method dictionary along a delegation hierarchy, which is used in untyped lan-
guages in the presence of dynamic delegation, is reduced to only one access to each dispatch
table along a path (in the worst case). No comparisons or conditional branches are performed
during this "search". A special problem introduced by delegation is that no receiver type is
statically known for messages to self sent during the evaluation of delegated messages. The
proposed solution using safety arrays and offset arrays only adds a constant cost to these
messages.

Due to weak customisation, added costs only occur if messages are really delegated. If delega-
tion is not needed for a given message, it will incur no run-time penalty, even in classes that are
defined using delegation. All our techniques are extensions of the "classic" dispatch table based
dynamic binding scheme, such that they should fit well into existing compilers. Hence, in
principle, the way is open for the extension of typed, inheritance-based languages with a
powerful feature previously known only in the context of rapid prototyping systems based on
type- and class-free object models.

Nevertheless, there are still many open questions left. Is it possible to further reduce the costs
of delegated messages, e.g. by replacing the customised lookup code with a method that does
not depend on expensive indirect branches? What role can other dispatch techniques, e.g.
hashing or variants of inline caching ([HCU91], [DHV95]), play in a system like ours? What
improvements in space an time efficiency could be achieved by relaxing the constraint of
compatibility with standard techniques? Are they worth the price?

It seems that the borderline between overconstraining delegation such that it is useless and
unchaining it such that it becomes unmanageable with "traditional" implementation techniques
is quite narrow. We think that, for the time being, we have found a good compromise. However,
we would like to study how far the strictly static type-checking scheme assumed in this paper
can be relaxed. Another still open field is the application of global optimisation techniques e.g.
in the spirit of [DGC94] and [VHU92]. It seems that within our integrated model, static
analysis bears a high potential for optimisations of run-time and compiled code size.

We hope that this paper will contribute to rid delegation of the aura of being overly expensive,
conceptually unmanageable, and incompatible with static typing. If, one day, implementors of
typed, inheritance-based languages will start considering the integration of dynamic delegation
into their systems we will have achieved our goal.
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Appendix

Notation

In the following code templates we use the meta-variable SC for the class that textually contains
the message (the "Source Class"), and RT for the declared type of the receiver object (the
"Receiver Type"). Underlining highlights statically known parts of an expression. Note that
underlining of a component name, as in x.c, indicates that the offset (not the value) of compo-
nent c within the storage area referenced by variable x is statically known. Since the compiler
assigns own, statically determined indices to the different components of structures strored in
an array, we write

•  offsetArray[SC.parentOffsetIndex] for  offsetArray[SC.offsetArrayIndex].parentOffset
•  offsetArray[SC.dTableOffsetIndex] for  offsetArray[SC.offsetArrayIndex].dTableOffset
•  dTable[methodIndex(selector,SC)]  for  dTable[index(selector,SC)].methodRef
•  dTable[deltaIndex(selector,SC)]   for  dTable[index(selector,SC)].delta.

Explicit receiver message, receiver.selector(args), and
implicit receiver message, self.selector(args), when self is the sender of the message

method := receiver.dTable[methodIndex(selector,RT)] // dynamic binding

delta  := receiver.dTable[deltaIndex(selector,RT)] // (re)adjustment ...

object := receiver+delta // ... of self reference

method(object, args) // procedure call with adjusted self reference

Code template VTBL: "Standard" dispatch method, including treatment of multiple inheritance

Customized lookup code

delegate(receiver, delegatee, args, selector, parentType) = {

  delegatee := delegatee.parent // get parent object

  method    := delegatee.dTable[-indexOfMethod(selector,parentType)] // get delegatee code

  delta     := delegatee.dTable[indexOfDelta(selector,parentType)] // (re)adjustment ...

  delegatee := delegatee + delta // ... of delegatee reference

  method(receiver, delegatee, args) // call delegatee code

}

Code template CLC: Customized lookup code,
including treatment of multiple inheritance and "weak customisation"
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 Implicit receiver message, self.selector(args), when self is not the sender of the message

delegatee := self

// While not access safe: delegate message to parent

while ( methodIndex(selector,SC) > delegatee.dTable[0].[SC.safetyArrayIndex] )

   do { parentOffset := delegatee.dTable[1].[SC.parentOffsetIndex]

         delegatee := delegatee[parentOffset]

      }

// Calculate local indices using offset array

offset      := delegatee.dTable[1].[SC.dTableOffsetIndex]

methodIndex := methodIndex(selector,SC) + offset

deltaIndex  := deltaIndex(selector,SC)  + offset

// (Almost) normal dispatch to compiled code

if delegatee == self

   // if the message was safe for self

   then { // execute standard "receiver version"

         method := delegatee.dTable[methodIndex] 

         delta  := delegatee.dTable[deltaIndex] 

         method (self+delta, args)

        }

   else { // execute full "delegatee version"

         method := delegatee.dTable[-methodIndex] 

         delta  := delegatee.dTable[-deltaIndex] 

         method (self, delegatee+delta, args)

        }

Code template VTBLAA: Pseudocode version of auxiliary array based dispatch of self messages (cf. fig. 11),
including safety check with dynamic determination of the parent attribute offset,

treatment of multiple inheritance, and "weak customisation"
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 Implicit receiver message, self.selector(args), when self is not the sender of the message

(1) load self, delegatee

loop:

(2) load [delegatee + #dTtableOffset], table

(3) load [table + 0], safetyArray

(4) load [table + 1], offsetArray

(5) load [safetyArray + #SC_safetyArrayIndex],  maxSafeIndex

(6) load [offsetArray + #SC_dTableOffsetIndex], dTableOffset

(7) load [offsetArray + #SC_parentOffsetIndex], parentOffset

(8) add dtableOffset, #SC_methodIndex, methodIndex

(9) add dtableOffset, #SC_deltaIndex, deltaIndex

(10) cmp maxSafeIndex, #SC_methodIndex

(11) load [table, deltaIndex], delta

(12) sub table, methodIndex, methodReference

(13) ble #loop

(14) load [delegatee, parentOffset] delegatee // delay slot

execute:

(15) cmp self, delegatee

(16) bne #callDelegateeVersion

callReceiverVersion:

(17) load [table, methodIndex], method

(18) add self, delta, self

(19) call method

callDelegateeVersion:

(20) load [methodReference], method

(21) add delegatee, delta, delegatee

(22) call method

continue: ... first instruction after self message ...

Assembler version of code template VTBLAA.
The instruction sequence corresponds to the schedule illustrated in fig. A1

R1 a register (any argument without #)

R#1 a register or an immediate (prefix R#)

#immediate a constant value (prefix #)

load [R1, R#2], R3 set R3 to word at adress R1+R#2

add R1, R#2, R3 set R3 to R1+R#2

sub R1, R#2, R3 set R3 to R1-R#2

comp R1, R#2 compare value in register R1 and R#2

bne #imm if last compare is not equal, jump to #imm

ble #imm if last compare is less or equal, jump to #imm

call R#1 jump to address in R#1, saving return address

Abstract assembler instruction set (based on [DHU95])
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In the following figure, nodes represent instructions and arcs represent data and control
dependencies. Nodes are labeled with the number of the corresponding instruction from the
assembler code for VTBLAA. Each instruction is annotated with the cycle in which it starts the
phase of its execution that produces its result. All instructions in the same row start executing
in the same cycle (i.e. they execute in parallel if they are not part of mutually exclusive
branches).
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Fig. A1 : Schedule of VTBLAA on P97 processors
(body of safety check loop eliminated using delay slot,

part of offset array access and final binding scheduled in parallel to the safety check)


