Type-Safe Delegation for Dynamic Component
Adaptation

Glnter Kniesel

University of Bonn
gk@cs.uni-bonn.de, http://javalab.cs.uni-bonn.de/research/darwin/

The aim of component technology is the replacement of large monolithic applica-
tions with sets of smaller components whose particular functionality and interoperation
can be adapted to users’ needs. However, the adaptation mechanisms of component soft-
ware are still limited. Current proposals concentrate on adaptations that can be achieved
either at compile time or at link time ([1], [2]). There is no supportdgnamic compo-
nent adaptation, i.e. unanticipated, incremental modifications of a component system
at run-time. This is especially regrettable since systems that must always be opera-
tional would profit most from the ability to be structured into small interchangeable
components that could evolve independently and whose functionality could be adapted
dynamically.

Existing component adaptation techniques are based on the replacement of one
component by a modified version. This approach is unapplicable to dynamic adaptation:
at run-time components cannot simply be replaced or modified because their “old” ver-
sion might still be required by some other parts of the system. Thus we are faced with
the problem to change their behaviour solely by adding more components.

This problem has two aspects. On one hand, the new components must be used in-
stead of the old ones by those parts of the system that should perceive the new behaviour.
This requires the component infrastructure to allow “re-wiring”, i.e. dynamic modifica-
tion of the information and event flow between components. On the other hand, the new
and the old component must work together “as one”. One reason might be that both have
to manage common data in a consistent fashion. Another reason arises from the initial
motivation of component-oriented programming, incrementality: the new component
should not duplicate functionality of the old one. Thus there must be some way for the
new component to “inherit” all unmodified behaviour but substitute its own behaviour
where appropriate.

In traditional, statically typed, class-based object models, where component inter-
action at run-time is solely based on message sending, this is impossible to achieve
without compromising reuse ([1]). An interesting alternative is the concept known as
delegation ([5]). An object, called thehild, may have references to other objects, called
its parents. Messages for which the message receiver has no matching method are au-
tomatically forwarded to its parents after binding their implggif parameter to the
message receiver. Thus, all subsequent messagel will be addressed to the mes-
sage receiver, allowing it to substitute its own behaviour for parts of the inherited one.

Many authors have acknowledged the modelling power and elegance of delegation
but at the same time criticised the lack of a static type system that made delegation in-
compatible with traditional object models. It is the main achievementaafidn ([3])
to have shown that type-safe dynamic delegation with subtyigipgssible andctan



be integrated into a class-based environment. Compared to composition based only on
message sending, delegation in theRvIN model is easy and results in more reusable
designs because

— it requires minimal coding effort (addition of a keyword to a variable)

— it introduces no dependencies between “parent” and “child” classes, allowing par-
ent classes to be reused in unanticipated ways without fear of semantic conflicts
and child classes to adapt themselves automatically to extensions of parent types
(no “syntactic fragile parent class problem”).

In the context of component-oriented programming, type-safe delegation enables
extension and modification (overriding) of a parent component’s behavior. Each exten-
sion is encapsulated in a separate component instance that can be addressed and reused
independently. Delegating child components can be transparently used in any place
where parent components are expected.

Unlike previous approaches, which irrecoverably destroy the old version of a com-
ponent, delegation enables two types of component modifications.

Additive modifications are the product of a series of modifications, each applied to
the result of a previous one. They are enabled by the recursive nature of delegation: each
new “extension component” can delegate to the previous extension. Additive modifica-
tions meet the requirement that the result of compositions / adaptations should itself be
composable / adaptable.

Disjunctive modifications are applied independently to the same original compo-
nent. They can be implemented as different “extension components” that delegate to
the same parent component. Disjunctive extensions are most useful in modeling com-
ponents that need to present different interfaces to different clients.

A sketch of DARWIN and a detailed description of the way in which it supports in-
dependent extensibility of components and dynamic component adaptation is contained
in [4].

References

1. Harrison, William and Ossher, Harold and Tarr, Peter. Using Delegation for Software and
Subject Composition. Research Report RC 20946 (922722), IBM Research Division, T.J.
Watson Research Center, Aug 1997.

2. Keller, Ralph and Hizle, Urs. Supporting the Integration and Evolution of Components
Through Binary Component Adaptation. Technical Report TRCS97-15, University of Cali-
fornia at Santa Barbara, September 1997.

3. Kniesel, Ginter. Darwin - Dynamic Object-Based Inheritance with Subtyping. Ph.D. thesis
(forthcoming), University of Bonn, 1998.

4. Kniesel, Ginter. Type-Safe Delegation for Dynamic Component Adaptation. In Weck, Wolf-
gang and Bosch, Jan and Szyperski, Clemens, eitoceedingsof the Third International
Workshop on Component-Oriented Programming (WCOP ' 98). Turku Center for Computer
Science, Turku, Finland, 1998.

5. Lieberman, Henry. Using Prototypical Objects to Implement Shared Behavior in Object
Oriented Systems.Proceedings OOPSLA '86, ACM SIGPLAN Notices, 21(11):214-223,
1986.



