Latest Posts
AT&T 2013 Developer Summit Keynote: Live Blog
by Brian Klug on 1/7/2013

While 2013 CES is going full tilt, AT&T also holds its developer event and keynote at the Palms, in almost the same place where we were last night for NVIDIA. We just took our seats for the AT&T 2013 Developer Summit Keynote, stay here for the live blog. 

The State of Qualcomm's Modems - WTR1605 and MDM9x25
by Brian Klug on 1/4/2013

A little over a month ago, Qualcomm flew me out to San Diego to talk all about cellular modem, specifically their baseband lineup, testing, and later their RF and transceiver in what would become their largest RF disclosure ever. In the past few years, we’ve made considerable headway getting SoC vendors to disclose details on the CPU and GPU side of their products, and mobile enthusiasts now are starting to become increasingly cognizant of the SoC inside devices, and in turn the blocks inside that SoC. In a short term the industry as a whole went from smartphones largely being impenetrable black boxes to devices with understandable platforms inside. The days of an OEM not disclosing what SoC was inside a device at all are largely behind us, and for the most part vendors are open to discussing what’s really inside most of their silicon quite publicly.

The last real remaining black box from my point of view is the cellular connectivity side of things. So much of what drives smartphone design and OEM choice lately is, unsurprisingly, how the device gets connected to the cellular network, and baseband remains largely a black box by design for a number of reasons. The focus of this article is specifically about Qualcomm’s newest transceiver, WTR1605L, and some more details about MDM9x25 and MDM9x15.

The ARM vs x86 Wars Have Begun: In-Depth Power Analysis of Atom, Krait & Cortex A15
by Anand Lal Shimpi on 1/4/2013

Late last month, Intel dropped by my office with a power engineer for a rare demonstration of its competitive position versus NVIDIA's Tegra 3 when it came to power consumption. Like most companies in the mobile space, Intel doesn't just rely on device level power testing to determine battery life. In order to ensure that its CPU, GPU, memory controller and even NAND are all as power efficient as possible, most companies will measure power consumption directly on a tablet or smartphone motherboard.

The process would be a piece of cake if you had measurement points already prepared on the board, but in most cases Intel (and its competitors) are taking apart a retail device and hunting for a way to measure CPU or GPU power. I described how it's done in the original article.

The previous article focused on an admittedly not too interesting comparison: Intel's Atom Z2760 (Clover Trail) versus NVIDIA's Tegra 3. After much pleading, Intel returned with two more tablets: a Dell XPS 10 using Qualcomm's APQ8060A SoC (dual-core 28nm Krait) and a Nexus 10 using Samsung's Exynos 5 Dual (dual-core 32nm Cortex A15). What was a walk in the park for Atom all of the sudden became much more challenging. Both of these SoCs are built on very modern, low power manufacturing processes and Intel no longer has a performance advantage compared to the Exynos 5.

Read on for our analysis.

Latest from AnandTech