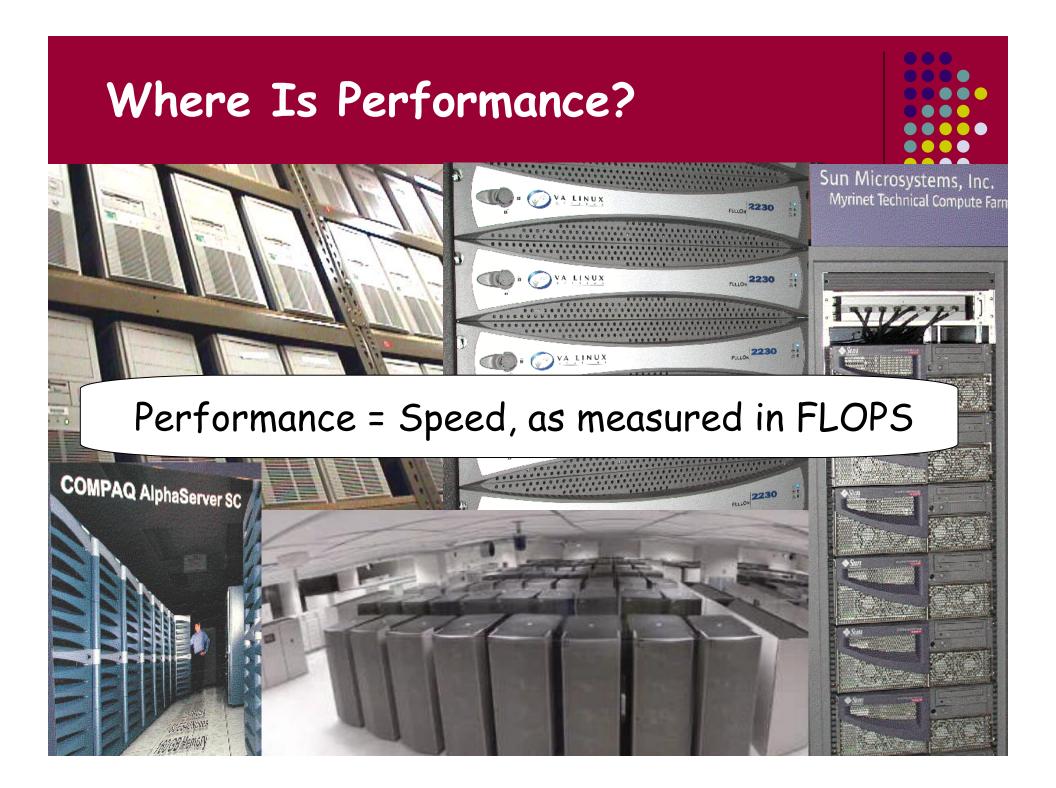
Making a Case for a Green500 List

S. Sharma[†], C. Hsu[†], and W. Feng[‡]

⁺ Los Alamos National Laboratory [‡] Virginia Tech

Introduction


- What Is Performance?
- Motivation: The Need for a Green500 List

Challenges

- What Metric To Choose?
- Comparison of Available Metrics
- TOP500 as Green500
- Conclusion

What Is Performance? TOP500 Supercomputer List

Benchmark

 LINPACK: Solves a (random) dense system of linear equations in double-precision (64 bits) arithmetic.

Introduced by Prof. Jack Dongarra, U. Tennessee

Evaluation Metric

- Performance (i.e., Speed
 - Floating-Operations Per
- Web Site
 - http://www.top500.org
- Next-Generation Bench
 - http://icl.cs.utk.edu/h/

Performance, as defined by speed, is an important metric, but...

k: HPC Challenge

Reliability & Availability of HPC

Systems	CPUs	Reliability & Availability	
ASCI Q	8,192	MTBI: 6.5 hrs. 114 unplanned outages/month.	
ASCI White	8,192	MTBF: 5 hrs. (2001) and 40 hrs. (2003).	
NERSC Seaborg	6,656	MTBI: 14 days. MTTR: 3.3 hrs.	100
PSC Lemieux	3,016	MTBI: 9.7 hrs. Availability: 98.33%.	
Google (as of 2003)	~15,000	20 reboots/day; 2-3% machines replaced/year.	

MTBI: mean time between interrupts; MTBF: mean time between failures; MTTR: mean time to restore

Source: Daniel A. Reed, RENCI, 2004

Costs Associated with HPC

Infrastructure

- Sizable costs associated with system administration and maintenance. (People resources are \$\$\$.)
- Massive construction and operational costs associated with powering and cooling.
 - Google
 - \$2M to buy 30 acres of land by The Dalles Dam (Columbia River)
 - Inexpensive power to satisfy their high electrical demand.
 - Water can be used to cool its massive server-filled facility directly rather than relying on more expensive A/C.
 - Lawrence Livermore National Laboratory
 - Building for Terascale Simulation Facility: \$55M
 - Electrical Costs: \$14M/year to power and cool.
- Productivity
 - Downtime means no compute time, i.e., lost productivity.

Recent Trends in HPC

- Low(er)-Power Multi-Core Chipsets
 - AMD: Athlon64 X2 (2) and Opteron (2)
 - ARM: MPCore (4)
 - IBM: PowerPC 970 (2)
 - Intel: Smithfield (2) and Montecito (2)
 - PA Semi: PWRficient (2)
- Low-Power Supercomputing
 - Green Destiny (2002)
 - Orion Multisystems (2004)
 - BlueGene/L (2004)
 - MegaProto (2004)

October 2003 BG/L half rack prototype 500 Mhz 512 nodes/1024 proc. 2 TFlop/s peak 1.4 Tflop/s sustained

Perspective

FLOPS Metric of the TOP500

- Performance = Speed (as measured in FLOPS with Linpack)
- May not be "fair" metric in light of recent low-power trends to help address reliability, availability, and total cost of ownership.

The Need for a Different Performance Metric

- Performance = f(speed, "time to answer", power consumption, "up time", total cost of ownership, usability, ...)
- Easier said than done ...
 - Many of the above dependent variables are difficult, if not impossible, to quantify, e.g., "time to answer", TCO, usability, etc.
- The Need for a Green500 List
 - Performance = f(speed, power consumption) as speed and power consumption can be quantified.

- Introduction
 - What Is Performance?
 - Motivation: The Need for a Green500 List
- Challenges
 - What Metric To Choose?
 - Comparison of Available Metrics
- TOP500 as Green500
- Conclusion

Challenges for a Green500 List

- What Metric To Choose?
 - Energy-Delay Products, where n is a non-negative int.
 (borrowed from the circuit-design domain)
 - Variants of EDⁿ
 - Speed / Power Consumed
 - FLOPS / Watt, MIPS / Watt, and so on
- What To Measure? Obviously, energy or power ... but
 - Energy (Power) consumed by the computing system?
 - Energy (Power) consumed by the processor?
 - Temperature at specific points on the processor die?
- How To Measure Chosen Metric?
 - Power meter? But attached to what? At what time granularity should the measurement be made?

ED": Energy-Delay Products

- Original Application
 - Circuit Design
- Problem
 - For n ≥ 1, the metric is biased towards systems with a larger number of processors as the "delay component" (i.e., aggregate speed) dominates.
 - As n increases, the bias towards aggregate speed, and hence, HPC systems with larger numbers of processors, increases dramatically.

Variants of ED^n : $V_{\partial} = E^{(1-\partial)} D^{2(1+\partial)}$

- Negative values of ∂ (particularly more negative values) marginally offset the bias of the EDⁿ towards speed.
 - In our benchmarking, they produced identical rankings to the EDⁿ metric.
- Positive values of ∂ place greater emphasis on performance.
 - As ∂ increases towards one, the metric approaches the limit $E^{0}D^{4}$ and behaves more like the standard FLOPS metric, which is used for TOP500 List.

Metric of Choice: FLOPS / Watt (again)

- Introduction
 - What Is Performance?
 - Motivation: The Need for a Green500 List

Challenges

- What Metric To Choose?
- Comparison of Available Metrics
- TOP500 as Green500
- Conclusion

Efficiency of Four-CPU Clusters

Name	CPU	LINPACK (Gflops)	Avg Pwr (Watts)	Time (s)	ED (*10 ⁶)	ED2 (*10 ⁹)	Flops/ W	V _{&0.5}
C1	3.6 <i>G</i> P4	19.55	713.2	315.8	71.1	22.5	27.4	33.9
C2	2.0 <i>G</i> Opt	12.37	415.9	499.4	103.7	51.8	29.7	47.2
C3	2.4 <i>G</i> Ath64	14.31	668.5	431.6	124.5	53.7	21.4	66.9
C4	2.2G Ath64	13.40	608.5	460.9	129.3	59.6	22.0	68.5
<i>C</i> 5	2.0G Ath64	12.35	560.5	499.8	140.0	70.0	22.0	74.1
C6	2.0G Opt	12.84	615.3	481.0	142.4	64.5	20.9	77.4
С7	1.8 <i>G</i> Ath64	11.23	520.9	549.9	157.5	86.6	21.6	84.3

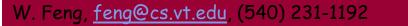
W. Feng, <u>feng@cs.vt.edu</u>, (540) 231-1192

🖳 VirginiaTech

Green500 Ranking of Four-CPU Clusters

Green500 Ranking							TOP 500	Power 500
Rank	ED	ED ²	ED ³	V _{∂=-0,5}	V _{æ0.5}	FLOPS /Watt	FLOPS	Watts
1	C1	C1	<i>C</i> 1	C1	C1	C2	<i>C</i> 1	C2
2	C2	C2	C2	C2	C3	<i>C</i> 1	C3	С7
3	<i>C</i> 3	<i>C</i> 3	<i>C</i> 3	<i>C</i> 3	<i>C</i> 4	C5	C4	C5
4	<i>C</i> 4	<i>C</i> 4	<i>C</i> 4	C4	C2	<i>C</i> 4	C6	C4
5	<i>C</i> 5	<i>C</i> 5	<i>C</i> 5	<i>C</i> 5	<i>C</i> 5	<i>C</i> 7	C2	C6
6	<i>C</i> 6	<i>C</i> 6	<i>C</i> 6	<i>C</i> 6	C6	<i>C</i> 3	C5	<i>C</i> 3
7	С7	С7	С7	С7	С7	C6	С7	C1

W. Feng, <u>feng@cs.vt.edu</u>, (540) 231-1192


🖳 Virginia Tech

- Introduction
 - What Is Performance?
 - Motivation: The Need for a Green500 List

Challenges

- What Metric To Choose?
- * Comparison of Available Metrics
- TOP500 as Green500
- Conclusion

		0		
Name	Linpack	Peak Power	MFLOPS/W	TOP500 Rank
BlueGene/L	367,000	2,500	146.80	1
ASC Purple	77,824	7,600	10.24	3
Columbia	60,960	3,400	17.93	4
Earth Simulator	40,960	11,900	3.44	7
MareNostrum	42,144	1,071	39.35	8
Jaguar-Cray XT3	24,960	1,331	18.75	10
ASCQ	20,480	10,200	2.01	18
ASC White	12,288	2,040	6.02	47

W. Feng, <u>feng@cs.vt.edu</u>, (540) 231-1192

TOP500		
Relative Rank	TOP500	Green500
1	BlueGene/L (IBM)	BlueGene/L (IBM)
2	ASC Purple (IBM)	MareNostrum (IBM)
3	Columbia (SGI)	Jaguar-Cray XT3 (Cray)
4	Earth Simulator (NEC)	Columbia (SGI)
5	MareNostrum (IBM)	ASC Purple (IBM)
6	Jaguar-Cray XT3 (Cray)	ASC White (IBM)
7	ASC Q (HP)	Earth Simulator (NEC)
8	ASC White (IBM)	ASC Q (HP)

Conclusion

Metrics for a Green500 Supercomputer List

- Still no definitive metric to use
 - By process of elimination, we converged on FLOPS/watt, which is relatively easy to derive from the TOP500 Supercomputer List.
- Insight with respect to current metrics
- Insight with respect to when to use processor energy (or power) versus system energy (or power)

TOP500 as Green500

From the data presented, IBM and Cray make the most energy-efficient HPC systems today.

For More Information

 Visit "Supercomputing in Small Spaces" at <u>http://sss.lanl.gov</u>

- Soon to be re-located to Virginia Tech
- Contact Wu-chun Feng (a.k.a. "Wu")
 - ✤ E-mail: <u>feng@cs.vt.edu</u>
 - Phone: (540) 231-1192
 - Mailing Address
 - 2200 Kraft Drive Department of Computer Science Virginia Tech Blacksburg, VA 24060

