
Move.Me Network Protocol

© 2011 Sony Computer Entertainment Inc.
All Rights Reserved.

SCE Confidential

SCE CONFIDENTIAL

©SCEI Move.Me Network Protocol

- 2 -

Table of Contents
1 Move.Me Overview .. 3

Samples and libraries ... 3

Reference Materials .. 4

2 Network Model and Data Packets .. 5
Data Endian Format .. 5

UDP Data Packets .. 5

Camera Frame Slice Packets ... 6

Camera Frame State Packet .. 6

3 Client Commands ... 7
Client Command Payload Types ... 7

Client Commands ... 8

4 Packet Layouts .. 15

SCE CONFIDENTIAL

©SCEI Move.Me Network Protocol

1 Move.Me Overview
The Move.Me server is a software application for the PlayStation®3 that opens an easier path to
developing applications on the PlayStation®Move platform.

The PlayStation®Move is a combination of the PlayStation®3 system, the PlayStation®Eye camera, and
the PlayStation®Move motion controller. The sphere at the end of the motion controller allows the camera
to pinpoint your movement and position within the room.

Figure 1 PlayStation®Move Motion Controller

Move.Me hooks up your PC to the PlayStation®Move platform: with the Move.Me server you can use the
PlayStation®Move motion controller as an input device to supply sensor data to your PC application.

The Move.Me server resides on a PlayStation®3, but Move.Me allows you to use the rich controls and
processing power of the platform without the need for access to the PlayStation®3 SDK, an NDA, or
Game developer license.

Move.Me provides a streamlined development system to support academic, student, and research use,
lending itself particularly to in-house and prototype applications. We are excited about the possibilities
for the PlayStation®Move platform to enrich projects as diverse as:

 Human-computer interaction

 Motor skills rehabilitation

 Research into game and user-interface design

 Research into augmented reality

 Interactive multimedia

 Non-commercial game development

 Other non-game applications

Samples and libraries

Move.Me sample programs are available in C# and C from:

http://code.google.com/p/moveme

C# Samples

The C# samples include a PSMoveSharp library that handles the network communication and can be
reused by other C# applications. The C# samples also include an Augmented Reality demo, a diagnostic
application, and a mouse driver allowing you to move the cursor by pointing the PlayStation®Move
motion controller at the screen as a laser pointer.

C Samples

The C samples include a library that handles network communication and can be reused by other C
applications. These samples work both under Windows and Linux.

SCE CONFIDENTIAL

©SCEI Move.Me Network Protocol

- 4 -

Reference Materials

This documentation set includes the following Move.Me materials:

 Move.Me Network Protocols — This document. Describes the interface between the Move.Me system
and the PC application, including the command set, the data packet contents, and other information
you'll need to develop augmented reality applications.

 Move.Me User's Guide — Describes the user interface of the Move.Me server, used to configure the
connection between the PlayStation®3 and the PC and to follow the status of the camera and motion
controller.

SCE CONFIDENTIAL

©SCEI Move.Me Network Protocol

2 Network Model and Data Packets
The Move.Me server accepts connections over TCP on port 7899. The server supports up to four
simultaneous connections from clients. Once a client has connected over TCP, it sends a the initialization
command to the server along with a UDP port for the server to use when sending data to the client.

After the client sends the initialization command, the server sends the state of all of the motion controllers
and navigation controllers at a regular interval. This interval is configurable by the client by sending the
DELAY_CHANGE command.

The TCP connection between the client and server is only used when the client wants to send a command
to the server. The server will never send data to the client over the TCP channel.

Figure 2 Move.Me Client/Server Environment

Data Endian Format

All data sent from Move.Me server is in big endian format and all sent to the Move.Me server must be in
big endian format.

UDP Data Packets

UDP data packets sent from the Move.Me server contain a fixed-size header followed by a variable-sized
payload. The header consist of the fields listed in Table 1:

Table 1 UDP Data Packet Header

Name Byte Offset Byte Size Meaning
Magic 0 4 A magic number: 0xff0000dd
Server version 4 4 The server version: 0x1
Payload code 8 4 A code indicating the contents of the payload

SCE CONFIDENTIAL

©SCEI Move.Me Network Protocol

- 6 -

Name Byte Offset Byte Size Meaning
Payload length 12 4 The length of the payload in bytes
Packet index 16 4 An ever increasing packet index number

The server can send three different payload types:

 Standard state packet, which has the payload code of 0x1

 Camera frame slice, which has the payload code of 0x2.

 Camera frame state, which has a payload code of 0x3.

The packet index can be used to connect payloads that are received across different packets. For example,
a camera frame slice payload and a camera frame state payload are from the same point in time if their
packet indexes are the same. This is important when it comes to augmented reality applications where
you must be using the inertial state from the time that the image was taken.

See “Packet Layouts” for details.

Camera Frame Slice Packets

The image from the camera is sent from the Move.Me server in horizontal “slices”. The number of slices is
configurable using the SET_SLICES command. The number of slices is a global configuration item that
affects all attached clients. Each camera frame slice packet has a 60 KB buffer used to store image data for
that slice. The image data is sent in JPG format. Each slice packet contains all of the JPG data for that slice.

The resolution of the camera is 640 x 480 pixels per inch. If, for example, the server was configured to slice
the camera frame into four slices, the first slice would contain the first 120 rows of the image, the second
slice would contain rows 120 to 240, and so on.

Each camera frame packet includes the slice number and the number of slices that frame is being sent over
in (for example, slice 2 of 4). This allows the client application to be able to determine where to draw each
slice.

Image slices from the same camera frame will all share the same packet index.

To have a complete camera frame, the client must use a buffering mechanism. Assuming a 640 x 480
bitmap image containing the completed image, the client would also have temporary buffers for each of
the image slices. After collecting all of the image slices for a given camera frame, these are atomically
copied over the 640 x 480 completed image.

Camera Frame State Packet

Augmented reality applications display the video feed of the player and render something into the
players hand. To do this properly, the client program must have a complete camera frame and a motion
controller state packet (inertial sensors, position, and so on) that was computed at the time the camera
captured the frame. If you have the state of the controller slightly before or after the frame of video was
captured you won’t be able to seamlessly display, for example, a sword in the player’s hand.

The Move.Me server provides two kinds of state packets:

 Standard state packet, payload code 0x1, which includes the most recent data from the motion
controller. In most cases, this state will be ahead of (more recent than) the video.

 Camera frame state packet, payload code 0x3, which is from the exact moment in time that the
camera took the picture that the application will display.

Each state packet contains the same controller data, including the position, orientation, and acceleration.
However, the standard state packet is sampled at 180 Hz while the camera frame state packet is sampled
at 60 Hz (same as video).

SCE CONFIDENTIAL

©SCEI Move.Me Network Protocol

- 7 -

3 Client Commands

The client application can send many different commands to the server. For example, the client can ask
the server to pause sending data packets and then later send the command to resume sending the data
packets. Each client command contains a fixed size header identifying the client command followed by a
variable sized payload associated with the command. The header consist of the fields listed in Table 2:

Table 2 Client Command Header

Name Byte Offset Byte Size Meaning
Client request 0 4 A magic number identifying the request
Payload length 4 4 The length of the payload in bytes

There is no reply from the server after a client request. For most requests, the application can determine if
the request was successful by looking at the next state packet. During development, you can check for
success by looking at the on-screen server log available in the Move.Me user interface. For example, if the
client requests a particular PlayStation®3 Move motion controller be calibrated, the on-screen log will
show that the request was made and the result of it. In addition, the next state packet received from the
server will have the new status code for that motion controller.

Client Command Payload Types

There are five different client command payload structures. The following define the data types and
layout.

Table 3 Client Command Payload Types

Integer client command payload (a)

Name Byte Offset Byte Size Type
payload 0 4 Unsigned 32-bit integer

Rumble client command payload (b)

Name Byte Offset Byte Size Type
gem_num 0 4 Unsigned 32-bit integer
Rumble 4 4 Unsigned 32-bit integer

Force RGB client command payload (c)

Name Byte Offset Byte Size Type
gem_num 0 4 Unsigned 32-bit integer
r 4 4 IEEE-754 single precision float
g 8 4 IEEE-754 single precision float
b 12 4 IEEE-754 single precision float

Set tracking hues client command payload (d)

Name Byte Offset Byte Size Type
gem0_hue 0 4 Unsigned 32-bit integer
gem1_hue 4 4 Unsigned 32-bit integer
gem2_hue 8 4 Unsigned 32-bit integer
gem3_hue 12 4 Unsigned 32-bit integer

Prepare camera command payload (e)

Name Byte Offset Byte Size Type
max_exposure 0 4 Unsigned 32-bit integer
image_quality 4 4 IEEE-754 single precision float

SCE CONFIDENTIAL

©SCEI Move.Me Network Protocol

- 8 -

Client Commands

This section defines each client command, including the command description, the client request code, the
payload type, and a description of what should be stored in the payload section. The command names are
for reading convenience only: the client request code is used to call the command. The payload types are
described in “Client Command Payload Types”.

Table 4 summarizes the client commands; the rest of the chapter describes the commands in more detail.

Table 4 Client Command Summary

Command Short Name Client Request
Code

Payload
Type

Description

INIT 0x0 (a) Initialize UDP data communications
PAUSE STATE 0x1 n/a Pause standard state packet

communications
RESUME STATE 0x2 n/a Resume standard state packet

communications
SET STATE DELAY 0x3 (a) Change the delay between standard state

packets
CONFIG CAMERA 0x4 (e) Configure the PS Eye camera
CALIBRATE 0x5 (a) Calibrate a PlayStation®Move motion

controller
LASER LEFT PLANE 0x7 (a) Set laser pointer left plane position
LASER RIGHT PLANE 0x8 (a) Set laser pointer right plane position
LASER BOTTOM PLANE 0x9 (a) Set laser pointer bottom plane position
LASER TOP PLANE 0x10 (a) Set laser pointer top plane position
TURNON LASER 0x11 (a) Enable laser pointer tracking
TURNOFF LASER 0x12 (a) Disable laser pointer tracking
RESET 0x13 (a) Reset a PlayStation®Move motion

controller
POSITION LEFT PLANE 0x14 (a) Set position pointer left plane position
POSITION RIGHT PLANE 0x15 (a) Set position pointer right plane position
POSITION BOTTOM PLANE 0x16 (a) Set position pointer bottom plane position
POSITION TOP PLANE 0x17 (a) Set position pointer top plane position
TURNON POSITION 0x18 (a) Enable position pointer tracking
TURNOFF POSITION 0x19 (a) Disable position pointer tracking
SET SPHERE COLOR 0x20 (c) Force the sphere to an explicit R,G,B color
SET RUMBLE 0x21 (b) Adjust the rumble of a PlayStation®Move

motion controller
SET SPHERE TRACK
COLOR

0x22 (d) Change the tracking hues of all
PlayStation®Move motion controllers

SET FRAME DELAY 0x23 (a) Change the delay between camera frame
packets

SET SLICES 0x24 (a) Configure the number of horizontal slices
each camera frame is sent in

PAUSE FRAME 0x25 n/a Pause camera frame packet
communications

RESUME FRAME 0x26 n/a Resume camera frame packet
communications

INIT

Initialize UDP data communications.

SCE CONFIDENTIAL

©SCEI Move.Me Network Protocol

- 9 -

Command Code

0x0

Payload Type/Content

Integer client command payload (a)

The payload contents is the UDP port that the client wants the server to send to.

PAUSE STATE

Pause standard state packet communications.

Command Code

0x1

Payload Type/Content

There is no payload.

RESUME STATE

Resume standard state packet communications.

Command Code

0x2

Payload Type/Content

There is no payload.

SET STATE DELAY

Change the delay between standard state packets.

Command Code

0x3

Payload Type/Content

Integer client command payload (a)

The delay is the number of milliseconds between state packets.

CONFIG CAMERA

Configure the PlayStation®Eye camera.

Command Code

0x4

Payload Type/Content

Prepare camera command payload (e)

The payload consists of:

max_exposure The number of image rows of exposure time. The range is from 40 to 511. The
longer the exposure time means decreased image noise but increased motion
blur, which has a negative effect on sphere tracking.

image_quality An image quality control knob ranging from 0.0 to 1.0.

SCE CONFIDENTIAL

©SCEI Move.Me Network Protocol

- 10 -

CALIBRATE

Calibrate a PlayStation®Move motion controller.

Command Code

0x5

Payload Type/Content

Integer client command payload (a)

The payload is the PlayStation®Move motion controller number (0-3). Initiates calibration of specified
motion controller, controller should be pointed at camera for best performance.

LASER LEFT PLANE

Set laser pointer left plane position.

Command Code

0x7

Payload Type/Content

Integer client command payload (a)

The payload is the PlayStation®Move motion controller number (0-3). The motion controller should be
pointed at the left side of the display. Specifies the left side of the laser pointer box.

LASER RIGHT PLANE

Set laser pointer right plane position.

Command Code

0x8

Payload Type/Content

Integer client command payload (a)

The payload is the PlayStation®Move motion controller number (0-3). The motion controller should be
pointed at the right side of the display. Specifies the right side of the laser pointer box.

LASER BOTTOM PLANE

Set laser pointer bottom plane position.

Command Code

0x9

Payload Type/Content

Integer client command payload (a)

The payload is the PlayStation®Move motion controller number (0-3). The motion controller should be
pointed at the bottom side of the display. Specifies the bottom side of the laser pointer box.

LASER TOP PLANE

Set laser pointer top plane position.

Command Code

0x10

SCE CONFIDENTIAL

©SCEI Move.Me Network Protocol

- 11 -

Payload Type/Content

Integer client command payload (a)

The payload is the PlayStation®Move motion controller number (0-3). The motion controller should be
pointed at the top side of the display. Specifies the top side of the laser pointer box.

TURNON LASER

Enable laser pointer tracking.

Command Code

0x11

Payload Type/Content

Integer client command payload (a)

The payload is the PlayStation®Move motion controller number (0-3). Enables laser pointer coordinate
tracking for specified Move.

TURNOFF LASER

Disable laser pointer tracking.

Command Code

0x12

Payload Type/Content

Integer client command payload (a)

The payload is the PlayStation®Move motion controller number (0-3). Disables laser pointer
coordinate tracking for specified Move.

RESET

Reset a PlayStation®Move motion controller.

Command Code

0x13

Payload Type/Content

Integer client command payload (a)

The payload is the PlayStation®Move motion controller number (0-3). Resets the given motion
controller.

POSITION LEFT PLANE

Set position pointer left plane position.

Command Code

0x14

Payload Type/Content

Integer client command payload (a)

See laser pointer client commands. This pointer only uses the PlayStation®Move motion controller’s
position to calculate pointer coordinates. The best real world analogy for a position pointer is a paint
brush.

SCE CONFIDENTIAL

©SCEI Move.Me Network Protocol

- 12 -

POSITION RIGHT PLANE

Set position pointer right plane position.

Command Code

0x15

Payload Type/Content

Integer client command payload (a)

See laser pointer client commands. This pointer only uses the PlayStation®Move motion controller’s
position to calculate pointer coordinates. The best analogy for a position pointer is a paint brush.

POSITION BOTTOM PLANE

Set position pointer bottom plane position.

Command Code

0x16

Payload Type/Content

Integer client command payload (a)

See laser pointer client commands. This pointer only uses the PlayStation®Move motion controller’s
position to calculate pointer coordinates. The best analogy for a position pointer is a paint brush.

POSITION TOP PLANE

Set position pointer top plane position.

Command Code

0x17

Payload Type/Content

Integer client command payload (a)

See laser pointer client commands. This pointer only uses the PlayStation®Move motion controller’s
position to calculate pointer coordinates. The world analogy for a position pointer is a paint brush.

TURNON POSITION

Enable position pointer tracking.

Command Code

0x18

Payload Type/Content

Integer client command payload (a)

See laser pointer client commands. This pointer only uses the PlayStation®Move motion controller’s
position to calculate pointer coordinates. The best analogy for a position pointer is a paint brush.

TURNOFF POSITION

Disable position pointer tracking.

Command Code

0x19

SCE CONFIDENTIAL

©SCEI Move.Me Network Protocol

- 13 -

Payload Type/Content

Integer client command payload (a)

See laser pointer client commands. This pointer only uses the PlayStation®Move motion controller’s
position to calculate pointer coordinates. The best analogy for a position pointer is a paint brush.

SET SPHERE COLOR

Force the sphere to an explicit R,G,B color.

Command Code

0x20

Payload Type/Content

Force RGB client command payload (c)

The payload is the PlayStation®Move motion controller number (0-3). Followed by the red, green and
blue color specified from 0.0-1.0 floating point. When a sphere has been forced to a specific RGB color,
sphere tracking is disabled. This has the largest impact on position tracking.

SET RUMBLE

Adjust the rumble of a PlayStation®Move motion controller.

Command Code

0x21

Payload Type/Content

Rumble client command payload (b)

The payload is the PlayStation®Move motion controller number (0-3). Followed by the rumble value
from 0 (off) to 255 (full on). When the rumble is on, the inertial sensors inside the motion controller are
affected and lose some precision.

SET SPHERE TRACK COLOR

Change the tracking hues of all PlayStation®Move motion controllers.

Command Code

0x22

Payload Type/Content

Set tracking hues client command payload (d)

The payload is the tracking hue for each of the PlayStation®Move motion controllers. All of the sphere
tracking hues must set together. Each hue ranges from 0-359. The hues are only requests, Move.Me
may move the hues apart from each other so that they can all be tracked. If the hue doesn’t matter, it
can be specified as ‘4<<24’. If a sphere shouldn’t be tracked it can be specified as ‘8<<24’.

SET FRAME DELAY

Change the delay between camera frame packets.

Command Code

0x23

Payload Type/Content

Integer client command payload (a)

SCE CONFIDENTIAL

©SCEI Move.Me Network Protocol

- 14 -

The payload is the number of milliseconds between each camera frame packet. This ranges from
16-255 ms.

SET SLICES

Configure the number of horizontal slices in which each camera frame is sent.

Command Code

0x24

Payload Type/Content

Integer client command payload (a)

The payload is the number of horizontal slices each camera frame is sent in. Each slice is sent in a
separate packet. This ranges from one to seven slices. Typically, no more than two slices are needed.

PAUSE FRAME

Pause camera frame packet communications.

Command Code

0x25

Payload Type/Content

No payload.

RESUME FRAME

Resume camera frame packet communications.

Command Code

0x26

Payload Type/Content

No payload.

SCE CONFIDENTIAL

©SCEI Move.Me Network Protocol

- 15 -

4 Packet Layouts
The following tables describe the packet layouts corresponding to the UDP data packets sent from the
Move.Me server to the client in response to specific client commands.

Table 5 Constants

Constant Value
PSMOVE_PACKET_MAGIC 0xff0000dd
PSMOVE_PACKET_CODE_STANDARD_STATE 0x1
PSMOVE_PACKET_CODE_CAMERA_FRAME_SLICE 0x2
PSMOVE_PACKET_CODE_CAMERA_FRAME_STATE 0x3
PSMOVE_SERVER_MAX_CONS 4
PSMOVE_SERVER_MAX_NAVS 7
IMAGE_BUFFER_SIZE 61440
CAMERA_FRAME_SPLIT_FORMAT_JPG 0x1
MAXIMUM_CAMERA_FRAME_SLICES 7
CELL_PAD_MAX_CODES 64

Table 6 Type Definitions

TypeDef Value
unsigned char u8_t
unsigned short u16_t
unsigned int u32_t
int i32_t
unsigned long long u64_t
float float4[4]

Table 7 Packet Payloads

Name Type Offset Size Contents
PSMoveServerPacketHeader struct 20 Header describing the packet
magic u32_t 0 4 0xff0000dd
move_me_server_version u32_t 4 4 1
payload_code u32_t 8 4 Code describing payload
payload_length u32_t 12 4 Number of bytes in payload (these

bytes are immediately after the
header)

packet_index u32_t 16 4 An ever increasing counter over
time

PSMoveConnectionConfig struct 12 Client configuration state
ms_delay_between_standard_packets u32_t 0 4 Number of milliseconds between

state packets
ms_delay_between_camera_frame_packets u32_t 4 4 Number of milliseconds between

camera frame slice packets
camera_frame_packet_paused u32_t 8 4 Camera frame paused
PSNavPadInfo struct 28 Connection state of all navigation

controllers
port_status[PSMOVE_SERVER_MAX_NAVS] u32_t 0 28 Bit0 is whether or not controller

connected. Bit1 if something
changed

PSNavPadData struct 132 Button data for each connected
navigation controller

len i32_t 0 4 Length of button data
button[CELL_PAD_MAX_CODES] u16_t 4 128 Button bitmask
PSMovePadData struct 4
digitalbuttons u16_t 0 2 Digital button on motion controller

bitmask
analog_T u16_t 2 2 Analog T value

SCE CONFIDENTIAL

©SCEI Move.Me Network Protocol

- 16 -

Name Type Offset Size Contents
PSMoveState struct 176 State of a motion controller
pos float4 0 16 Position of sphere
vel float4 16 16 Velocity of Sphere
accel float4 32 16 Acceleration of sphere
quat float4 48 16 Orientation of motion controller

(quaternion)
angvel float4 64 16 Angular velocity
angaccel float4 80 16 Angular acceleration
handle_pos float4 96 16 Handle position
handle_vel float4 112 16 Handle velocity
handle_accel float4 128 16 Handle acceleration
pad PSMovePadData 144 4 Digital buttons and analog T button

data
timestamp i64_t 152 8 Timestamp
temperature float 160 4 Temperature of controller
camera_pitch_angle float 164 4 Current camera pitch angle
tracking_flags u32_t 168 4 Tracking flags
PSMoveImageState struct 48
frame_timestamp i64_t 0 8 Frame time stamp
timestamp i64_t 8 8 Timestamp for when the sphere was

actually imaged; includes exposure
time adjustments

u float 16 4 Horizontal pixel center of sphere
v float 20 4 Vertical pixel center of sphere
r float 24 4 Radius of sphere in pixels
projectionx float 28 4 Normalized horizontal projection of

sphere position
projectiony float 32 4 Normalized vertical projection of

sphere position
distance float 36 4 Distance from camera origin to the

sphere
visible u8_t 37 1 Whether sphere was visible on the

camera
r_valid u8_t 38 1 Whether or not r was calculated this

frame. If 0, r and distance are old.
PSMoveCameraState struct 20
exposure int 0 4 Camera exposure setting (in image

rows)
exposure_time float 4 4 Camera exposure setting (in

seconds)
gain float 8 4 Gain (1.0 to 4.0)
pitch_angle float 12 4 Camera pitch angle used for state

computation
pitch_angle_estimate float 16 4 Current camera pitch angle estimate
PSMoveSphereState struct 20
tracking u32_t 0 4 Is tracking enabled?
tracking_hue u32_t 4 4 Tracking hue
r float 8 4 Red component of sphere LED
g float 12 4 Green component of sphere LED
b float 16 4 Blue component of sphere LED

SCE CONFIDENTIAL

©SCEI Move.Me Network Protocol

- 17 -

Name Type Offset Size Contents
PSMovePointerState struct 12
valid u32_t 0 4 Whether or not normalized_x, y is

valid
normalized_x float 4 4 Normalized laser pointer

coordinates in X
normalized_y float 8 4 Normalized laser pointer

coordinates in Y

PSMovePositionPointerState struct 12
valid u32_t 0 4 Whether or not normalized_x, y is

valid
normalized_x float 4 4 Normalized position pointer

coordinates in X
normalized_y float 8 4 Normalized position pointer

coordinates in Y
PSMoveStatus struct 16
connected u32_t 0 4 Is motion controller connected?
code u32_t 4 4
flags u64_t 8 8 Motion controller status flags
PSMoveServerPacket struct Entire packet for payload_code ==

PSMOVE_PACKET_CODE_STAN-
DARD_STATE and payload_code
== PSMOVE_PACKET_CODE_-
CAMERA_FRAME_STATE

header PSMoveServer
PacketHeader

0 20

server_config PSMoveServer
Config

20 8

client_config PSMoveConnect
ionConfig

28 12

status[PSMOVE_SERVER_MAX_CONS] PSMoveStatus 40 64
state[PSMOVE_SERVER_MAX_CONS] PSMoveState 104 704
image_state[PSMOVE_SERVER_MAX_CONS] PSMoveImage

State
808 192

pointer_state[PSMOVE_SERVER_MAX_CONS] PSMovePointer
State

1000 48

pad_info PSNavPadInfo 1048 28
pad_data[PSMOVE_SERVER_MAX_NAVS] PSNavPadData 1076 924
sphere_state[PSMOVE_SERVER_MAX_CONS] PSMoveSphere

State
2000 80

camera_state PSMoveCamera
State

2080 20

position_pointer_state[PSMOVE_SERVER_
MAX_CONS]

PSMovePosition
PointerState

2100 48

