HPC on Wall Street King Abdullah University of Science and Technology
HPCwire

Since 1986 - Covering the Fastest Computers
in the World and the People Who Run Them

Language Flags

Datanami
Digital Manufacturing Report
HPC in the Cloud

Tabor Communications
Corporate Video

Pittsburgh Supercomputing Biomedical Research Program Receives Extension


PITTSBURGH, PA, July 11 -- The National Resource for Biomedical Supercomputing (NRBSC) at the Pittsburgh Supercomputing Center (PSC) just completed soliciting proposals for another round of research with Anton, a special-purpose supercomputer designed by D. E. Shaw Research (DESRES) that has enabled researchers to achieve exceptional results in the simulation of biomolecules.

Anton allows researchers to execute ultra-fast “molecular dynamics” (MD) simulations of proteins and nucleic acids, such as DNA and RNA, over much longer time periods than have previously been accessible to computational study. Insights into biomolecular structure and function facilitated by the use of Anton could potentially lead to the development of new and better therapeutic drugs and other improvements in disease treatment.

“Anton performs MD simulations up to 100 times faster than conventional supercomputers,” says Markus Dittrich of NRBSC, “making it possible for the first time to simulate the behavior of proteins over more than a millisecond of biological time. The availability of these extended timescales has opened a new window on many important biological processes.”

Although Anton machines had been used in DESRES’s own internal research program since late 2008, the NRBSC program—in which DESRES provided an Anton machine without cost for non-commercial research use by scientists —marked the first time one of them has been available to the general biomedical community. Initial funding to cover operational costs of Anton at PSC came from a $2.7 million “Grand Opportunities” grant to NRBSC from the National Institute of General Medical Sciences of the National Institutes of Health. In the first and second rounds of awards, announced in September 2010 and September 2011, Anton time was allocated to a total of 91 research groups by a panel of experts convened by the National Research Council (NRC) of the National Academies. Based in part on research advances made in these first two rounds of allocations, DESRES has extended access to this resource beyond the scheduled end date of August 31, 2012. Third-round allocations will be awarded by an NRC panel in late 2012, and will be made to a combination of new and previous awardees.

Results from this work include progress on the “protein-folding problem,” a widely studied question in molecular biology. Proteins are formed in the cell as a string of amino acids, and over a course of time (hundreds of microseconds or longer, depending on the protein) this shapeless string folds into a specific three-dimensional structure. The ability of a protein with a given amino-acid sequence to fold into its characteristic three-dimensional structure is crucial for living cells; misfolded proteins not only lose their functions, but can also cause diseases, including Alzheimer’s and Huntington’s disease.

Relying on Anton, a team of scientists led by Martin Gruebele and Klaus Schulten of the University of Illinois, Urbana-Champaign, successfully simulated the folding of an 80 amino acid protein (lambda-repressor).  Their findings (Journal of Physical Chemistry, April 2012) showed a folded result in good agreement with experiment, and went beyond experiment to show new information about the folded form of the protein.

Out of billions of possible shapes that the protein could assume, the MD simulation shows it arriving at the form it takes in nature. “This field is undergoing a revolution,” says Schulten. “It began with folding very small proteins, but now with Anton, we are able to fold larger, more natural proteins. This is a stepping stone toward solving this very important problem.”

Other research with Anton at NRBSC has led to many new findings and publications, which include:

• insight into the mechanism of the signaling protein integrin, which allows the cell to respond to changes in its environment, such as to instigate blood clotting in response to the stress of an open wound;

• details of how “voltage-sensing domains” in ion-channel proteins—proteins that allow ions, such as potassium and sodium, to flow into and out of cells—change their structure in response to changes in electrical potential;

• details of how a particular G-protein coupled receptor (GPCR), known as rhodopsin, activates in response to light. GPCRs are transmembrane proteins, the malfunction of which is involved in many diseases, and the target protein for approximately 40 percent of all modern medicinal drugs;

• simulations of how a prominent anti-cancer drug, gefitinib, interacts with the epidermal growth factor receptor (EGFR), helping to explain how the drug’s effectiveness has been found to be greatest in cancers with mutated and overactive EGFR.

“We are thrilled about the impact that Anton has had over the last two years”, says Markus Dittrich of the NRBSC, “and we are excited to be able to offer continued access to this great resource for the biomedical community.”

About NRBSChttp://www.nrbsc.org

About PSC:  http://www.psc.edu

-----

Source: PSC

 

 

HPCwire on Twitter

Discussion

There are 0 discussion items posted.

Join the Discussion

Join the Discussion

Become a Registered User Today!


Registered Users Log in join the Discussion

July 13, 2012

July 12, 2012

July 11, 2012

July 10, 2012

July 09, 2012

July 06, 2012

July 05, 2012

July 04, 2012

July 03, 2012

July 02, 2012


Supermicro

Feature Articles

DOE Primes Pump for Exascale Supercomputers

Intel, AMD, NVIDIA, and Whamcloud have been awarded tens of millions of dollars by the US Department of Energy (DOE) to kick-start research and development required to build exascale supercomputers. The work will be performed under the FastForward program, a joint effort run by the DOE Office of Science and the National Nuclear Security Administration (NNSA) that will focus on developing future hardware and software technologies capable of supporting such machines.
Read more...

Hybrid Memory Cube Angles for Exascale

Computer memory is currently undergoing something of an identity crisis. For the past 8 years, multicore microprocessors have been creating a performance discontinuity, the so-called memory wall. It's now fairly clear that this widening gap between compute and memory performance will not be solved with conventional DRAM products. But there is one technology under development that aims to close that gap, and its first use case will likely be in the ethereal realm of supercomputing.
Read more...

Green500 Turns Blue

The latest Green500 rankings were announced last week, revealing that top performance and power efficiency can indeed go hand in hand. According to the latest list, the greenest machines, in fact the top 20 systems, were all IBM Blue Gene/Q supercomputers. Blue Gene/Q, of course, is the platform that captured the number one spot on the latest TOP500 list, and is represented by four of the ten fastest supercomputers in the world.
Read more...

Around the Web

New Mexico to Pull Plug on Encanto, Former Top 5 Supercomputer

Jul 12, 2012 | State says supercomputing center can’t pay bills to keep machine running.
Read more...

Computer Program Learns Games by Watching People

Jul 11, 2012 | Computer scientist builds intelligent machine with single-core laptop and some slick algorithms.
Read more...

Helix Nebula Cloud Targets European Scientific Research

Jul 10, 2012 | Science cloud in proof-of concept stage.
Read more...

Plug In and Power Down

Jul 09, 2012 | EU project offers software that makes datacenters more energy-efficient.
Read more...

Keeping Moore’s Law Alive

Jul 05, 2012 | Processor speed and power consumption are now at odds, which will force chipmakers to rethink their designs..
Read more...

Sponsored Whitepapers

Tackling the Data Deluge: File Systems and Storage Technologies

06/25/2012 | NetApp | A single hour of data collection can result in 7+ million files from just one camera. Collection opportunities are limited and must be successful every time. As defense and intelligence agencies seek to use the data collected to make mission-critical battlefield decisions, there’s greater emphasis on smart data and imagery collection, capture, storage and analysis to drive real-time intelligence. The data gathered must accurately and systematically be analyzed, integrated and disseminated to those who need it – troops on the ground. This reality leads to an inevitable challenge – warfighters swimming in sensors, drowning in data. With the millions, if not billions, of sensors providing all-seeing reports of the combat environment, managing the overload demands a file system and storage infrastructure that scales and performs while protecting the data collected. Part II of our whitepaper series highlights NetApp’s scalable, modular, and flexible storage solution to handle the demanding requirements of sophisticated ISR environments.

Sponsored Multimedia

Michael Wolfe Webinar: PGI Accelerator with OpenACC

Join Michael for a look at the first PGI Accelerator Fortran and C compilers to include comprehensive support for OpenACC, the new open standard for programming accelerators using compiler directives.

Think Tank HPCwire

Newsletters

The Portland Group

HPC Job Bank


Featured Events




  • September 24, 2012 - September 25, 2012
    ISC Cloud ‘12
    Mannheim,
    Germany




HPC Wire Events