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     Abstract 
 
A comparison of wind speed and wave height distributions is performed using a simplified probability 
distribution function similar to the Weibull distribution. In general, wind and wave data can be accurately 
fitted to this theoretical distribution. The distribution was specifically chosen because the higher moments 
of the distribution are easily manipulated mathematically, thus resulting in simple analytical representations 
for the associated power distributions. While the relative variability (defined as the ratio of the standard 
deviation of the distribution to its mean) of wind speeds and wave heights is generally comparable, this is 
not the case for their respective power distributions, which exhibit a greater variability for wind power than 
for wave power. This is due largely to the fact that, given an equivalent variability of the underlying 
distributions, wind power is a function of the cube of wind speed, while wave power is primarily a function 
of the square of wave height. In this sense, a wind power distribution is more “stretched out” than a wave 
power distribution. This outcome results in a much higher “capacity factor” for wave energy, compared to 
that of wind energy. 
 
 
 
1. Introduction 
 
Renewable energy sources are receiving much more attention now than even a few years ago. 
Wind and wave energy are two such sources and technologies based on these forms of energy 
have been developed seriously in recent times. Wind energy is generally considered to be about 
twenty years ahead of wave energy in its stage of development. 
 
Most forms of renewable energy implicitly entail variability. This variability has been a problem 
for developers, as energy retailers require a constant or, at least, a very predictable source of 
energy in order to minimise the need for reserve capacity on their electricity grid. Wind energy 
has come in for much criticism from some quarters for its supposed high level of variability. 
Wave energy will not be immune to this same criticism, although its higher level of predictability 
will reduce the need for spinning reserve capacity.  
 
This paper attempts to construct a framework which demonstrates that wave energy is, in fact, 
substantially less variable than wind energy. This is not to say that wind speeds themselves are 
necessarily more variable than wave heights and periods. However, the functional relationship 
between wind power and the cube of the wind speed contrasts somewhat with the corresponding 
relationship between wave power and the square of wave height. Wave power also relies, to a 
much lesser degree, on wave period, but the incorporation of this parameter into the data does not 
significantly increase the variance of the subsequent power distribution. 
 
This lower variability of wave power can be considered a major advantage in terms of providing a 
more reliable source of energy, but also because it allows the generator used in any wave energy 
technology to be more precisely rated, resulting in a higher degree of electrical efficiency. This 
has major implications for the often discussed concept of capacity factor, which is, therefore, 
implicitly much higher for wave energy.  
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2. Fitting wind and wave data to a mathematically tractable theoretical distribution 
 
Wind speed and wave height data have traditionally been fitted to Weibull or Rayleigh 
distributions, the latter being a special case of the former with shape parameter equal to two. In 
general, a Weibull distribution represents the reality of these distributions quite well, but it is not 
particularly easy to work with mathematically. Rayleigh distributions, while simpler, often do not 
do a good job of modeling the real data. In cases of bi-modal distributions, as can occur with 
wind data at certain locations, neither the Weibull nor Rayleigh distributions are at all accurate.  
 
One of the motivations for this paper is to represent wind and wave data accurately, while also 
providing a suitable framework for the simple mathematical determination of higher order 
moments, which is necessary for calculating the variance of the corresponding distributions of 
power. The distribution that was chosen bears close similarity to both the Weibull distribution 
and the gamma function. Its extra degree of freedom allows for a much better fit than is often the 
case with a Rayleigh distribution and, qualitatively, it competes on a par with the Weibull 
distribution for accuracy. It is also very simple to work with mathematically.  
 
The form of this distribution is  
 
 
   xn exxf µα −−= 1)(       (1) 
 
 
The three parameters ,, nα and µ  are chosen so that the curve optimally fits the real 
distribution. This is attained via a least squares minimization, constrained by the requirement to 
retain the same weighted mean and a sum of probabilities equal to unity.  
 
Several wind speed and wave height data sets were analyzed and the curve from equation (1) was 
optimally fitted to the distributions. These included wind speed data, taken at 10 metres height 
throughout the year 2000, at Amarillo, Texas, USA; Cold Bay, Alaska; Dodge City, Kansas; and 
Sandberg, California; and wave height data, recorded approximately one kilometre off-shore in 
22 metres of water depth at Port Kembla, Australia from 1987 to 1997; five kilometres off shore 
in 100m of water at Mokapu Point, Hawaii, during 1999-2000; three kilometres offshore in 50m 
of water at Bilbao, Spain, from 1985 to 1999; and approximately three kilometres off-shore in 50 
metres of water depth off Vancouver Island, Canada during 1993-95. The resulting curves are 
displayed in Figures 1 – 8, where both the real data curve (actual) and the curve of best fit (fitted) 
are illustrated in each figure, along with the value of the “best fit” parameters ,, nα and µ .  
 
As can be seen, the curve fits for the Amarillo, Dodge City, and Sandberg wind speed data and 
the Port Kembla and Hawaiian wave height data are exceptionally good. The other three data sets 
are represented quite well also, even though they were chosen because the real data curves were 
more unusually shaped, and it was expected it would be difficult to fit theoretical curves to these 
distributions. In general, the curve fits across the whole data set are very good. The conclusion is 
that the use of the statistical distribution of equation (1) in the representation of wind speed and 
wave height distributions is well justified.  
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Amarillo, Texas - Wind Speed, 2000
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                Source: www.stanford.edu 

   Figure 1 573.5,199.1 == nα ,µ  = 0.939 
 
 
 
 
 
 

Cold Bay, Alaska - Wind Speed, 2000
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                   Source: www.stanford.edu 
   Figure 2 774.2,717.3 == nα ,µ  = 0.364 
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Dodge City, KS - Wind Speed, 2000
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                    Source: www.stanford.edu 
   Figure 3 25.4,16.3 == nα ,µ  = 0.73 
 
 
 
 
 
 

Sandberg, CA - Wind Speed, 2000

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

0 5 10 15 20 25 30

Wind Speed (m/s)

Re
la

tiv
e 

Pr
ob

ab
ili

ty
 (%

)

Actual
Fitted

 
                    Source: www.stanford.edu 
   Figure 4 50.4,00.2 == nα ,µ  = 0.72 
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Port Kembla - Wave Height, 1987-97

-5.00

0.00

5.00

10.00

15.00

20.00

25.00

30.00

0 1 2 3 4 5

Wave Height (m)

R
el

at
iv

e 
P

ro
ba

bi
lit

y 
(%

)

Actual
Fitted

 
               Source: Port Kembla Port Corporation 

   Figure 5 582.7,31239 == nα ,µ  = 7.066 
 
 
 
 
 

Mokapu Pt, Hawaii - Wave Height 1999-2000
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                       Source: BRG Group 
   Figure 6 03.13,2310 == nα ,µ  = 6.51 
 
 
 
 



Energetech Australia Pty Limited 
February 2005 

 - 6 - 

Bilbao, Spain - Wave Height, 1985-99 
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              Source: Bilbao Port Authority 
   Figure 7 40.5,1437 == nα ,µ  = 3.79 
 
 
 
 
 
 
 

Vancouver Island, Canada - Wave Height, 1993-95
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               Source: BC Hydro 
   Figure 8 201.4,63.102 == nα ,µ  = 1.932 
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3. Calculation of moments 
 
The first moment of a distribution is its mean or average. This is then used to calculate the 
standard deviation of the distribution. However, in order to calculate the standard deviation of the 
square of a distribution (power from wave height) or cube of a distribution (power from wind 
speed), it is necessary to calculate higher order moments.  
 
In general, given the form of equation (1), the mth moment of the distribution is  
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Therefore, upon evaluating these integrals, the mth moment of such a distribution is 
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The corresponding variance is  
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Therefore, the standard deviation of the distribution (the square root of the variance) is  
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When comparing the variability of different distributions, the important measure is the relative 
variance or relative deviation. The relative deviation is defined as the ratio of the standard 
deviation to the mean of the distribution. Therefore, the relative deviation of the mth moment is  
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Interestingly, the relative deviation does not depend at all on the fitted distribution parameters 
α andµ . Instead, the relative variability of a distribution is entirely dependent on the fitted 
parameter n  and the degree of its moment m . 
 
 
4. Comparing the variability of wind speeds and wave heights 
 
Equation (9) provides a simple and convenient way to compare the variability of any two 
distributions fitted to a curve as defined in equation (1). Using equation (9), we see that the means 
(first moments), standard deviations, and relative deviations of the eight distributions examined 
above are as follows (note, the wind data are expressed in metres per second, while the wave data 
are in metres): 
 
     Table 1 
 
 Mean Standard Deviation Relative Deviation 
Amarillo, TX 5.932 2.513 0.424 
Cold Bay, AK 7.618 4.574 0.600 
Dodge City, KS 5.821 2.822 0.485 
Sandberg, CA 6.222 2.933 0.471 
Port Kembla, AUS 1.073 0.390 0.363 
Mokapu Point, HA 2.002 0.555 0.277 
Bilbao, Spain 1.427 0.614 0.430 
Vancouver Island, CAN 2.174 1.061 0.488 
 
 
It does make sense to compare actual means and standard deviations of these distributions, since 
this entails comparing the units of wind speeds with those of wave heights. However, comparison 
of the relative deviations is non-dimensional and, therefore, perfectly acceptable. The table above 
indicates there is no clear-cut statistically significant difference, in this small sample set, between 
wind speeds and wave heights in terms of their variability. The Hawaiian and Port Kembla wave 
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heights are the least variable of these eight data sets, followed by the Amarillo wind speeds and 
Bilbao wave heights. The most variable are the Vancouver wave heights and Cold Bay wind 
speeds. In fact, the latter two were specifically chosen because, in the interests of having a wide 
range of cases, they were expected to be more variable than the others. This is indeed the case. 
 
In general though, from this data, one cannot say that wind speeds are more or less variable than 
wave heights. They are of the same order of magnitude. A much more thorough analysis of many 
data sets of wind speeds and wave heights from around the world would be needed to justify a 
distinction between the two. Therefore, for the purposes of the conjecture of this paper, let it be 
assumed there is no intrinsic variability difference between wind speeds and wave heights. This 
assumption is consistent with the results of the small sample set of Table 1. 
 
 
 
5. Comparing the variability of wind power and wave power 
 
While there may not be any innate difference in the relative variability of wind speeds and wave 
heights, the same cannot be said of the corresponding distribution of power for the two 
phenomena. Under the assumption that the raw wind speed and wave height distributions have 
the same degree of variability, there must then be greater variability in the cube of such 
distributions compared to the square of these distributions.  
 
The power in swept area A for wind with a velocity u and an air density airρ , is given by  
 
 
   35.0 uAP airwind ρ=       (10) 
 
 
Correspondingly, the power per length of wave crest L in a water wave of height H, with a group 
velocity of gc  and a water density waterρ , acting under a gravitational acceleration of g, is  
 
 

   g
2

waterwave cLHg
8
1P ρ=      (11) 

 
 
In both cases, a suitable choice of area A and length L will lead to the co-efficients of u3 and H2 

being unity, without altering the relative deviation in any way (since any co-efficient of these 
terms will apply equivalently to the mean and standard deviation, thus canceling in the 
calculation of the relative deviation).  
 
Therefore, the relative deviations of the power in the wind and the waves can be evaluated by 
simply considering the relative deviations of the cube of wind speed and square of wave height 
(as mentioned previously, wave power depends also on the wave period – however, this 
parameter has a much lesser effect on the level of power, and is highly unlikely to alter the broad 
outcome of these results to any great degree - this conjecture will be confirmed later in this 
paper). The cube of wind speed and square of wave height can easily be evaluated via the higher 
moments of these variables.  
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From equation (9), the relative deviation of a distribution of the cube of wind speed (the power in 
the wind), with distribution parameter n, is given by inserting m = 3. That is,  
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Likewise, the relative deviation of a distribution of the square of wave height (the power in a 
wave), with a distribution parameter n, is given by inserting m = 2 into equation (9). That is,  
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Using these expressions, and making use of the gamma function to calculate non-integer 
factorials, the relative deviation of the power in the resource, for each of the distributions 
illustrated in Table 1, is displayed in Table 2.  
 
     Table 2 
 

 Relative Deviation 
Amarillo, TX 1.459 
Cold Bay, AK 2.255 
Dodge City, KS 1.722 
Sandberg, CA 1.663 
Port Kembla, AUS 0.747 
Mokapu Point, HA 0.564 
Bilbao, Spain 0.894 
Vancouver Island, CAN 1.022 

 
 
Note, whereas there is no clear distinction between the variability of wind speeds and wave 
heights, as evidenced in Table 1 (where, in fact, wave heights for Vancouver Island and Bilbao 
were relatively more variable than wind speeds at Amarillo), there does appear to be a distinction 
between the variability of the power contained in these respective phenomena. As evidenced in 
Table 2, the power in the waves at Vancouver Island and Bilbao is noticeably less variable than 
the power in the wind at Amarillo. As expected, the variability of the power in the waves in 
Hawaii and at Port Kembla is very low compared to the others, especially compared to the highly 
variable power in the wind at Cold Bay.  
 
These facts are illustrated in Figure 9, where both the relative deviations of the wind speed and 
wave height data are presented graphically, along with the corresponding relative deviations of 
their associated power levels. The first four sets of bars represent the wind sites, and the second 
four the wave sites. Once again, whereas it is difficult to differentiate between the variability of 
wind speeds and wave heights at these sites, there is a clear distinction between the variability of 
the corresponding power levels at the sites.  
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     Figure 9 
 
 
 
 
This analysis does not categorically show that the power in the wind at any site around the world 
will be more variable than the power in the waves at any site. It is entirely possible that there are 
sites with a very low degree of variability in the wind. However, assuming that the variability of 
wind speeds and wave heights is generally on a par (although a case can easily be made that there 
is some added degree of variability in wind speeds compared to wave heights – this hypothesis is 
not argued in this paper), it is therefore true, as shown above, that there is a higher probability the 
power in the wind at any particular site will be more variable than the power in the waves at any 
particular site.  
 
 
6. A hypothetical wind distribution with an equivalent variability as a wave distribution 
 
For the purpose of quantifying the level of consistency required in a distribution of wind speeds, 
so that the variability of its corresponding power is on a par with the variability of the power in a 
typical wave height distribution, the following analysis was performed. The parameters for the 
fitted distribution for Amarillo, TX, were adjusted so that the relative deviation of the power of 
this artificial distribution was equal to the actual relative deviation of the power in the real waves 
at Port Kembla. The resulting wind speed distribution for this new “less variable” artificial curve 
is displayed in Figure 10, along with the real distribution for Amarillo. The means of the two 
distributions are equal, but the variability of the wind speeds, and particularly the variability of 
the power in the wind, is quite different.  
 
Another way to view this result is that any wind speed distribution with the same mean wind 
speed as Amarillo, would need to have wind speeds banded almost entirely within a range of 3 
m/s to 10 m/s in order for the variability in the power of the wind at that site to be equal to the 
actual variability of the power in the waves at Port Kembla. Such a narrow band of wind speeds is 
extremely uncommon. 
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Amarillo, Texas - Wind Speed, Hypothetical
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                Source: www.stanford.edu 
    Figure 10 89.17,00015.0 == nα ,µ  = 3.017 
 
 
 
 
7. Incorporating wave period and depth 
 
The analysis of wave power variability so far has been restricted to wave height as the sole 
independent determinant. As stated earlier in this paper, wave power levels also depend, to a 
lesser degree, on wave period and depth. As a means of quantifying what these parameters mean 
to the variability of wave power, the actual power distribution for waves at Port Kembla was 
constructed, using the full dispersion relation for finite depth surface gravity waves, to dictate the 
true wavelength and, hence, the group velocity, for all combinations of wave heights and periods 
at the site in the 22 metre water depth.  
 
This resulting distribution of wave power is illustrated in Figure 11, for the real case and that of a 
curve fitted to the data via the distribution defined in equation (1). Both the actual and fitted 
distributions have a mean of 7.73 kW per metre of wave crest and a relative deviation of 0.859. 
This relative deviation incorporates variability due to all the wave power input variables. The 
value of 0.859 varies from the relative deviation for the Port Kembla wave power distribution of 
0.747 (calculated using the wave height distribution only) by only 15%. This additional 15% of 
variability can be attributed to the effect of the variability of the wave period and how it interacts 
with water depth to affect wave length. As can be seen, the effect is not pronounced, and the 
overall relative deviation of 0.859 is still very low compared to that of the power distributions 
calculated from the wind speed data. This result is consistent with the claim that wave power, in 
general, is less variable than wind power, regardless of the subtleties and approximations in how 
it is calculated.  
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Port Kembla Wave Power Distribution: 1987- 97
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               Source: Port Kembla Port Corporation 

    Figure 11 429.1,102269 == nα ,µ  = 0.185 
 
 
 
 
8. Capacity Factors 
 
The capacity factor of a renewable power plant is defined as the ratio of the average annual power 
output to the peak power output. Power plants which depend on fuel (coal, gas, biomass etc.) 
have a theoretical capacity factor of nearly 100%, as they can, in theory, be run at the peak rated 
capacity all the time (apart from periods of maintenance).  
 
However, a renewable power plant, relying on a variable input source, must innately have a rated 
peak capacity above the average annual capacity.  This ratio will be higher the less variable the 
power source. Therefore, if wave energy is less variable than wind energy, it would be expected 
that wave power plants have higher capacity factors. Capacity factors for wind power have been 
established in the range of 25% to 35%. No wave power plant has operated long enough to 
establish a corresponding bench mark capacity factor for wave power.  
 
The capacity factor for a particular site, derived from the wind speed or wave height data, can be 
readily calculated using the relative deviation of that distribution. A commonly acceptable 
practice is to rate a renewable power generator such that, on 10% of occasions, it will be running 
above this rated capacity. This allows for a balance between maximizing output and minimizing 
the electrical losses incurred from running the generator at below its rated capacity for much of 
the time.  
 
The 10% cut-off point was calculated for each of the eight distributions in Table 1, and expressed 
in terms of how many standard deviations it is above its mean. For a normal or Gaussian 
distribution, this point rγ , at which 90% of the distribution lies below and 10% above, is about 
1.3, meaning it lies 1.3 standard deviations above the mean. However, wind and wave 
distributions are not Gaussian. The sites examined in this paper display values for rγ ranging 
between 1.25 and 1.48. These are illustrated in Table 3.  
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The rated power of a generator rP , defined according to the “10% rule”, with mean powerP and 
operating at a site with a relative deviation of its power source of mψ  and rated cut-off point 
of rγ , will therefore be defined as  
 
 
    )1( mrr PP ψγ+=      (14) 
 
 
Therefore, the capacity factor fC , which is the ratio of P  to rP , is 
 
 

    
mr

fC ψγ+
=
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1

     (15) 

 
 
The capacity factor for the eight data sets is also illustrated in Table 3 and shown graphically in 
Figure 12. Capacity factors for wind are generally in the range of 25-35%. This is consistent with 
the results of this analysis, with Amarillo exhibiting a capacity factor of 34% and Cold Bay 25%, 
with Dodge City and Sandberg both around 30%. Clearly, the capacity factor for a wind site 
varies markedly, depending on the particular distribution of wind speeds.  
 
This does not appear to be so much the case with wave energy. Port Kembla, Bilbao, and 
Vancouver Island all have capacity factors of 44%. The one anomaly is Mokapu Point in Hawaii, 
with an implied capacity factor of 54%. This is almost certainly due to the regularity of wave 
swell generated by the trade winds of the North Pacific, and is consistent with the low variability 
of the wave height data at this location. Such a site appears ideal for wave energy projects.  
 
These results are quite consistent with research conducted previously by the author. This previous 
research, although quite different in its approach, found that four different wave energy sites – 
Port Kembla, San Francisco, Hawaii, and Bilbao (Spain) - all exhibited capacity factors in the 
vicinity of 45%, when calculated according to the “10% rule”. In that study the actual Hawaiian 
result did display the highest capacity factor of the four sites, at over 46%, though still noticeably 
lower than the 54% expressed in the current analysis for the same site. 
 
 
     Table 3 
 

 
rγ  fC  (%) 

Amarillo, TX 1.339 33.9 
Cold Bay, AK 1.308 25.3 
Dodge City, KS 1.339 30.3 
Sandberg, CA 1.288 31.8 
Port Kembla, AUS 1.481 44.0 
Mokapu Point, HA 1.349 54.4 
Bilbao, Spain 1.308 43.7 
Vancouver Island, CAN 1.250 43.9 
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  Figure 12  Wind sites – blue diamonds; Wave sites – red triangles 
 
 
 
 
On a more theoretical level, assuming that a typical wind site and a typical wave site have the 
same natural variability, it is possible to evaluate their respective “typical” capacity factors. For 
convenience, assume such a typical wave site exhibits a relative deviation of its power of 1 (this 
is much closer to the relative power deviation of Vancouver Island than Hawaii and Port Kembla, 
and so, is probably on the high side as indicative of a typical site). Using equation (13) and 
equating 2ψ  to the value of 1, allows the calculation of the corresponding value of n. In this case, 
we arrive at a quadratic equation  
 
     0632 =−− nn      (16) 
 
 
This equation has a positive solution of ≈n 4.3723. Substituting this value into equation (12) 
gives 693.13 =ψ . Taking the average value of rγ from Table 3 (i.e. 1.3445), and substituting 
this and the values of 2ψ  and 3ψ  into equation (15), capacity factors of 30.7% for a typical wind 
site and 42.9 % for a typical wave site are found. Given that capacity factors for wave energy 
appear to be higher than this value, suggests either that the typical relative deviation of wave 
energy is actually less than unity (very likely), or that the typical relative deviation of wind 
speeds is actually greater than that of wave heights (quite likely), or a combination of both.  
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9. Conclusion 
 
The theoretical distribution, as defined in equation (1), appears to be both a very adequate fit for 
real wind speed and wave height data, and a simple means of calculating higher order moments 
and thus power distributions for these phenomena. It also allows for an intuitive understanding of 
why wave power is less variable than wind power, despite the underlying phenomena being 
equally variable – that is, due to the reliance on the square of the wave height, compared to the 
cube of wind speed. Relative deviations for a range of wind and wave sites (covering a wide 
range of variability within each of these categories) clearly show that wind energy is typically 
more variable than wave energy. Conversely, a wind site would need to exhibit a very narrow 
band of wind speeds in order to have an equivalent relative deviation of power as a typical wave 
site.  
 
Using these theoretical distributions, it is possible to derive a capacity factor, based upon the 
criterion that a generator is rated such that it will run above its rating on 10% of occasions. These 
resulting theoretical capacity factors for wind energy are consistent with the 25-35% that is 
observed with real wind turbines, and the corresponding capacity factors for wave energy are 
consistent with the 45% derived by the author in a previous study of four sites, based purely on 
data analysis. The analysis of additional wind and wave data sets would be desirable to further 
clarify these claims. 
 
ETSU, a unit supporting the UK DTI (Department of Trade and Industry), refers to a term called 
the declared net capacity (DNC) factor. This incorporates the losses of running the plant, but 
more importantly, compares the renewable plant’s capacity factor to the capacity factor of a 
conventional power plant, which is claimed to be 70%. The following is an extract from an ETSU 
publication: “DNC is, very broadly, the equivalent capacity of a base-load plant that would 
produce the same average annual energy output as the renewable energy plant. For wind farms 
the DNC is calculated by subtracting the on-site electrical power consumption from the installed 
capacity and multiplying the remainder by 0.43 (i.e. 43%). The reason 0.43 is used, and not the 
commonly assumed capacity factor of 0.3, is because conventional generating plants also operate 
at less than their maximum output for much of the time. When DNC factors were originally 
established, it was assumed that wind farms would operate with a capacity factor of 0.3 and a 
conventional plant with a capacity factor of 0.7. The DNC was therefore defined as (0.3÷0.7) or 
0.43”. Using this definition, a wave power plant would have a DNC of around 64% (minus small 
running losses). In other words, any wave energy plant should average at least 64% of the output 
of an equivalently rated conventional fossil fuel power plant.  
 
The capacity factors discussed here assume that a renewable technology is able to convert all the 
power from the source, or at least in some constant proportion across the distribution. In reality, 
depending on the conversion device, it may be possible to increase the capacity factor by 
converting more at the low end of the distribution and less at the high end, thus moving the 
converted average closer to the 10% cut-off of the distribution. This is indeed what is apparent 
from Energetech’s research into the use of retractable parabolic walls in conjunction with an 
oscillating water column. Capacity factors approaching 60% (and declared net capacity factors 
approaching 85%) appear possible under this scenario.  
 
 
 
 
 
 


