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by
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Submitted to the Department of Electrical Engineering in December 1962 in partial ful-
fillment of the requirements for the degree of Doctor of Philosophy.

ABSTRACT

This thesis investigates the flow of message traffic in communication nets in
which there is storage at each of the nodes in the net. The measure of performance
used is the average delay experienced by a message as it passes through the net. The
results of this study expose the effects of channel capacity assignment, routing
procedure, priority discipline, and topological structure on the average message delay,
subject to the constraint that the sum of all channel capacities in the net is a constant.
The input traffic is assumed to have Poisson arrival time statistics, with exponentially
distributed message lengths. Furthermore, an assumption regarding the independence
of the inter-arrival times and message lengths of the internal traffic statistics is made
which simplifies the mathematical analysis; this assumption leads to a model which
closeiy approximates the behavior of the average message delay for nets with dependent
traffic (i.e., in the absence of the independence assumption).

Certain new results for simple multiple channel systems indicate that message
delay is minimized when the message traffic is clustered into a small number of high
capacity channels. The optimum channel capacity assignment (which minimizes an
expression for the average message delay) is derived for a communication net with a
fixed routing procedure, and subject to the constraint of constant total channel capacity.
An analysis for a new delay dependent priority structure is carried out, which provides
the system designer with a number of degrees of freedom with which to adjust the
relative waiting times for each priority group. Furthermore, a conservation law is
developed which allows one to draw a number of general conclusions about the average
waiting times for a large class of priority structures.

A class of random routing procedures, described by finite-dimensional, irredu-
cible circulant probability transition matrices is investigated, and the average path
length is solved for; a solution for the expected message delay under such routing
procedures is also obtained. It is found that random routing results in increased
message delay and decreased total traffic handling capability.

A digital network simulation program was written, and its operation is described.
The major results from the simulation are summarized below:

(1) The square root channel capacity assignment assigns to each
channel enough capacity to handle its average traffic flow, and then assigns
the excess capacity in proportion to the square root of the traffic carried

by that channel. This assignment results in superior performance as
compared to a number of other channel capacity assignments in various nets.
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(2) The performance of a straightforward fixed routing procedure,
with the square root capacity assignment, surpasses that of simple
alternate routing procedures.

(3) Alternate routing procedures adapt the internul traffic flow to
suit the capacity assignment (i.e., the bulk of the message traffic is
routed to the high capacity channels). This effect is especially noticeable
and important in the case of a poor capacity assignment which may come
about due to uncertainty or variation in the applied message traffic.

“4) A high degree of non-uniformity in the external traffic matrix
results in improved performance for the case of a square root channel

capacity assignment.

(5) The quantities essential to the determination of the average
message delay are the average path length and the degree to which the
traffic flow is clustered. The trade-off between these two quantities
allows one to determine the sequence of optimal network topologies which
ranges from the star net at small values of network load to the fully
connected net as the network load approaches unity.

The generalization of certain theorems, and the relaxation of some of the
assumptions are discusses in order to indicate appropriate extensions to this study.

Thesis Supervisor: Edward Arthurs
Title: Assistant Professor of Electrical Engineering
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CHAPTER I

INTRODUCTION

This thesis is principally concerned with the flow of message traffic in store-and-
forward communication nets. Recently, there has been serious interest expressed in
this field both for commercial and military application. The object of this work is to
provide a basis for understanding and discussing the configuration and operation of a
communication net. Such questions as assignment of channel capacity, effect of pri-
ority discipline, choice of routing procedure, and design of topological structure are
cousidered in this research.

1.1 FElementary Concepts

In introducing the many concepcs associated with communication nets, it is helpful

to carry along an example of a specific net; we therefore consider the configuration

shown in Fig. 1.1. In this figure, the nodes represent communication centers, which
ideally might correspond to switching centers in the cities of the United States or in
space-borne communication satellites, etc. The ordered connections, or links, between

the nodes represent one-way communication channels, each with their own channel

d e

Figure 1.1 Example of a 5 node net.



capacity. For our purposes, messages, which must pass through the net, consist of the
specification of the following quantities: the node of origination; the destination node;
the time of arrival to the network; the message length in bits*; and the message
priority class. In gemneral, these quantities are specified stochastically according to
some probability distribution. As an example, suppose that a message originates at
node a in Fig. 1.1 at time t=0, and has for its destination, mnode e; let its length be

100 bits, and assume that we have no priority structure associated with the messages.
Let us follow this test message through the network. Upon entering node a, a decision
must be made as to which of the two neighbering nodes, b or d, the message will next

be sent. This decision rule is referred to as a routing procedure, and is, in general,

a function of the current state of the net. Channels leaving and entering a. node may be
used independently and simultaneously, each one for a different message. Thus, when
the test message enters node a, it may find zero, one, or two channels in the process
of transmitting other messages. If all channels are busy, then the message joins a
queue (waiting line) which is accomplished physically by means of storing the message
in a memory. The notion of queues of messages forming at the nodes is a basic charac-
teristic of the communication nets under consideration; we may thus think of the
communication net as a network of queues. When the message reaches the front of the
queue, the routing procedure then decides which channel the message will be sent over.
Let us assume that channel ad is chosen. If the capacity of this channel is 2 bits per
second, then our message will spend S0 seconds in transmission. Clearly, no other
message may use the channel during this time. After the transmission is completed,

channel ad may then accept a new message from the queue for transmissicn. Upon

* In transmitting messages, we are concerned with the data rate of transmission which
is not necessarily the information rate in the information theoretic sense.



reception at node d, the process which took place at node a is essentially repeated, and
the message may have to wait on a queue (if all or some of the channels leaving node d
are busy). Eventually, however, the message will make its way through the net to its
destination at node e. When it arrives at node e, it i5 considered to be dropped from
the net. It is now clear why we refer to these nets as store-and-forward communication
nets, viz., in passing through a node, the messages are stored, if necessary, and then
forwarded (transmitted) to the next node on the way to their destination The total time

that a message spends in the network is referred to as the message delay. Further, we

introduce the concept of a traffic matrix whose ij entry describes the average number of

messages generated per second which have rode i as an origin, and node j as a desti-
nation. The priority classes referred to previously merely dictate the way in which the
messages in a queue are ordered (clearly, preferential treatment is given to higher
priority messages).

In summary then, we have introduced the following:

(1) nodes - communication centers which receive, store, and transmit
messages.
(2) links - one-way communication channels.

(8) network - a finite collection of nodes connected to each other by links.
(4) messages - specified by their origin, destination, origination time,
length, and priority ciass.

(5)  routing procedure - a decision rule which is exercised when it comes

time to route a message from one node to another.

(6) queue - a waiting line (composed of messages in our case).



(7) queue discipline - a priority rule which determines a message's

relative position in the queue.

(8) message delay - the total time that a message spends in the net.

(9) traffic matrix - the ij entry in this matrix describes the average

number of messages generated per second which have node i as an
origin and node j as a destination.

1.2 The Quantities of Interest

Having introduced the elementary concepts, we now irquire into those quantities
which are of interest in our study of communication nets. We consider these quantities
from the viewpoint of the user, the operator, and the designer of the net. Specifically,
the user (i.e., the originator and recipient of messages) is concerned with

(1) the average message delay

(2) the total traffic handling capability of the net.
The operator (i.e., the one who controls the flow of messages through a node) is con-
cerned with

(1) the routing procedure

(2) the priority discipline

(3) the storage capacity at each node.
The designer of the net is interested in

(1) the average message delay

(2) the total traffic handling capability of the net

(3) the routing procedure

(4) the priority discipline

(5) the storage capacity at each node



(6) the channel capacity of each link
(7)  the topological structure of the net
(8)  the total cost of the system.
As expected, the designer's interest includes and extends beyond those quantities
of interest to the user and operator. We choose, therefore, to investigate all of these
quantities, as well as certain trading relations which exist among some of them.

1.3 Description of an Existing Store-and-Forward Communication Net

In this section, we describe an existing store-and-forward communication net.
In Sect. 1.4, we then abstract a mathematical model to represent systems of this type
for purposes of analysis. We choose for this description, an automatic telegraph
switching system (Plan 5SSA [ 1 ] *) which has been developed by Western Union for the
Air Force in order to handle iarge quantitdes of military traffic over a world-wide net-
work. The system was recently installed, and consists of ten switching centers (five
domestic and five overseas). These switching centers are interconnected over a net-
work of lines or radio channels which comprise the communicating system for automatic
relay of telegraph messages. 11.1 addition, each of the main switching centers is connected
by lines to a set of tributary stations in the region served by that center. Messages
originate at the tributary stations, are transmitted to the regional switching center, and
then, perhaps to further switching centers, where,finally, they are transmitted to their
destination at other tributary stations.

In the switching centers of this system (i.e., Western Union's Plan 55A) messages
are received and retransmitted in the form of punched (perforated) paper tape. The

message's destination is controlled by routing indicators (normally groups of six letters)

* Numerals in square brackets refer to the bibliography.



recorded on the paper tape as part of the message heading. The switching of messages
takes place automatically, except at the points of origin and destination. However, it

is possible to convert to manual (push button) switching at each center at any time; this
mode of operation is abnormal and is used only in case of failure in the automatic switch-
ing devices, or in cases of improper format in the received messages.

Certain measures are included in the operation of the net to protect against errors,
excessive delays, and lost messages. Each message is numbered as it is transmitted
between centers, and these numbers are checked automatically as the message is
received. Messages may be transmitted in code or cipher. If so, then either on-line
cryptographic equipment is used, in which case decoding takes place each time a message
is received, and encoding takes place each time a message is transmitted. If, on the
other hand, the coding is done off-line, then the messages are encoded and decoded only
at the points of origination and destinaton. In the latter case, care must be taken to
avoid the accidental occurrence of the set of characters which signify the end of the
message in the encoded message form.

A strict priority or precedence structure is included in the system, and messages
are transmitted in this order of precedence. Six priorities are distinguished in the
system, and are detected by inspection of two letters, referred to as precedence prosigns,
in the message heading.

In each switching center that it passes through, a message is perforated and trans-
mitted twice. The first reperforation takes place as the message is being received into
the switching center. The message is then switched and transmitted across office to a
transmitting (or sending) line position, where it is reperforated and transmitted again.

The perforated paper tape serves as the store or buffer within the switching center.



The format of a message as it passes through a switching center is shown below.

ZCZCTWA1204t ZCBFA1033 << =RR -RJWFMK<< =DE-RJEPBF (MESSAGE)<< = = = = = = = =NNNN
| T 1 /

start of sequence sequence prece- routing originating end of
message number mnumber dence indicator office message

from from prosign

present last

center center

visited

The start of message characters ZCZC and the sequence numbers from the present and
last visited center are followed by the precedence prosign and routing indicators, the
text of the message itself, and the end of message characters =NNNN. The notation used
above is:t figure shift; | letter shift; = line feed; — space; < carriage return.
Automatic and manual switching are controlled by certain characters which appear in
special places in the message. Both the receiving and transmitting positions within the
switching center are designed so as to read the routing indicators and precedence pro-
signs twice, once in order to set up the appropriate control functions, and once for the
purpose of transmission (i.e., transmission either across or out of the office). In
cross-office transmission, the cross-office line connections are not established until
the entire message has been received into the center (i.e., until the end of message
symbols are received); the only exception to this rule comes about when emergency
messages are received, in which case the connections are set up immediately.

After establishing the cross-office line, a new sequence number is assigned to
the message, and the cross-office transmission commences. This transmission pro-
ceeds to perforate a second paper tape across the office, and the transmission ceases
upon receipt of the end of message characters, thereby disconnecting the cross-office
line. The punched paper tape acts, once again, as the storage facility for the message,

and the message awaits its turn (on the tape) undl the outgoing transmitter reaches it.



From this sending position, the message is either sent to a tributary (and therefore its
destination) or to another switching center; in either case, the message format is
similar to that described above. Note that only two sequence numbers are associated
with the message at any time as it is relayed through the net; that is, each time a new
sequence number is introduced, the least recent number is deleted.

When more than one routing indicator is present in a message heading, it is
recognized that this is a multiple address message. These messages are processed
in a way such that an individual copy of the message reaches each destination. In this
case, the routing indicators are separated so that each copy of the message contains
only one routing indicator upon reception at each destination. At a switching center,
many of the routing indicators may require the same circuit outlet. This occurs, for
example, when more than one routing indicator are for tributaries of the same switch-
ing center, or for tributaries of different switching centers which may be reached
through the same intermediate center. These messages are sent to the intermediate
center only with those routing indicators for which that center is responsible.

The incoming cabinet and the outgoing cabinet are the two principal pieces of
equipment in a switching center. These cabinets are linked together by cross-office
channels (switching circuits) which carry signals at a rate of 200 words per minute
(wpm). In addition, a director-translator cabinet is required for automatic switching.
The director receives information from the paper tape which allows it to control the
switching operations pertinent to the message routing. The translator actually carries
out these switch settings. In order to reproduce the incoming message, each receiving
position is equipped with a printer-perforator. If, in receiving a message, the end of

message characters are missing or altered, then two successive start of message



signals will be detected; in such a case, an alarm is operated, and the operating attend-
ant is called in. Tn addition to the printer-perforator, each receving position also has

a loop-gate transmitter which reads characters from the punched tape, and transmits
them at 200 wpm across the office to a reperforator at the sending position. In order

to carry out the automatic cross-office switching, the receiving position obtains a con-
nection and then transmits the precedence prosign and routing indicatox(s) to the
director via the loop-gate transmitter. In turn, the director relays the required switch-
ing information to the receiving position. The transmitier is now ready to transmit
across office. The function of the director-translator cabinet may be taken over by the
attendant in the manual operation mode. Electronic pulses on a single conductor are
used as transmission signals across office (as opposed to the older torn-tape system
which required an attendant to tear the tape off the receiving apparatus, carry this

tape across the office, and then insert the tape into an appropriate transmitter).

On the sending side of the office, each sending position is equipped with a multi-
magnet repertorator which reproduces messages received over cross-office circuits
in the form of punched paper tape once again. The reperforator also receives signals
from an automatic message numbering machine. The reperforator is designed to per-
form certain character checking functions which test the operation of all equipment
involved in the cross-office transmission. Failure to check activates an alarm condi-
tion which alerts an attendant. All sending positions are equipped with a multicontact
transmitter distributor which transmits messages from the paper tape to the channel.

For those inter-center channels which carry heavy traffic loads, several inter-

connecting line circuits and sending positions are sometimes required. All sending
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positions in such a multiple circuit group transmit to identical destinations. Any mes-
sage for that destination can be switched to any idle circuit within the group.

Messages are received into the center at 60 or 100 wpm; they are then transmitted
cross-office at 200 wpm; and finally are retransmitted to outgoing lines at 60 or 100
wpm. Thus, since the cross-office rate is at least twice that of the outgoing lines, a
sufficient number of messages can be sent across the office to keep the outgoing lines
busy most of the time; consequently, the cross-office transmitters are idle at least
half of the time. This being the case, the receiving positions seldom find it necessary
to wait for a cross-office connection, and thus no large quantity of backlogged paper
tape should form at these positions. In the case of a backlog, the higher cross-office
rate should quickly relieve the situation, once a cross-office connection is obtained.

When a receiving position has a message that is to be switched to an outgoing
circuit which is busy, the message must wait until a circuit to the desired destination
becomes available; if the wait is excessive, or if the message is of extremely high
priority, then an alarm is operated which calls an attendant to the position to take suit-
able action.

In addition to the equipment already described, there is normally provided at each
switching center, a traffic control center which simplifies traffic handlitg and performs
certain supervisory functions®*. In general, this addidonal equipment includes a connec-
tion indicator board, a traffic routing board, a close-out indicator board, and receiving
and sending printer sets. The connection indicator board provides visual means for
determining which sending and receiving positions are ccnnected over cross-office

lines at any time. Such information is useful for maintenance pruposes, as well as

* This equipment is not required, but is often helpful, and aids in the smooth operation
of the switching center.
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for certain onerating conditions; for exzmpie, the supervisor can follow a high priority
message through the center with the aid of this board, and thus attend to any excessive
delays encountered by SU;Ch a message. The traffic routing board is used for making
temporary changes in the routing of messages by means of patching cords which are
plugged into the jacks in the routing board. The close-out indicator board provides
visual signals for indicating which sending positions are either closed out on the cross-
office side, or have their transmitters stopped for any reason.

This completes our description of one existing store-and-forward communication
net. Although it does not include in its description all current procedures or equip-
ment, this system does exemplify many message switching nets.

1.4 Assumpticns

The description in Sect. 1.3 provides us with an existing store-and-forward
commuaication net from which we may abstract a meaningful, idealized mathematical
model. The motivation for using an idealized model is simply that of mathematical
ease and tractability; at the same time, however, we must insure that the idealiza-
tions introduced lead to a model which retains the essential characteristics of the real

system. Specifically, we choose the average message delay as our measure of net-

work performance. Accordingly, we desire that our medel, although idealized,
exposes the fundamental behavior of the average message delay in store-and-forward
nets.

Consider the elementary concepts presented in Sect. 1.1. We offer this descrip-
tion as a starting poiut for our model, and now proceed to appiy certain assumptions
to this description. Specifically, the nodes in this description refer to the switching

centers, and we consider that the tributary (or originating) stations are part of the
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switching center itself. We assume first, that all channels are noiseless, and that all
communication centers (nodes) and channels are not subject to damage or destruction
(the reliability question). This assumption implies that there are no theoretical or
practical problems in transmitting over the channel at a data rate equal to the channel
capacity. Thatis, we may assume that the messages have been encoded into a binary
alphabet so that each binary digit corresponds to one bit of data to be transmitted.
The encoding required to reduce errors in a noisy channel would introduce additional
intra-node delays to the message; we do not cousider this case. Furthermore, we
assume that cross-office delays are negligible compared to the channel transmission
time (a reasonable assumption based upon information on existing and proposed
systems).

The study is restricted to data or message traffic, as distinct from telephone
or direct wire traffic which has not been considered. We assume that each message
has a single destination (as opposed to an all-points message, for example) and that
each message must reach that destination before leaving the network (i.e., no defec-
tions); this involves the additional assumption of an unlimited storage capacity at
each node to supply a "waiting room" for those messages in the queue.

In transmitting between two nodes, a message is considered to be received at
the second node only after it is fully received. The consequence of this assumption
is that messages may not be retransmitted out of a node at the same time that they
are being received into the node. Clearly, this represents, at worst, a slightly
conservative assumption as regards the message delay in a node. Moreover, many
store-and-forward nets do indeed operate in just this manner because of the difference

in channel capacity between incoming and cross-office channels.



However, certain data obtained by Molina [ 2 ] for telephone traffic correspounds very
well to these same assumptions. Moreover, these distributions avoid considerable
mathematicai complication, and, at the same time, correspond to reasonable (and
perhaps conservative) assumptions.

It is appropriate to mention here that many of the results presented in this work
include the additional assumption of a constant total channel capacity assigned to the
net (i.e., the sum of the capacities of all channels in the net is held fixed).

Finally, we note that one additional assumption is required before we arrive at
a mathematically tractable model; we delay discussion of this final assumption until
Chap. III.

In summary, we state again, that the worth of this model lies mainly in its reten-
tion of the essential character of the message delay in a real store-and-forward
communication net.

1.5 Notation and Definitions

As a matter of convenience, we define and list below, some of the important

quantities and symbols.

-y]_k = the average number of messages entering the network per second,
with origin j and destination k.

xi = the average number of messages entering the ith channel per
second.

V“jk = the average message length, in bits, for messages which have
origin j and destination k.

Ci = the channel capacity of the ith channel.

v = the total arrival rate of messages from external sources

(see below).

14
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the total arrival rate of messages to channels within the net
(see below).

the average path length for messages (see below).

the average message length from all sources (see below).

the sum of all channel capacities in the net (see below).

the network load; namely, the ratio cf the average arrival rate
of bits into the net from external sources to the total capacity
of the net (see below).

the average message delay for messages with origin j and
destination k.

the average delay to a message in passing through channel i

(this includes both the time on queue and the time in transmission).

the average time that messages spend in the network (see below).

This quantity is taken as the measure of performance of a net.

the traffic matrix, whose entries are yjk'

We collect below certain relations among the definitions above. Some of these

relations are by definition, and others may be obtained by simple manipulation.
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1.6 Summary of Results

1.6.1 Anpalytic Results

The model chosen is described in Sects. 1.1 and 1.4. This model leads to a
rather complex mathematical structure. We have, therefore, found it necessary to
modify the original model with the introduction of the Independence Assumption. This
assumption is carefully discussed in Chap. III; in essence, it assumes that new lengths
are chosen for messages (from an exponential distribution) each time they enter a node.
As shown in Chap. III, the new model results in a mathematical description which
accurately describes the behavior of the message delay in the original model. As a
consequence of the Independence Assumption, and of Theorem A.1 (due to Burke), we
may analyze each node separately in calculating message delay. We then find ourselves
in a position to make some positive statements regarding the quantities of interest as
described in Sect. 1.2.

The results obtained from this research for the model described above (including
the Independence Assumption) will now be summarized. In considering a single node
within the net, one finds that there is a large body of knowledge (namely, classical

qucueing theory) which deals with such problems. Appendix A describes some of the
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well-known results from that theory. Chapter IV describes several new results for
single node systems. Specifically, if one considers the problem of determining the
number, N, of output channels from a single node in order to minimize the time that
a message spends in the node (queueing time plus transmission time), subject to the
constraint that each channel is assigned a capacity equal to C/N, one then finds
(Theorem 4.2) that N=1 is the optimum solution. Further, a new interpretation for
the utilization factor* for a single node with multiple output channels is obtained.
The obvious trading relations between message delay, channel capacity, and total
traffic handled are also developed.

At this point, a result is obtained which has great bearing on the general network
problem. The result gives the assignment of channel capacity to a net consisting of
N independent nodes (each with a single output channel, see Fig. 4.4) which minimizes
the message delay averaged over the set of N nodes, subject to the constraint that the
sum of the assigned capacity is constant. Specifically, if 7\1 is the average (Poisson)
arrival rate of messages to the ith node, and 1/;.:i is the average length of these
messages (exponentially distributed), then the optimum assignment, Ci' of the channel

capacity to the ith node is

Ai
Ci = —”i + I:C - (l.l)

,_.
LNz
F| >
"
| IR |
>
=
[

* The utilization factor is merely the ratio of average arrival rate of bits into the node
to the total transmission rate of bits out of the node.
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where C is the fixed total capacity. The function* which this minimizes is
p

N JA_ 2
1

55

=1

A ' C(l-p)

Here, Ti is the average message delay in the ith node, and T is the message delay
appropriately averaged over the index i. Theorem 4.4 considers minimizing T (as
expressed in Eq. 1.2 above) with respect to the 7\1 (assuming I-ti = for all i), holding
A constant, and subject to the additional constrzaints that Ai = ki (where we take

k1 = k2 =... = kN with no loss of generality). The set of numbers ki represent

lower bounds on the traffic flow through each channel, and correspond to one form of

physical limitation that may exist. The distribution of Ai whick minimizes T is

N
(7\ - Z k. i=1
i
|
A= (1.3)
X, i>1
1

-

For all ki =0, all traffic is assigned to (any) one of the channels, and by Eq. 1.1

this channel is allotted the total capacity C. In any case, we observe that this solution
displays an attempt to cluster the traffic as much as possible. In fact, the results
expressed by Theorem 4.2 and by the trading relations of Sect. 4.3 also indicate the
desirability of clustering traffic (and therefore the chanuel capacity as well) in order

to minimize message delay.

* Note that the double subscript, jk, invy; may in the case (see Fig. 4.4) be
replaced by a single subscript, i; thus, according to Sect. 1.5, 7\i =7; in this
special case, and also A =v.



If we now consider the general case of an interconnected net (as, for example,
in Fig. 1.1), with N channels indexed by the subscript i, subject to a fixed routing
procedure*, then we find that Eq. 1.1 continues to describe the optimum channel
capacity assignment. The interpretation of Ai is still the average arrival rate of
messages to the ith channel; for this case, we take ui =4 for all i. Furthermore,

the average message delay, T, under this optimum assignment, becomes

R

>, o
=1

_ i
T #C(1l-Tp) -4

where n is the average path length for messages in the net. The significance of this
equation is discussed below in conjunction with the summary of the simulation experi-
ments.

Constraining the sum of the assigned capacities to be constant implies a special
form of system cost. In particular, the implication is that the system cost is repre-
sented strictly by the total channel capacity C. A more general cost function may be
considered by assigning a function di’ which represents the cost (in dollars, say) of
supplying one unit of capacity to the ith channel**; thus, dici represents the total cost
of assigning the capacity C_1 to the ith channel. The optimal channel capacity assign-

N

ment (namely, that assignment which minimizes T at a fixed costD = X dici) has
i=1

aiso been derived and is presented in Theorem 4.6. The average message delay, T,

* By a fixed routing procedure, we mean that given a message's origin and destination,
there exists a unique path through the net which this message must follow. If more
than one path is allowed, we speak of this as an alternate routing procedure.

**For example, di may be taken to be proportional to the length of the ith channel.
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which exists for this assignment is also described in Theorem 4.6. Equations 1.1 and
1.2 are seen to be the speciai case of this theorem in which di= 1 for all i.

Chapter V explores the manner in which message delay is affected when one
imposes a priority structure on the set of messages. Generally, one breaks the
message set into P separate groups, the pr'h group (p=1, 2, ..., P) being given prefer-
ential treatment over the p-lSt group, etc. A newly derived result for a delay
deperndent priority system is described, in which a message's priority is increased,
from zero, linearly with time in proportion to a rate assigned to the message's
priority group. The usefulness of this priority structure is that it provides a number
of degrees of freedom with which to manipulate the relative waiting times for each
priority group.

An interesting new law of conservation is also proven which constrains the
allowed variation in the average waiting times for any one of a wide class of priority
structures. Specifically, if we denote by WP the average time that a message from

the pﬂ.1 priority group spends in the queue, then the conservation law states that

P
? Q.P/ [.Lp) W_ = constant with respect to variation of the

p-;l priority structure.

where Ap and 1/ ”p are, respectively, the average arrival rate and average message
length for messages from the pth priority group. The analytic expression for this
constant is evaluated in Chap. V. As a result of this law, a number of general state-

ments can be made regarding the average waiting times for any priority structure
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which falls in this class*. A priority structure which results in a system of time-
shared service is also investigated. This system presents shorter waiting times for
"short" messages and longer waiting times for ""long" messages; interestingly
enough, the critical message length which distinguishes "short" from ''long" turns
out to be the average message length for the case of geometrically distributed message
lengths.

Random routing procedures for some specialized nets yield to mathematical
analysis, and are discussed in Chap. VI. Specifically, a random routing procedure
is a routing procedure in which the choice for the next node to be visited is made
according to some probability distribution over the set of neighboring nodes. The
first result obtained therein is the expected number of steps that a message must take
(in a net which carries no other traffic) before arriving at its destination for that class
of random routing procedures in which the node to node transitions are describable by
circulant®* transition matrices. This result exposes the increased number of steps
that a message must take in a net with random routing. The next quantity of interest
is the expected time that a message spends in the net. The solution for this is presented
in Theorem 6.3 (which, once again, makes use of the Independence Assumption). A
quantitative comparison is made for identical nets between random and fixed routing
procedures, demonstrating the superiority of the latter as regards message delay.

The last phase of the research describes the results of a large scale digital
simulation of store-and-forward communication nets. The simulation program (written

for Lincoln Laboratory's TX-2 computer) is described in Appendix E. Extensive use

* See Chap. V for an exact description of the class.

** A circulant matrix is one in which each row of that matrix is a unit rotation of the
row abeve it (see Eq. 6. 2).
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was made of the simulator in confirming and extending many of the results of this
research. For example, it provided a powerful tool for testing the accuracy and
suitability of the Independence Assumption. Furthermore, networks of identical topo-
logical structure to those described in Chap. VI (Random Routing Procedures) were
simulated with fixed routing procedures, and, as predicted, the comparative results
indicate that random routing procedures are costly in terms of total traffic handled
and message delay. A priority discipline was imposed on the message traffic in some
of the runs, and these results indicate that the conservation law of Chap. V holds for
nets as well as for a single node.

1.6.2 Experimental Results

With the background of theoretical results obtained in the material described
above, a careful experimental investigatiou was carried out (using the network simula-
tion program) for the purpose of examining the variation of average message delay for
different channel capacity assignments, routing procedures, and topologies. These
results are presented in Chap. VII*. Specifically, it was found that the channel capacity
assignment expressed in Eq. 1.1 (to be referred to as the square root channel capacity
assignment) was superior to all other assignments tested, not only for fixed routing
procedures (as predicted), but also for a class of alternate routing procedures. Further,
it was observed that with the square root capacity assignment, fixed routing was always
superior to alternate routing for the same traffic and the same net. This result is not
surprising when one recognizes that alternate routing procedures are designed to dis-

perse the traffic whenever and wherever it is reasonable to do so**. This is in direct

* The simulation experiments described in this chapter were performed without the use
of the Independence Assumption.

**In addition, alternate routing procedures, in general, result in an increased average
path length (n).
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opposition to the result expressed by Eq. 1.3 in which it is cleas that clustered traffic
is to be preferred. However, the simulation results exposed the ability of alternate
routing procedures to adapt the traffic flow so as to fit the network topology; specifi-
cally, it was observad that under a poor channel capacity assignment (in violaton of
Eq. 1.1), the performance of alternate routing was superior to fixed routing. This
adaptive behavior of alternate routing procedures has considerable significance in the
realistic design and operation of a communication net. Specifically, it is generally
true that the actual traffic matrix is not known precisely at the time the network is
being designed. Indeed, even if the traffic matrix were known, it is probable that the
entries, ij’ in this matrix would be time -varying (i.e., different traffic loads exist
at different hours of the day, different days of the week, different seasons of the year,
etc.). In the face of either this uncertainty or variation, or both, it becomes impossi-
ble to calculate the optimum channel capacity assignment from Eq. 1.1 since the
numbers Ai (which are calculable from the 'ij under a fixed routing procedure) are in
doubt. One solution to this problem is to use some form of alternate routing which
will then adapt the actual traffic flow to the network. Note, however, that a price
must be paid for such flexibility, since fixed routing with the square root capacity
assignment is itself superior to alternate routing (assuming we have known time -

invariant 'ij).
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Figure 1.2 The star net configuration

The desirability of a clustered traffic pattern led to consideration of a special
topology, namely, the star net, as shown in Fig. 1.2. This net has the property that
as much traffic as possible is grouped into each channel; the physical constraint here
is that the set of origins and destinations (i.e., the traffic matrix) is specified independ-
ent of the network design, and, so, ome is forced to have at least one channel leading
to and from each node in the net. The star net yields exactly one channel leading in
and out of each node (except, of course, for the central node). The effect of the distribu-
tion of traffic (Ki) and the average path length (@) on the average message delay in a net
with a fixed routing procedure may be seen in Eq. 1.4. In particular, we note that

N

increased clustering of traffic reduces the expression .Z: '\/XIT , e.g., see Eq. 1.3.
Furthermore, we note that T grows without bound as p :ll/ﬁ ; recall that p =vy/uC is
the ratio of average arrival rate of bits into the net from external sources to the total
capacity of the net. Clearly, a minimum value of T is desired. However, it is obvious
that the adjustment of hi alters the value of . In particular, for the star net (which has
a maximally clustered traffic pattern) we observe that 1 <n < 2. If we require a

reduced , we must add channels to the star net, thus destroying some of the clustering

of traffic. In the limit as T — 1, we arrive at the fully connected net which has the



smallest pdssible T, but also the most dispersed traffic pattern. The trade-off
between 1 and traffic clustering depends heavily upon p. In particular, we find that

at low network load nets similar to the topology of the star net are optimum; as the
network load increases, we obtain the optimum topology by reducing  (by adding
additional channels); and, finally, as p — 1, we require T = 1 which results in the fully
connected net. In all cases, we use the square root channel capacity assignment with
a fixed routing procedure.

A number of interesting results obtained with the help of simulation experiments
have been described. These results pertain to the behavior of the average message
delay (taken as the measure of performance of the net) as the following three design
parameters are varied; channel capacity assignment; routing procedure; and topo-
logical structure. Specifically, the problem solved is the minimization of the average
message delay at a fixed cost (i.e., at fixed total channel capacity). We now summa-
rize the results of Chap. VII.

(1) The square root channel capacity assignment as described in Eq. 1.1
results in superior performance as compared to a number of other
channel capacity assignments.

(2) The performance of a straightforward fixed routing procedure, with
a square root capacity assignment, surpasses that of a simple
alternate routing procedure.

(3) The alternate routing procedure adapts the internal traffic flow to
suit the capacity assignment (i.e., the bulk of the message traffic

is routed to the high capacity channels). This effect is especially
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(5)

26

noticeable and important in the case of a poor capacity assignment
which may come about due to uncertainty or variation in the applied
message traffic.

A high degree of non-uniformity in the traffic matrix results in
improved performance for the case of a square root channel capacity
assigument (due to a more clustered traffic pattern).

The quantities essential to the determination of the average message
delay are the average path length and the degree to which the traffic
flow is clustered. The trade-off between these two quantities allows
one to determine the sequence of optimal network topologies which
ranges from the star net at small values of network load to the fully

connected net as the network load approaches unity.
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CHAPTER 1I

HISTORY OF THE PROBLEM

The application of probability theory to problems of telephone traffic represents
one of the earliest areas of investigation related to the present communication network
problem. The first effort in this direction dates back to 1907 and 1908 when
E. Johannsen*{ 3] published two papers concerned with the delays and busy signals
which subscribers experienced in placing telephone calls. It was he who influenced
A. K. Erlang** to investigate other problems of this sort. Erlang's works are reported
(in English) in{ 3 ], and represent a nurnber of major contributions to telephone traffic
theory. His most significant work appeared in 1917, in which he considered the utiliza-
tion of equipment in the telephone exchange under a fluctuating demand for service.

Other workers made contributions in this direction at that time, and O'Dell[ 4,5 ]
gives an account of the theories up to 1920; his principal work on grading appeared in
1927. E. C. Molina [ 2,6 ] also made some noteworthy contributions during that era.

The theory of stochastic processes was developed after Erlang's work. However,
Erlang first considered the notion of statistical equilibrium (and discussed the distribu-
tions of holding times and incoming calls) for application to problems of telephone traffic.
Much of modern queueing theory deals with the development of these basic ideas by
means of more recent mathematical tools.

In 1928, T. C. Fry [ 7] published his book (which has since beoome a classic work)

in which he offered a fine survey of congestion problems. He was the first to present a

* Reference to Johannsen's work will be found in [ 3, p.14].

** Erlang was an engineer with the Copenhagen Telephone Exchange.
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unified approach to the results up to that time. Another writer of that period was

C. Palm [ 8,9], who was the first to use generating functions in studying the formulas
of Erlang and O'Dell. His works appeared in 1937-1938 During this time, a large
number of specific applications (mostly lost call problems) were investigated, using
the theories already developed. Fry and Palm both developed the equations (now recog-
nized as the Birth and Death equations) which provide the basis for many results in
queueing theory.

In 1939, Feller [ 10] introduced the concept of the Birth and Death process, and
ushered in modern queueing theory. His application was in physics and bio logy, but it
was clear that the same process characterized a number of models useful in telephone
traffic problems. Many applications of rthese equations were made by Palm [ 11] in
1943. In 1948, Jensen (see [ 3 ]) also used this process for the elucidation of Erlang's
work. Kosten[ 12 ], in 1949, studied the probability of loss by means of generalized
Birth and Death equations. Waiting line and trunking problems were discussed by
Feller [ 13 ] in his widely used book on probability, making use of the theory of
stochastic processes.

In 1950, C. E. Shannon [ 14 ] considered the problem of storage requirements in
telephone exchanges, and concluded that a bound can be placed on the size of such storage,
by estimating the amount of information used in making the required connections. In
1951, F. W. Riordan [ 15 ] investigated a new method of approach suitable for general
stochastic processes. R. Syski[ 16 ], in 1960, published a fine book in which he pre-
sented a summary of the theory of congestion and stochastic processes in telephone
systems, and also cast some of the more advanced mathematical descriptions in common

engineering terms. In 1961, T. L. Saaty [ 17 ]| published a comprehensive book on the
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subject of queues. In 1962, J. Riordan|[ 18] published a text in which he dealt with
some combined problems in queueing theory and traffic probability theory.

In the early 1950's, it became obvious that many of the results obtained in the field
of telephony were applicable in more general situations; thus started investigations into
waiting lines of many kinds, which has developed into modern queueing theory (a theory
which finds numerous applications in the field of operations research). A great deal of
effort has been spent on single node facilities,i.e., a system in which "customers"
enter, join a queue, eventually obtain "service' and upon completion of this service,
leave the system. P. M. Morse [ 19 ] presents a fine introduction to such facilities in
which he defines terms, indicates applications, and outlines some of the analytic aspects
of the theory. P. Burke [ 20], in 1956, showed that for independent inter-arrival tmes
(i.e., Poisson arrival), and exponential distribution of service times, the inter -departure
tdmes would also be independent (Poisson). In 1959, F. Foster [ 21 ] presented a duality
principle in which he shows that reversing the roles of input (arrivals) and output (ser-
vice compledons) for a system will define a dual system very much like the original
system. In contrast to the abundant supply of papers on single node facilities, relatdvely
few works have been published on multi-node facilities (which is the area of interest to
this thesis). Among those papers which have been presented is one by G. C. Hunt[ 22]
in which he considers sequential arrays of waiting lines. He presents a table which
gives the maximum utilization factor (ratio of average arrival rate to maximum service
rate) for which steady state probabilities of queue length exist, under various allowable
queue lengths betveen sequential service facilities. J. R. Jackson[ 23], in 1957,
published a paper in which he investigated networks of waiting lines. His network con-

sisted of a number of service facilities into which customers entered both from external
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sources as well as after having completed service in another facility. He proves a
theorem which, stated roughly, says that a steady state distribution for the system
state exists, as long as the effective utilization factor for each facility is less than one,
and, in fact, this distribution takes on a form similar to the solution for the single node
case. In 1960, R. Prosser [ 24 ] offered an approximate analysis of a random routing
procedure in a communication net in which he shows that such procedures are highly
inefficient but extremely stable (i.e., they degrade gracefully under partial failure of
the network). Furthermore, Prosser [ 25 ] describes an approximate analysis of cer-
tain directory procedures in which he concludes that the disadvantages of such procedures
are the necessity of maintaining the directories, and the need to determine optimal paths
from the directory information; he also concludes that the advantages (as compared to
random routing procedures) are the increase in efficiency and in the capacity of opera-
tion.

The important characteristic of the communication nets that form the subject of
this thesis is that each node is capable of storing messages while they wait for trans-
mission channels to become available. As has been pointed out, queueing theory has
directed most of its effort so far toward single node facilities with storage. There has
been, in addition, a considerable investigation into multi-node nets, with no storage
capabilities, mainly under the title of Linear Programming (which is really a study of
linear inequalities and convex sets). This latter research considers, in effect, steady
state flow in large connected nets, and has yielded some interesting results. One
problem which has attracted a lot of attention is the shortest route problem; M. Pollack
and W. Wiebenson [ 26 ] present a review of the many solutions to this problem, among

which are Dantzig's simplex method, Minty's labelling method, and the Moore-D'Esopo
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method. W. Jewell [ 27 ] has also considered this problem in some greater generality,
and, by using the structure of the network and the principle of flow conservation, has
extended an algorithm due to Ford and Fulkerson in order to solve a varied group of
flow problems. R. Chien| 28] has given a systematic method for the realization of
minimum capacity communication nets from their required terminal capacity require-
ments (again considering only nets with no storage capabilities); a different solution

to the same problem: has been obtained by Gomory and Hu [ 29 ] in which they solved
for the minimum capacity net which could handle all traffic requirements between a

pair of nodes individually. In general, these linear programming solutions take the
form of algorithms with vast computational requirements. In 1956, P. Elias,

A Feinstein, and C. E. Shannon[ 30 ] showed that the maximum rate of flow through

a metwork, between any two terminals, is the minimum value among all simple cut-sets.
Also, in 1956, Z. Prihar [ 31 ] presented an article in which he explored the topological
properties of communication nets; for exampke, he showed matrix methods for finding
the number of ways to travel between two nodes in a specific number of steps.

The problems handled by the techniques of linear programming have a great deal
in common with the communication problem at hand. Their problem is that of solving
networks in which the commodity (e.g., water, people, information) flows steadily.

A typical problem is that of finding the set of solutions (commonly referred to as feasible
solurions) which support a given traffic flow in a network. A solution consists of specify-
ing the flow capacity for each link between all pairs of nodes. In general, a large num-
ber of solutions exist, and a iot of effort has been spent in finding that solution which
minimizes the totall capacity used. One obvious requirement is that the average traffic

entering any node must be less than the total capacity leaving the node. Notice that the
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important statistic here is the average traffic flow, and if the flow is steady, then we

have a deterministic problem. Now, in what way does this prcoblem differ from the
problem considered in this thesis? Clearly, the difference is that we do not have a
steady flow of traffic; rather, our traffic comes in spurts, according to some proba-
bility distribution. Consequently, we must be prepared to waste some of our channel
capacity, i.e., the channel will sometimes be idle*.

In 1959, P. A. P. Moran [ 32 ] wrote a monograph on the theory of storage. The
book describes the basic probability problems that arise in the theory of storage, pay-
ing particular attention to problems of inventory, queueing, and dam storage. It
represents one of the few works pertaining to a system of storage facilities.

The results from information theory [ 33 ] aiso have relation to the communica-
tion net problem considered here. Most of the work there has dealt with communication
between two points, rather than communication within a network. In particular, one of
the major results says that there is a trade-oif between message constraint length and
probability of error in the transmitted message for noisy transmission channels. Thus,
if delays are of no consequence, transmission with an arbitrarily low probability of
error can be achieved. The effect of this constraint length is to add additional intra-
node delays to the message. We will not deal specifically with noisy channels, although

such an avenue of investigation represents an interesting extension for future study.

* For a more detailed discussion of this difference, the reader is referred to the
introductory paragraphs in Appendix A.
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CHAPTER I
THE PROBLEMS OF AN EXACT MATHEMATICAL SOLUTION

TO THE GENERAL COMMUNICATION NET

3.1 Discussion of the General Problem

We have before us the task of supplying answers to the various questions posed
by the designer in Sect. 1.2. Therefore, we require a mathematical description of
the behavior of the message delay as we vary the design parameters*. One way in
which such a description can be obtained is by consideration of an appropriate set of
state variables. Specifically, this set of variables must satisfy two conditions. First,
the set must include (explicitly or implicitly) those quantities which are of interest,
e.g., the message delay. Second, the set must be a complete, or closed, set, such
that knowledge of the state variables at time t and knowledge of all message arrivals
from sources external to the net in the closed interval (t, t') is sufficient to uniquely
specify the state variables at time t' = t. This second condition describes the Markovian
property.

One set of state variables which satisfies these conditions will now be defined.
We consider a communication net with N nodes and M one-way channels, under the
same assumptions as are described in Sect. 1.4. It is clear that the state of the net at
any instant of tme must include the detailed information as to the number of messages
on each queue, the length of each message, and the time re quired to complete the
transmission in progress on each channel. Furthermore, we assume that each message

is labelled with an origin, a destination, and a priority. Accordingly, we define

* The design parameters under consideration are: capacity assignment to each channel;
topological structure; routing procedure; priority discipline; total traffic handled;
and rotal system cost.
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C = capacity, in bits/sec. of the ith channel

n = number of messages waiting for (or being transmitted
on) the ith channel

Y = average arrival rate of messages, from external
sources, to the ith channel

. ,V. ,Z.) = message length*®, in bits, of the nth message waiting
for (or being transmitted on) the jth channel, whose
origin, destination, and priority are Xin» Yin’ Zin’
respectively. For conciseness of notation, we let the
symbol Vin denote this length.

A% = the set of numbers (vil’ Vigr ooV )

r = the time remaining to complete the transmission in
progress on the ith channel

R = the set of numbers (rl, Toseeey rM)

R+dt = the set of numberis (1‘1+dt, r2+dt, ey rM+dt)
where

i=1,2,...,.M
and

n=1,2, ,n

The state of the net at any time t, may be completely described by the set of

variables

,e..,n. , V. V. ..,V , R)
2 M o, n2 nM

S =( It n
Clearly, all of these quantities are functions of time. The dimensionality of this state

description is unbounded since the variables ni are unbounded. Furthermore, all of

these variables are necessary in order to complete the state description.

* Recall that the distribution of message lengths is exponential, with the mean length 1/u.
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Associated with each state S, and each time t, is a probability density function
pt(S) that the net will be found in state S at time t. In general, one desires the explicit
solution for the function pt(S). To date, this problem remains unsolved. However, we
will carry out a portion of the arnalysis in an effort to indicate the source of the difficulty.
In particular, let us set up the equations under the conditions

n >1
i

0<x; <vyy/C
The first condition, ni > 1, is included for convenience at this point. The end points O
and \A l/Ci are excluded from the allowed range of T in order to temporarily eliminate
from discussion any consideration of internal message arrivals*. For this case, we

write down immediately that

p (n,n,,...,0,,V_,V_,...V_ ,R) =
vrde 1 P2 "™ "n) 'n, L
M
RN A A ,...,VU_M,R-i-dt) (1- 3 ¥,
1 2 L
i=1
g Hin,
+/ 'yidt ue p':(nl,nz,...,ni-l,...,nl\d,vtl Vo ""’Vn_-l"' ’VnM'R"'dt)
i=1 1™ i

where 'yi' represents that portion of 7; which has the appropriate X0 Vi and zin which
i i i
correspond with Vin - This leads us to the following partial differential difference
i
equaton

* An internal message arrival occurs when a message completes its transmission
between two nodes internal to the net (as opposed to an external message arrival
which occurs when a message arrives at its origin from a source external to the nert).
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M
-p.(n,n,,..., ,v. ,. V. ,...,V_ ,R) z Y.
t 1"72 1-lM nl 1:12 nM i

where o, > 1and 0 < I, <v; 1/ Ci' The equations involving I, at its end points force one
to consider internal message arrivals and become considerably more complex. In
particular, one must then include the rules of the routing procedure in determining
which transitions occur. The task of solving this set of partial differential difference
equations is formidable, and no solution has yet been found.

The complexity of the state description is due in part to the constraint that each
message, upon entering the net, has a permanent length assigned to it. The message
maintains this same length as it travels through the net. This clearly necessitates the
inclusion of the variables Vn. in the state description. The identification of a perma-
nent length with each mcssag:e not only increases the dimensionality of the state
description, but also complicates the stochastic behavior of the net by introducing a
dependence among some of the random variables which describe the net. In particular,

if we consider two successive messages arriving at node i from some other node

intermal to the net, then the inter-arrival time between these messages is not independent
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of the message length of the second of the two messages*. More specifically, let us
derive the joint probability density function p(vn, a2n) for the simple two node tandem net

shown in Fig. 3.1, where we define

v

0 message length of the nth message (in bits)

. . st th -
time between the arrival of the n-1" and n~ messages to node i.

)
I

in

C C, C Ca

Figure 3.1 A two node tandem net.

For convenience, we take C1=1 bit/sec. Clearly this represents no loss of generality.

By the assumptions of Sect. 1.4, we recall that both aln and v are described by

the following exponential probability density functions

™ 21n
e

p@a,) = v

v
pe O (3.1)

\
p(v)
Further, for our immediate purposes, it is convenient to assume that all messages

originate at node 1 and are required to pass through nodes 1 and 2.

* Of course, this independence exists for messages which arrive from an external
source by assumption.
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Observe that channel C 1 fits the classical queueing theory model of a single
exponential channel system as described in Appendix A; hence, all results from that
appendix apply. Since Theorem A. 1 (due to Burke) holds, and since the inter-departure
times for messages leaving node 1 are, by definition, identical to the inter-arrival

times for messages entering node 2, we see that
(a, ) = ye T (3.2)
b 2n =Y .

The nth message leaving node 1 is either (1) separated by a time gap, 8, from the
n-ISt message, or (2) transmitted immediately after the n-1°¢ message is finished

(see Fig. 3.2). Case 1 occurs ounly if the first node emptied while

02n

CASE | i Vo, gn-r-—vn—-

/71

time
r—c’zn_—'l
CASE 2 Voot v, —
Ll L ANANNANN

time

Figure 3.2 Adjacent messages leaving node 1.
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awaiting the nth message, and this occurs with probability 1-p (see Eq. A.3 in Appen-
dix A) where p = %— = X; and case 2 occurs if the first node is busy when the n
I
1
messages arrives, which has probability p. Thus

p(vn, a2n) =p Pr [vn, a, [ node 1 busy] + (1-p) Pr [Vn, a, | node 1 empty] (3.3)

Clearly¥*,

n
Pr [vn, a, | node I busy] = Pr [vn—a2n] = ue uo(azu-vn)

and also,

Pr[vn'aZn | node 1 empty] Pr[ a,. | v, node 1 empty] Pr[vEl | node 1 empty]

= Pr[gnqzl_l-vn] Pr[vn | node 1 empry]

Due to the memoryless property of an exponential distribution (see the discussion on
page 195), g, is also distributed according to Eq. 3.2. Thus

~v(a -V -uv
P_[v_,a, | node l empty] = vye " 2o n)ue “n
r  n " 2n

Therefore, Eq. 3.3 becomes

“uv Y@, V) THY,

p(v,a, ) =ve " u @, vy trlu-ve 3.4

This last equation gives the desired joint probability density function of Vo and Ay
Upon comparing Eqs. 3.1, 3.2, and 3.4, we see that
v .a,) = p(v) p@a, )
which, by definition, illustrates a lack of independence between Vo and a, - This lack
of independence is the source of great complication in the exact mathematical analysis

of the general net; indeed, no general solution has been obtained.

* uo(x) is the unit impulse function
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3.2 The Tandem Net

If we consider the tandem net as shown in Fig. 3.3, we simplify the general

problem somewhat®*. In particular, we remove from consideration, the question of

——( N ©) - ..._.__®C

Figure 3.3 The tandem net with K nodes.

origin, destination and routing procedure since all messages originate at node 1, are
destined for node K, and are routed successively through nodes 1,2,3,...,K. We do,
however, retain the dependency between the inter-arrival time and lengths of messages.

In addition, since we have only one external input (at node 1), the complete course of a
message can be calculated deterministically as soon as that message arrives at node 1.

That is, we can state exactly how long that message will spend in each node k (k=1, 2, .. .,K).
Nevertheless, the complete mathematical solution for this simplified net evades us. We
have been able to obtain some partal results which we now proceed to describe.

Both Vn and ain retain their definitions from Sect. 3.1. We introduce the addi-

tional notation for Wi and 8 25 follows.

*Note that Ck=C for k=1,2,...,K. We take C=1 for convenience.
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th
total time that the n~ message spends in node k

g
[

kn

th s
time that the k node remains idle while awaiting the arrival of

8
kn the nth message.

In Fig. 3.4, we show graphically, the history of 7 messages as they pass through

the first 3 tandem nodes. The function plotted is the total unfinished work, Uk(t), in

Ul(f)

Uz(f)

U, ()

Figure 3.4 Example of Uk(t) for the first three tandem nodes.
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the kth node; it represents the total number of seconds that will elapse before the kth
node empties, if no other messages enter this node after time t. For purposes of
illustration, the fourth message is the only one labelled in the second and third nodes.
It is cleaxr that if the nth message arrives at node k at time t, then it adds
- -
v to Uk(t ). That is*,

Uk(t") =U () +v 3.5)

But,

Win = Uit

Now, if - > 0, which means that the kth node was idle at time t~ , then Uk(t') =0,

and so

Wi ™Vn for 8 > 0
If, on the other hand, gkn=0’ then Uk(t‘) was still positive and decreasing at a rate of
1 sec/sec; in fact, since exactly a4 seconds had elapsed since the n-15° message
arrived,

Udlt) =W 1%
and so, from Eq. 3.5, we obtain

wkx1=wk,n-l-31<n+vn for gkn=0 3.6)
Note that for k = 2, the inter-arrival time an is made up of the transmission time out
of the k-lst node for the nth message, plus any time that the k-15° node spent idle await-
ing the arrival of the nth message. That is,
3.7

4n = Vot 8-1,n

* t~ is defined as t-dt, and tt as t+dt.
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Trerefore, Eq. 3.6 may be written as

w =W

o for gkn=0 and k =2

k,n-1 B gk-l, o

Furthermore, it is clear that the maximum that the kth node can reduce its
unfinished work in the time between the arrival of the n-1°¢ and nth messages, is
a. . Thus, ifa

kn
will be zero. If 4L = wk, n-1' then 8in = e wk, n-1- Summarizing the results for

_ . . . th .
n = wk, n-1" then the idle time, 8y’ node k before the n~ arrival

the tandem net so far, we have,

~
wl, n-l-aln+vn for 81n = 0
“in T < (3.8)
Vo for 815> 0
L
f
Yk, n-1"8k-1,n for gy =0 k=2
w = ﬁ (3.9)
v forglm>0,k22
.
f'
0 for n = Vi, n-1
By = (3.10)
%n ” wk, n-1 for 3 = wk,n-l

We now proceed to derive an expression for Pr [ w,_=W]J, fork =2. From

Egs. 3.9 and 3. 10 we immediately obtain

P =W, a

Wl =P [We 0y " 8y,n =

Vi = m = Vi, n-1!

+P1_[Vn =W, akn Zwk,n-l]
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By use of Eq. 3.7, we obtain

P wknsW]=Pr[vnsw W]

r[ k,n-1 _gk-l,ns

<v. =W]

+Pr[wk,n-1 -gk-l,n n

Defining X = wk' n-1" 8k- Ln we observe that the above equation integrates the
probability over the region in the product space of Xen and v such that Xen = W and

also v, = W. Thus, we finally obtain

Pr[wlmsW] =Pr[vnsw, wk,n-lsw+gk-l,n] (3.11)

This is an interesting and general result for the tandem net, with k = 2.

Let us now consider a very special situation wherein each node remains idle
for a fixed time, g, after it completes the transmission of each message. This
assumption is made in order to break the dependency of Vo and 8- Lo With this

assumption, we find that

P(W) = Vn W) P 1 (W+g) (3.12)
where

Pn W) = Pr[wkn =W]
and

Vn Wy = Pr [ vn =W]

For y/u < 1, the steady state exists, and we have

P(W) = lim P_(W)

n—o
Thus, Eq. 3.12 becomes, in the limirt,

P(W) = V(W) P(W+g) (3.13)
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From Eq. 3.13, we may write
P(W+g) = V(W+g) P(W+2g)

and so on. Now, since P(W) is a cumulative distribution function, we know that

lim P(W+mg) =1

m—=co
and so Eq. 3.13 may be written as

-]

PW) = [[ V (W+mg)
m=0

Thus, since we have exponentially distributed message lengths, with a fixed idle time g,

we obtain

P(W) = lim P [“’kns"‘”:H <1_e'u(w+mg)>

b
G —~wo m=0

From this last equation, we note that as g — 0, which corresponds to the case y/u—1,
the message delays grow without bound as n — «; this means thaty/u = 1 must be a
pole for the message delay in all nodes.

Returning now to the case in which we remove the restriction of a fixed idle gap

for each node (i.e., now obeys Eq. 3.10 once again), we consider the limiting

Ein
behavior of the message traffic leaving the Kth node as K-+ «. We introduce the notion
of a busy period for the kth node as being an interval of time during which the kth node
is contdnuously transmitting messages. We will also refer to the m ™~ busy period for

node k as the mth occurrence of a busy period for that node. Define

L as the length (in bits 8 seconds since C=1) of the message
mk A R
which initiates the m ~ busy period in node k.

TTl as the time between the start of the mth and m-1°" busy periods
' in node k.



L = lim L
m K— o mK
T = lim T
m Koo mK
. . . . th .
p(i | L_) = lim P_{ imessages inthe m busy period of
m r th .
K—~w the K*! node, given L _ ]
mK
p'(L | L) = lim P_[ L given L, where L+LmK I:.S the total
K—w length of the mth busy period in node K]

With these definitions, we now state

THEOREM 3.1

As K — =, the limiting form of the message traffic as it leaves the

Kth node behaves as follows;

0Y)

seconds in the Kth node, where L =1
m m

2"
(2) Lm = Lm_1 m=1,2,3,...
3) : =
Trnl lfLm—L -1
T =
m
) ifL >L
m m-1
-pL -l i-1
. _ m . m
4 palL) =e (1-e ™
—“Lm
-uL —u[Lm+Le ]
(5) P'(L|L_) =u(l-e )e
-#Lm
+e

u (L)
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All messages in the mth busy period spend exactly Lrn
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Let us consider the mth busy period in node k. We assume that there are rnk
messages included in this period. Note that gkn=0 for all messages grouped in a
busy period, except for the message which initiates the busy period. With this condi-

tion, Eq. 3.9 states that, for k =2

Yim T Yk,n-1 8k-1,n

and so, we see that, for k = 2,

wklzwkzz...zwkm (3.14)

Now, since 8 = O within the busy period, we obtain from Eq. 3.7

q+1,n0 - Vo

Clearly, since w,__ is made up of transmission time (vn) plus queueing time,

kn

vV =w
n kt+1,n

Thus,

rl,n = “ktl,n

Applying Eq. 3.14, we obtain

kel,n = “ktl,n = Vktl,n-1
From this and Eq. 3.10, we find that vl n - 0. Applying this to Eq.3.9, and recall-
ing that 8 = 0 within the busy period, we obtain, for k = 2,

Yirl,n - Vierl,n-1 (3.15)

Summarizing, Eq. 3.14 states that all messages in a busy period have monotonically
decreasing waiting times. Further, Eq. 3.15 states that after messages which are

grouped into a busy period pass through the next node, all these messages will have
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identical waiting times. In passing through this node, new messages may be added
to the busy period, and the waiting time for these need only obey Eq. 3.14; however,

only messages with v, =W, can possibly join this group in the busy period (due to

k1
Eq. 3.14). Thus, after passing through an unbounded number of nodes, all messages

in a busy period will have identical waiting times, each equal to w, . = vy for k = 2.

k1
Thus, L_ =L =w, . This proves statement 1 of the theorem.
m m2 k1
We now observe that in passing through a node, the initiating message of the m

busy period (hereafter referred to as the mﬂ-l group leader) gets delayed by exactly

Lm seconds (its own transmission time) for k = 2, and so,

T =T + L_ -L
m

mk m, k-1 m-1

or

+ T

T m-l) "ml

mk (k-1) (Lm -L

Now, if Lm-Lm_1 < 0, then Tm will eventually go negative; but this implies that the

k

m-lst and rnth busy periods have coalesced into one large busy period. For

- — - T - 3
Lrn Lm-l > 0, then ka o , and for Lrn Lm-l’ ‘rnk_Tml From this argument,
we see thatas k— » , L =1L where the subscript m refers only to distinct busy

m m-1

periods {by definition). We have thus established statements 2 and 3 to the theorem.
Furthermore, we see that as k— « , the rnth busy period will contain only those

messages which arrived at node 1 after the rnth group leader and before the n1+lSt

group leader. This also implies, by Eq. 3.14, that Vo= Lrn' Since the arrival times

at node 1 are chosen independently, we easily calculate p(i | Lm) as
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p(i | L) = P i-1 messages arrive, each withv <L _, n=1,2,...,i-1]

.th
Pr [ i message has length v.=L ]

i-1
= Pr [ message length = Lm] Pr [ message length <Lm]

Due to the exponential distribution of message lengths,
""Lm ‘!—le i-1
p(i]Lm) = e (l-e ) i=1

which proves statement 4 of the theorem.

Proceeding with p' (L | Lm), we note immediately that

p'(L|L_)=p(l]|L )u (L) +

p(n | L) P_[ sum of n-1 message lengths = L |

Now, since all message lengths are independent random variabies, the probability
density of the sum of these n-1 random variables is merely the (n-1)-fold convolution
of their individual probability density functions. Performing this convolution on the

exponentially distributed lengths, we obtain

o n-2 -u_L
PUL | Lpy) = PO Lu, (M) + z p(m | L_) plul) 'e
n=2 (n-2):

Substituting for p(n | Lm) from statement 4 of the theorem, and performing the indi-
cated summation, we arrive at the expression given by statement 5. This completes
the proof of Theorem 3. 1.

The interesting results which describe the behavior of message traffic in a tandem

net are given by Egs. 3.8, 3.9, 3.10, 3.11, and by Theorem 3.1.
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3.3 The Two Node Tandem Net

If we limit ourselves to the study of a tandem net with K=2, and where we allow
ourseives the possibility of C 1 = Cz, we find that we are able to carry the analysis
further (although not to completion). Specifically, we are able to derive a functional
equation for the Laplace transform of the joint distribution of a message's length, its
time spent on the queue in the first node, and its time spent on the queue in the secoad
node. From this, we obtain a similar transform expression for the marginal distribu-
tion of the queueing time in the second node. We obtain these transform expressions
as follows.

We first introduce notation suitable for this two node case, as

X = queueing time for the n-15¢ message in node 1
y = queueing time for the n-15¢ message in node 2
q = queueing time for the nﬂ:l message in node 1

T = queueing time for the nth message in node 2

u = bit length of the n-15t message

v = bit length of the nth message

. . . st th
2 = inter-arrival time between the n-1" and o messages to the
first node

We are interested in obtaining an expression for queueing time in the second node
since this is the node that is supplied with the dependent traffic. We know the waiting
and queueing time for the first node since it satisfies the conditions of a single exponen-~
tial channel (i.e., it is fed from an external source with the suitable independence
between message lengths and inter-arrival times of messages). In solving for the

queueing time in the second node, we are forced to consider the joint distribution of
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the triplet (x,y,u) since it is this distribution which appears in our probability expres-
sions below. We proceed by expressing the joint distribution of (q, r, v) in terms of
the distribution of (x,y,u); we then take the limit of these expressions as n — « . This
results in an integral equation whose Laplace transform we then obtain.

We know that the marginal distribution of all message lengths (for example,
u and v) is exponential with mean length 1/u; further, the inter-arrival times, a, are
also distributed exponentially with mean length 1/A. We now define a set of proba-
bility expressions,

P1 = Pr[ g=0, r=0, v = V]

P2 = Pr[ 0<q=Q, =0, v=V]

P =Pr[q=0,0<rsR,vsV]
P =Pr[0<qu,0<rsR,vsV]
P =Pr[05qu,OsrsR,vsV]

From these definitions, it is obvious that

P = P1+P2+P3+P4

P = P(Q,R,V) is the 3-dimensional cumulative probability function which we are
interested in. Corresponding to P there may be defined, with the help of impulse

functions, the probability density function

33P

aQaR sV

PQ,R,V) = @Q,R,V)



Similarly, we define

Pl(V) = 5 W)

P,(Q, V) = 3y @V

PR,V =T RV

P4QR.V) =~ RV Q,R,V)

It is then clear that
PQ,R,V) = p;(Nu_ (Qu R) + p,Q,V)u R) +

ps(R:V) uO(Q) + P4(Q:R1V)

For conciseness, we define the following quantities,

Vi = V/Ci
D = x+y+u/c1+u/c2
E = (V;-9C,
F = (Q-x)Cl
0 Q = Vl(Cz/Cl)
G =

Q-V,(C,/C) Q =V (C,/C))



0 Q =(C,/C)) (V +R)

Q-(Co/C)) (Vi+R)  Q =(C,/C)) (V +R)

Omitting the lengthy arguments involved, we present the derived expressions for

P, i=1,2, 3, 4.

pl(V)

P,(Q, V)

PR, V)

2 E - AHU/C) )1V

g g g up(x, y,u) e dxdydu
x=0 y=0 u=0

Yi

F = -MD-V )-uV

J 5 § up(x,y,u) e dxdydu
x=0 y=0 u=E

~ A A -A(D-Vl)-/,zV

S‘ S‘ g up(x, y,u) e dxdydu
x=0 y=V;u=0

Q WS g

AU/ C -Q)-uV
S. g S.M px,y,u) e dxdydu
x=G y=0 u=F

<

§ S. S. uAp(x,y,u) e 'MX‘HJ/CI @ -#dedydu

x=Q y=0 u=0

x V1+R ©
-A(D- V -R)-uVv
§ S‘ S. . uAp(x,y,u) e dxdydu

x=0 y=0 u=(Vl-f-R-y)C2

A~ R R -MD-V, -R)-uV
S‘ S. 5 AP(X,y,u) e dxdydu

x=0 y=Vl+R u=0
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V+R F/C2
—k(D—Vl -Q-R)-uV
p4(Q R,V) = S S ;,LKCZ p[x,Y.u=C2(V1+R-y)] e dxdy
V+R
A.(D-VI-Q-R)-,,LV
S S‘ uAC p(x,y,u=C, (V +R-y)] & dxdy
x=Q y=0

We now define the 3-dimensional Laplace transform

oo

-5.Q-s R-s,V
L(Sl,52,53)=§ g g HQR, Ve - 2 3 aqdrav
Q=0 R=0 V=0

After taking transforms of the above expressions, and collecting terms, we finally

obtain the following expression for L(sl, S, s3)

[ A A KS,
L(s,,S,,S,) =L x,x,—+_J . _
1’72’73 Cl C2 (52 k)(u+53 )./cl)

c A C1 uxsz(y+ss—sl/C1)
- L A.’ y — —
(ut+s3)Cy cl+(“+53) 02] G (uts,)(s, Mts,-NC)(ts5-5,/C))

A S, ;m(s -s )
+Ll}'52’c_ c ] (

sy o \(s A)(s,A)

1 2 ] Y
- Ll s.,S,=— +—
L 1’72 Cl 02 (sl 7\)(;1+53-32/Cl)

(3.16)
S

sl C]. [.1.7\.52

+ L ([.1+S )yc., + (uts )
L 3’771 Cl 2 - _i_
1(sl->")("ﬂ-s3- Cl)(l-‘+s3)
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Eq. 3.16 represents the extent to which the solution has been carried. Note that for
s 1=52=O, the proper marginal distribution for the message length is obtained (after
taking the inverse transform, of course). Furthermore, for 52=53=0, we obtain the
expression for the transform of the marginal distribution of the queueing time in the
first node*.

With s =53=0. we obtain an expression for the Laplace transform of the queueing

1

timeA in the second node, as follows.

L(©,5,,0) =L (A, 2 42y 2
2 C, "G, (s, Mw-r/C))

us, L( uC},A/C) +uC,/C,) ] L(A,55,A/C| +5,/C,)

+ — - (3.17)
7 52/Cl pCl-l s, A

s
+ ;:521702" I:I-L L (O, Sgy» 52/02) - C—i L (o,ucl,ucl/cz)]
This functional equation has not been solved.

It is interesting to note that even the solution for the marginal distribution of the
queueing time in the second node escapes us. Furthermore, we observe that the case
under consideration is the simplest one in which the effect of the dependency between
the inter-arrival times and lengths of messages may be analyzed; and yet, a solution

was not obtained.

* Note that after multiplying this by the transform of the service time distribution, we
obtain the transform of the total ime spent in the first node. Inverting this product,
we arrive at an expression which agrees with Eq. A.5 in Appendix A.
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3.4 The Independence Assumption

We recognize that the source of difficulty in solving the general net (or even the
simpler tandem net) lies in the assignment of a permanent length to each message.
This permanent assignment gives rise to a dependency (see, for example, Eq. 3.4)
between the inter-arrival rimes and lengths of adjacent messages as they travel within
the net. Indeed, as we shall see below, the elimination of this dependency simplifies
the mathematics considerably.

Recall the assumption of independence between the arrival time and length of a
message as it enters the net from an external source. We stated that this assumption
is quite accurate in describing the externally applied traffic for some communication
nets. We may now inquire as to what properties of the external traffic bring about
this independence. The answer is straightforward, and may be found by observing
that the external message source consists of a large number of subscribers (people)
each individually generating messages (telegrams) at a relatively small rate. The
inter-arrival times and lengths of messages generated by any individual are indeed
dependent in a manner not unlike that expressed by Eq. 3.4*. However, the collective
inter-arrival times and lengths of messages generated Ly the enrire population of sub-
scribers exhibit an independence since the length of a message generated by any
particular subscriber is completely independent of rhe arrival time of messages
generated by the other subscribers.

A simiiar situation exists for the internal traffic of many practical store-and-

forward communication nets. That is, there is, in general, more than one channel

* That is, any individual requires a finite amount of time to generate a message, and
the length of this interval of time is strongly dependent upon the length of the message.
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delivering messages into any particular node (in addition to those messages arriving
from the external source feeding this node). Furthermore, there is, in general, more
than one channel transmitting messages out of this node (in addition to the "virtual"
channel which removes those messages which had this node as a final destination).
Fortunately, (for analytical purposes), this multiplicity of paths in and out of each node
considerably reduces the dependency between inter-arrival times and lengths of mes-
sages as they enter various channels (or queues) within the net. We offer evidence of
this essential independence with the experimental results described in the next section.
If, indeed, this assumption of independence describes the general network
behavior to a fair degree of accuracy, and if, at the same time, this assumption
simplifies the mathematics, then we have good reason to accept the assumption.
Specifically, one way in which we can introduce this independence into the mathematical
description is to make the following assumption.
THE INDEPENDENCE ASSUMPTION :
Each time a message is received at a node within the net, a
new length, v, is chosen for this message from the following
probability density function,

p(v) = pe MY

It is clear that this assumption does not correspond to the actual situation in
any practical communication net. Nevertheless, its mathematical consequences result
in a model which accurately describes the behavior of the message delay in many com-

munication nets. Indeed, we offer evidence of this in the next secton.
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3.5 The Effect of the Independence Assumption

Although the strict mathematical approach to the general net has resulted in, at
most, limited analytical results, we still require an answer, of some kind, to the
problem of a general node configuration. We have presented a loose hueristic argument
as to why the Independence Assumption represents a useful simplification of the problem.
Up to now, we have offered no substantial evidence of the accuracy of this assumption.
There is, at our disposal, a powerful tool with which to test the accuracy of the Independ-

gitai computer simulation program. The simulator is

=3

ence Assumption, namely, a
described in Appendix E.

We first describe the results of using this simulator to demonstrate the effect on
message delay as we introduce additional channels leading into, and emanating from, a
node. Specifically, the network configurations which were simulated are shown in
Fig. 3.5. The histogram of message delay, and the average message delay were the
quantities obtained from the simulation.

Note that in configurations ¢ - h there are three depths to the net; the nodes on
the left (depth 1) receive message traffic from external sources; the middle node
(depth 2) receives traffic only from nodes at depth 1; and the nodes on the right (depth 3)
receive traffic only from the central node at depth 2. The quantity of interest in all
cases is the distribution (or histogram) of total time spent by messages in the central
node at depth 2. The nodes at depth 3 serve as destinations for all messages*. In all
runs, the total capacity of the net was held fixed and broken into two equal parts, each

of C bits per second. The capacity was assigned so that the capacity of all channels

* That is, equal traffic rates are applied to nodes at depth 1, and each node at depth 3
serves as a destination, each receiving the same average number of messages.
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Figure 3.5 Simulated nets for studying internal network traffic
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connecting depth 1 and depth 2 totalled C; similarly, for the sum for channels connect-
ing depth 2 and depth 3. When more than one channel connected adjacent depths, the
capacity C was split equally among these channels. These same comments apply to
configurations a and b, except that the node at depth 2 is omitted.

Figure 3.6 shows the results of the simulation. Figures 3.6 a and b show the
histogram of message delay in passing through the first node for the net in Figs. 3.5 a
and b. All other parts of Fig. 3.6 show the histogram of message delay in passing through
the single node at depth 2. In all cases, the quantity p=y/uC is displayed on the histo-
gram itself, where p pertains to a single channel emanating from the black node.

Note that Figs. 3.6 a and b are essentially exponential distributdons as, of course,
they should be (see Eq. A.5). Figure 3.6c exposes the behavior of p(R), the distribution
whose analytic form we were not able to obtain. We note that as p increases, there is a
marked difference in behavior between p(Q) in Fig. 3.6a and p(R) in Fig. 3.6c. Supply-
ing two input channels (Fig. 3.6d) and five input channels (Fig. 3.6e) changes the nature
of the difference between these figures and Fig. 3.6a; however, this difference is stll
considerable even at moderate values of p.

The introduction of even two paths out of the central node at depth 2 results in a
tremendous reduction in the difference between the behavior of the first and second nodes.
Adding five exits from this node increases the similarity even further. In fact, at this
point, one is hard pressed to distinguish between Figs. 3.6a, 3.6b,and 3.6g. Figure
3.6 h shows, for completeness, the five input - five output case, which behaves very
much in the same way as the one input - five output case shown in Fig. 3.6b. The
horizontal distance between bars on each histogram indicates the scale expansion used
in displaying the histogram ; that is, the spacing between adjacent bars represents

one unit of delay.
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In Fig. 3.7 we plot the average message delay for these configurations as
obtained from the simulation*. This figure gives quantitive reference to the comments
made above. In particular, we note the essential similarity of the average message
delay for configurations a, b, f, g, h.

Having shown experimentally, that the behavior of the message delay for a single
node carrying internal traffic (with a multiplicity of paths emanating from that node) is
very much the same as that of a node supplied exclusively with external traffic, it
remains to show an analogous result for the entire net. We proceed by comparing the
average message delay for three different nets. Each net was simulated twice, both
times under identical conditions except that in one case, the Independence Assumption
was made, and in the second case it was not. The detailed description of each net is
given in Sect. 7.1; for our present purposes, however, these details are not of import-
ance. Figure 3.8 shows**the effect of introducing the Independence Assumption for a
particular traffic matrix T 1 (which represented a rather non-uniform traffic); Fig. 3.9
shows a similar graph for the uniform traffic matrix T 3 (once again, see Sect. 7.1 for
a full description of these nets and traffic matrices). The important observation to
make is that in all cases, the introduction of the Independence Assumption resulted in

a rather insignificant change in the average message delay.

* The quantity C_ in this figure is taken to be the capacity of a single channel entering
a node at depth 3.

**T is the message delay averaged over all origin-destination pairs, 1/u is the average
message length in bits, C is the total channel capacity assigned to the net, and v is
the total number of messages/sec. entering the net from external sources.
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3.6 Summary

An attempt has been made in this chapter to show the essential complexity and
intractability of a direct mathematical analysis of the general communication net.

Even the simpler class of tandem nets has ouly led to rather limited analytical results.
The source of difficulty has been shown to be the dependence between the inter-arrival
times and lengths of internal message traffic. We have found, however, thai the intro-
duction of the Independence Assumption removes this dependency, and produces a
model which behaves essentially the same as the original model in terms of the average
message delay.

It is now appropriate to discuss the mathematical model which results from the
introduction of the Independence Assumption. Specifically, if we consider only fixed
routing procedures, we recognize that the internal traffic flowing into each channel is
statistically equivalent to the extermal traffic entering the net, i.e., the inter-arrival
times and message lengths are independent and are chosen from exponential distribu-
tions. Thus, each channel satisfies the conditions of the single exponential channel
described in Appendix A. This observaton, coupled with Theorem A. 1l (due to Burke)
allows us to consider each channel (or node) separately in the mathematical analysis;
the results of this individual analysis of course must yield the same equations described
in Appendix A (i.e., for the single exponential channel). We cannot, however, stop
here and consider that we have answered the designer's questions as posed in Sect. 1.2.
We must consider the effect of various channel capacity assignments, routing proce-
dures, topological structures, and priority disciplines, as well. Fortunately, these

considerations are vastly simplified by the use of the Independence Assumption. We



note at this point that the introduction of various alternate routing procedures may
easily complicate the mathematics once again; we therefore find that we still rely

on the simulation procedure for results in many cases.
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CHAPTER IV

SOME NEW RESULTS FOR MULTIPLE CHANNEL SYSTEMS

We recognize that the problems associated with a multi-terminal communication
net appear to be too complex for analysis in an exact mathematical form. That is to
say, the calculation of such things as the multi-variate distribution of traffic flow
through a large (or even small) network is extremely difficult*. However, the intro-
duction of the Independence Assumption into our model simplifies matters considerably.
Specifically, we are now able to carry out an analysis of message delay on a node by
node basis, as discussed in Sect. 3.6.

In the present chapter, we derive some new resuits for simple multiple channel
systems, and consider optimum channel capacity assignments. As a preface, we
briefly state the problems considered and the solutions obtained herein. Specifically,
we present a canonical representation for the utilization factor in a single node system
which has N output channels, each of arbitrary channel capacity. We then proceed to
determine that number, N, of output channels from a single node in order to minimize
the time that a message spends in the node, subject to the constraint that each channel
is assigned a capacity C/N. A set of trading relations among message delay, channel
capacity, and total traffic handled is developed next from some well-known equations.
A result is then obtained which gives the assignment of channel capacity to a set of N
independent single output channel nodes which minimizes the message delay averaged
over the set of N nodes, subject to the constraint that the sum of the assigned channel
capacity is constant. In addition, the optimum assignment of the traffic pattern is

discussed, under some interesting constraints. We then consider the more general

* As discussed at length in Chap. III.
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case of an interconnected net, subject to a fixed routing procedure, and find that thé
optimum channel capacity assignment is the same as for the unconnected net; the
expression for average message delay now involves a new quantity, u, which is the
average path length for messages. Finally, we generalize the cost function applied to
the previous results and conclude with a theorem which describes the optimum channel
capacity assignment for this case.

4.1 A Canonical Representation for the Utilization Factor

Whereas it is well-known that, for a single channel system, the utilization factor,
p, turms out to represent the fraction of time that the channel is in use, there has not
been a similar representation available for a general multiple channel system®*. One
suspects that there should be an extended interpretation for such a system, and indeed,
this is true, as stated in

THEOREM 4. 1**

Consider an N channel service facility of total capacity C bits per
second (the distribution of the total capacity C among the N channels being
completely arbitrary), with Poisson arrivais at an average arrival rate of
A messages per second, message lengths distributed exponentially with mean
length 1/u bits, and an arbitrary queue discipline (with the restrictions that
there be no defections from the system, and, if pre-emption is allowed, it

must be pre-emptive resumeT). Define, as usual, the utilizaton factor

* For the special multiple channel case wherein all channels have identical capacities
(as in Sect. 4.2), it is well-known (see, for example Morse [ 19, p.102 ] thatp is
the average fraction of busy channels. We are giving a more general result which
allows an arbitrary distribution of capacity among the channels.

** Appendix B contains the proof of this theorem.

T See Sect. 5.1 for a precise definition of these terms.
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p = A/uC
Then _
oQ Cn
p =1 - Z c Pl_1 (4.1)
n=0

provided p < 1.

where

Q_(x) = P_ [the sum of the capacity of all unused channels
n r . ) .
is less than x, given that n messages are in

the system]

C
én = g. den(x) = Expected value of the unused capacity

0 given that there are n messages in

the system.
Pn = Pr [ finding n messages in the system in the steady statej
Essentially, this theorem states that*

p = E (used normalized capacity)

where the normalization is with respect to the total capacity C. This theorem not only
gives one a physical interpretation of the utilization factor for a multiple channel system,
but also gives an alternate analytic expression for the utilization factor which turmns out
to be quite useful. In particular, the proof of certain theorems in Chap. VI depend

upon this representation.

* The notation E(X) is to be interpreted as, expected value of x.
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4.2 Optimum Number of Channels for a Single Node Facility

Consider a pair of nodes in a large communication net. When the first of these
nodes transmits a message destined for the other, one can inquire as to what the rest
of the net appears like, from the point of view of the transmitting node. In answer to
this inquiry, it does not seem unreasonable to consider that the rest of the net offers,
to the message, a number, N, of "equivalent” alternate paths from the first node to the
second; the equivalence is a very gross simplification of the actual situation, which,
nevertheless, serves a useful purpose. Thus, the node under consideration reduces
itself to a multiple channel system. Assume that we have N channels emanating from
this node, each of capacity C/N bits per second, with Poisson arrivals at an average
arrival rate of A messages per second, and with all message lengths exponentially
distributed with mean length 1/p bits. The queue discipline is taken to be first come
first served, wherein the message at the head of the queue accepts the first channel
to become available. If a message enters the system when more than one channel is
free, it chooses one from this set according to a uniform distribution*. Such an

arrangement is shown in Fig. 4. 1.

* Recall that we are assuming that all channels leading out of the node go to "equivalent"
destinations, and so the messages are willing to accept any channel at all.
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C/N Dbits/sec.

C/N bits/sec.

@ > Y L —

A/u  bits/sec. queue N
mean traffic

C/N bits/ sec.

Next message chooses one from

the available channsis at random.

Figure 4.1 N-channel node considered in Theorem 4. 2.

For given values of A, i, and the total capacity C, of the node, the question as to
the proper choice for N (the total number of channels) presents itself*. Specifically,
let us inquire as to the value of N which minimizes T, the mean total time spent in the
node (i.e., time spent waiting for a free channel plus time spent in transmission over
that channel). Again, we define p =A/uC. Appendix A presents the solution for T, as
well as a number of other pertinent expressions. We are now ready to state

THEOREM 4. 2**

The value of N which minimizes T, forall 0 =p < 1 is

N =1

* Morse [ 19, pp. 103, 104 ] discusses this problem.

**See Appendix B for proof of this theorem.
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The reason that a facility with more than one channel is non-optimum in the sense
described above is that the efficiency of a node is related to its transmitting rate;

when we have only one channel, we are guaranteed to be transmitting at a rate of C

bits per second whenever there are any messages in the system, whereas when we have
N channels (N > 1), there will be situations when we have less than N channels occu-
pied and we will then be transmitting at a rate less than C.

This result says, in essence, that whenever possible one should design a multiple
channel system (whose total capacity is fixed) with as few channels as the physical con-
straints of the network allow (the limiting case of one channel is, as stated above,
optimumy).

4.3 Trading Relations Among Rate, Capacity, and Message Delay

A consideration of the trading relations among the number of messages handled,
the expected delay experienced by these messages, and the channel capacity of the
facility, will now be undertaken. Let us consider two different single exponential

channel facilities, as shown in Fig. 4.2. We also consider the two quantities Ti and Wi

A
| Mmess./sec. o— /I_\ ® Channel Capacity = C

1/u bits /mess. \/

kzmess./sec.
Channel Capacity = Cz
| /u bits/ mess.

Figure 4.2 Two single exponential channel facilities.
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where, once again,

Ti = E (total dme that a message spends in passing through node i)
and where we define

Wi = El(time that a message spends on the queue in node i).
We assume that the messages arriving at both nodes have the same average length
(1/u bits per message) but different Poisson arrival rates (7\.1 messages per second).

What is of interest to us is the relative behavior of these two systems with regard

to their message rate, message delay, and channel capacity. Specifically, we desire

quantitative relations for A /7\1, TZ/Tl (or WZ/WI)’ and C2/C1. By straightforward

2
use of Eq. A.6 from Appendix A, we find that

T2 _ (Cl ) l1-p
T1 _C2/ . hzclp
)‘ICZ
and
2
W2 _ (7\201 ) 1-p
~ =
1 A.C2 2Cy
172 1- G p
172
where
p = !
uCl
and
W. =T, - L




If we make the substitution

o = 271
7\1(:2
we then obtain
Ty _ (Cl > l1-p
’I‘1 C2 1 -ap
and
WZ _ a<cl ) 1-p
Wl C2 1 -ap

The general behavior of these relations is shown in Fig. 4. 3.
give the desired trading relations.

may be seen quite simply from these curves.

40

30
W, /W TZ/TI

20

75

(4.2)

(4.3)

Equations 4.2 and 4.3

Thus, the effect of varying one of the parameters

o 2 4 6 8
(a)

Figure 4.3
capacity, and total traffic handled.

Trading curves among message delay, channel
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An important observaton may now be made. Let us assume that Cl is M times
as large as Cz. Now, one might imagine that reducing the input ra;e of messages to
the second (lower capacity) syvstem by the same ratio (i.e., 7\2 = _N;_ ) would leave
the relative message delay constant. However, it is clear from Eqs. 4.2 and 4.3 that
this is not so. In particular, in this case, we see that

T2/T1 =M
and

W2/W 1= M
This result is somewhat surprising at first, and has certain implications about the
design of any queueing facility. In particular, it states that large facilities with a
large arrival rate of units to be serviced, perform better than small facilities with a
proportionally smaller arrival rate of units*. The increase in performance is equal
to the relative sizes of the two facilities, and is independent of the value of p.

It is also clear from the curves in Fig. 4.3 that if one desires a reduction in
capacity, but no increase in message delay (i.e., T2 = Tl), then there exists a range
for p in which it is possible to reduce the input message rate sufficiently to achieve
this, namely, 1 - Cl/C2 =p <1.

4.4 Optimum Assignment of Channel Capacity

We first consider a situation in which there are N separate single exponential
channel facilities. The ith node has a Poisson arrival rate of Ai messages per second,
each message having an exponentially distributed length of mean l/;.ai bits; the channel

capacity associated with the ith node is Ci' All nodes behave independently of each

* Feller [ 13, p.420 ] discusses a comparison of this type.
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other; however, they are mutually coupled by the fcllowing linear constraint on their

capacities:

(4.4)

That is, there is distributed throughout the N channels, a total capacity of C bits per

second. The system under counsideration is shown in Fig. 4.4.

AooBy @ @ ® C

&@AC

Ay By N

Figure 4.4 System of N separate single channel facilities.

For any assignment of the Ci which satisfies Eq. 4.4, there is defined

’[‘i = E (total time that a message spends in passing through node i)
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One may ask about that particular assignment of the Ci which satisfies Eq. 4 .4 and
which also minimizes the average (over the index i) of the set of numbers Ti' Specifi-

cally, we define this average to be

N
_ i
T = z X Ti (4.5)

where*

N
A = Z A, (4.6)

Note that the weighting factor Ai/l for Ti has been chosen in the obvious way to be
proportional to the number of messages which pass through node i. The solution to
this problem is stated in

THEOREM 4. 3**

The assignment of the set Ci which minimizes T and which satisfies

Eq- 4.4 is
AL } A,
C. =— + C(1-p) LI 4.7)
] N
AL,
| M
=1
provided that
N
c > S‘ . (4. 8)
v H

-
1l
(=

[ N

* Note that A = vy in this special configuration (see definitions in Sect. 1.5).

** See Appendix B for proof of this theorem.
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where
p = A/uC (4.9)
and
N
A
LN L (4. 10)
[ Lo A K,
- 1
i=1

With this optimum assignment, we find that

N X,
S\ ]
L H;
T =1

= (4.11)
c-py M A
and
2
N
<
L
T = =1 (4.12)

A C (1-p)

We note that the optmum assignment operates in the following way. Each channel
is first apportioned just enough capacity to satisfy its average required flow of Ai/ Ky bits
per second. After this apportdonment, there remains an excess capacity
C -ig Ai/ui = C (1-p) which is then distributed among the channels in proportion to the
square root of their average flow Ai/ui. Equation 4. 8 expresses the obvious coundition that
there be enough capacity to begin with so as to satisfy the minimum requirements of the
average flow in each node.

Having obtained the optimum assignment for Ci’ we now inquire a: to the optimum

di stribution of the }‘i' We consider the case in which By = H for i=1,2,...,N. In



80

particular, let us assume that we have some freedom in distributing the )'i among the
N nodes, subject to the constraint expressed in Eq. 4.6 and with the additional con-
Straints that

Aizki i=1,2,...,N (4.13)
where, for convenience, we order the subscript i such that

klzkzz...szzO (4. 14)

and where, obviously,

N
Z k. =
1
i=1

The set of numbers, ki’ represent lower bounds on the traffic flow into any node; this

Vz
>
1]
>

-
[
—

set of constraints corresponds to a sensible physical limitation on traffic flow. The
soluton to this problem is stated in

THEOREM 4. 4%

The distribution of }‘i which minimizes T in Eq. 4. 12 subject to the

constraints ekpressed by Eqs. 4.6 and 4. 13 is, for B= R

(N
A - Z k. i=1
i
- j=2
7‘1‘< (4.15)

K, i=2,3,...,N
1

.

Now, for all ki=0 (i.e., no constraint due to Eq. 4.13), we find that all of the traffic
should be assigned to (any) one of the channels, and this channel should be assigned

the total capacity C. For the general case as expressed by Theorem 4.4, we see that

* See Appendix B for proof of this theorem.
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after the constraint due to Eq. 4.13 is satisfied in the minimum sense (i.e., Ai = ki)’
then all of the additional traffic should be assigned to that channel which has the
largest ki (namely, channel Cl).

We now consider the more general case of an interconnected net (as, for example,
in Fig. 1.1) with N channcls subject to a fixed routing procedure. Since we accept the
Independence Assumption, all message lengths are chosen independently at each node
from an exponential distribution. Furthermore, the externally applied traffic is Poisson
in nature. Consequently, Theorem A. 1l (due to Burke) is satisfied, and we find that the
inter-arrival times for message arrivals throughout the net are also Poisson. This
being the case, the optimum channel capacity assignment for the net, with a fixed total
capacity C, is described by Eq. 4.7. The interpretation of ?\i is, as before, the average
arrival rate of messages to the ith channel; further, we take By =K for alli. The

average message delay, T, now must be carefully defined as

Y-
jk
T = —_— Z. 4.16
z Y ik ( )
Ik
wherce
Yie = the average number of messages entering the network per
. second, with origin j and destination k
ik
and
Z.. = the average message delay for messages with origin j and

ik destination k.
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That is, T is appropriately defined as the overall average message delay where the

weighting factor for Z_, is taken to be proportional to the number of messages which

jk
K For any pair, jk, the quantity ij is composed of the sum

of the average delays encountered in passing through each channel on the fixed route

must suffer the delay Zj

from node j to node k. If we break ij into such components, and if we also form T
by summing over the individual delays suffered at each channel in the net (instead of

summing the delays for origin-destination pairs), we immediately see that

1
T = T, 4.17
z Y i @17

i

where clearly J\i is the sum of all ij for which the jk route includes channel i. Thus
we note that T is defined in a consistent manner (i.e., A =+ for the net in Fig. 4.4,
and so Eqs. 4.5 and 4. 17 are equivalent). We may now state

THEOREM 4. 5*

For a net, as described above, with a fixed routing procedure, the
optimum channel capacity assignment is given by Eq. 4.7, and the

average message delay, T, is

N x 2
Y‘ i
o s A
=
T = — (4.18)
uC (1-np )
where
o= % = the average path length for messages.

* See Appendix B for proof of this theorem.
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This theorem shows the strong dependence of T on the average path length, T, as
well as on the distribution of xi. The significance of this result is discussed in Chap. VIL
in conjunction with the results of the simulation experiments.

4.5 Conclusions and Extensions

A number of different questions have been posed in this chapter, and we now
summarize some of the conclusions we have drawn.

In particular, if we consider the results expressed by Theorems 4.2, 4.4, and
Eq. 4.2, we find a unifying conclusion: these results all indicate that delay is minimized
in a queueing process when traffic is concentrated into as few channels as physically
possible. The underlying constraint which forced this result to the surface is the con-
straint expressed in Eq. 4.4 which insists on a constant total channel capacity assigned
to the system of nodes. This conclusion is verified by the simulation results presented
in Chap. VII.

Furthermore, we have solved for the optimum* channel capacity assignment for
a communication net with fixed routing subject to the constraint of fixed total channel
capacity.

An extension to the results of Sect. 4.4 is quite interesting. Specifically, we have
introduced the constraint, expressed by Eq. 4.4, which limits the total channel capacity,
in bits, that may be assigned to the system. The rationale for this constraint is that
the total assigned capacity is one measure of the cost of constructing the system. This
function assumes no measure of the cost per unit capacity associated with each channel.

Indeed, a more realistic cost function would be one which included, as a factor, some

* Optmum in the sense of minimizing the average message delay T.
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. .th . .
function, di’ of the i ~ channel. In particular, we now offer as an alternative constraint

to the one expressed in Eq. 4.4, the following condition:
N
z Cc.d, =D (4.19)

where Ci is the channel capacity of the ith transmission channel, and di is a function
independent of the capacity Ci' and reflects the cost, in dollars say, of supplying one
unit of channel capacity to the ith channel. The quantity D represents the total number
of dollars that is available to spend in supplying the N channel system with the set of
capacities Ci (i=1, 2, ...,N). In this case, we develop a theorem analogous to
Theorem 4.5, as follows.

THEOREM 4. 6*

The assignment of the set of channel capacities Ci to a communica -
tion net with a fixed routing procedure (such as described for Theorem
4.5) which minimizes T (see Eq. 4. 17) subject to the constraint expressed

in Eq. 4.19 is

Al D [7\.d.
c =71.+< e) ii

i di N (4.20)
[A.d.
)]
=1
With this optimum assignment,
N
S e
1]
1
Ti = ]_ﬁ (4.21)
De i/ i

* See Appendix B for proof of this theorem.
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/ N 2
n \ Z /Aidi/h
T = =1 (4.22)
v D
e
provided
D >0
e
and where
N
A d,
D, =D - Z _Ju_.‘_ (4.23)
=1

The analogy between Theorems 4.3, 4.5 and 4.6 is clear*. Some interesting
special cases of di are listed below, where we define mi as the length of the ir":1 channel.

(1) d.=m This puts cost proportional to length times capacity, such

! ' as is the case for laying telephone cables, wherein the
major cost is the copper cost.
4
(2) di =m, This puts cost proportional to the fourth power of the

length, times the capacity, which approximates the
situation in an "ECHO" type passive satellite.

Obviously, the actual form of the set of cost functions, di' depends upon the particular
communication system involved. The implicatons of the effect of this new constraint

(Eq. 4.19) bear further investigation for future research.

* For example, Theorem 4.5 is the special case wherein di =1 for all i.
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CHAPTER V

WAITING TIMES FOR CERTAIN QUEUE DISCIPLINES

We now explore the manner in which message delay is affected when one intro-
duces a priority structure (or queue discipline) on the set of messages in a single node
facility with a single transmission (or service) channel. This chapter will present
some newly derived results for certain queue disciplines; some previously published
results are also included for completeness.

In communication nets, such as we are considering, messages are forced to
form a queue while awaiting passage through a transmission facility, and we often find
that a priority discipline describes the queue structure. The rule for choosing which
message to transmit next is frequently based on a priority system similar to those
studied in this chapter. Generally, one breaks the message set into I separate groups,
the pth group (p=2, ..., P) being given preferential treatment over the p-lSt group, etc.
Introducing a priority structure in the message set influences the expected value of the
time that each priority group spends in the queue. It is this statistic that is of interest
to us, and which will be solved for. An understanding of the effects of a priority disci-
pline at the single node level is necessary before one can make any intelligent statements
about the multi-node case.

A new result for a delay dependent priority system is described, in which a
message's priority is increased, from zero, linearly with time in proportion to a rate
assigned to the message's priority group. The usefulness of this new priority structure
is that it provides a number of degrees of freedom with which to manipulate the relative
waliting times for each priority group.

An interesting new law of conservation is also proven which constrains the allowed

variation in the average waiting times for any one of a wide class of priority structures.
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As a result of this law, a number of general statements can be made regarding the
average waiting times for any priority structure which falls in this class. A system
with a time-shared service facility is also investigated. This system results in
shorter waiting times for "short' messages and longer waiting times for "long" mes-
sages; interestingly enough, the critical message length which distinguishes "short"
from "long" turns out to be the average message length for the case of geometrically
distributed message lengths.

It is assumed throughout that the systems under consideration are in the steady
state equilibrium. In general, this is equivalent to requiring that the system has been
operating for a long dme, and that p < 1 where p,once again, is the product of the
average arrival rate of messages and the expected transmission time for each message.
However, in some of the priority systems studied, it is possible to have p = 1 and
still obtain a steady state type solution for some of the higher priority messages. For
a full discussion of this aspect of the problem, the reader is referred to Phipps [ 34 ]-

5.1 Priority Queueing

Priority queueing refers to those disciplines in which an entering message is
assigned a set of parameters (either at random or based on some property of the mes-
sage) which determine its relative position in the queue. This position will vary as a
function of time due to the appearance of messages of higher priority in the queue. At
any time t, the priority of a particular message is calculated as a function of the
assigned parameters; the higher the value obtained by this function, the higher the
priority. That is, the notation used is such that a message with priority q, is given
preferential treatment over a message with priority a where qp > q;- For the fixed

priority system discussed presently, this means that a message from the pth priority
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group has a higher priority than a message from the p—lSt group. Whenever a tie
for highest priority is met, the tie is broken by a first come first served doctrine.
Let there be a total of P different priority classes. Messages from priority
class p (p=1,2,...,P) arrive in a Poisson stream at rate hp messages per second;
each message trom priority class p has a total required processing time* selected

independently from an exponential distribution, with mean 1/ #p' We define

>
]
O
>
o]
£

(5.
p=1
P
A
Loy L 5.2)
PR p
p=1
AP
p = —— (5.3)
p I»lp
P
A
P K Z p 6.4
p=1
P
o
— _b -
W, = z - (5.5)
p=1 P

* In the application of interest wherein messages are passing through a transmission
facility, the processing time (time spent in the transmission channel) is 1/u.C where,
once again, C is the capacity of the channel in bits per second, and where
l/up is the average message length in bits. However, for the purposes of this
chapter, it is convenient to suppress the parameter C, and so we assume that C=1
throughout (with no loss of generality). If one wishes to reintroduce it, one need
merely multiply every Mo by C.
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We further define

W_ = Expected value of the time spent in the queue for a message
with assigned parameter p.

W0 may be interpreted as the expected time required to complete service on the mes-
sage found in service upon entry.

We consider four types of priority systems. In two of the systems we assume
that once a message enters the processing stage, it cannot be interrupted, and the
entire processing effort is devoted to completing this message's transmission. This
rule defines a system with no pre-emption. In contrast to this, the other two types of
queueing systems studied do allow pre-emption, i.e., a message will be taken out of
the processing (or transmission) stage immediately when another message of higher
priority appears in the queue. Since we assume that each message has associated
with it a fixed servicing time (chosen from some exponential distribution), we there-
fore further assume that when a pre-empted message re-enters the service facility,

its servicing is started at the point where it was interrupted when pre-emption

occurred (this is referred to as pre-emptive resume)®*.

The other distinguishing feature among the systems is the form of the priority
assignment. In two of the systems, the priority assignment for any message remains
fixed in time; that is, an entering message is assigned a number (p, say) which is to
be the fixed value of its priority. We refer to such systems as fixed priority systems.
In the other two systems, the priority assignment varies linearly with time. In particu-

lar, a message entering the queue at time T is assigned a number, bp, where

* Such a procedure requires some additional bookkeeping at the transmission and
receiving facilities, in order to keep track of the individual messages. We do not
consider the problems associated with this bookkeeping.
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0 _<_b1 = b2 =... = bP; and the priority q_p(t) at time, t, associated with that mes-
sage is calculated as follows:
qp(t) = (-1 bp (5.6)

where t ranges from T up to the time at which this message's service is completed.

This system is referred to as a delay dependent priority system.

Thus, summarizing, the four priority systems considered are:
(1) fixed priority system with no pre-emption
(2) fixed priority system with pre-emption
(3) delay dependent priority system with no pre-emption
(4) delay dependent priority system with pre-emption.
In all four cases, whenever the system allows a new message into the processing
(servicing) facility, the highest priority message is chosen.
We first consider the fixed priority system, as defined above, with no pre-
emption. The results presented here are due to Cobham|[ 35 ] where his notation
has been altered slightly to correspond to our convention of ordering the priorities*.

THEOREM (due to Cobham)

For O =p
P
o, /iyt ) bi/k
i=j forp =j (5.7
P P
1- S‘ 0. 1 - ? P,
W = < L, 1 VAV
P i=pt+l i=p
L for p<j

* Phipps [ 34 ] has used Cobham's results as a basis for the treatmment of a particular
variety of machine repair problems in which shortest jobs receive highest priority.
His priority ordering passes, therefore, from a discrete set to a continuum.
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where
P

j = smallest positive integer such that S CH <l1

i=j

and
(O p<1l
f= 5.8

D o

1 - z pi
| p =1
'oj-l

.

Note that for p < 1, the numerator of Wp becomes merely W A graph of the family

0
Wp is plotted in Figs. 5.2a-d, for a particular set of parameters.

We now consider the fixed priority system with pre-emption. The results pre-
sented here were derived independently by the author, and correspond to the pre-emptive
resume case considered by White and Christie [ 36 ] with exponential service times*.
We define Wp = Tp - 1/#p where Tp is the expected value of the total time spent in the
system by a message of priority p. Two forms are given for Wp; the first is given

recursively in terms of the Wi for the higher priority messages, and the second is

given recursively in terms of the Wi for the lower priority messages.

* The form for W_ as given by Eq 5.9 was published by White and Chrisde. The
form given in Eq. 5.10 is new.
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THEOREM 5. 1*

For a fixed priority system with pre-emption, and 0 = p,

/p P P
—E+Z p.(—l+—l)+z oW
K i|wu n i
P_i=p+1 P i=p+1 = ;
P Pp=1]
W = 5.9
P < 1 - zpi ( )
i=p
© p<]
-
or
-1
~ SJ o] P 1 1 R
B —_— 4+ = - W
1-s zpi/ui+u +z pl(u +ui) Zpl i
i=j P i=p+1 p i=j -
P P=]
wp=< 1 - Zpi (5.10)
i=p+1
© p<ij
~
where j is as defined above in Cobham's results, and
P
s. = Z p. (5.11)
j i
i=j
P
Note that for p < 1, we obtain j=1, sj=sl=p, and Z pi//.ti =W0. A graph of the
i=j=1

family Wp is plotted in Figs. 5.3a-d for the same parameters as Fig. 5. 2.

* See Appendix C for proof of this theorem.
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We next consider the delay dependent priority system. As defined, a message
from the pt'h priority group entering the queue at time T is assigned a number bp’

whereOsblsb = =b

5 S P; and the priority q_p(t) at time t associated with that

message is calculated from

qp(t) = (-1 bp

q (t)= (t-TH b
qp(f) % P2

q (1) =(t-T) b
A P

T T To t

Figure S.1 Interaction between priority functions for the delay dependent
priority system.

where t ranges from T until the time at which this message's service is completed.
Figure 5.1 shows an example of the manner in which this priority structure allows
interaction between the priority functions for two messages. Specifically, at time T,
a message from priority group 1= arrives, and attains priority at a rate equal to
(t-T)bpl. At time T', a different message enters from a higher priority group Pys
that is, P, > Py When the transmission facility becomes free, it next chooses that

message in the queue with the highest instantaneous priority. Thus, in our example,
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the first message will be chosen in preference to the second message, if the trans-

mission facility becomes free at any time between T and T0 but, for any time after
TO, the second message will be chosen in preference to the first message
derived forms for W

For the delay dependent priority system, without pre-emption, we give two

one is a recursive form in terms of the W. for the lower

priority messages, and the other more complicated expression is the solution of the
recursive equations

THEOREM 5. 2*

For the delay dependent priority system with no pre-emption, and

0=p <1,
p-1
Yo w (1--t
1-p p i
i1
W= S5.12
& . ( )
Y (o
i=p+1
or
o N[, K
j=1 0<11<12<. . <1j<P (5.13)
where
€ P
D =i - 1 - _B> 5.14
p L/ Pi ( 19
i=pt+1
and
Py b
k k
k N n
See Appendix C for proof of this theorem
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A graph of the family Wp is plotted in Figs. 5.4a-b. It is interesting to note the
extremely simple dependence that Wp has on the parameters bi (namely, only on
their ratios).

For the case of the delay dependent priority system with pre-emption, we give
a recursive form for W_ in terms of the Wi for the lower priority messages.

THEOREM 5.3*

For the delay dependent priority system with pre -emption, and for

0=p<l,
P p-1

) £;< )33 T3

i=p+1
P %
z Py (1 " b,

i=p+1 !

(5.16)

This family is plotted in Figs. 5.5a-b.
It is interesting to note the behavior of Wp as a function of p for the various
disciplines discussed. The curves in Figs. 5.2-5.5 have been prepared to illustrate

this behavior. The assumptions are that Ap =A/P and /.lp =u(p=L, 2,...,P), and also for

-1
Figs. 5.4 and 5.5, b_ = 2P™%. Of course, these special cases do not reveal the entire

P
structure of the W_, but they do give one an intuitive feeling about their general proper -

ties; the obvious reason for choosing these values is that they are easy to plot. Figures
5.2 and 5.3 show qu for the fixed priority system without and with pre -emption.
Figures 5.4 and 5.5 similarly show u.Wp for the delay dependent priority system.

The curves shown are for P = 2 and P =5. In addition, the case P =1 is shown as a dashed

* See Appendix C for proof of this theorem.
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curve in all the figures; clearly, for P=l, uwp(p) = 0/(1-0) in all priority systems,
and so corresponds to the strict first come first served discipline*. As such, the
P=1 case serves as a basis of comparison for all the curves.

Observe that, in general, the curves for the pre-emptive case are more widely
spaced than the corresponding curves for the nonpre -emptive case. Further, one can
note that, in general, the curves for the fixed priority system are more widely spaced
than the corresponding curves for the delay dependent priority system. Also note that,
because of the rigid nature of the fixed priority system, some of the curves for Wp
extend beyond the value of p=1. That is, although the service facility is saturated,
only the lower priority groups experience an infinite expected waiting time, whereas
some of the higher priority groups have a finite expected wait under this overload condi-
tion. However, the delay dependent priority system forces a fairly strong coupling
(or interaction) among all the priority groups. Specifically, if any message remains
in the queue for an extremely long time, it will eventually attain an extremely high
value of priority; as such, it must eventually get served before any newly entering
messages. Thus, if any group experiences an infinite expected waiting time, then they
all do. This effect causes all the Wp curves to have a pole at p=l.

An important distinction between the two priority systems can be observed by
considering the number of degrees of freedom that there are in specifying the systems.
If we consider that the input traffic is specified, i.e., P, Ap and ”p (p=L,2,...,P)
are fixed (given) quantities, then we recognize that the fixed priority system has no

degrees of freedom left, and so the Wp are completely specified. This is not a

* The conservation law presented in Sect. 5.2 shows why #W_(p) for the case P=1 must
be independent of queue discipline. P
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Figure 5.2a qu(p) for the fixed priority system with no pre-emption.
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Figure 5.2b qu(p) for fixed priority system with no pre-emption.
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Figure S.2d p.Wp(p) for fixed priority system with no pre-emption.
P = 5 Expanded scale.
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Figure 5.3a qu(p) for the fixed priority system with pre-emption-
P=2
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Figure 5.3b qu(p) for the fixed priority system with pre-emption.
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P
Figure 5. 3c /.z'v'v’p(p) for the fixed priority system with pre-emption.
P =2 Expanded scale.
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Figure 5. 3d qu(p) for the fixed priority system with pre-emption.

P =5 Expanded scale.
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=2

Figure 5.4b qu(p) for the delay dependent priority system with no pre-emption.
P=5
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Figure 5.5a #W_(p) for the delay dependent priority system with pre-emption.
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Figure 5.5b KW (o) for the delay dependent priority system with pre-emption.
P
P=3
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desirable situation, since the system designer has no ability with which to adjust the
system's behavior. However, in the delay dependent priority system, the variables
bp (p=1,2,...,P) are at the disposal of the designer, and this variaktility allows
adjustment of the relative spacing of the Wp to a large degree. Finally, we note that
if the higher priority groups have shorter average message lengths than the lower
priority groups, the average queue length is reduced.

5.2 A Conservation Law

If one studies the curves presented in Figs. 5.2-5.3, an interesting phenomenon
may be observed. It appears that the curve for a strict first come first served system
(the dashed curve in all the figures) lies somewhere between the curves for that of the
high and low priority messages. Perhaps a conservation law is at play here, which
holds constant some average value of the waiting times for the different priority groups.
In fact, it is reasonable to expect such an invariance based on the simple physical argu-
ment that some messages are given preferential treatment, and so they need not wait
as long as they would in a first come first served system; as a result, low priority
messages are forced to wait some additional time.

Indeed, we find that there is a law of conservation which holds for the priority
systems described, and, in fact, it holds for queueing systems subject to a large class
of disciplines. A sufficient set of restrictions to define the class is as follows:

(a) all messages remain in the system until completely serviced (i.e.,
no defections),

(b) there is a single service facility which is always busy if there are
any messages in the system,

(c) pre-emption is allowed only if the service time distributions are
exponential, and the pre-emption is of the pre-emptive resume type,
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(d)  arrival statistics are all Poisson; service statistics are arbitrary;
and arrival and service statistics are all independent of each cther.
For such a class, the conservation law says that for a fixed set of arrival and
service statistics, a particular weighted sum of the waiting times, Wp, is a constant
independent of queue discipline. Once again, Wp is defined as the expected value of
the time spent in the queue for a message with assigned parameter p.

THEOREM 5.4* The Conservation Law

For any queue discipline and any fixed arrival and service time
distribution subject to the above restrictions,

Z = constant with respect to variation of the queue (5.17)
_ dlsc1p11ne

where P represents the total number of groups to be distinguished in the
traffic**, and where

p_=A /u_ = [average arrival rate of pth group =A_]-[ expected
P p duration of service time for a message from p
group = l/ﬂp] .

P
In particular, for p = Z pp, we assert that

p=1
P T%Vl 0=p<l
pW = 5.18
Zp P (5-18)
p=l «© p =1

* See Appendix C for proof of this theorem. Along with the proof, we state and prove
two reiated corollaries.

**For an explicit description of the meaning of the p subscript, see the introductory
remarks in Sect. 5.1. Roughly speaking, a higher p implies a higher priority.
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where
2
v, = ;— Z A E(tpz) (5.19)
p=1
and
E(tpz) = second moment of service time distribution for group p.

Vl may be interpreted as the expected time required to complete service on the

message found in service upon entry, for a first come first served system. That is,

convert the system at hand to one in which the same arrival and service time distribu-
tions apply, but where the entire priority and pre-emptive structure is removed and the
system therefore operates on a first come first served basis. Thus, Vl is itself
independent of the particular queue discipline chosen.

Note that the conservation law constrains the allowed variation in the Wp for any

discipline within the wide class considered. If we form the sum

P
P w (5. 20)
A P ’
p=1

(which weights the expected waiting time of the pth priority group by its relative arrival
rate 7\.p/7\.), the conservation law says that this sum is a constant in the case where all
p_ are equal. This sum (if multiplied by A) represents the average number of messages

in the queue (see Appendix C). If we form the time-averaged waiting time*

* Physically, we may think of this average as the following. Let us sample the system
at random points in time; each time we sample, we record the time spent in the
queue by the message currently being transmitted. The average value of this set of
numbers is the average we are referring to.
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(which weights the Wp not only by lp/k, but also by l/up, the average message length

of a p type message), then the conservation law says that this average is a constant.

5.3 Time-Shared Service

This section presents results for a simple "round-robin" time-shared service
facility, and compares these results to a straightforward first come first served disci-
pline. The round robin discipline shares the desirable features of a first come first
served principle, as well as that of a discipline which services short messages first.
Such a scheme is a likely candidate for the discipline in a large time-shared computa-
tional facility.

Let time be quantized into segments each Q seconds in length. At the end of each
time interval, a new message arrives in the system with probability AQ (result of a
Bernoulli trial); thus, the average number of arrivals per second is A. The service
time of a newly arriving message is chosen independently from a geometric distribution
such that for g < 1

s = (-0t n=1,2,3,... (5.22)

n
where s, is the probability that a message's service time is exactly n time units long
(i.e., that its service time is nQ seconds).

The procedure for servicing is as follows: a newly arriving message joins the
end of the queue, and waits in line in a first come first served fashion undl it finally
arrives at the service facility. The server picks the next message in the queue, and

performs one unit of service upon it (i.e., it services this message for exactly Q
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seconds). At the end of this time interval, the message leaves the system, if its ser-
vice (transmission) is finished; if not, it joins the end of the queue with its service
partially completed, as shown in Fig. 5.6. Obviously, a message whose length is n
time units long will be forced to join the queue n times in all before its service is com-
pleted.

Another assumption must now be made regarding the order in which events take

po

o— /[ BN

AQ queue pll-o)
service
facility
Figure 5.6 The round-robin time-shared service system.

place at the end of a time interval. We consider two types of systems. The first
system allows the message in service to be ejected from the service facility (and then
allows it to join the end of the queue, if more service is required for this message) and
instantaneously after that a new message arrives (with probability AQ). We call this a
late arrival system. The second system reverses the order in which these events are
allowed to occur, giving rise to the eariy arrival system. In both systems, a new mes-
sage is taken into service at the beginning of a time interval.

First we consider the late arrival system, which is similar to a system considered

by Jackson [ 37 ] for a different class of priority systems. By straightforward techniques,
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he arrives at the solution for the steady state probability, rk, that there are k messages
in the system just before the time when an arrival is allowed to occur (i.e., just after
the time when a message is ejected from service if there was a message in service);

Jackson's result is:

r, = (l-.'a.)ak (5.23)
k
where
= _PT___
a = 1-2Q
and
- M
p = 1-o

This definition of p is, as usual, the product of the average arrival rate A and the mean
service time, Q/(l1 -0 ). The notation of Jackson's result has been altered to correspond
to that used in this thesis. From this we quickly obtain* the expected value, E, of the

number k as

E =P% 5. 24)

These results also apply to the time-shared service facility. For the time-shared

system, we now state

THEOREM 5.5%*

The expected value of the total time, Tn’ spent in the late arrival
system for a message whose service time is nQ seconds, is
2 -1

T = _BQ _ A L4 Qoo a)@-a" G.25)
S 1-p (-o)2(1-p)

* See Appendix C for proof of this theorem.
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where
a =0 + AQ
Note that @ < 1. An upper bound for Tn is easily obtained (by lower bounding the

bracket above, by unity) as

T = 1—%— (n-AQ) (5.26)

n
We now consider the early arrival system. Let N be the steady state prob-
ability that there are k messages in the system just after the time when an arrival is
allowed to occur (i.e., just before the time when a message is ejected from service

if there is a message in service). Appendix C shows that

(
1-p k=0

r = ﬁ (5.27)

1-0 k
— a

k=1,2,...
a

~

where a and p are defined just as in the late arrival system. From this, we obtain

E, the expected value of the number k as:

- P -
E = 15 (1-AQ) (5.28)

THEOREM 5.6*

The expected value, Tn’ of the total time spent in the early arrival

system for a message whose service time is nQ seconds is

2 n-1
T = 2 _pq- % 1+ (l'm)(zl'“ ) (5.29)
(L-a)"(1-p)

n 1-p

where a is defined as before.

* See Appendix C for proof of this theorem.
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An upper bound for T11 is easily obtained (by lower bounding the bracket above by

unity) as

< Q _1- -
T, = 155 (0-1-3Qp)-2Q (. 30)

We now consider the case in which all messages wait for service in order of
arrival, and once in service, each message remains until it is completely serviced.

It is then easy to show that with Tn defined as before, we get

THEOREM 5. 7%

The expected value, Tn’ of the total time spent in the strict first

come first serve system for a message whose service time is nQ seconds is

_ QE
Tn = T4 +nQ (5.31)
where
_ _PT
E = ip

Note that the distinction between the early and late arrival systems has disappeared,
as, of course, it must. Note also that the expression defining E is the same as that
in Eq. 5.24 which is the average number of messages in the late arrival system.

Let us now compare some of these results for time-shared systems. First, we
compare the value of E for the two arrival systems. Let A be the difference between
the expected number of messages in the early and late arrival systems. Then

A= a-E
and so

A = p(l-ad) = AQ (5.32)

* See Appendix C for proof of this theorem.



111

This result is quite reascnable, since for ¢ equal to zero (which says that each
service time equals one time interval exactly) the difference A should be the prob-
ability of finding a message in the early arrival system (which is merely p); and for o
approaching unity, the difference approaches zero since, with probability 1-0 a message
will leave the system before (after) the next arrival. Note that A is always less
than unity.

Now, if one wishes an approximate solution to the round-robin system, one
might argue as follows: A message whose service time is nQ seconds must enter
the end of the queue exactly n times. Roughly speaking, (this approximation is
evaluated presently) each time the message enters the queue, it finds E messages
ahead of it. The time spent waiting for service each time around is then approximately
QE. The time actually spent in service is exactly nQ. Thus, the approximation to

T , which we label as T ' is
n n
Tn' = nQE + nQ (5.33)

Upon comparing this to Eq. 5. 31 for the strict first come first serve system in which

1
T = 4 QE+nQ

we see that for messages with length n less (greater) than 1-_10- the round-robin waiting
time (for the late arrival system) is less (greater) than the strict first come first serve
system. However, one notes that the average length (in service intervals) is exactly
1/(1-c). Thus, for this approximate solution, the crossover point for waiting time

is at the mean number of service intervals. An evaluation of this approximation may

be obtained by comparing the quantity Tn/Q as given in Eq. 5.25 and Tn'/Q as given
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in Eq. 5.33. That is, the approximation is only as good as the agreement between

these two (for the late arrival system *):

n AQx n__ AQmn
1-p  1-p 1-p 1-p G- 34)
where .
n-1
x = 1+ (1-o oz)z(l-a )
(1-0)" (1-p)
l-o

In Figs. 5.7a-c, curves of T Q Wn(p) are plotted to show the general behavior

of the round-robin structure for the late arrival system. On each graph, points

corresponding to the first come first served case have also been included. The

-0 ; .
normalization factor er is used so that in these figures, as well as in Figs. 5.2 -

5.5, the same first come first served curves, T%' would appear. Further, it is

important to note that 4, the average service rate, equals l;; in the discrete case,
and thus Fig. 5.7 plots %W(o) whereas Figs. 5.2 - 5.5 plot u W(o). Note that the
only parameter change among Figs. 5. 7a-c is the value of o .

Figures 5. 7a-c indicate the accuracy of the appreximation discussed above in
which the crossover point for waiting times is at the mean number of service intervals,
1/(1 -o). In Figs. 5.7a,b there is no noticeable difference (on the scale used) between
the first come first served points, and curve for n = 1/(1 - ¢); moreover, in Fig. 5.7c
the points fall between the curves for n = 1 and n = 2, since 1/(1-0)=1.25.

It is interesting to note that both round-robin disciplines, along with the first-

come first-served discipline offer an example of the validity of the conservation law,

* For the early arrival system, we compare

o AQpx _ n__ AQn
1-p 1-p p

1-p 1-p
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uw" for

{irst come
first served

1.0 P
- 1-
Figure 5.7a 0'_5 Wn(p) for the late-arrival time shared service system
o =19/20
A -—
1.0 P

- l-o )
Figure 5.7b E Wn(p) for the late -arrival time shared service system

o =4/5
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Figure 5.7c oQ Wn(p) for the late-arrival time shared service system

o =1/5
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Eq. 5.17. That is, if we define

Tn(FCFS) as given by F 4. 5.31

.25

wn

Tn( LAS ) as given by Eq.

.29

n

Tn( EAS ) as given by Eq.
and also
W () =T () -nQ,

then it is a simple algebraic exercise to show that

2
p o

T-o)1=o) (3-33)

Vs

p W () =constant =
nn
1

=]
Il

where

. = {FCFS, LAS, EAS}
and
n-1

p =0s =o(l-o)o

. n-1 . .
Now, since }‘n = Ksn =A(l-0)o (the average arrival rate of messages whose
A
- -]
length is n service intervals), we see that the mean waiting time <1. e., nz-lT Wn(')
is a constant for the three queue disciplines.

Note that, in all the results of this section, the expected value Wn of the time

spent in the queue for a message cf length n is obtained from Tn by

W = -
n Tn nQ
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5.4 Conclusions and Extensions

We first discuss some extensions to the material considered in this chapter.
Having considered the fixed priority system and the delay dependent priority system
separately, it seems a natural extension to consider a combination of these two
priority systems. In particular, cousider a discipline in which a message from
priority group p entering the queue at time T is assigned two numbers: a.p and bp.
The priority q_p(t) at time t associated with that message is calculated as

qp(t) = ap + (t -T)bp (5.36)

where the range of allowed t is from T up to the tirne at which this message's
service is completed. This priority scheme takes on many interesting and familiar
forms in certain special cases*. Of course, when bp is identically zero, we have
the fixed priority system, and when ap is identically zero,we have the delay depend-
ent priority system.

Because of the importance of the form of Eq. 5.36, a solution for the general
case could be very valuable. This has not been accomplished, but an attack on the
case of fixed (but nonzero) bp and variable ap has been made by Jackson [ 37 ]. He
considered a model in which time was quantized; during each time interval, a new
message arrived with probability AQ, and if the system was nonempty, a completion
of service occurred with probability 1-0. Among his resuits are the following bounds
on the equilibrium mean waiting time, Wp’ for messages with priority number ap

(the notation of his result has been altered to correspond to that used in this report

* For example, a_ and b_ may be chosen so as to describe the following priority
disciplines: firgt comg first served, last come first served, random ordering of
service, and mixtures of the above.
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(5.37)

where

and

p, = pP_[an entering message is assigned a, as its
parameter where ai =1i]

Jackson also goes into some detail for the case of P=2 (i.e. , only two different priority
classes) and derives certain expressions, in matrix notation, for the average waiting
times for the two priorities; values for these expressions are tabulated in his appendix
[ 37]1. In[ 38] he derives the asymptotic behavior of the waiting time distribution for
this class of dynamic priority queueing models.

Recently, at an informal lecture at M.I.T., John D.C. Little analyzed a very
interesting problem associated with priority queueing. He considered the case in
which arrivals to the system from the pth group were Poisson at an average rate of AP.
Associated with such arrivals was a mean service time, l/up, and a cost to the server
of Cp dollars for every second that each arrival from the pth group remained in the
system (queueing time plus service time). He then solved for that priority discipline
which minimized the total time averaged cost to the server. He found that the solution
was a fixed priority system in which the highest priority was given to that group with

the largest product #pCp. Specifically, he re-ordered the subscripts such that
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(5.38)

where, again, the larger the subscript, the higher the priority. This is a most
interesting result, and worthy of attention.

In reviewing the theorems of this chapter, we find it appropriate to state the
important conclusions once again. The first conclusion that we would like to emphasize
is the versatility inherent in a delay dependent priority structure. By this we mean that
a system designer has at his disposal, a whole set of parameters (the set bp) with which
he can adjust the relative waiting times, Wp. He must have this freedom if he intends
to satisfy, or come close to satisfying, a set of specifications given him by the intended
user of the system. In general, the user will specify the traffic to be handled; i.e., he
will specify the number P, of priority groups, the average arrival rate }\p and average
message length l/[.tp for each of these groups*. Then the user will specify a set of
relative Wp that he desires from the system. The additional number of degrees of
freedom that the designer has from the set bp is just what is necessary to satisfy the
user's demands. Without this freedom (as in the fixed priority system), the set Wp is
fully determined, and the designer cannot alter their relative values. Even with the bp’
certain limitations exist. First, the function WP can not lie below WP for the fixed
priority system since in the fixed priority system, the Pt'h group is given complete
priority over all other groups, and members from this group interfere only with each
other. Secondly, the conservation law clearly puts a constraint on the absolute values
of the set Wp'

The conservation law, although proven for the class described in this chapter,

probably holds for a more inclusive class as well. Indeed, we have seen the case of a

P
* Note that after Ap and l/up are specified, then p = p2=l }\p/up is also specified.
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queue discipline (the time -shared service system) which falls outside our defined class,
and which nevertheless obeys the conservation law. At least two interesting conclusions
can be drawn from the conservation law. Firstly, if all I.Lp =, then the law says that
a meaningful average* of the average waiting times is invariant to a change in queue
discipline. Therefore, one need not search for a special queue discipline in the class
to minimize this average - it is fixed. Secondly, if the up are arbitrary, then the time
averaged** waiting time is invariant tc a change in the queue discipline.

Finally, we would like to refer the reader to Chapter VII in which is described
the results of certain simulation experiments. These experiments demonstrate that
the conservation law holds for a fixed priority system in a communication network for

the case in which up =i. We tabulate these results in Table 5.1 below.

v/uC Traffic nCT
Matrix
Identical Proportional Square Root
Capacity Capacity Capacity
P=1 P=3 P=1 P=3 P=1 P=3
. 0625 1'1 49.6 49.2 48.4 47.6 37.3 37.2
0625 1'3 49.6 50.4 51.2 50.8 50.0 50.8
.250 Tl 503. 490. 73.5 73.8 61.2 61.2
250 T3 84.5 82.7 87.3 85.2 86.0 82.8
.376 ‘Tl - - 103. 111. 100. 92.
.376 1'3 154. 159. 151. 153. 144. 154.

Table 5.1 Values of uCT for the star net obtained from simulation,
demonstratingT experimental evidence of the conservation law.

*

This average weights the waiting time by the relative number of messages which
must suffer that waiting time.

** See footnote on page 10S.

t The value of P, as before, gives the number of priority groups for the fixed priority
system which was simulated. C refers to the total capacity assigned to the net. For
the definition of other terms in the table, the reader is referred to Chapter VII.



120

CHAPTER VI
RANDOM ROUTING PROCEDURES

A random routing procedure refers to those decision rules in which the choice

for the next node to visit is made according to some prohapility distribution over
the set of neighboring nodes*. In this chapter, we connect a group of nodes together
and apply a random routing procedure to the resultant net. Two results of interest
emexge from this investigation. First, we find that for a particular class of random
routing procedures, we are able to solve for the expected number of steps that a
message must take before arriving at its destination. Second, we derive an ex-
pression for the expected time that a message spends in the net. In the analysis,
we use our model with the inclusion of the Independence Assumption (see Chap. III).
A number of results tangent to the main discussion may be found in Appendix D.

One may reasonably ask why random routing procedures are of interest.
Their main advantage is that they are simple, both in conception and in realization
in a practical system. Another advantage is that systems operating under a random
routing procedure are relatively insensitive to changes in the structure of the net-
work; that is, if some of the channels disappear, then the routing procedure continues
to function without considerable degradation in performance. Moreover, since the
random routing procedure does not make use of directory information, changes in
the network structure need not be made known to all the nodes. This fact becomes

increasingly important in a hostile or fluid environment in which changes in the

*For example, one random routing procedure may be defined such that the next node
to visit is chosen uniformly over the set of idle channels leading out of the present node.
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network take place continuously. If it were necessary to transmit information
around the network informing all nodes of each change, the network might easily
become flooded with directory information alone and leave no transmission capa-
bility for message traffic. Furthermore, it may be added that random routing
procedures offer an example of one of the few routing procedures in which it is
possible to get some meaningful analytic results. Thus, these procedures may
well serve as a measure of the quality of performance of other routing procedures.
Clearly, there are a number of inherent disadvantages to random routing
procedures. The major difficulty is that the routing procedure does not take ad-
vantage of certain available information. In particular, the topology of the network
along with the destination of 2 message suggest that certain paths are to be preferred
over others: the random routing procedure neither recognizes nor utilizes this infor -
mation. As a result, messages are forced to follow a random path. When finally
a message is fortunate enough to be transmitted to its destination, it is dropped
from the network. In 1960, R. Prosser [24] offered an approximate analysis of a
random routing procedure in a communication net in which he showed that such
procedures are highly inefficient in terms of message delay, but extremely stable
(i.e., they are relatively unaffected by small changes in the network structure).
The overall effect of random routing is to increase the internal traffic that
the network is required to handle; consequently, the external traffic that may be
applied to the net is greatly reduced. In addition, the time that a message spends
in the network is increased, thus reducing the grade of service to the user of the

system.
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6.1 Markov Model - Circulant Transition Matrices

The two quantities of most interest to the user in the study of any routing
procedure are the expected time, T, that a message spends in the net, and the
mean total traffic that the network can handle. In the following discussion, we
center our interest on the first of these (T), and, as we shall see, this analysis
yields an answer for the mean total traffic as well.

The time that a message spends in the system is made up of the sum of the
time spent at each node that the message visits. If it turns out that the expected
time, T(n), spent at node n is approximately the same value, T0 for all n, then

it is clear that

(6.1)

!
I
=l
!

where n is the average number of steps*® that a message must take to reach its
destination.

In the case of random routing procedures, the calculation of n may be carried
out independently of the calculation of To, whereas the converse is not necessarily
true. We therefore concentrate upon the calculation of n initially. Note that this
approach effectively removes from consideration, all questions of queueing and
leaves only the matter of topology and routing. We return to the queueing aspect

of the problem in Sect. 6.4

*The average number of nodes visited is n+l but the last node visited is the desti-
nation itself, and by convention, we agree that once the destination is reached, the
message is immediately dropped from the net. The quantity of interest is therefore
the average number of steps taken (also referred to as the average path length).
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The model that we choose to represent the random routing procedure is that
of a Markov process with N+1 states. Each node in the network corresponds to a
distinct state, where the nodes are numbered O, 1,2,...,N. Associated with each
message is an originating node and a destination. The node of origination will be
the initial position of the message in the process, and the destination will be the
absorbing node for this message. The routing procedure is reflected in the Markov
model as the one-step transition probability matrﬁ: P. A typical entry, pij in this
matrix is then the probability that a message in node i will be transmitted to node
j next*®, where, as usual, we require that pij =0. The matrix P, together with
the a-priori distribution of the originating node, completely describe the Markov
process**,

The analytic solution for n for an arbitrary matrix P cannot in general be
obtained in closed form. A number of different expressions for n which involve
infinite summations are well-known, and are summarized in Appendix D. These
open forms are of limited utility for analytic work. In order to obtain a closed form
solution, one must put some structure into the matrix P. The added structure should
not be such that the resultant solution, although elegant and concise, is of no use to
the problem at hand.

Thus, we find ourselves in the position of defining a restricted class of Markov
processes (i.e., <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>