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Preface

This text is written for students and researchers in logic and (theoretical) computer
science who are interested in (modal) logic and its connections with automata theory.
The current version assumes some familiarity with the basic definitions of modal logic,
as can be found in any recent text book. It is very much work in progress: Some
parts of the text are still missing, the notes are still very rudimentary, and there are
not nearly as many exercises as are needed in a text of this kind. The final version
of these notes will have full proofs of all results mentioned here. It will also contain
material on modal fixpoint logics other than the modal µ-calculus, such as LTL and
CTL, on complete derivation systems for various fixpoint logics, and on coalgebras
and the automata operating on them. Also, in the final version I intend to pay more
attention to computational aspects of fixpoint logics such as model checking, to the
complexity of various problems related to logic and automata theory, and to the model
theory of modal fixpoint logics.

In their present incarnation, these notes serve as material for a course, Modal Fix-
point Logics, to be given at Renmin University in Beijing (China) in June 2008. Earlier
version accompanied a course, The modal µ-calculus, given at the ESSLLI summer
school in Malaga, Spain, 2006, and a number of editions of the course, Advanced Modal
Logic, that I taught at the University of Amsterdam. I am very grateful for the com-
ments that I received on earlier versions of these notes, both from students and from
colleagues.

Comments on the present version will also be appreciated very much!

Yde Venema

Amsterdam, June 12, 2008
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Introduction

The study of the modal µ-calculus can be motivated from various (not necessarily
disjoint!) directions.

Process Theory In this area of theoretical computer science, one studies formalisms for
describing and reasoning about labelled transition systems — these being mathematical
structures that model processes. Here the modal µ-calculus strikes a very good balance
between computational efficiency and expressiveness. On the one hand, the presence of
fixpoint operators make it possible to express most, if not all, of the properties that are
of interest in the study of (ongoing) behavior. But on the other hand, the formalism
is still simple enough to allow an (almost) polynomial model checking complexity and
an exponential time satisfiability problem.

Modal Logic From the perspective of modal logic, the modal µ-calculus is a well-
behaved extension of the basic formalism, with a great number of attractive logical
properties. For instance, it is the bisimulation invariant fragment of second order logic,
it enjoys uniform interpolation, and the set of its validities admits a transparent, finitary
axiomatization, and has the finite model property. In short, the modal µ-calculus shares
(or naturally generalizes) all the nice properties of ordinary modal logic.

Mathematics and Theoretical Computer Science More generally, the modal µ-calculus
has a very interesting theory, with lots of connections with neighboring areas in math-
ematics and theoretical computer science. We mention automata theory (more specifi-
cally, the theory of finite automata operating on infinite objects), game theory, universal
algebra and lattice theory, and the theory of universal coalgebra.

Open Problems Finally, there are still a number of interesting open problems concern-
ing the modal µ-calculus. For instance, it is unknown whether the characterization of
the modal µ-calculus as the bisimulation invariant fragment of monadic second order
logic still holds if we restrict attention to finite structures, and in fact there are many
open problems related to the expressiveness of the formalism. Also, the exact complex-
ity of the model checking problem is not known. And to mention a third example: the
completeness theory of modal fixpoint logics is still a largely undeveloped field.

Summarizing, the modal µ-calculus is a formalism with important applications in the
field of process theory, with interesting metalogical properties, various nontrivial links
with other areas in mathematics and theoretical computer science, and a number of
intriguing open problems. Reason enough to study it in more detail.
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1 Basics

As mentioned in the preface, we assume familiarity with the basic definitions concerning
the syntax and semantics of modal logic. The purpose of this first chapter is to briefly
recall notation and terminology, and to provide an introduction to the coalgebraic
perspective on modal logic (this perspective will not play a role until Chapter 8).

Convention 1.1 Throughout this text we let P be a set of proposition letters, whose
elements are usually denoted as p, q, r, x, y, z, . . ., and let D be a set of (atomic) actions,
whose elements are usually denoted as d, e, c, . . . In practice we will often suppress
explicit reference to P and D.

1.1 Basics

Structures

I Introduce LTSs as process graphs

Definition 1.2 A (P,D)-(labelled) transition system or (P,D)-Kripke model is a triple
S = 〈S, V,R〉 such that S is a set of objects called states or points, V : P → ℘(S) is a
valuation, and R = {Rd ⊆ S × S | d ∈ D} is a family of binary accessibility relations.
The pair (P,D) is called the type of the transition system.

Elements of the set Rd[s] := {t ∈ S | (s, t) ∈ Rd} are called d-successors of s. A
transition system is called image-finite or finitely branching if Rd[s] is finite, for every
d ∈ D and s ∈ S.

A pointed transition system or Kripke model is a pair (S, s) consisting of a transition
system S and a designated state s in S. �

Remark 1.3 It will be convenient to have an alternative, coalgebraic presentation of
transition systems. Intuitively, it should be clear that instead of having a valuation
V : P → ℘(S), telling us at which states each proposition letter is true, we could
just as well have a map σV : S → ℘(P) informing us which proposition letters are
true at each state. Also, a binary relation R on a set S can be represented as a map
R[·] : S → ℘(S) mapping a state s to the collection R[s] of its successors. In this
line, a family R = {Rd ⊆ S × S | d ∈ D} accessibility relations can be seen as a map
σR : S → ℘(S)D, where ℘(S)D denotes the set of maps from D to ℘(S).

Combining these two maps into one single function, we see that a transition system
S = 〈S, V,R〉 of type (P,D) can be seen as a pair 〈S, σ〉, where σ : S → ℘(P)× ℘(S)D

is the map given by σ(s) := (σV (s), σR(s)). �

For future reference we define the notion of a Kripke functor.
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Definition 1.4 Fix a set P of proposition letters and a set D of atomic actions. Given
a set S, let KD,PS denote the set

KD,PS := ℘(P)× ℘(S)D.

This operation will be called the Kripke functor associated with D and P.
A typical element of KD,PS will be denoted as (π,X), with π ⊆ P and X = {Xd |

d ∈ D} with Xd ⊆ S for each d ∈ D.
When we take this perspective we will sometimes refer to Kripke models as KD,PS-

coalgebras or Kripke coalgebras. �

Given this definition we may summarize Remark 1.3 by saying that any transition
system can be presented as a pair S = 〈S, σ : S → KS〉 where K is the Kripke functor
associated with S. In practice, we will often usually write K rather than KD,P.

Syntax

Working with fixpoint operators, we may benefit from a set-up in which the use of the
negation symbol may only be applied to atomic formulas. The price that one has to
pay for this is an enlarged arsenal of primitive symbols. In the context of modal logic
we then arrive at the following definition.

Definition 1.5 The set PMLD(P) of Polymodal Logic in D and P is defined as follows:

ϕ ::= p | ¬p | ⊥ | > | ϕ ∨ ϕ | ϕ ∧ ϕ | 3dϕ | 2dϕ

where p ∈ P, and d ∈ D. Elements of PMLD(P) are called (poly-)modal formulas, or
briefly, formulas. Formulas of the form p or ¬p are called literals.

In case the set D is a singleton, we speak of the language BML(P) of basic modal
logic or monomodal logic; in this case we will denote the modal operators by 3 and 2,
respectively. �

Often the sets P and D are implicitly understood, and suppressed in the notation.
Generally it will suffice to treat examples, proofs, etc., from basic modal logic.

Remark 1.6 The negation ∼ϕ of a formula ϕ can inductively be defined as follows:

∼⊥ := > ∼> := ⊥
∼p := ¬p ∼¬p := p
∼(ϕ ∨ ψ) := ∼ϕ ∧ ∼ψ ∼(ϕ ∧ ψ) := ∼ϕ ∨ ∼ψ
∼2dϕ := 3d∼ϕ ∼3dϕ := 2d∼ϕ

On the basis of this, we can also define the other standard abbreviated connectives,
such as → and ↔. �

We assume that the reader is familiar with standard syntactic notions such as those
of a subformula or the construction tree of a formula, and with standard syntactic
operations such as substitution. Concerning the latter, we let ϕ[ψ/p] denote the formula
that we obtain by substituting all occurrences of p in ϕ by ψ.
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Semantics

The relational semantics of modal logic is well known. The basic idea is that the modal
operators 3d and 2d are both interpreted using the accessibility relation Rd.

The notion of truth (or satisfaction) is defined as follows.

Definition 1.7 Let S = 〈S, σ〉 be a transition system of type (P,D). Then the satis-
faction relation 
 between states of S and formulas of PML is defined by the following
formula induction.

S, s 
 p if s ∈ V (p),
S, s 
 ¬p if s 6∈ V (p),
S, s 
 ⊥ never,
S, s 
 > always,
S, s 
 ϕ ∨ ψ if S, s 
 ϕ or S, s 
 ψ,
S, s 
 ϕ ∧ ψ if S, s 
 ϕ and S, s 
 ψ,
S, s 
 3dϕ if S, t 
 ϕ for some t ∈ Rd[s],
S, s 
 2dϕ if S, t 
 ϕ for all t ∈ Rd[s].

We say that ϕ is true or holds at s if S, s 
 ϕ, and we let the set

[[ϕ]]S := {s ∈ S | S, s 
 ϕ}.

denote the meaning or extension of ϕ in S. �

Alternatively (but equivalently), one may define the semantics of modal formulas
directly in terms of this meaning function [[ϕ]]S. This approach has some advantages in
the context of fixpoint operators, since it brings out the role of the powerset algebra
℘(S) more clearly.

Remark 1.8 Fix an LTS S, then define [[ϕ]]S by induction on the complexity of ϕ,
where the operations 〈Rd〉 and [Rd] are defined in Appendix A:

[[p]]S = V (p)
[[¬p]]S = S \ V (p)
[[⊥]]S = ∅
[[>]]S = S
[[ϕ ∨ ψ]]S = [[ϕ]]S ∪ [[ψ]]S

[[ϕ ∧ ψ]]S = [[ϕ]]S ∩ [[ψ]]S

[[3dϕ]]S = 〈Rd〉[[ϕ]]S

[[2dϕ]]S = [Rd][[ϕ]]S

The satisfaction relation 
 may be recovered from this by putting S, s 
 ϕ iff s ∈ [[ϕ]]S.
�
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Definition 1.9 Let s and s′ be two states in the transition systems S and S′ of type
(P,D), respectively. Then we say that s and s′ are modally equivalent, notation:
S, s !(P,D) S′, s′, if s and s′ satisfy the same modal formulas, that is, S, s 
 ϕ iff
S′, s′ 
 ϕ, for all modal formulas ϕ ∈ PMLD(P). �

Flows, trees and streams

In these notes we will devote a lot of attention to deterministic transition systems,

Definition 1.10 A transition system S = 〈S, V,R〉 is called deterministic if each Rd[s]
is a singleton. �

Note that our definition of determinism does not allow Rd = ∅ for any point s. We
first consider the monomodal case.

Definition 1.11 Let P be a set of proposition letters. A deterministic monomodal
Kripke model for this language is called a flow model for P, or a ℘(P)-flow. In case such
a structure is of the form 〈ω, V, Succ〉, where Succ is the standard successor relation
on the set ω of natural numbers, we call the structure a stream model for P, or a
℘(P)-stream. �

In case the set D of actions is finite, we may just as well identify it with the set
k = {0, . . . , k − 1}, where k is the size of D. We usually restrict to the binary case,
that is, k = 2. Our main interest will be in Kripke models that are based on the binary
tree, i.e., a tree in which every node has exactly two successors, a left and a right one.

Definition 1.12 With 2 = {0, 1}, we let 2∗ denote the set of finite strings of 0s and
1s. We let ε denote the empty string, while the left- and right successor of a node s are
denoted by s0 and s1, respectively. Written as a relation, we put

Succi = {(s, si) | s ∈ 2∗}.

A binary tree over P, or a binary ℘(P)-tree is a Kripke model of the form 〈2∗, V, Succ0, Succ1〉.
Generalizing the tree models, deterministic Kripke model of type (P, 2) will often

be referred to as biflow models for P, or a ℘(P)-biflows. �

Remark 1.13 In the general case, the k-ary tree is the structure (k∗, Succ0, . . . , Succk−1),
where k∗ is the set of finite sequences of natural numbers smaller than k, and Succi is
the i-th successor relation given by

Succi = {(s, si) | s ∈ k∗}.

A k-flow model is a Kripke model S = 〈S, V,R〉 with k many deterministic accessibility
relations, and a k-ary tree model is a k-flow model which is based on the k-ary tree. �
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In deterministic transition systems, the distinction between boxes and diamonds
evaporates. It is then convenient to use a single symbol ©i to denote either the box or
the diamond.

Definition 1.14 The set MFLk(P) of formulas of k-ary Modal Flow Logic in P is given
as follows:

ϕ ::= p | ¬p | ⊥ | > | ϕ ∨ ϕ | ϕ ∧ ϕ | ©iϕ

where p ∈ P, and i < k. In case k = 1 we will also speak of modal stream logic,
notation: MSL(P). �

1.2 Game semantics

We will now describe the semantics defined above in game-theoretic terms. That is,
we will define the evaluation game E(ξ,S) associated with a (fixed) formula ξ and a
(fixed) LTS S. This game is an example of a board game. In a nutshell, board games
are games in which the players move a token along the edge relation of some graph, so
that a match of the game corresponds to a (finite or infinite) path through the graph.
Furthermore, the winning conditions of a match are determined by the nature of this
path. We will meet many examples of board games in these notes, and in Chapter 7
we will study them in more detail.

The evaluation game E(ξ,S) is played by two players : Éloise (∃ or 0) and Abélard
(∀ or 1). Given a player σ, we always denote the opponent of σ by σ̄. As mentioned,
a match of the game consists of the two players moving a token from one position to
another. Positions are of the form (ϕ, s), with ϕ a subformula of ξ, and s a state of S.

It is useful to assign goals to both players: in an arbitrary position (ϕ, s), think of
∃ trying to show that ϕ is true at s in S, and of ∀ of trying to convince her that ϕ is
false at s.

Depending on the type of the position (more precisely, on the formula part of the
position), one of the two players may move the token to a next position. For instance,
in a position of the form (3dϕ, s), it is ∃’s turn to move, and she must choose an
arbitrary d-successor t of s, thus making (ϕ, t) the next position. Intuitively, the idea
is that in order to show that 3ϕ is true at s, ∃ has to come up with a successor of s
where ϕ holds. Formally, we say that the set of (admissible) next positions that ∃ may
choose from is given as the set {(ϕ, t) | t ∈ Rd[s]}.

In the case there is no successor of s to choose, she immediately loses the game.
This is a convenient way to formulate the rules for winning and losing this game: if a
position (ϕ, s) has no admissible next positions, the player whose turn it is to play at
(ϕ, s) immediately loses the game.

This convention gives us a nice handle on positions of the form (p, s) where p is a
proposition letter: we always assign such a position an empty set of admissible moves,
but we make ∃ responsible for (p, s) in case p is false at s, and ∀ in case p is true at s.
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Position Player Admissible moves
(ϕ1 ∨ ϕ2, s) ∃ {(ϕ1, s), (ϕ2, s)}
(ϕ1 ∧ ϕ2, s) ∀ {(ϕ1, s), (ϕ2, s)}
(3dϕ, s) ∃ {(ϕ, t) | t ∈ Rd[s]}
(2dϕ, s) ∀ {(ϕ, t) | t ∈ Rd[s]}
(⊥, s) ∃ ∅
(>, s) ∀ ∅
(p, s), s ∈ V (p) ∀ ∅
(p, s), s 6∈ V (p) ∃ ∅
(¬p, s), s 6∈ V (p) ∀ ∅
(¬p, s), s ∈ V (p) ∃ ∅

Table 1: Evaluation game for modal logic

In this way, ∃ immediately wins if p is true at s, and ∀ if it is otherwise. The rules for
the negative literals (¬p) and the constants, ⊥ and >, follow a similar pattern.

The full set of rules of the game is given in Table 1. Observe that all matches of
this game are finite, since at each move of the game the active formula is reduced in
size. (From the general perspective of board games, this means that we need not worry
about winning conditions for matches of infinite length.) We may now summarize the
game as follows.

Definition 1.15 Given a modal formula ξ and a transition system S, the evaluation
game E(ξ,S) is defined as the board game given by Table 1. The instantiation of this
game with starting point (ξ, s) is denoted as E(ξ,S)@(ξ, s). �

An instance of an evaluation game is a pair consisting of an evaluation game and a
starting position of the game. Such an instance will also be called an initialized game,
or sometimes, if no confusion is likely, simply a game.

A strategy for a player σ in an (initialized) game is a method that σ uses to select
his moves during the play. Such a strategy is winning for σ if every match of the game
(starting at the given position) is won by σ, provided σ plays according to this strategy.
A position (ϕ, s) is winning for σ if σ has a winning strategy for the game initialized in
that position. (This is independent of whether it is σ’s turn to move at the position.)
The set of winning positions in E(ξ,S) for σ is denoted as Winσ(E(ξ,S)).

The main result concerning these games is that they provide an alternative, but
equivalent, semantics for modal logic.

Theorem 1.16 Let ξ be a modal formula, and let S be an LTS. Then for any state s
in S it holds that

(ξ, s) ∈ Win∃(E(ξ,S)) ⇐⇒ S, s 
 ξ.

The proof of this Theorem is left to the reader.
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1.3 Bisimulations and bisimilarity

One of the most fundamental notions in the model theory of modal logic is that of a
bisimulation between two transition systems.

I discuss bisimilarity as a notion of behavioral equivalence

Definition 1.17 Let S and S′ be two transition systems of the same type (P,D).
Then a non-empty relation Z ⊆ S×S ′ is a bisimulation if the following hold, for every
(s, s′) ∈ Z.

(prop) s ∈ V (p) iff s′ ∈ V ′(p), for all p ∈ P;

(forth) for all actions d, and for all t ∈ Rd[s] there is a t′ ∈ R′d[s′] with (t, t′) ∈ Z;

(back) for all actions d, and for all t′ ∈ R′d[s′] there is a t ∈ Rd[s] with (t, t′) ∈ Z.

Two states s and s′ are called bisimilar, notation: S, s↔ S′, s′ if there is some bisimu-
lation Z with (s, s′) ∈ Z.

Relations satisfying the back and forth clauses, but the (prop) clause only for a
subset Q ⊆ P are called Q-bisimulations, and the corresponding notion of bisimilarity
is denoted by ↔Q. �

Bisimilarity and modal equivalence

In order to understand the importance of this notion for modal logic, the starting
point should be the observation that the truth of modal formulas is invariant under
bisimilarity. Recall that ! denotes the relation of modal equivalence.

Theorem 1.18 (Bisimulation Invariance) Let S and S′ be two transition systems
of the same type. Then

S, s↔ S′, s′ ⇒ S, s ! S′, s′

for every pair of states s in S and s′ in S′.

Proof. By a straightforward induction on the complexity of modal formulas one proves
that bisimilar states satisfy the same formulas. qed

But there is much more to say about the relation between modal logic and bisimi-
larity than Theorem 1.18. In particular, for some classes of models, one may prove a
converse statement, which amounts to saying that the notions of bisimilarity and modal
equivalence coincide. Such classes are said to have the Hennessy-Milner property. As
an example we mention the class of finitely branching transition systems.
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Theorem 1.19 (Hennessy-Milner Property) Let S and S′ be two finitely branch-
ing transition systems of the same type. Then

S, s↔ S′, s′ ⇐⇒ S, s ! S′, s′

for every pair of states s in S and s′ in S′.

Proof. The direction from left to right follows from Theorem 1.18. In order to prove
the opposite direction, one may show that the relation ! of modal equivalence itself
is a bisimulation. Details are left to the reader. qed

This theorem can be read as indication of the expressiveness of modal logic: any
difference in behaviour between two states in finitely branching transition systems can in
fact be witnessed by a concrete modal formula. As another witness to this expressivity,
in section 1.5 we will see that modal logic is sufficiently rich to express all bisimulation-
invariant first-order properties. Obviously, this result also adds considerable strength
to the link between modal logic and bisimilarity.

As a corollary of the bisimulation invariance theorem, modal logic has the tree model
property, that is, every satisfiable modal formula is satisfiable on a structure that has
the shape of a tree. For the definition of a path through a relational structure, and
that of a tree, we refer to the appendix.

Definition 1.20 A transition system S of type (P,D) is called tree-like if the structure
〈S,

⋃
d∈DRd〉 is a tree. �

The key step in the proof of the tree model property of modal logic is the observation
that every transition system can be ‘unravelled’ into a bisimilar tree-like model. The
basic idea of such an unravelling is the new states encode (part of) the history of the
old states. Technically, the new states are the paths through the old system.

Definition 1.21 Let S = 〈S, V,R〉 be a transition system of type (P,D). A path
through S is a nonempty sequence of the form (s0, d1, s1, . . . , dn, sn) such that Rdi

si−1si
for all i ≤ n. The set of paths through S is denoted as Paths (S); we use the notation
Pathss(S) for the set of paths starting at s.

The unravelling of S around a state s is the transition system ~Ss which is coalge-
braically defined as the structure 〈Pathss(S), ~σ〉, where the coalgebra map ~σ = (σV , (σd |
d ∈ D)) is defined by putting

~σV (s0, d1, s1, . . . , dn, sn) := σV (sn),

~σd(s0, d1, s1, . . . , dn, sn) := {(s0, d1, s1, . . . , dn, sn, d, t) ∈ Pathss(S) | Rdsnt}.

Finally, the unravelling of a pointed transition system (S, s) is the pointed structure

(~Ss, (s)), where (s) denotes the empty path starting and finishing at s. �
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Clearly, unravellings are tree-like structures, and any pointed transition system is
bisimilar to its unravelling. But then the following theorem is immediate by Theo-
rem 1.18.

Theorem 1.22 (Tree Model Property) Let ϕ be a satisfiable modal formula. Then
ϕ is satisfiable at the root of a tree-like model.

Bisimilarity game

We may also give a game-theoretic characterization of the notion of bisimilarity. We
first give an informal description. A match of the bisimilarity game between two Kripke
models S and S′ is played by two players, ∃ and ∀. As in the evaluation game, these
players move a token around from one position of the game to the next one. In the
game there are two kinds of positions: pairs of the form (s, s′) ∈ S×S ′ are called basic
positions and belong to ∃. The other positions are of the form Z ⊆ S × S ′ and belong
to ∀.

The idea of the game is that at a position (s, s′), ∃ claims that s and s′ are bisimilar,
and to substantiate this claim she proposes a local bisimulation Z (see below) for s and
s′. ∀ then challenges her by picking a pair (t, t′) ∈ Z as the next basic position.

Definition 1.23 Let S and S′ be two transition systems of the same type (P,D). Then
a relation Z ⊆ S × S ′ is a local bisimulation for two points s ∈ S and s′ ∈ S ′, if it
satisfies the properties (prop), (back) and (forth) of Definition 1.17 for this specific s
and s′. �

Note that if s and s′ disagree about the truth of some proposition letter, then there
is no local bisimulation for s and s′. Also observe that a bisimulation is a relation
which is a local bisimulation for each of its members.

Implicitly, ∃’s claim at a position Z ⊆ S × S ′ is that all pairs in Z are bisimilar, so
∀ can pick an arbitrary pair (t, t′) ∈ Z and challenge ∃ to show that these t and t′ are
bisimilar.

If a player gets stuck in a match of this game, then the opponent wins the match.
For instance, if s and s′ disagree about some proposition letter, then the corresponding
position is an immediate loss for ∃. Or, if neither s nor s′ has successors, and agree on
the truth of all proposition letters, then ∃ could choose the empty relation as a local
bisimulation, so that ∀ would lose the match at his next move.

A new option arises if neither player gets stuck: this game may also have matches
that last forever. Nevertheless, we can still declare a winner for such matches, and the
agreement is that ∃ is the winner of any infinite match. Formally, we put the following.

Definition 1.24 The bisimilarity game B(S,S′) between two Kripke models S and S′
is the board game given by Table 2, with the winning condition that finite matches are
lost by the player who got stuck, while all infinite matches are won by ∃. �
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Position Player Admissible moves
(s, s′) ∈ S × S ′ ∃ {Z ∈ ℘(S × S ′) | Z is a local bisimulation for s and s′}
Z ∈ ℘(S × S ′) ∀ Z = {(t, t′) | (t, t′) ∈ Z}

Table 2: Bisimilarity game for Kripke models

The following theorem states that the collection of basic winning positions for ∃
forms the largest bisimulation between S and S′.

Theorem 1.25 Let (S, s) and (S′, s′) be two pointed Kripke models. Then S, s↔ S, s′
iff (s, s′) ∈ Win∃(B(S,S′)).

Proof. For the direction from left to right: suppose that Z is a bisimulation between
S and S′ linking s and s′. Suppose that ∃, starting from position (s, s′), always chooses
the relation Z itself as the local bisimulation. A straightforward verification, by induc-
tion on the length of the match, shows that this strategy always provides her with a
legitimate move, and that it keeps her alive forever. This proves that it is a winning
strategy.

For the converse direction, it suffices to show that the relation Win∃(B(S,S′)) itself
is in fact a bisimulation. We leave the details for the reader. qed

Bisimulations via relation lifting

Together, the back- and forth clause of the definition of a bisimulation express that
the pair of respective successor sets of two bisimilar states must belong to the so-called
Egli-Milner lifting ℘Z of the bisimulation Z. In fact, the notion of a bisimilation can
be completely defined in terms of relation lifting.

Definition 1.26 Given a relation Z ⊆ A× A′, define the relation ℘Z ⊆ ℘A× ℘A′ as
follows:

℘Z := {(X,X ′) | for all x ∈ X there is an x′ ∈ X ′ with (x, x′) ∈ Z
& for all x′ ∈ X ′ there is an x ∈ X with (x, x′) ∈ Z}.

Similarly, define, for a Kripke functor K = KD,P, the relation KZ ⊆ KA×KA′ as follows:

KZ := {((π,X), (π′, X ′)) | π = π′ and (Xd, X
′
d) ∈ ℘Z for each d ∈ D}.

The relations ℘Z and KZ are called the lifting of Z with respect to ℘ and K,
respectively. We say that Z ⊆ A × A′ is full on B ∈ ℘A and B′ ∈ ℘A′, notation:
Z ∈ B ./ B′, if (B,B′) ∈ ℘Z. �
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It is completely straightforward to check that a nonempty relation Z linking two
transition systems S and S′ is a local bisimulation for two states s and s′ iff (σ(s), σ′(s′)) ∈
KZ. In particular, ∃’s move in the bisimilarity game at a position (s, s′) consists of
choosing a binary relation Z such that (σ(s), σ′(s′)) ∈ KZ. The following characteriza-
tion of bisimulations is also an immediate consequence.

Proposition 1.27 Let S and S′ be two Kripke coalgebras for some Kripke functor K,
and let Z ⊆ S × S ′ be some relation. Then

Z is a bisimulation iff (σ(s), σ′(s′)) ∈ KZ for all (s, s′) ∈ Z. (1)

1.4 Finite models and computational aspects

I complexity of model checking

I filtration & polysize model property

I complexity of satisfiability

I complexity of global consequence

1.5 Modal logic and first-order logic

I modal logic is the bisimulation invariant fragment of first-order logic

1.6 The cover modality

As we will see now, there is an interesting alternative for the standard formulation of
basic modal logic in terms of boxes and diamonds. This alternative set-up is based on
a connective which turns sets of formulas into formulas.

Definition 1.28 Let Φ be a finite set of formulas. Then ∇Φ is a formula, which holds
at a state s in a Kripke model if every formula in Φ holds at some successor of s, while
at the same time, every successor of s makes some formula in Φ true. The operator ∇
is called the cover modality. �

Observe that this definition involves the ∀∃&∀∃ pattern that we know from the
notion of relation lifting ℘ defined in the previous section. In other words, the semantics
of the cover modality can be expressed in terms of relation lifting. For that purpose,
observe that we may think of the forcing or satisfaction relation 
 simply as a binary
relation between states and formulas.

Proposition 1.29 Let s be some state in a Kripke model S, and let Φ be a set of
formulas. Then

S, s 
 ∇Φ iff (σR(s),Φ) ∈ ℘(
).
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Proof. Immediate by unravelling the definitions. qed

It is not so hard to see that the cover modality can be defined in the standard modal
language:

∇Φ ≡ 2
∨

Φ ∧
∧

3Φ, (2)

where 3Φ denotes the set {3ϕ | ϕ ∈ Φ}.
Things start to get interesting once we realize that both the ordinary diamond 3

and the ordinary box 2 can be expressed in terms of the cover modality (and the
disjunction):

3ϕ ≡ ∇{ϕ,>},
2ϕ ≡ ∇∅ ∨∇{ϕ}. (3)

Here, as always, we use the convention that
∨

∅ = ⊥ and
∧

∅ = >.
Making the above observations more precise, we arrive at the following definition

and proposition.

Definition 1.30 Formulas of the language BML∇ are given by the following recursive
definition:

ϕ ::= p | ¬p | ⊥ | > | ϕ ∨ ϕ | ϕ ∧ ϕ | ∇Φ

where Φ denotes a finite set of formulas. �

Proposition 1.31 The languages BML and BML∇ are equally expressive.

Proof. Immediate by (2) and (3). qed

The real importance of the cover modality is that it allows us to almost completely
eliminate the Boolean conjunction. This remarkable fact is based on the following
distributive law. Recall from Definition 1.26 that we write Z ∈ A ./ A′ if a relation
Z ⊆ A× A′ is full on A and A′, that is, if (A,A′) ∈ ℘Z.

Proposition 1.32 For all pairs Φ, Φ′ of sets of formulas, the following two formulas
are equivalent:

∇Φ ∧∇Φ′ ≡
∨

Z∈Φ./Φ′

∇{ϕ ∧ ϕ′ | (ϕ, ϕ′) ∈ Z}. (4)

Proof. For the direction from left to right, suppose that S, s 
 ∇Φ ∧ ∇Φ′. Let
Z ⊆ Φ × Φ′ consist of those pairs (ϕ, ϕ′) such that the conjunction ϕ ∧ ϕ′ is true at
some successor t of s. It is then straightforward to verify that Z is full on Φ and Φ′,
and that S, s 
 ∇{ϕ ∧ ϕ′ | (ϕ, ϕ′) ∈ Z}.

The converse direction follows fairly directly from the definitions. qed
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1.7 Coalgebraic modal logic

Using the cover modality introduced in the previous section, we can show that we
can restrict the use of conjunction in modal logic to that of the special conjunction
connective •. First however, we take care of the proposition letters.

Definition 1.33 Fix a finite set P of proposition letters. Given a subset π ⊆ P, we let
�π denote the formula with semantics given by

S, s 
 �π iff σV (s) = π

for any KD,P-coalgebra S = 〈S, σ〉. �

In words, the formula �π holds at a state s iff π consists precisely of those propo-
sition letters in P that are true at s, or equivalently,

�π :=
∧
p∈π

p ∧
∧
p6∈π

¬p.

It is not difficult to see that every propositional formula with proposition letters from
P can be expressed as disjunctions of formulas of the form �π. In particular, it is
straightforward to verify that

q ≡
∨
q∈π

�π

for every q ∈ P.
We are now ready for the introduction of the coalgebraic modal connective •.

Definition 1.34 Fix finite sets P of proposition letters and D of atomic actions, re-
spectively. Given a subset π ⊆ P, and a D-indexed family Φ = {Φd | d ∈ D} of formulas,
then π •Φ is a formula, of which the semantics is defined by the following equivalence:

π • Φ ≡ �π ∧
∧
d∈D

∇dΦd.

Here ∇d is the cover modality associated with the accessibility relation Rd of d.
The set CMLD(P) of coalgebraic modal formulas is given as follows:

ϕ ::= ⊥ | > | ϕ ∨ ϕ | ϕ ∧ ϕ | π • Φ. �

In words, π •Φ is the conjunction of (i) a complete description of the local situation
in terms of the proposition letters being true or false, and (ii) for each action d, a
description of the d-successor set of the current state, using the cover modality for Rd.

I Explain why • and the language CML are called ‘coalgebraic’.
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Proposition 1.35 Fix sets P of proposition letters and D of atomic actions, respec-
tively. Then we have

S, s 
 π • Φ iff (σ(s), (π,Φ)) ∈ K(
) (5)

for any π ∈ ℘(P) any D-indexed family Φ = {Φd | d ∈ D}, and for any pointed
transition system (S, s) of type (P,D), the following equivalence holds.

Proof. Simply spell out the definitions. qed

In fact, we could have taken (5) below as the definition of the semantics of the
bullet modality.

The following result is not very hard to prove.

Theorem 1.36 For any P and D, the languages PMLD(P) and CMLD(P) are expres-
sively equivalent.

Proof. There is a straightforward translation from CML-formulas to ordinary modal
formulas, so we focus on the other direction.

It is not hard to verify that every polymodal formula can be rewritten to an equiv-
alent formula using the connectives >,⊥,∧,∨,� and ∇d. But then the proof of the
theorem is straightforward by the observation that both �π and ∇dΦ can be rewritten
to formulas using the bullet connective, using the equivalences below:

> ≡ ∇d∅ ∨∇d{>}
> ≡

∨
π⊆P

�π.

For instance, this allows us to write

�π ≡ �π ∧
∧
d∈D

>

≡ �π ∧
∧
d

(∇d∅ ∨∇d{>})

≡
∨

Φ:D→{∅,{>}}

π • {Φ(d) | d ∈ D}.

qed

It may come as a surprise to the reader that the bullet operator is in fact the only
form of conjunction that we need! More precisely, Theorem 1.38 below states that
every formula of CML can be rewritten into an equivalent version that does not use
the ordinary Boolean conjunction, but only the special ‘bullet conjunction’.
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Definition 1.37 Formulas of the language CML−D(P) are given by the following recur-
sive definition:

ϕ ::= > | ⊥ | ϕ ∨ ϕ | π • Φ

where π denotes a subset of P, and Φ a D-indexed set of CML−D(P)-formulas. �

Theorem 1.38 For any P and D, the languages PMLD(P) and CML−D(P) are expres-
sively equivalent.

Proof. Obviously it suffices to prove that every CML-formula ϕ has an equivalent
formula ϕ that does not use the conjunction symbol. We will prove this result by
induction on the length of a formula, confining ourselves to the case of basic modal
logic (with one action).

In the base step of this induction there is nothing to prove. In the inductive step,
the clauses for the disjunction and the cover modality speak for themselves:

ϕ ∨ ψ := ϕ ∨ ψ,
π • Φ := π • {ϕ | ϕ ∈ Φ}.

This leaves the case of a conjunction ϕ∧ϕ′, where we make a further case distinction.
If either of the formulas is of the form > or ⊥ it is obvious how to proceed: ⊥ ∧ ϕ := ⊥,
> ∧ ϕ := ϕ, etc. Also, in case either of the two conjuncts is a disjunction, say ϕ =
ϕ0 ∨ ϕ1, using induction loading we may correctly define ϕ ∧ ϕ′ := ϕ0 ∧ ϕ′ ∨ ϕ0 ∧ ϕ′.

The heart of the proof lies in the one remaining inductive case, namely, where
ϕ = π • Φ and ϕ′ = π′ • Φ′. Here we put

ϕ ∧ ϕ′ :=

{
⊥ if π 6= π′,∨
Z∈Φ./Φ′(π • {ϕ ∧ ϕ′ | (ϕ, ϕ′) ∈ Z}) if π 6= π′.

It then follows immediately from the inductive assumptions that ϕ ∧ ϕ′ is a BML−∇-
formula, and from Proposition 1.32 that ϕ ∧ ϕ′ is equivalent to ϕ ∧ ϕ′. qed

Notes

Modal logic has a long history in philosophy and mathematics, for an overview we
refer to Blackburn, de Rijke and Venema [3] The use of modal formalisms as specifica-
tion languages in process theory goes back at least to the 1970s, with Pratt [26] and
Pnueli [25] being two influential early papers.

The notion of bisimulation, which plays an important role in modal logic and process
theory alike, was first introduced in a modal logic context by van Benthem [2], who
proved that modal logic is the bisimulation invariant fragment of first-order logic. The
notion was later, but independently, introduced in a process theory setting by Park [24].
At the time of writing we do not know who first took a game-theoretical perspective
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on the semantics of modal logic. The cover modality ∇ was introduced independently
by Moss [17] and Janin & Walukiewicz [10].

Readers who want to study modal logic in more detail are referred to Blackburn,
de Rijke and Venema [3] or Chagrov & Zakharyaschev [5].

Exercises

Exercise 1.1 Prove Theorem 1.16.

Exercise 1.2 Consider the following version Bω(S,S′) of the bisimilarity game between
two transition systems S and S′. Positions of this game are of the form either (s, s′, α)
or (Z, α), with s ∈ S, s′ ∈ S ′, Z ⊆ S × S ′ and α either a natural number or ω. The
admissible moves for ∃ and ∀ are displayed in the following table:

Position Player Admissible moves
(s, s′, α) ∃ {(Z, α) | Z is a local bisimulation for s and s′ }
(Z, α) ∀ {(s, s′, β) | (s, s′) ∈ Z and β < α}

Note that all matches of this game have finite length.
We write S, s↔α S′, s′ to denote that ∃ has a winning strategy in the game Bω(S,S′)

starting at position (s, s′, α).

(a) Give concrete examples such that S, s ↔n S′, s′ for all n < ω, but not S, s ↔ω

S′, s′.
(Hint: think of two modally equivalent but not bisimilar states.)

(b) Let k be a natural number. Prove that, for all S, s and S′, s′:

S, s↔k S′, s′ ⇒ S, s !k S′, s′.

Here !k denotes the modal equivalence relation with respect to formulas of
modal depth at most k.

(c) Let S and S′ be finitely branching transition systems. Prove directly (i.e., without
using part (b)) that (i) ⇒ (ii), for all s ∈ S and s′ ∈ S ′:

(i) S, s↔k S′, s′ for all k < ω,

(ii) S, s↔ S′, s′.

Exercise 1.3 Let Φ and Θ be sets of formulas. Prove that

∇
(
Φ ∪ {

∨
Θ}

)
≡

∨ {
∇

(
Φ ∪Θ′) | ∅ 6= Θ′ ⊆ Θ

}



Part II

Modal Fixpoint Logics



2 The modal µ-calculus

This chapter is a first introduction to the modal µ-calculus. We define the language,
discuss some syntactic issues, and then proceed to its game-theoretic semantics. As
a first result, we prove that the modal µ-calculus is bisimulation invariant, and has a
strong, ‘bounded’ version of the tree model property. We start with an example.

Example 2.1 Consider the formula 〈d∗〉p from propositional dynamic logic. By def-
inition, this formula holds at those points in an LTS S from which there is a finite
Rd-path, of unspecified length, leading to a state where p is true.

We leave it for the reader to prove that

S 
 〈d∗〉p↔ (p ∨ 〈d〉〈d∗〉p)

for any transition system S (here we write 〈d〉 rather than 3d). Informally, one might
say that 〈d∗〉p is a fixed point or solution of the ‘equation’

x↔ p ∨ 〈d〉x. (6)

One may show, however, that 〈d∗〉p is not the only fixpoint of (6). If we let ∞d denote a
formula that is true at those states of a transition system from which an infinite d-path
emanates, then the formula 〈d∗〉p ∨∞d is another fixed point of (6).

In fact, one may prove that the two mentioned fixpoints are the smallest and largest
possible solutions of (6), respectively. �

As we will see in this chapter, the modal µ-calculus allows one to explicitly refer to
such smallest and largest solutions. For instance, as we will see further on, the smallest
and largest solution of the ‘equation’ (6) will be written as µx.p∨〈d〉x and νx.p∨〈d〉x,
respectively.

To arrive at the semantics of modal fixpoint formulas one can take two roads. In
Chapter 3 we will introduce the algebraic semantics of µx.ϕ and νx.ϕ in an LTS S,
in terms of the least and greatest fixpoint, respectively, of some algebraically defined
meaning function. For this purpose, we will consider the formula ϕ as an operation
on the power set of (the state space of) S, and we have to prove that this operation
indeed has a least and a greatest fixpoint. As we will see, this formal definition of the
semantics of the modal µ-calculus may be mathematically transparent, but it is of little
help when it comes to unravelling and understanding the actual meaning of individual
formulas. In practice, it is much easier to work with the evaluation games that we will
introduce in this chapter.

This framework builds on the game-theoretical semantics for ordinary modal logic
as described in subsection 1.2, extending it with features for the fixpoint operators
and for the bound variables of fixpoint formulas (such as x in the formula µx.p ∨3x).
The key difference lies in the fact that when a match of an evaluation game reaches
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a position of the form (x, s), with x a bound variable, then an equation such as (6) is
used to unfold the variable x into its associated formula (in the example, the formula
p ∨3x).

As a consequence, the flavour of these games is remarkably different from the evalu-
ation games we met before. Recall that in evaluation matches for basic modal formulas,
the formula is broken down step by step. From this it follows that the length of such a
match is bounded by the length of the formula. Evaluation matches for fixpoint formu-
las, on the other hand, can last infinitely long, if some fixpoint variables are unfolded
infinitely often. Hence, the game-theoretic semantics for fixpoint logics takes us to the
area of infinite games.

2.1 Syntax

As announced already in the previous chapter, in the case of fixpoint formulas we
will usually work with formulas in positive normal form in which the only admissible
occurrences of the negation symbol is in front of atomic formulas.

Definition 2.2 Given sets P and D of proposition letters and atomic actions, respec-
tively, define the collection µPML(D,P) of (poly-)modal fixpoint formulas as follows:

ϕ ::= > | ⊥ | p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | 3dϕ | 2dϕ | µx.ϕ | νx.ϕ

where p, x ∈ P, d ∈ D. There is a restriction on the formation of the formulas µx.ϕ
and νx.ϕ, namely, that all occurrences of x in ϕ are positive. That is, no occurrence of
x in ϕ may be in the scope of the negation operator ¬.

As before, we will usually write µPML rather than µPML(D,P) in order not to
clutter up notation. In case the set D of atomic actions is a singleton, we will simply
speak of the modal µ-calculus, notation: µML(P), or µML if P is understood.

The syntactic combinations µx and νx are called the least and greatest fixpoint
operators, respectively. We use the symbol η to denote either µ or ν. A fixpoint
formula of the form µx.ϕ is called a µ-formula, while ν-formulas are the ones of the
form νx.ϕ. �

Definition 2.3 The concepts of subformula and proper subformula are defined as
usual. We write ϕ � ψ if ϕ is a subformula of ψ. The set of subformulas of ψ is
denoted as Sfor(ψ). �

Syntactically, the fixpoint operators are very similar to the quantifiers of first-order
logic in the way they bind variables.
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Definition 2.4 Fix a formula ϕ. The sets FV (ϕ) and BV (ϕ) of free and bound vari-
ables of ϕ are defined by the following induction on ϕ:

FV (⊥) := ∅ BV (⊥) := ∅
FV (>) := ∅ BV (>) := ∅
FV (p) := {p} BV (p) := ∅
FV (¬p) := {p} BV (¬p) := ∅
FV (ϕ ∨ ψ) := FV (ϕ) ∪ FV (ψ) BV (ϕ ∨ ψ) := BV (ϕ) ∪ BV (ψ)
FV (ϕ ∧ ψ) := FV (ϕ) ∪ FV (ψ) BV (ϕ ∧ ψ) := BV (ϕ) ∪ BV (ψ)
FV (3dϕ) := FV (ϕ) BV (3dϕ) := BV (ϕ)
FV (2dϕ) := FV (ϕ) BV (2dϕ) := BV (ϕ)
FV (ηx.ϕ) := FV (ϕ) \ {x} BV (ηx.ϕ) := BV (ϕ) ∪ {x}

�

Formulas like x ∨ µx.((p ∨ x) ∧ 2νx.3x) may be well formed, but in practice they
are very hard to read and work with. In the sequel we will almost exclusively work
with formulas in which every bound variable uniquely determines a fixpoint operator
binding it, and in which there is no overlap between free and bound variables.

Definition 2.5 A formula ϕ ∈ µPML is clean if no two distinct (occurrences of) fixed
point operators in ϕ bind the same variable, and no variable has both free and bound
occurrences in ϕ. If x is a bound variable of the clean formula ϕ, we let ϕx = ηxx.δx
denote the unique subformula of ϕ where x is bound by the fixpoint operator ηx. �

An important role in the theory of the modal µ-calculus is played by a certain order
on its bound variables. The idea behind this ‘dependency order’ is that if x ≤ y, the
meaning of ϕx is (in principle) dependent on the meaning of y, because y may occur
freely in ϕx.

Definition 2.6 Given a clean formula ϕ, we define a dependency order on the set
BV (ϕ), saying that y ranks higher than x, notation: x ≤ϕ y iff ϕx � ϕy. �

We finish our sequence of syntactic definitions with the notion of guardedness, which
will become important later on.

Definition 2.7 A variable x is guarded in a µPML-formula ϕ if every occurrence of x
in ϕ is in the scope of a modal operator. A formula ξ ∈ µPML is guarded if for every
subformula of ξ of the form ηx.δ, x is guarded in δ. �
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2.2 Game semantics

For a definition of the evaluation game of the modal µ-calculus, fix a clean formula ξ
and an LTS S. Basically, the game E(ξ,S) for ξ a fixpoint formula is defined in the
same way as for plain modal logic formulas.

Definition 2.8 Given a clean modal µ-calculus formula ξ and a transition system S,
we define the evaluation game E(ξ,S) as a board game with players ∃ and ∀ moving
a token around positions of the form (ϕ, s) ∈ Sfor(ξ)× S. The rules, determining the
admissible moves from a given position, together with the player who is supposed to
make this move, are given in Table 3. �

One might expect that the main difference with the evaluation game for basic modal
formulas would involve the new formula constructors of the µ-calculus: the fixpoint
operators. Perhaps surprisingly, the fixpoint operators are dealt with in the most
straightforward way possible: the successor of a position of the form (ηx.δ, s) is simply
obtained as the pair (δ, s). Since this next position is thus uniquely determined, the
position (ηx.δ, s) will not be assigned to either of the players.

The crucial difference lies in the treatment of the bound variables of a fixpoint
formula ξ. Previously, and still in the case of free variables, positions of the form (p, ϕ)
would be final positions of the game, immediately determining the winner of the match.
However, at a position (x, s) with x bound, the fixpoint variable x gets unfolded ; this
means that the new position is given as (δx, s), where ηxx.δx is the unique subformula
of ξ where x is bound. Note that for this to be well defined, we need ξ to be clean. The
disjointness of FV (ξ) and BV (ξ) ensures that it is always clear whether a variable is to
be unfolded or not, and the fact that bound formulas are bound by unique occurrences
of fixpoint operators guarantees that δx is uniquely determined. Finally, since in this
case the next position is also completely determined by the current one, positions of
the form (x, s) with x bound are assigned to neither of the players.

Example 2.9 Let S = 〈S,R, V 〉 be the Kripke model based on the set S = {0, 1, 2},
with R = {(0, 1), (1, 1), (1, 2), (2, 2)}, and V given by V (p) = {2}. Now let ξ be the
formula ηx.p ∨2x, and consider the game E(ξ,S) initialized at (ξ, 0).

The second position of any match of this game will be (p ∨ 2x, 0) belonging to ∃.
Assuming that she wants to win, she chooses the disjunct 2x since otherwise p being
false at 0 would mean an immediate loss for her. Now the position (2x, 0) belongs to
∀ and he will make the only move allowed to him, choosing (x, 1) as the next position.
Here an automatic move is made, unfolding the variable x, and thus changing the
position to (p ∨2x, 1). And as before, ∃ will choose the right disjunct: (2x, 1).

At (2x, 1), ∀ does have a choice. Choosing (x, 2), however, would mean that ∃ wins
the match since p being true at 2 enables her to finally choose the first disjunct of the
formula p ∨2x. So ∀ chooses (x, 1), a position already visited by the match before.
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Position Player Admissible moves
(ϕ1 ∨ ϕ2, s) ∃ {(ϕ1, s), (ϕ2, s)}
(ϕ1 ∧ ϕ2, s) ∀ {(ϕ1, s), (ϕ2, s)}
(3dϕ, s) ∃ {(ϕ, t) | t ∈ σd(s)}
(2dϕ, s) ∀ {(ϕ, t) | t ∈ σd(s)}
(⊥, s) ∃ ∅
(>, s) ∀ ∅
(p, s), with p ∈ FV (ξ) and s ∈ V (p) ∀ ∅
(p, s), with p ∈ FV (ξ) and s 6∈ V (p) ∃ ∅
(¬p, s), with p ∈ FV (ξ) and s ∈ V (p) ∃ ∅
(¬p, s), with p ∈ FV (ξ) and s 6∈ V (p) ∀ ∅
(ηxx.δx, s) − {(δx, s)}
(x, s), with x ∈ BV (ξ) − {(δx, s)}

Table 3: Evaluation game for modal fixpoint logic

This means that these strategies force the match to be infinite, with the variable
x unfolding infinitely often at positions of the form (x, 1), and the match taking the
following form:

(ξ, 0)(p ∨2x, 0)(2x, 0)(x, 1)(p ∨2x, 1)(2x, 1)(x, 1)(p ∨2x, 1) . . .

So who is declared to be the winner of this match? This is where the difference
between the two fixpoint operators shows up. In case η = µ, the above infinite match is
lost by ∃ since the fixpoint variable that is unfolded infinitely often is a µ-variable, and
µ-variables are to be unfolded only finitely often. In case η = ν, the variable unfolded
infinitely often is a ν-variable, and this is unproblematic: ∃ wins the match. �

The above example shows the principle of unfolding at work. Its effect is that
matches may now be of infinite length since formulas are no longer deconstructed at
every move of the game. Nevertheless, as we will see, it will still be very useful to
declare a winner of such an infinite game. Here we arrive at one of the key ideas
underlying the semantics of fixpoint formulas, which in a slogan can be formulated as
follows:

ν means unfolding, µ means finite unfolding.

Giving a more detailed implementation of this slogan, in case of a unique variable that
is unfolded infinitely often during a match π, we will declare ∃ to be the winner of π if
this variable is a ν-variable, and ∀ in case we are dealing with a µ-variable. But what
happens in case that various variables are unfolded infinitely often? As we shall see,
in these cases there is always a unique such variable that ranks higher than any other
such variable.
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Definition 2.10 Let ξ be a clean µPML-formula, and S a labelled transition system.
A match of the game E(ξ,S) is a (finite or infinite) sequence of positions

(s, ξ) = (s0, ϕ0)(s1, ϕ1)(s2, ϕ2) . . .

which are in accordance with the rules of Table 3. A full match is either an infinite
match, or a finite match in which the player responsible for the last position got stuck.
In practice we will always refer to full matches simply as matches. A match that is not
full is called partial.

Given an infinite match π, we let Unf∞(π) ⊆ BV (ξ) denote the set of variables
that are unfolded infinitely often during π. �

Proposition 2.11 Let ξ be a clean µPML-formula, and S a labelled transition system.
Then for any infinite match π of the game E(ξ,S), the set Unf∞(π) has a highest
ranking member, in terms of the dependency order of Definition 2.6.

Proof. Since ξ consists of finitely many symbols, Unf∞(π) is not empty. We claim
that it is in fact directed (with respect to the ranking order). That is, for any x and y
in Unf∞(π) there is a variable z ∈ Unf∞(π) such that x ≤ξ z and y ≤ξ z.

For suppose otherwise. Then in particular, ϕx = ηxx.δx and ϕy = ηyy.δy are not
subformulas of one another. However, π goes through both ϕx and ϕy infinitely often.
Now the only way it can move from ϕx to ϕy is by unfolding some variable z such that
both ϕx and ϕy are subformulas of ϕz, that is, x ≤ξ z and y ≤ξ z. Since this happens
infinitely often, one of these variables z must belong to Unf∞(π), as required.

But if Unf∞(π) is directed, being finite it must have a maximum. That is, there is
indeed a highest variable in BV (ξ) that gets unfolded infinitely often during π. qed

Given this result, there is now a natural formulation of the winning conditions for
infinite matches of evaluation games.

Definition 2.12 Let ξ be a clean µPML-formula. The winning conditions of the game
E(ξ,S) are given in Table 4. �

∃ wins π ∀ wins π
π is finite ∀ got stuck ∃ got stuck
π is infinite max(Unf∞(π)) is a ν-variable max(Unf∞(π)) is a µ-variable

Table 4: Winning conditions of E(ξ,S)

We can now formulate the game-theoretic semantics of the modal µ-calculus as
follows.
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Definition 2.13 Let ξ be a clean formula of the modal µ-calculus, and let S be a
transition system of the appropriate type. Then we say that ξ is (game-theoretically)
satisfied at s, notation: S, s 
g ξ if (s, ξ) ∈ Win∃(E(ξ,S)). �

I define satisfaction relation of arbitrary formulas via clean alphabetical
variants

2.3 Examples

Example 2.14 As a first example, consider the formulas ηx.p ∨ x, and fix a Kripke
model S. Observe that any match of the evaluation game E(ηx.p∨x, S) starts with the
two positions (ηx.p ∨ x, s)(p ∨ x, s), after which ∃ can make a choice. We claim that

S, s 
g µx.p ∨ x iff s ∈ V (p).

For the direction from right to left, assume that s ∈ V (p). Now, if ∃ chooses the
disjunct p at the position (s, p ∨ x), she wins the match because ∀ will get stuck at
(s, p). Hence s ∈ Win∃(E(ηx.p ∨ x, S)).

On the other hand, if s 6∈ V (p), then ∃ will lose if she chooses disjunct p at position
(s, p ∨ x). So she must choose the disjunct x which then unfolds to p ∨ x so that ∃ is
back at the position (s, p ∨ x). Thus if ∃ does not want to get stuck her only way to
survive is to keep playing the position (s, x), thus causing the match to be infinite. But
such a match is won by ∀ since the only variable that gets unfolded infinitely often is
a µ-variable. Hence in this case we see that s 6∈ Win∃(E(ηx.p ∨ x, S)).

If on the other hand we take η = ν, then ∃ can win any match:

S, s 
g νx.p ∨ x.

It is easy to see that the strategy of always choosing the disjunct x at a position of
the form (s, p∨ x) is winning. For, it forces all games to be infinite, and since the only
fixpoint variable that gets ever unfolded here is a ν-variable, all infinite matches are
won by ∃.

Concluding, we see that µx.p ∨ x is equivalent to the formula p, and νx.p ∨ x, to
the formula >. �

Example 2.15 Now we turn to the formulas µx.3x and νx.3x. First consider how a
match for any of these formulas proceeds. The first two positions of such a match will
be of the form (ηx.3x, s)(3x, s), at which point it is ∃’s turn to make a move. Now
she either is stuck (in case the state s has no successor) or else the next two positions
are (x, t)(3x, t) for some successor t of s, chosen by ∃. Continuing this analysis, we see
that there are two possibilities for a match of the game E(ηx.3x, S):
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1. the match is an infinite sequence of positions

(ηx.3x, s0)(3x, s0)(x, s1)(3x, s1)(x, s2) . . .

corresponding to an infinite path s0Rs1Rs2R . . . through S.

2. the match is a finite sequence of positions

(ηx.3x, s0)(3x, s0)(x, s1)(3x, s1) . . . (3x, sk)

corresponding to a finite path s0Rs1R . . . sk through S, where sk has no successors.

Note too that in either case it is only ∃ who has turns, and that her strategy corresponds
to choosing a path through S. From this it is easy to derive that
• µx.3x is equivalent to the formula ⊥,
• S, s 
g νx.3x iff there is an infinite path starting at s. �

I Until operator

The examples that we have considered so far involved only a single fixpoint operator.
We now look at an example containing both a least and a greatest fixpoint operator.

Example 2.16 Let ξ be the following formula:

ξ = νx.µy. (p ∧3x)︸ ︷︷ ︸
αp

∨ (¬p ∧3y)︸ ︷︷ ︸
α¬p

Then we claim that for any LTS S, and any state s in S:

S, s 
g ξ iff there is some path from s on which p is true infinitely often. (7)

To see this, first suppose that there is a path π = s0s1s2 . . . as described in the right
hand side of (7) and suppose that ∃ plays according to the following strategy:

(a) at a position (αp∨α¬p, t), choose (αp, t) if S, t 
g p and choose (α¬p, t) otherwise;

(b) at a position (3ϕ, t), distinguish cases:
- if the match so far has followed the path, with t = sk, choose (ϕ, sk+1);
- otherwise, choose an arbitrary successor (if possible).

We claim that this is a winning strategy for ∃ in the evaluation game initialized at (ξ, s).
Indeed, since ∃ always chooses the propositionally safe disjunct of αp ∨ α¬p, she forces
∀, when faced with a position of the form (α±p, t) = (±p ∧3z, t) to always choose the
diamond conjunct 3z, or lose immediately. In this way she guarantees to always get to
positions of the form (si,3z), and thus she can force the match to last infinitely long,



32 The modal µ-calculus

following the infinite path π. But why does she actually win this match? The point is
that, whenever she chooses αp, three positions later, x will be unfolded, and likewise
with α¬p and y. Thus, p being true infinitely often on π means that the ν-variable x
gets unfolded infinitely often. And so, even though the µ-variable y might get unfolded
infinitely often as well, she wins the match since x ranks higher than y anyway.

For the other direction, assume that S, s 
g ξ so that ∃ has a winning strategy in
the game E(ξ,S) initialized at (ξ, s). It should be clear that any winning strategy must
follow (a) above. So whenever ∀ faces a position (p∧3z, t), p will be true, and likewise
with positions (¬p ∧ 3z, t). Now consider a match in which ∀ plays propositionally
sound, that is, always chooses the diamond conjunct of these positions. This match
must be infinite since both players will stay alive forever: ∀ because he can always
choose a diamond conjunct, and ∃ because we assumed her strategy to be winning.
But a second consequence of ∃ playing a winning strategy, is that it cannot happen
that y is unfolded infinitely often, while x is not. So x is unfolded infinitely often, and
as before, x only gets unfolded right after the match passed a world where p is true.
Thus the path chosen by ∃ must contain infinitely many states where p holds. �

2.4 Memory-free determinacy

From a theoretical perspective, the importance of the game-theoretical semantics of
fixpoint logics lies in the fact that the evaluation games are so-called parity games (see
Chapter 7 for more details). Parity games have a number of very useful properties.
In particular, it can be shown that winning strategies for either player can always be
assumed to be positional, that is, do not depend on moves made earlier in the match,
but only on the current position. As we will see further on, this property is crucial in
establishing various results about the modal µ-calculus.

I Every evaluation game E(ξ, S) is determined in the sense that every position
(ϕ, s) is winning for exactly one of the two players.

I In addition, evaluation games enjoy history-free or memory-free determinacy.
This means that each player σ ∈ {∃,∀} has a positional strategy fσ which
is winning for the game E(ξ, S)@(ϕ, s) for every position (ϕ, s) that is winning
for σ.

I A strategy is positional if it only depends on the current position (that
is, the final position of the partial play).

2.5 Bounded tree model property

Given the game-theoretic characterization of the semantics, it is rather straightforward
to prove that formulas of the modal µ-calculus are bisimulation invariant. From this it
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is immediate that the modal mu-calculus has the tree model property. But in fact, we
can use the game semantics to do better than this, proving that every satisfiable modal
fixpoint formula is satisfied in a tree of which the branching degree is bounded by the
size of the formula.

Theorem 2.17 (Bisimulation Invariance) Let ξ be a modal fixpoint formula with
FV (ξ) ⊆ P, and let S and S′ be two labelled transition systems with points s and s′,
respectively. If S, s↔P S′, s′, then

S, s 
g ξ iff S′, s′ 
g ξ.

Proof. Assume that s ↔P s′ and that S, s 
g ξ, with FV (ξ) ⊆ P. We will show
that S′, s′ 
g ξ. By Memory-Free Determinacy we may assume that ∃ has a positional
winning strategy f in the evaluation game E := E(ξ,S) initialized at (ξ, s). We need
to provide her with a winning strategy in the game E ′ := E(ξ,S′)@(ξ, s′). She obtains
her strategy f ′ in E ′ from playing a shadow match of E , using the bisimilarity relation
to guide her choices.

To see how this works, let’s simply start with comparing the initial position (ξ, s′)
of E ′ with its counterpart (ξ, s) of E . (From now on we will write s ↔ s′ instead of
s↔P s

′).
In case ξ is an atomic formula, then it is easy to see that both (ξ, s) and (ξ, s′) are

final positions. Also, since f is assumed to be winning, ξ must be true at s, and so it
must hold at s′ as well. Hence, ∃ wins the match.

If ξ is not atomic, we distinguish cases. First suppose that ξ = ξ1 ∨ ξ2. If f tells ∃
to choose disjunct ξi at (ξ, s), then she chooses the same disjunct ξi at position (ξ, s′).
If ξ = ξ1 ∧ ξ2, it is ∀ who moves. Suppose in E ′ he chooses ξi, making (ξi, s

′) the next
position. We now consider in E the same move of ∀, so that the next position in the
shadow match is (ξi, s).

A third possibility is that ξ = 3ψ. In order to make her move at (ξ, s′), ∃ first
looks at (ξ, s). Since f is a winning strategy, it indeed picks a successor t of s. Then
because s ↔ s′, there is a successor t′ of s′ such that t ↔ t′. This t′ is ∃’s move in E ,
so that (ψ, t) and (ψ, t′) are the next positions in E and E ′, respectively.

Finally, if ξ = 2ψ, we are dealing again with positions for ∀. Suppose in E ′ he
chooses the successor t′ of s′, so that the next position is (ψ, t′). (In case s′ has no
successors, ∀ immediately loses, so that there is nothing left to prove.) Now again we
turn to the shadow match; by bisimilarity of s and s′ there is a successor t of s such
that t↔ t′. So we may assume that ∀ moves the game token of E to position (ψ, t).

The crucial observation is that if ∃ does not win immediately, then at least she
can guarantee that the next positions in E and E ′ are of the form (ϕ, u) and (ϕ, u′)
respectively, with u↔ u′, and such that the move in E is consistent with f .

Continuing in this fashion, ∃ is able to maintain the condition (*) that for any
match

β′ = (ϕ0, s
′
0)(ϕ1, s

′
1) . . . (ϕn, s

′
n)
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played thus far, there is a shadow match

β = (ϕ0, s0)(ϕ1, s1) . . . (ϕn, sn)

in E which is consistent with f , and such that Z : si ↔ s′i for all i ≤ n.
It is not hard to see why this suffices to prove the theorem; for infinite matches, the

key observation is that the two sequences of formulas, in the E ′-match and its E-shadow,
respectively, are exactly the same. qed

As an immediate corollary, we obtain the tree model property for the modal µ-
calculus.

Theorem 2.18 (Tree Model Property) Let ξ be a modal fixpoint formula. If ξ is
satisfiable, then it is satisfiable at the root of a tree model.

Proof. For simplicity, we confine ourselves to the basic modal language. Suppose that
ξ is satisfiable at state s of the Kripke model S. Then by bisimulation invariance, ξ is
satisfiable at the root of the unravelling ~Ss of S around s. This unravelling clearly is a
tree model. qed

For the next theorem, recall that the size of a formula is simply defined as its length,
that is, the number of symbols occurring in it.

Theorem 2.19 (Bounded Tree Model Property) Let ξ be a modal fixpoint for-
mula. If ξ is satisfiable, then it is satisfiable at the root of a tree, of which the branching
degree is bounded by the size |ξ| of the formula.

Proof. Suppose that ξ is satisfiable. By the Bisimulation Invariance Theorem it follows
that ξ is satisfiable at the root r of some tree model T = 〈T,R, V 〉. So ∃ has a winning
strategy f in the game E := E(ξ,T) starting at position (ξ, r). By the Memory-Free
Determinacy of evaluation game, we may assume that this strategy is positional — this
will simplify our argument a bit. We may thus represent this strategy as a map f that,
among other things, maps positions of the form (s,3ϕ) to positions of the form (t, ϕ)
with Rst.

We will prune the tree T, keeping only the nodes that ∃ needs in order to win the
match. Formally, define subsets (Tn)n∈ω as follows:

T0 := {r},
Tn+1 := Tn ∪ {s | (ϕ, s) = f(3ϕ, t) for some t ∈ Tn and 3ϕ� ξ},
Tω :=

⋃
n∈ω Tn.

Let Tω be the subtree of T based on Tω (Tω is in general not a generated submodel of
T). From the construction it is obvious that the branching degree of Tω is bounded by
the length of ξ, because ξ has at most |ξ| diamond subformulas.
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We claim that Tω, r 
g ξ. To see why this is so, let E ′ := E(ξ,Tω) be the evaluation
game played on the pruned tree. It suffices to show that the strategy f ′, defined as the
restriction of f to positions of the game E ′, is winning for ∃ in the game starting at
(ξ, r). Consider an arbitrary E ′-match π = (ξ, r)(ϕ1, t1) . . . which is consistent with f ′.
The key observation of the proof is that π is also a match of E@(ξ, r), that is consistent
with f . To see this, simply observe that all moves of ∀ in π could have been made in
the game on T as well, whereas by construction, all f ′ moves of ∃ in E ′ are f moves in
E .

Now by assumption, f is a winning strategy for ∃ in E , so she wins π in E . But
then π is winning as such, i.e., no matter whether we see it as a match in E or in E ′. In
other words, π is also winning as an E ′-match. And since π was an arbitrary E ′ match
starting at (ξ, r), this shows that f ′ is a winning strategy, as required. qed

Notes

The modal µ-calculus was introduced by D. Kozen [13]. Its game-theoretical semantics
goes back to at least Emerson & Jutla [9] (who use alternating automata as an inter-
mediate step). As far as we are aware, the bisimulation invariance theorem, with the
associated tree model property, is a folklore result. The bounded tree model property
is due to Kozen & Parikh [15].

Exercises



3 Fixpoints

The game-theoretic semantics of the modal µ-calculus introduced in the previous chap-
ter has some attractive characteristics. It is intuitive, relatively easy to understand,
and, as we shall see further on, it can be used to prove some strong properties of the
formalism. However, there are drawbacks as well. For instance, the evaluation games
of Definition 2.8 can only be played with clean formulas. The semantics of arbitrary
formulas is defined in a slightly artificial way. Perhaps more importantly, the game-
theoretical semantics is not compositional ; that is, the meaning of a formula is not
defined in terms of the meanings of its subformulas. These shortcomings vanish in the
algebraic semantics that we are about to introduce. In order to define this term, we
first consider an example.

Example 3.1 Recall that in Example 2.1, we informally introduced the formula µx.p∨
3dx as the smallest fixpoint or solution of the ‘equation’ x↔ p ∨3dx.

To make this intuition more precise, we have to look at the formula δ = p ∨ 3dx
as an operation. The idea is that the value (that is, the extension) of this formula is a
function of the value of x, provided that we keep the value of p constant. Varying the
value of x boils down to considering ‘x-variants’ of the valuation V of S = 〈S,R, V 〉.
Let, for X ⊆ S, V [x 7→ X] denote the valuation that is exactly like V apart from
mapping x to X, and let S[x 7→ X] denote the x-variant 〈S,R, V [x 7→ X]〉 of S. Then
[[δ]]S[x 7→X] denotes the extension of δ in this x-variant. It follows from this that the
formula δ induces the following function δS

x on the power set of S:

δS
x(X) := [[δ]]S[x7→X].

In our example we have

δS
x(X) = V (p) ∪ 〈R〉(X).

Now we can make precise why µx.p ∨3dx is a fixpoint formula: its extension, the set
[[µx.p ∨3dx]], is a fixpoint of the map δS

x:

[[µx.p ∨3dx]] = V (p) ∪ 〈R〉([[µx.p ∨3dx]]).

In fact, as we shall see in this chapter, the formulas µx.p∨3dx and νx.p∨3dx are such
that their extensions are the least and greatest fixpoints of the map δS

x, respectively. �

It is worthwhile to discuss the theory of fixpoint operators at a more general level
than that of modal logic. Before we turn to the definition of the algebraic semantics of
the modal µ-calculus, we first discuss the general fixpoint theory of monotone operations
on complete lattices.
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3.1 General fixpoint theory

Basics

In this chapter we assume some familiarity1 with partial orders and lattices (see Ap-
pendix A).

Definition 3.2 Let P and P′ be two partial orders and let f : P → P ′ be some map.
Then f is called monotone if f(x) ≤′ f(y) whenever x ≤ y, and antitone if f(x) ≥′ f(y)
whenever x ≤ y. �

Definition 3.3 Let P = 〈P,≤〉 be some partial order, and let f : P → P be some
map. Then an element p ∈ P is called a prefixpoint of f if f(p) ≤ p, a postfixpoint of
f if f(p) ≥ p, and a fixpoint if f(p) = p. The sets of prefixpoints, postfixpoints, and
fixpoints of f are denoted respectively as PRE(f), POS(f) and FIX(f).

In case the set of fixpoints of f has a least (respectively greatest) member, this
element is denoted as LFP.f (GFP.f , respectively). These least and greatest fixpoints
may also be called extremal fixpoints. �

The following theorem is a celebrated result in fixpoint theory.

Theorem 3.4 (Knaster-Tarski) Let C = 〈C,
∨
,
∧
〉 be a complete lattice, and let

f : C → C be monotone. Then f has both a least and a greatest fixpoint, and these are
given as

LFP.f =
∧

PRE(f), (8)

GFP.f =
∨

POS(f). (9)

Proof. We will only prove the result for the least fixpoint, the proof for the greatest
fixpoint is completely analogous.

Define q :=
∧

PRE(f), then we have that q ≤ x for all prefixpoints x of f . From
this it follows by monotonicity that f(q) ≤ f(x) for all x ∈ PRE(f), and hence by
definition of prefixpoints, f(q) ≤ x for all x ∈ PRE(f). In other words, f(q) is a lower
bound of the set PRE(f). Hence, by definition of q as the greatest such lower bound,
we find f(q) ≤ q, that is, q itself is a prefixpoint of f .

It now suffices to prove that q ≤ f(q), and for this we may show that f(q) is a
prefixpoint of f as well, since q is by definition a lower bound of the set of prefixpoints.
But in fact, we may show that f(y) is a prefixpoint of f for every prefixpoint y of f —
by monotonicity of f it immediately follows from f(y) ≤ y that f(f(y)) ≤ f(y). qed

Another way to obtain least and greatest fixpoint is to approximate them from
below and above, respectively.

1Readers lacking this may take abstract complete lattices to be concrete power set algebras.
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Definition 3.5 Let C = 〈C,
∨
,
∧
〉 be a complete lattice, and let f : C → C be some

map. Then by ordinal induction we define the following maps on C:

f 0
µ(c) := c,

fα+1
µ (c) := f(fαµ (c))

fλµ (c) :=
∨
α<λ

fαµ (c),

where λ denotes an arbitrary limit ordinal. Dually, we put

f 0
ν (c) := c,

fα+1
ν (c) := f(fαν (c)),

fλν (c) :=
∧
α<λ

fαν (c),

�

Proposition 3.6 Let C = 〈C,
∨
,
∧
〉 be a complete lattice, and let f : C → C be

monotone. Then f is inductive, that is, fαµ (⊥) ≤ fβµ (⊥) for all ordinals α and β such
that α < β.

Proof. We leave this proof as an exercise to the reader. qed

Given a set C, we let |C| denote its cardinality or size.

Corollary 3.7 Let C = 〈C,
∨
,
∧
〉 be a complete lattice, and let f : C → C be mono-

tone. Then there is some α of size at most |C| such that LFP.f = fαµ (⊥).

Proof. By Proposition 3.6, f is inductive, that is, fαµ (⊥) ≤ fβµ (⊥) for all ordinals α
and β such that α < β. It follows from elementary set theory that there cannot be
an injection from the set of ordinals of cardinality at most |C|+ into C. From these
two observations it is immediate that there must be two ordinals α, β < |C|+ such that
fαµ (⊥) = fβµ (⊥). From the definition of the approximations it then follows that there
must be an ordinal α such that fαµ (⊥) = fα+1

µ (⊥), or, equivalently, fαµ (⊥) is a fixpoint
of f . To show that it is the smallest fixpoint, one may prove that fβµ (⊥) ≤ LFP.f for
every ordinal β. This follows from a straightforward ordinal induction. qed

Definition 3.8 Let C = 〈C,
∨
,
∧
〉 be a complete lattice, and let f : C → C be

monotone. The least ordinal α such that fαµ (⊥) = fα+1
µ (⊥) is called the closure ordinal

of f . �
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Multidimensional fixpoints

Suppose that we are given a finite family {C1, . . . ,Cn} of complete lattices, and put
C =

∏
1≤i≤n Ci. Given a finite family of monotone maps f1, . . . , fn with fi : C → Ci, we

may define the map f : C → C given by f(c) = (f1(c), . . . , fn(c)). Monotonicity of f is
an easy consequence of the monotonicity of the individual fi, and so by completeness
of C, f has a least and a greatest fixpoint. An obvious question is whether one may
express these multi-dimensional fixpoints in terms of one-dimensional fixpoints of maps
that one may associate with f1, . . . , fn.

It will be convenient to introduce some notation. Given a monotone map g : C → Ci
and an n− 1-tuple x̄ = (x1, . . . , xi−1, xi+1, . . . , xn), we let gx̄ : Ci → Ci denote the map
given by

gx̄(xi) := g(x1, x2, . . . , xn).

The least and greatest fixpoints of this operation will be denoted as µxi.g(x1, x2, . . . , xn)
and νxi.g(x1, x2, . . . , xn), respectively. Furthermore, in this context we will also use
vector notation, for instance writing

µ


x1

x2
...
xn

 .


f1(x1, . . . , xn)
f2(x1, . . . , xn)

...
f2(x1, . . . , xn)


for LFP.f .

The basic observation facilitating the computation of multidimensional fixpoints is
the following so-called Bekič principle.

Proposition 3.9 Let D1 and D2 be two complete lattices, and let fi : D1 ×D2 → Di

for i = 1, 2 be monotone maps. Then

η

(
x
y

)
.

(
f1(x, y)
f2(x, y)

)
=

(
ηx.f1(x, ηy.f2(x, y))
ηy.f2(ηx.f1(x, y), y)

)
where η uniformly denotes either µ or ν.

Proof. Define D := D1 × D2, and let f : D → D be given by putting f(d) :=
(f1(d), f2(d)). Then f is clearly monotone, and so it has both a least and a greatest
fixpoint.

By the order duality principle it suffices to consider the case of least fixed points
only. Suppose that (a1, a2) is the least fixpoint of f , and let b1 and b2 be given by{

b1 := ηx.f1(x, ηy.f2(x, y),
b2 := ηy.f2(ηx.f1(x, y), y).
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Then we need to show that a1 = b1 and a2 = b2.
By definition of (a1, a2) we have{

a1 = f1(a1, a2),
a2 = f2(a1, a2),

whence we obtain {
µx.f1(x, a2) ≤ a1 and
µy.f2(a1, y) ≤ a2,

From this we obtain by monotonicity that

f1(µx.f1(x, a2)) ≤ f1(a1, a2) = a1,

so that we find b1 ≤ a1. Likewise we may show that b2 ≤ a2.
Conversely, by definition of b1 and b2 we have(

b1
b2

)
=

(
f1(b1, µy.f2(b1, y))
f2(µx.f1(x, b2), b2)

)
.

Then with c2 := µy.f2(b1, y), we have b1 = f1(b1, c1). Also, by definition of c2 as a
fixpoint, c2 = f2(b1, c2). Putting these two identities together, we find that(

b1
c2

)
=

(
f1(b1, c2)
f2(b1, c2)

)
= f

(
b1
c2

)
.

Hence by definition of (a1, a2), we find that a1 ≤ b1 (and that a2 ≤ c2), but that is of
less interest now). Analogously, we may show that a2 ≤ b2. qed

Using induction on the dimension, Proposition 3.9 allows us to compute the least
and greatest fixpoints of any monotone map f on a finite product of complete lattices
in terms of the least and greatest fixpoints of operations on the factors of the product.
The correctness of this elimination method, which is reminiscent of Gauss elimination
in linear algebra, is a direct consequence of Proposition 3.9.

To see how it works, suppose that we are dealing with lattices C1, . . . ,Cn+1,C and
maps f1, . . . , fn+1, f , just as described above, and that we want to compute η~x.f , that
is, find the elements a1, . . . , an+1 such that

a1

a2
...

an+1

 = η


x1

x2
...

xn+1

 .


f1(x1, . . . , xn, xn+1)
f2(x1, . . . , xn, xn+1)

...
fn+1(x1, . . . , xn, xn+1)


We may define

gn+1(x1, . . . , xn) := ηxn+1.fn+1(x1, . . . , xn),
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and then use Proposition 3.9, with D1 = C1 × · · · × Cn, and D2 = Cn+1, to obtain
a1

a2
...
an

 = η


x1

x2
...
xn

 .


f1(x1, . . . , xn, gn+1(x1, . . . , xn))
f2(x1, . . . , xn, gn+1(x1, . . . , xn))

...
fn(x1, . . . , xn, gn+1(x1, . . . , xn))


We may then inductively assume to have obtained the tuple (a1, . . . , an). Finally, we
may compute an+1 := gn+1(a1, . . . , an).

Observe that in case Ci = Cj for all i, j and the operations fi are all term definable
in some formal algebraic fixpoint language, then each the components ai of the extremal
fixpoints of f can also be expressed in this language.

3.2 Boolean algebras

In the special case that the complete lattice is in fact a (complete) Boolean algebra,
there is more to be said.

Dual maps

In the case of monotone maps on complete Boolean algebras, the least and greatest
fixed points become interdefinable, using the notion of (Boolean) duals of maps.

Definition 3.10 A complete Boolean algebra is a structure B = 〈B,
∨
,
∧
,−〉 such

that 〈B,
∨
,
∧
〉 is a complete lattice, and − : B → B is an antitone map such that

x ∧ −x = ⊥ and x ∨ −x = > for all x ∈ B. �

In a complete Boolean algebra B = 〈B,
∨
,
∧
,−〉, it holds that −

∨
X =

∧
{−x |

x ∈ X} and −
∧
X =

∨
{−x | x ∈ X}.

Definition 3.11 Let B = 〈B,
∨
,
∧
,−〉 be a complete Boolean algebra, and consider

f : B → B be an arbitrary map. Then the (Boolean) dual map of f is defined as the
map f̃ : B → B given by

f̃(b) := −f(−b).

�

Proposition 3.12 Let B = 〈B,
∨
,
∧
,−〉 be a complete Boolean algebra, and let f :

B → B be monotone. Then f̃ is monotone as well, ˜̃f = f , and

LFP.f̃ = −GFP.f,

GFP.f̃ = −LFP.f.
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Proof. We only prove that LFP.f̃ = −GFP.f , leaving the other parts of the proof as
exercises to the reader.

First, note that by monotonicity of f̃ , the Knaster-Tarski theorem gives that

LFP.f̃ =
∧

PRE(f̃).

But as a consequence of the definitions, we have that

b ∈ PRE(f̃) ⇐⇒ −b ∈ POS(f).

From this it follows that

LFP.f̃ =
∧
{−b | b ∈ POS(f)}

= −
∨

POS(f)

= −GFP.f

which finishes the proof of the Theorem. qed

Further on we will see that Proposition 3.12 allows us to define negation as an
abbreviated operator in the modal µ-calculus.

Games

In case the Boolean algebra in question is in fact a power set algebra, a nice game-
theoretic characterization of least and greatest fixpoint operators is possible.

Definition 3.13 Let S be some set and let F : ℘(S) → ℘(S) be a monotone operation.
Consider the unfolding games Uµ(F ) and Uν(F ). The positions and admissible moves
of these two graph games are the same, see Table 5.

Position Player Admissible moves
s ∈ S ∃ {A ∈ ℘(S) | s ∈ F (A)}
A ∈ ℘(S) ∀ A(= {s ∈ S | s ∈ A})

Table 5: Unfolding games for F : ℘(S) → ℘(S)

The winning conditions of finite matches are standard (the player that got stuck
loses the match). The difference between Uµ(F ) and Uν(F ) shows up in the winning
conditions of infinite matches: ∃ wins the infinite matches of Uν(F ), but ∀ those of
Uµ(F ). �

Then the following proposition substantiates the slogan that ‘ν means unfolding, µ
means finite unfolding’.
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Theorem 3.14 Let S be some set and let F : ℘(S) → ℘(S) be a monotone operation.
Then

1. GFP.F = {s ∈ S | Win∃(Uν(F ))},

2. LFP.F = {s ∈ S | Win∃(Uµ(F ))},

Proof. For the inclusion ⊇ of part 1, it suffices to prove that W := S ∩Win∃(Uν(F ))
is a postfixpoint of F :

W ⊆ F (W ). (10)

Let s be an arbitrary point in W , and suppose that ∃’s winning strategy tells her to
choose A ⊆ S at position s. Then no matter what element s1 ∈ A is picked by ∀, ∃
can continue the match and win. Hence, all elements of A are winning positions for ∃.
But from A ⊆ W it follows that F (A) ⊆ F (W ), and by the legitimacy of ∃’s move A
at s it follows that s ∈ F (A). We conclude that s ∈ F (W ), which proves (10).

For the converse inclusion ⊆ of part 1 of the proposition, take an arbitrary point
s ∈ GFP.F . We need to provide ∃ with a winning strategy in the unfolding game
Uν(F ) starting at s. This strategy is actually as simple as can be: ∃ should always play
GFP.F . Since GFP.F = F (GFP.F ), this strategy prescribes legitimate moves for ∃ at
every point in GFP.F . And, if she sticks to this strategy, ∃ will stay alive forever and
thus win the match, no matter what ∀’s responses are.

For the second part of the theorem, letW denote the set Win∃(Uµ(F )) of ∃’s winning
positions in Uµ(F ). We first prove the inclusion W ⊆ LFP.F . Clearly it suffices to
show that all points outside the set LFP.F are winning positions for ∀.

Consider a point s 6∈ LFP.F . If s 6∈ F (A) for any A ⊆ S then ∃ loses immediately,
and we are done. Otherwise, suppose that ∃ starts a match of Uµ(F ) by playing some
set B ⊆ S with s ∈ F (B). We claim that B is not a subset of LFP.F , since otherwise
we would have F (B) ⊆ F (LFP.F ) ⊆ LFP.F ; which would contradict the fact that
s 6∈ LFP.F . But if B 6⊆ LFP.F then ∀ may continue the match by choosing a point
s1 ∈ B \ LFP.F . Now ∀ can use the same strategy from s1 as he used from s, and
so on. This strategy guarantees that either ∃ gets stuck after finitely many rounds (in
case ∀ manages to pick an sn for which there is no A such that sn ∈ F (An)), or else
the match will last forever. In both cases ∀ wins the match.

The other inclusion ⊆ of part 2 is easily proved using the ordinal approximation of
least fixpoints. Using the fact that LFP.F =

⋃
{Fα

µ (∅) | α an ordinal }, it suffices to
prove that

Fα
µ (∅) ⊆ Win∃(Uµ(F ))

for all α. This proof proceeds by a transfinite induction, of which we only provide the
case for successor ordinals. Let α = β + 1 be some successor ordinal and inductively
assume that ∃ has a winning strategy ft for every point t ∈ F β

µ (∅). We need to
provide her with a strategy which is winning from an arbitrary position s ∈ Fα

µ (∅). By
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definition Fα
µ (∅) = F (F β

µ (∅)), so ∃ may legitimately choose the set F β
µ (∅) as her first

move at position s, and then, confronted with ∀ choosing a point, say, t, from F β
µ (∅),

continue with the strategy ft. It is almost immediate that this is a winning strategy
for ∃. qed

Remark 3.15 Note that the proof of Theorem 3.14 witnesses a fundamental asym-
metry in the treatment of least and greatest fixpoints in the unfolding game. In order
to show that a state s belongs to one of the extremal fixpoints of a monotone map F ,
in both cases the approach is ‘from below’, i.e., in the game ∃ tries to provide pos-
itive evidence that s belongs to the given kind of fixpoint. However, in the case of
the least fixpoint, this evidence from below consists of the ordinal approximations of
LFP.F , whereas in the case of the greatest fixpoint, in the end what she tries to show is
that the point in question belongs to some postfixpoint. Phrased differently, the game
characterization of the greatest fixpoint of F uses the Knaster-Tarski characterization
(8), whereas the characterization of the least fixpoint uses the ordinal approximation
of Corollary 3.7. �

3.3 Algebraic semantics for the modal µ-calculus

Basic definitions

In order to define the algebraic semantics of the modal µ-calculus, we need to consider
formulas as operations on the power set of the (state space of a) transitions system,
and we have to prove that such operations indeed have least and greatest fixpoints. In
order to make this precise, we need some preliminary definitions.

Definition 3.16 Given an LTS S = 〈S, V,R〉 and subset X ⊆ S, define the valuation
V [x 7→ X] by putting

V [x 7→ X](y) :=

{
V (y) if y 6= x,
X if y = x.

Then, the LTS S[x 7→ X] is given as the structure 〈S, V [x 7→ X], R〉. �

Now inductively assume that [[ϕ]]S has been defined for all LTSs. Given a labelled
transition system S and a propositional variable x ∈ P, each formula ϕ induces a map
ϕS
x : ℘(S) → ℘(S) defined by

ϕS
x(X) := [[ϕ]]S[x 7→X]

Example 3.17 a) Where ϕa = p ∨ x we have (ϕa)
S
x(X) = [[p ∨ x]]S[x 7→X] = V (p) ∪X.

b) Where ϕb = ¬x we have (ϕb)
S
x(X) = [[¬x]]S[x 7→X] = S \X.

c) Where ϕc = p ∨3dx we find (ϕc)
S
x(X) = [[p ∨3dx]]

S[x 7→X] = V (p) ∪ 〈Rd〉X.
d) Where ϕd = 3d¬x we find (ϕd)

S
x(X) = [[3d¬x]]S[x 7→X] = 〈Rd〉(S \X). �
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Alternatively but equivalently, X is a fixpoint of ϕS
x iff S[x 7→ X] 
 x ↔ ϕ.

Likewise, X is a prefixpoint of ϕS
x iff S[x 7→ X] 
 ϕ → x, and a postfixpoint of ϕS

x iff
S[x 7→ X] 
 x→ ϕ. Here we write S, s 
 ϕ for s ∈ [[ϕ]]S.

Example 3.18 Consider the formulas of Example 3.17.
a) The sets V (p) and S are fixpoints of ϕa, as is in fact any X with V (p) ⊆ X ⊆ S.
b) Since we do not consider structures with empty domain, the formula ¬x has no

fixpoints at all. (Otherwise we would find X = ∼SX for some S 6= ∅, a contradiction.)
c) Two fixpoints of ϕc were already given in Example 2.1.
d) Consider any model Z = 〈Z, S, V 〉 based on the set Z of integers, where S =

{(z, z + 1) | z ∈ Z} is the successor relation. Then the only two fixpoints of ϕd are the
sets of even and odd numbers, respectively. �

In particular, it is not the case that every formula has a least fixpoint. If we can
guarantee that the induced function ϕS

x of ϕ is monotone, however, then the Knaster-
Tarski theorem (Theorem 3.4) provides both least and greatest fixpoints of ϕS

x. Precisely
for this reason, in the definition of fixpoint formulas, we imposed the condition in the
clauses for ηx.ϕ, that x may only occur positively in ϕ. As we will see, this condition
on x guarantees monotonicity of the function ϕS

x.

Definition 3.19 Given a µPML-formula ϕ and a labelled transition system S =
〈S, V,R〉, we define the meaning [[ϕ]]S of ϕ in S, together with the map ϕS

x : ℘(S) → ℘(S)
by the following simultaneous formula induction:

[[⊥]]S = ∅
[[>]]S = S
[[p]]S = V (p)
[[¬p]]S = S \ V (p)
[[ϕ ∨ ψ]]S = [[ϕ]]S ∪ [[ψ]]S

[[ϕ ∧ ψ]]S = [[ϕ]]S ∩ [[ψ]]S

[[3dϕ]]S = 〈Ra〉[[ϕ]]S

[[2dϕ]]S = [Ra][[ϕ]]S

[[µx.ϕ]]S =
⋂

PRE(ϕS
x)

[[νx.ϕ]]S =
⋃

POS(ϕS
x)

The map ϕS
x, for x ∈ P, is given by ϕS

x(X) = [[ϕ]]S[x 7→X]. �

Theorem 3.20 Let ϕ be an µPML-formula, in which x occurs only positively, and let
S be a labelled transition system. Then [[µx.ϕ]]S = LFP.ϕS

x, and [[νx.ϕ]]S = GFP.ϕS
x.

Proof. This is an immediate consequence of the Knaster-Tarski theorem, provided we
can prove that ϕS

x is monotone in x if all occurrences of x in ϕ are positive. We leave
the details of this proof to the reader (see Exercise 3.2). qed
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Immediate consequences

It follows from the definitions that the set µPML is closed under taking negations.
Informally, let ∼ϕ be the result of simultaneously replacing all occurrences of > with
⊥, of p with ¬p (for free variables p), of ∧ with ∨, of 2d with 3d, of µx with νx, and
vice versa, while leaving occurrences of bound variables unchanged. As an example,
∼(µx.p ∨3x) = νx.¬p ∧2x. Formally, we define ∼ as follows.

Definition 3.21 Given a modal fixpoint formula ϕ, define ∼ϕ inductively as follows:

∼⊥ := > ∼> := ⊥
∼¬p := p ∼p := ¬p
∼ϕ ∨ ψ := ∼ϕ ∧ ∼ψ ∼ϕ ∧ ψ := ∼ϕ ∨ ∼ψ
∼2dϕ := 3d∼ϕ ∼3dϕ := 2d∼ϕ
∼µx.ϕ := νx.∼ϕ[x/¬x] ∼νx.ϕ := µx.∼ϕ[x/¬x]

Here ϕ[x/¬x] is the formula ϕ with (note!) all occurrences of ¬x replaced with x. �

Perhaps the clause for the fixpoint operators requires some explanation. Consider
for instance the case of ∼µx.ϕ. First observe that since in ϕ no x occurs in a subformula
¬x, in ∼ϕ all occurrences of x are negated. Hence, if we replace every occurrence of ¬x
with x, we again obtain a formula in which no occurrence of x is below a negation sign,
and hence, we may legitimately put a fixpoint operator in front of ∼ϕ[¬x/x]. Note
that the net effect of these syntactic transformations is that the bound variables of a
fixpoint formula remain unchanged. As an example, the reader is invited to check that,
indeed, ∼(µx.p ∨3x) = νx.¬p ∧2x.

The following proposition states that ∼ functions as a standard Boolean negation.
We let ∼SX = S \X denote the complement of X in S.

Proposition 3.22 Let ϕ be a modal fixpoint formula. Then ∼ϕ corresponds to the
negation of ϕ, that is,

[[∼ϕ]]S = ∼S[[ϕ]]S (11)

for every labelled transition system S.

Proof. We prove this proposition by induction on the complexity of ϕ. Leaving all
other cases as exercises for the reader, we concentrate on the inductive case where ϕ is
of the form µx.ψ.

In this case, the right hand side of (11), denotes the complement of the least fixed
point of the operation ψS

x. By Proposition 3.12, this is the same as the greatest fixpoint

of the dual map ψ̃S
x given by ψ̃S

x(A) := ∼Sψ
S
x(∼SA). The left hand side of (11) denotes

the greatest fixpoint of the map (∼ψ[x/¬x])S
x. Thus we are done if we can show that

(∼ψ[x/¬x])S
x = ψ̃S

x. (12)
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For this purpose, take an arbitrary set A ⊆ S. Since all occurrences of x in∼ψ are inside
a subformula ¬x, it follows that (∼ψ[x/¬x])S

x(A) = (∼ψ)S
x(∼SA) = [[∼ψ]]S[x 7→∼SA].

Inductively, this is identical to the set ∼S[[ψ]]S[x 7→∼SA] = ∼Sψ
S
x(∼SA).

This proves (12), and hence, the proposition. qed

Remark 3.23 It follows from the Proposition above that we could indeed have based
the language of the modal µ-calculus on a far smaller alphabet of primitive symbols.
Given sets P and D of proposition letters and atomic actions, respectively, we could
have defined the set of modal fixpoint formulas using the following induction:

ϕ ::= > | p | ¬ϕ | ϕ ∨ ϕ | 3dϕ | µx.ϕ

where p, x ∈ P, a ∈ D, and in µx.ϕ, all free occurrences of x must be positive (that is,
under an even number of negation symbols). Here we define FV (¬ϕ) = FV (ϕ) and
BV (¬ϕ) = BV (ϕ).

In this set-up, the connectives ∧ and 2d are defined using the standard abbrevia-
tions, while for the greatest fixpoint operator we may put

νx.ϕ := ¬µx.¬ϕ(¬x).

Note the triple use of the negation symbol that is required to maintain the positivity
of x — explained by the earlier remarks. �

Earlier on we defined the notions of clean and guarded formulas.

Proposition 3.24 Every fixpoint formula is equivalent to a clean one.

Proof. We leave this proof as an exercise for the reader. qed

Proposition 3.25 Every fixpoint formula is equivalent to a guarded one.

Proof.(Sketch) We prove this proposition by formula induction. Clearly the only non-
trivial case to consider concerns the fixpoint operators. Consider a formula of the
form ηx.δ(x), where δ(x) is guarded and clean, and suppose that x has an unguarded
occurrence in δ.

First consider an unguarded occurrence of x in δ(x) inside a fixpoint subformula,
say, of the form θy.γ(x, y). By induction hypothesis, all occurrences of y in γ(x, y)
are guarded. Obtain the formula δ from δ by replacing the subformula θy.γ(x, y) with
γ(x, θy.γ(x, y)). Then clearly δ is equivalent to δ, and all of the unguarded occurrences
of x in δ are outside of the scope of the fixpoint operator θ.

Continuing like this we obtain a formula ηx.δ(x) which is equivalent to ηx.δ(x),
and in which none of the unguarded occurrences of x lies inside the scope of a fixpoint
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operator. That leaves ∧ and ∨ as the only operation symbols in the scope of which we
may find unguarded occurrences of x.

From now on we only consider the case that η = µ, the case where η = ν is very
similar. Clearly, using the laws of classical propositional logic, we may bring the formula
δ into conjunctive normal form

(x ∨ α1(x)) ∧ · · · ∧ (x ∨ αn(x)) ∧ β(x), (13)

where all occurrences of x in α1, . . . , αn and β are guarded. (Note that we may have
β = >, or αi = ⊥ for some i.)

Clearly (13) is equivalent to the formula

δ′(x) := (x ∨ α(x)) ∧ β(x),

where α = α1 ∧ · · · ∧ αn. Thus we are done if we can show that

µx.δ′(x) ≡ µx.α(x) ∧ β(x). (14)

Since α ∧ β implies δ′, it is easy to see (and left for the reader to prove) that µx.α ∧ β
implies µx.δ′. For the converse, it suffices to show that ϕ := µx.α(x) ∧ β(x) is a
prefixpoint of δ′(x). But it is not hard to derive from ϕ ≡ α(ϕ) ∧ β(ϕ) that

δ′(ϕ) = (ϕ ∨ α(ϕ)) ∧ β(ϕ) ≡ ((α(ϕ) ∧ β(ϕ)) ∨ α(ϕ)) ∧ β(ϕ) ≡ α(ϕ) ∧ β(ϕ) ≡ ϕ,

which shows that in fact, ϕ is a fixpoint, and hence certainly a prefixpoint, of δ′(x).
qed

Combining the proofs of the previous two propositions one easily shows the follow-
ing.

Proposition 3.26 Every fixpoint formula is equivalent to a clean, guarded one.

3.4 Adequacy

In this section we prove the prove the equivalence of the two semantic approaches
towards the modal µ-calculus. Since the algebraic semantics is usually taken to be the
more fundamental notion, we refer to this result as the Adequacy Theorem: informally,
it states that games are an adequate way of working with the algebraic semantics.

Theorem 3.27 (Adequacy) Let ξ be a clean µPML-formula. Then for all labelled
transition systems S and all states s in S:

s ∈ [[ξ]]S ⇐⇒ (ξ, s) ∈ Win∃(E(ξ,S)). (15)
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Proof. The theorem is proved by induction on the complexity of ξ. We only discuss
the inductive step where ξ is of the form ηx.δ, leaving the other cases as exercises to
the reader.

To start with, by definition of the map δS
x and the inductive hypothesis we have, for

all A ⊆ S,
s ∈ δS

x(A) ⇐⇒ (δ, s) ∈ Win∃(E(δ,S[x 7→ A]). (16)

Comparing (15) and (16), it will be important to observe that G := E(ξ,S) and GA :=
E(δ,S[x 7→ A]) are very similar games. For a start, the positions of the two games are
effectively the same. Positions of the form (ξ, t), which exist in the first game but not
in the second, are the only exception — but in G, any position (ξ, t) is immediately
and automatically succeeded by the position (δ, t) which does exist in the second game.
The only real difference between the games shows up in the rule concerning positions
of the form (x, u). In GA, x is a free variable (x ∈ FV (δ)), so in a position (u, x) the
game is over, the winner being determined by u being a member of A or not. In G
however, x is bound, so in position (x, u), the variable x will get unfolded.

In order to prove (15) for ξ = ηx.δ, by definition of [[ηx.δ]]S and Theorem 3.14, it
suffices to show that

s ∈ Win∃(Uη(δS
x)) ⇐⇒ (ξ, s) ∈ Win(E(ξ,S)). (17)

In other words, the key insight in proof of the inductive step concerns the transformation
winning strategies for ∃ from one game to another. The fundamental link between the
two kinds of games in (17) is to think of E(ξ,S) as the unfolding game U := Uη(δS

x)
where each round of U corresponds to a version of the game GA for some (dynamically
varying) set A. We are now ready for the details of the proof.

For the direction from left to right of (17), suppose that ∃ has a winning strategy in
the game U starting at some position s0. Without loss of generality (see Exercise 3.6)
we may assume that this strategy is positional, so we may represent it as a map T :
S → ℘(S). By the legitimacy of this strategy, for every s ∈ Win∃(U) it holds that
s ∈ δS

x(Ts). So by the inductive hypothesis (16), for each such s we may assume the
existence of a winning strategy fs for ∃ in the game GTs@(δ, s). Given the similarities
between the games G@(x, s) and GTs@(δ, s) (see the discussion above), this strategy
is also valid in the game G@(x, s), at least, until a new position of the form (x, t) is
reached.

This suggests the following strategy g for ∃ in G@(ξ, s0):

• after the initial automatic move, the position of the match is (δ, s0); ∃ first plays
her strategy fs0 ;

• each time a position (x, s) is reached, distinguish cases:

(a) if s ∈ Win∃(U) then ∃ continues with fs;
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(b) if s /∈ Win∃(U) then ∃ continues with a random strategy.

First we show that this strategy guarantees that whenever a position of the form
(x, s) is visited, s belongs to Win∃(U), so that case (b) mentioned above never occurs.
The proof is by induction on the number of positions (x, s) that have been visited
already. For the inductive step, if s is a winning position for ∃ in U , then, as we saw,
fs is a winning strategy for ∃ in the game GTs@(δ, s). This means that if a position of
the form (x, t) is reached, the variable x must be true at t in the model S[x 7→ Ts], and
so t must belong to the set Ts. But by assumption of the map T : S → ℘(S) being a
winning strategy in U , any element of Ts is again a member of Win∃(U).

In fact we have shown that every unfolding of the variable x in G marks a new round
in the unfolding game U . To see why the strategy g guarantees a win for ∃ in G@(ξ, s0),
consider an arbitrary G@(ξ, s0)-match π in which ∃ plays g. Distinguish cases.

First suppose that x is unfolded only finitely often. Let (x, s) be the last basic
position in π where this happens. Given the similarities between the games G and
GTs , the match from this moment on can be seen as both a g-conform G-match and an
fs-conform GTs-match. As we saw, fs is a winning strategy for ∃ in the game GTs@(δ, s).
But since no further position of the form (x, t) is reached, and G and GTs only differ
when it comes to x, this means that π is also a win for ∃ in G.

If x is unfolded infinitely often, then because it is the highest variable of ξ, ∃ can
only be the winner of the match π if x is a greatest fixpoint variable. In other words, we
have to verify that η = ν. Suppose that s1, s2, . . . are the positions where x is unfolded.
Then it easy to verify that the sequence s0Ts0s1Ts1 . . . constitutes a U -match in which
∃ plays her strategy T . Since this strategy was supposed to be winning, we must be
dealing with an unfolding game Uη for a greatest fixpoint, that is, we are indeed dealing
with the case η = ν.

For the converse implication of (17), assume that ∃ has a winning strategy, say
f , in the game G@(ξ, s0). We need to supply her with a winning strategy in the
unfolding game U@s0. The basic idea is that while playing U , ∃ builds an f -conform
shadow match of G@(ξ, s0) such that the positions in the U -match of the form si exactly
correspond to the basic positions of the form (δ, si) in the G-match. (After the initial
position (s0, δ), these are exactly the ones where the variable x has just been unfolded.)

Clearly this holds for the initial position, where the partial U -match consists of
the trivial sequence s0. As the associated partial G-match we may take the sequence
(ηx.δ, s0)(δ, s0). Inductively suppose that ∃ has kept the above condition for a partial
match π of U@s0 with last(π) = sk. Let s0, . . . , sk (in that order) be the state positions
in π. By the inductive assumption, there is a f -conform partial match π̄ ending at
position (δ, sk) (and in which (δ, s0), . . . , (δ, sk) are the successive positions of the form
(δ, s)). Let Tπ be the set of states t ∈ S for which there is some partial g-conform
match ρ, extending π̄, with last(ρ) of the form (x, t), and which has no proper initial
segment with these properties. That is, in the continuation (x, t) is the first position
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where x is unfolded. This set Tπ will be ∃′s move in U at position sk.

We first show that Tπ is actually a legitimate move. We only consider the case
where k = 0. (The general case, which is conceptually the same but technically slightly
more involved, is left as an exercise to the reader.)

The main observation in this proof is that ∃’s strategy f , by assumption a winning
strategy for her in the game G@(δ, s0), also is winning for her in the game GTπ@(δ, s0).
To see why this is so, conclude from the similarities between G and GTπ that f is well-
defined and legitimate as a strategy in the latter game. Now consider an f -conform
(full) match ρ of GTπ@(δ, s0). In case ρ contains a position of the form (x, t), this must
be the final position since x cannot be unfolded in GTπ . Then by definition of Tπ we
obtain t ∈ Tπ. Thus seen as a GTπ -match, ρ is won by ∃. If on the other hand ρ does
not contain any position of the form (x, t), given that G and GTπ completely coincide
as long as x does not come into the picture, it follows that ρ can also be seen as a full
G-match. And since ρ is conform the strategy f , its winner in G is ∃. But then, once
more by the fact that ρ contains no x-positions, its winner in GTπ must be ∃ too. In
other words, we have prove that (δ, s0) is a winning position for for ∃ in GTπ . Then by
the inductive hypothesis, s0 belongs to the set δS

x(Tπ), which amounts to saying that
indeed Tπ is a legitimate move for ∃ at s0 in U .

Second, we prove that ∃ can keep the mentioned condition concerning the shadow
match for one more round of U . This proof is in fact easy. Suppose that in U , following
∃’s move Tπ, ∀ picks an element sk+1 ∈ Tπ, thus constituting a partial U -match ρ =
πTπsk+1. By definition of Tπ, there is a partial g-conform match ρ̄, extending π̄, with
last(ρ̄) of the form (x, t), and which is minimal (in length) with respect to these two
properties. It is then straightforward to verify that ρ̄ has all the required properties.
In particular, the fact that ρ̄ is a minimal extension of π̄ ending in a position (x, t)
with t ∈ Tπ, ensures that the successive positions of the form (δ, s) in ρ are exactly
(δ, s0), . . . , (δ, sk+1), as required.

Finally, in order to see why this strategy is winning for ∃, observe that it follows
from the set-up that she never gets stuck, so we only have to worry about infinite
matches. Let s0s1s2 . . . be the sequence of state positions in such an infinite match
of U . In the associated G-match, each state si corresponds to a position of the form
(δ, si). This can only be the case if the variable x is unfolded infinitely often, and since
the G-match is conform ∃’s winning strategy g, this cannot happen if x is a µ-variable.
But then x is a ν-variable, and so η = ν and hence the U -match is won by ∃. qed

Convention 3.28 In the sequel we will use the Adequacy Theorem without further
notice. Also, we will write S, s 
 ϕ in case s ∈ [[ϕ]]S.
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Notes

What we now call the Knaster-Tarski Theorem (Theorem 3.4) was first proved by
Knaster [12] in the context of power set algebras, and subsequently generalized by
Tarski [29] to the setting of complete lattices. The Bekič principle (Proposition 3.9)
stems from an unpublished technical report.

As far as we know, the results in section 3.2 on the duality between the least and
the greatest fixpoint of a monotone map on a complete Boolean algebra, are folklore.
The characterization of least and greatest fixpoints in game-theoretic terms is fairly
standard in the theory of (co-)inductive definitions, see for instance Aczel [1]. The
equivalence of the algebraic and the game-theoretic semantics of the modal µ-calculus
(here formulated as the Adequacy Theorem 3.27) was first established by Emerson &
Jutla [9].

Exercises

Exercise 3.1 Prove Proposition 3.6: show that monotone maps on complete lattices
are inductive.

Exercise 3.2 Prove Theorem 3.20.
(Hint: given complete lattices C and D, and a monotone map f : C × D → C, show
that the map g : D → C given by

g(d) := µx.f(x, d)

is monotone. Here f(x, d) is the least fixpoint of the map fd : C → C given by
fd(c) = f(c, d).)

Exercise 3.3 Let F : ℘(S) → ℘(S) be some monotone map. A collection D ∈ ℘℘(S)
of subsets of S is directed if for every two sets D0, D1 ∈ D, there is a set D ∈ D with
Di ⊆ D for i = 0, 1. Call F (Scott) continuous if it preserves directed unions, that is,
if F (

⋃
D) =

⋃
D∈D F (D) for every directed D.

Prove the following:

(a) F is Scott continuous iff for all X ⊆ S: F (X) =
⋃
{F (Y ) | Y ⊆ω X}.

(Here Y ⊆ω X means that Y is a finite subset of X.)

(b) If F is Scott continuous then the closure ordinal of F is at most ω.

Exercise 3.4 Let F : ℘(S) → ℘(S) be a monotone operation, and let γF be its closure
ordinal. Sharpen Corollary 3.7 by proving that the cardinality of γF is bounded by |S|
(rather than by |℘(S)|).
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Exercise 3.5 Describe the bisimilarity game as an unfolding game.

Exercise 3.6 Prove that the unfolding game of Definition 3.13 satisfies memoryless
determinacy. That is, let Uµ(F ) be the least fixpoint unfolding game for some monotone
map F : ℘(S) → ℘(S). Prove the existence of two positional strategies f∃ : S → ℘(S)
and f∀ : ℘(S) → S such that for every position p of the game, either f∃ is a winning
strategy for ∃ in Uµ(F )@p, or else f∀ is a winning strategy for ∀ in Uµ(F )@p.



Part III

Streams and Trees



4 Stream automata

As we already mentioned in the introduction in the theory of the modal µ-calculus and
other fixpoint logics a fundamental role is played by automata. As we will see further
on, these devices provide a very natural generalization to the notion of a formula.
This chapter gives an introduction to the theory of automata operating on (potentially
infinite) objects. Whereas in the next chapters we will meet various kinds of automata
for classifying trees and general transition systems, here we confine our attention to the
devices that operate on streams or infinite words, these being the simplest nontrivial
examples of infinite behavior.

Convention 4.1 Throughout this chapter (and the next), we will be dealing with
some finite alphabets C. Elements of C will be sometimes denoted as c, d, c0, c1, . . . ,
but often it will be convenient to think of C as a set of colors. In this case we will
denote the elements of C with lower case roman letters that are mnemonic of the most
familiar corresponding color (‘b’ for blue, ‘g’ for green, etcetera).

Definition 4.2 Given an alphabet C, a C-stream is just an infinite C-sequence, that
is, a map γ : ω → C from the natural numbers to C (see Appendix A). C-streams will
also be called infinite words or ω-words over C. Sets of C-streams are called stream
languages or ω-languages over C. �

Remark 4.3 This definition is consistent with the terminology we introduced in Chap-
ter 1. There we defined a ℘(P)-stream or stream model for P to be a Kripke model of
the form S = 〈ω, V, Succ〉, where Succ is the standard successor relation on the set ω
of natural numbers, and V : P → ℘(ω) is a valuation. If we represent V coalgebraically
as a map σV : ω → ℘(P) (cf. Remark 1.3), then in the terminology of Definition 4.2, S
is indeed a ℘(P)-stream. �

4.1 Deterministic stream automata

We start with the standard definition.

Definition 4.4 Given an alphabet C, a deterministic C-automaton is a quadruple
A = 〈A, δ,Acc, aI〉, where A is a finite set, aI ∈ A is the initial state of A, δ : A×C → A
its transition function, and Acc ⊆ Aω its acceptance condition. The pair 〈A, δ〉 is called
the transition diagram of A. �

Example 4.5 The transition diagram and initial state of a deterministic automaton
can nicely be represented graphically, as in the picture below, where C = {b, r, g}:
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An automaton comes to life if we supply it with input, in the form of a stream over
its alphabet: It will process this stream, as follows. Starting from the initial state aI ,
the automaton will step by step pass through the stream, jumping from one state to
another as prescribed by the transition function.

Example 4.6 Let A0 be any automaton with transition diagram and initial state as
given above, and suppose that we give this device as input the stream α = brgbrgbrgbrgbrgb · · · .
Then we find that A0 will make an infinite series of transitions, determined by α:

a0
b→ a1

r→ a2
g→ a2

b→ a1 · · ·

Thus the machine passes through an infinite sequence of states:

ρ = a0a1a2a2a1a2a2a1a2a2 . . .

This sequence is called the run of the automaton on the word α — a run of A is thus
an A-stream.

For a second example, on the word α′ = brbgbrgrgrgrgrgr · · · the run of the au-
tomaton A0 looks as follows:

a0
b→ a1

r→ a2
b→ a1

g→ a2
b→ a1

r→ a2
g→ a2

r→ a2
g→ · · ·

we see that from the sixth step onwards, the machine device remains circling in its
state a2: · · · a2

r→ a2
g→ a2

r→ · · · . �

Definition 4.7 Given a finite automaton A = 〈A, δ,Acc, aI〉, we will write a
c→ a′ if

a′ = δ(a, c). We extend this inductively to the relation � ⊆ A× C∗ × A:

• if w = ε then a
ε

� a′ iff a = a′,

• if w = vc then a
wc
� a′ iff there is a a′′ such that a

w
� a′′ and a′′

c→ a′.
In words, a

w
� a′ if there is a w-labelled path from a to a′.

The run of A on a C-stream γ = c0c1c2 . . . is the infinite A-sequence

ρ = a0a1a2 . . .

such that a0 = aI and ai
ci→ ai+1 for every i ∈ ω. �
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Generally, whether or not an automaton accepts an infinite word, depends on the
existence of a successful run — note that in the present deterministic setting, this run
is unique. In order to determine which runs are successful, we need the acceptance
condition.

Definition 4.8 A run ρ ∈ Aω of an automaton A = 〈A, δ,Acc, aI〉 is successful with
respect to an acceptance condition Acc if ρ ∈ Acc.

A finite C-automaton A = 〈A, δ,Acc, aI〉 accepts a C-stream γ if the run of A on γ
is successful. The ω-language Lω(A) associated with A is defined as the set of streams
that are accepted by A. Two automata are called equivalent if they accept the same
streams. �

A natural requirement on the acceptance condition is that it only depends on a
bounded amount of information about the run.

Remark 4.9 In the case of automata running on finite words, there is a very simple
and natural acceptance criterion. The point is that runs on finite words are themselves
finite too. For instance, suppose that in Example 4.6 we consider the run on the finite
word brgb:

a0
b→ a1

r→ a2
g→ a2

b→ a1.

Then this runs ends in the state a1. In this context, a natural criterion for the accep-
tance of the word abca by the automaton is to make it dependent on the membership
of this final state a1 in a designated set F ⊆ A of accepting states.

A structure of the form A = 〈A, δ, F, aI〉 with F ⊆ A may be called a finite word
automaton, and we say that such a structure accepts a finite word w if the unique state

a such that aI
w
� a belongs to F . �

4.2 Acceptance conditions

For runs on infinite words, a natural acceptance criterion would involve the collection
of states that occur infinitely often in the run.

Definition 4.10 Given an infinite sequence α over some finite set A, let Occ(α) and
Inf (α) denote the set of elements of A that occur in α at least once and infinitely often,
respectively. �

Definition 4.11 Given a transition diagram 〈A, δ〉, we define the following types of
acceptance conditions:

• A Muller condition is given as a collection M ⊆ ℘(A) of subsets of A. The
corresponding acceptance condition is defined as

AccM := {α ∈ Aω | Inf (α) ∈M}.
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• A Büchi condition is given as a subset F ⊆ A. The corresponding acceptance
condition is defined as

AccF := {α ∈ Aω | Inf (α) ∩ F 6= ∅}.

• A parity condition is given as a map Ω : A → ω. The corresponding acceptance
condition is defined as

AccΩ := {α ∈ Aω | max{Ω(a) | a ∈ Inf (α)} is even }.

Automata with these acceptance conditions are called Muller, Büchi and parity au-
tomata, respectively. �

Of these three types of acceptance conditions, the Muller condition perhaps is the
most natural. It exactly and directly specifies the subsets of A that are admissible
as the set Inf (ρ) of a successful run. The Büchi condition is also fairly intuitive: an
automaton with Büchi condition F accepts a stream α if the run on α passes through
some state in F infinitely often. This makes Büchi automata the natural analog of the
automata that operate on finite words, see Remark 4.9.

The parity condition may be slightly more difficult to understand. The idea is to
give each state a of A a weight Ω(a) ∈ ω. Then any infinite A-sequence α = a0a1a2 . . .
induces an infinite sequence Ω(a0)Ω(a1) . . . of natural numbers. Since the range of Ω
is finite this means that there is a largest natural number Nα occurring infinitely often
in this sequence, Nα = max{Ω(a) | a ∈ Inf (α)}. Now, a parity automaton accepts an
infinite word iff the number Nρ of the associated run ρ is even.

At first sight, this condition will seem rather contrived and artificial. Nevertheless,
for a number of reasons the parity automaton is destined to play the leading role in
these notes. Most importantly, the distinction between even and odd parities directly
corresponds to that between least and greatest fixpoint operators, so that parity au-
tomata are the more direct automata-theoretic counterparts of fixpoint formulas. An
additional theoretic motivation to use parity automata is that their associated accep-
tance games have some very nice game-theoretical properties, as we will see further
on.

Let us now first discuss some examples of automata with these three acceptance
conditions.

Example 4.12 Suppose that we supply the device of Example 4.5 with the Büchi
acceptance condition F0 = {a1}. That is, the resulting automaton A0 accepts a stream
α iff the run of A0 passes through the state a1 infinitely often. For instance, A0 will
accept the word α = brgbrgbrgbrgbrgbrgb · · · , because the run of A0 is the stream
a0a1a2a2a1a2a2a1a2a2 . . . which indeed contains a1 infinitely many times. On the other
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hand, as we saw already, the run of A0 on the stream α′ = brbgbrgrgrgrgrgr · · · loops
in state a2, and so α′ will not be accepted.

In general, it is not hard to prove that A0 accepts a C-stream γ iff γ contains
infinitely many b’s. �

Example 4.13 Consider the automaton A1 given by the following diagram and initial
state:

����
a0 ����

ab⇒ ����
ag

����
af ����

ar
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b, r, g
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As an example of a Muller acceptance condition, consider the set{
{a0} , {ag} , {ab, ag} , {ab, ar, ag}

}
The resulting automaton accepts those infinite streams in which every b is followed by
a finite number of r’s, followed by a g. We leave the details of this proof as an exercise
to the reader, confining ourselves to a brief description of the intuitive meaning of the
states.

a0 represents the situation where the automaton has not encountered any b’s;

af is the ‘faulty’ state;

ab is the state where the automaton has just processed a b; it now has to pass through
a finite sequence of r’s, eventually followed by a g;

ar represents the situation where the automaton, after seeing a b, has processed a finite,
non-empty, sequence of r’s;

ag is the state where the automaton, after passing the last b, has fulfilled its obligation
to process a g.

�
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Example 4.14 For an example of a parity automaton, consider the transition diagram
of Example 4.5, and suppose that we endow the set {a0, a1, a2} with the priority map
Ω given by Ω(ai) = i. Given the shape of the transition diagram, it then follows more
or less directly from the definitions that the resulting automaton accepts an infinite
word over C = {b, r, g} iff it either stays in a0, or visits a2 infinitely often. From this
one may derive that Lω(A) consists of those C-streams containing infinitely many r’s
or infinitely many g’s (or both). �

It is important to understand the relative strength of Muller, Büchi and parity
automata when it comes to recognizing ω-languages. The Muller acceptance condition
is the more fundamental one in the sense that the other two are easily represented by
it.

Proposition 4.15 There is an effective procedure transforming a deterministic Büchi
stream automaton into an equivalent deterministic Muller stream automaton.

Proof. Given a Büchi condition F on a set A, define the corresponding Muller condition
MF ⊆ ℘(A) as follows:

MF := {B ⊆ A | B ∩ F 6= ∅}.

Clearly then, AccMF
= AccF . It is now immediate that any Büchi automaton A =

〈A, δ, F, aI〉 is equivalent to the Muller automaton 〈A, δ,MF , aI〉. qed

Proposition 4.16 There is an effective procedure transforming a deterministic parity
stream automaton into an equivalent deterministic Muller stream automaton.

Proof. Analogous to the proof of the previous proposition, we put

MΩ := {B ⊆ A | max(Ω[B]) is even },

and leave it for the reader to verify that this is the key observation in turning a parity
acceptance condition into a Muller one. qed

Interestingly enough, Muller automata can be simulated by devices with a parity
condition.

Proposition 4.17 There is an effective procedure transforming a deterministic Muller
stream automaton into an equivalent deterministic parity stream automaton.

Proof. Given a Muller automaton A = 〈A, δ,M, aI〉, define the corresponding parity
automaton A′ = 〈A′, δ′,Ω, a′I〉 as follows. The crucial concept used in this construction
is that of latest appearance records. The following notation will be convenient: given
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a finite sequence in A∗, say, α = a1 . . . an, we let α̃ denote the set {a1, . . . , an}, and
α[O/a] the sequence α with every occurrence of a being replaced with the symbol O.

To start with, the set A′ of states is defined as the collection of those finite sequences
over the set A ∪ {O} in which every symbol occurs exactly once:

A′ = {a1 . . . akOak+1 . . . am | A = {a1, . . . , am}}.

The intuition behind this definition is that a state in A′ encodes information about
the states of A that have been visited during the initial part of its run on some word.
More specifically, the state a1 . . . akOak+1 . . . am encodes that the states visited by A
are an+1, . . . , am (for some n ≤ m, not necessarily n = k), and that of these, am is the
state visited most recently, am−1 the one before that, etc. The symbol O marks the
previous position of am in the list.

For a proper understanding of A′ we need to go into more detail. First, for the
initial position of A′, fix some enumeration d1, . . . , dm of A with aI = dm, and define

a′I := d1 . . . dmO.

For the transition function, consider a state α = a1 . . . akOak+1 . . . am in A′, and a color
c ∈ C. To obtain the state δ′(α, c), replace the occurrence of δ(am, c) in a1 . . . am with
O, and make the state δ(am, c) itself the rightmost element of the resulting sequence.
Thus the O in the new sequence marks the latest appearance of the state δ(am, c).
Formally, we put

δ′(a1 . . . akOak+1 . . . am, c) := (a1 . . . am)[O/δ(am, c)]δ(am, c).

For an example, see 4.18 below.
Now consider the runs ρ and ρ′ of A and A′, respectively, on some C-stream γ.

Let P = Inf (ρ) denote the set of states of A that are visited infinitely often during
ρ. From a certain moment on, ρ will only pass through states in P ; let A continue its
run until it has passed through each state in P at least one more time. It is not too
hard to see that from that same moment on, ρ′ will only pass through states of the
form a1 . . . akOak+1 . . . am such that the states in P form a final segment al+1 . . . am of
the sequence a1 . . . am. Also, since O marks the previous position of am, it must occur
before one of the ai with l + 1 ≤ i < m. In other words, we have

Inf (ρ′) ⊆ {αOβ ∈ A′ | β̃ ⊆ P}. (18)

Furthermore, it is crucial to note that among the states αOβ = a1 . . . akOak+1 . . . am
in Inf (ρ′), the ones with the longest tail β = ak+1 . . . am (i.e., with maximal |β|), are

exactly the ones where Inf (ρ) is identical to the set {ak+1, . . . , am} = β̃. This shows
how we can encode the success of runs of A in a parity condition for A′. Putting

Ω(αOβ) :=

{
2 · |β|+ 1 if β̃ 6∈ M,

2 · |β|+ 2 if β̃ ∈M,
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we ensure that for any word γ, we have the following equivalences:

A accepts γ ⇐⇒ Inf (ρ) ∈M
⇐⇒ {β̃ | αOβ ∈ Inf (ρ′) with β of maximal length } ∈ M
⇐⇒ max{Ω(αOβ) | αOβ ∈ Inf (ρ′)} is even

⇐⇒ A′ accepts γ.

This suffices to prove the equivalence of A and A′. qed

Example 4.18 With A1 the Muller automaton of Example 4.13, here are some exam-
ples of the transition function δ′ of its parity equivalent A′:

δ′(abaragafa0O, b) := Oaragafa0ab δ′(Oaragafa0ab, b) := aragOa0abaf
δ′(abaragafa0O, r) := abaragafOa0 δ′(Oaragafa0ab, r) := Oagafa0abar
δ′(abaragafa0O, g) := abaragafOa0 δ′(Oaragafa0ab, g) := arOafa0abag

Likewise, a few examples of the priority map:

Ω(abaragafOa0) := 4
Ω(agafa0abOar) := 3
Ω(afara0Oabag) := 6
Ω(afa0Oabarag) := 8

As the initial state of A′, one could for instance take the sequence araragafa0O. �

The following example shows that, in the case of deterministic stream automata,
the recognizing power of Muller and parity automata is strictly stronger than that of
Büchi automata.

Example 4.19 Consider the following language over the alphabet C = {b, r}:

L = {α ∈ Cω | r 6∈ Inf (α)}.

That is, L consists of those C-streams that contain at most finitely many red items
(that is, the symbol r occurs at most finitely often). We will give both a Muller and
a parity automaton to recognize this language, and then show that there is no Büchi
automaton for L.

It is not difficult to see that there is a deterministic Muller automaton recognizing
this language. Consider the automaton A2 given by the following diagram,

����
ab⇒ ����

ar
	

b

~

r

}

b

	

r
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and Muller acceptance condition M2 := {{ab}}. It is straightforward to verify that the
run of A2 on an {b, r}-stream α keeps circling in ab iff from a certain moment on, α
only produces b’s.

For a parity automaton recognizing L, endow the diagram above with the priority
map Ω2 given by Ω2(ab) = 0, Ω2(ar) = 1. With this definition, there can only be one
set of states of which the maximum priority is even, namely, the singleton {ab}. Hence,
this parity acceptance condition is the same as the Muller condition {{ab}}.

However, there is no deterministic Büchi automaton recognizing L. Suppose for
contradiction that L = Lω(A), where A = 〈A, δ, F, aI〉 is some Büchi automaton. Since
the stream α0 = bbb . . . belongs to L, it is accepted by A. Hence in particular, the run
ρ0 of A on α0 will pass some state f0 ∈ F after a finite number, say n0, of steps.

Now consider the stream α1 = bn0rbbb . . .. Since runs are uniquely determined, the
initial n0 steps of the run ρ1 of A on α1 are identical to the first n0 steps of A on α0. But
since α1 belongs to L too, it too is accepted by A. Thus on input α1, A will visit a state
in F infinitely often. That is, we may certainly choose an n1 ≥ 1 such that ρ1 passes
some state f1 ∈ F after n0 + n1 steps. Now consider the stream α2 = bn0rbn1rbbb . . .,
and analyze the run ρ2 of A on α2. Continuing like this, we can find positive numbers
n0, n1, . . . such that for every k ∈ ω, the stream

αk = bn0rbn1 . . . rbnkrbbb . . . ∈ L, for all k. (19)

Consider the stream

α = (bn0r)(bn1r) . . . (bnkr) . . .

Containing infinitely many r’s, α does not belong to L. Nevertheless, it follows from
(19) that the run ρ of A on α passes through the states f0, f1, . . . as described above.
Since F is finite, there is then at least one f ∈ F appearing infinitely often in this
sequence. Thus we have found an f ∈ F that is passed infinitely often by ρ, showing
that A accepts α. This gives the desired contradiction. �

4.3 Nondeterministic automata

Nondeterministic automata generalize deterministic ones in that, given a state and a
color, the next state is not uniquely determined, and in fact need not exist at all.

Definition 4.20 Given an alphabet C, a nondeterministic C-automaton is a quadruple
A = 〈A,∆,Acc, aI〉, where A is a finite set, aI ∈ A is the initial state of A, ∆ : A×C →
℘(A) its transition function of A, and Acc ⊆ A its acceptance condition. �

As a consequence, the run of an nondeterministic automaton on a stream is no
longer uniquely determined either.
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Definition 4.21 Given a nondeterministic automaton A = 〈A,∆,Acc, aI〉, we define
the relations → ⊆ A × C × A and � ⊆ A × C∗ × A in the obvious way: a

c→ a′ if

a′ ∈ ∆(a, c), a
ε

� a′ if a = a′, and a
wc
� a′ if there is a a′′ such that a

w
� a′′

c→ a′. A run
of a nondeterministic automaton A = 〈A,∆,Acc, aI〉 on an C-stream γ = c0c1c2 . . . is
an infinite A-sequence

ρ = a0a1a2 . . .

such that a0 = aI and ai
ci→ ai+1 for every i ∈ ω. �

Now that runs are no longer unique, an automaton may have both successful and
unsuccessful runs on a given stream. Consequently, there is a choice to make concerning
the definition of the notion of acceptance.

Definition 4.22 A nondeterministic C-automaton A = 〈A,∆,Acc, aI〉 accepts a C-
stream γ if there is a successful run of A on γ. �

Further concepts, such as the language recognized by an automaton, the notion
of equivalence of two automata, and the Büchi, Muller and parity acceptance condi-
tions, are defined as for deterministic automata. Also, the transformations given in the
Propositions 4.15, 4.16 and 4.17 are equivalence-preserving for nondeterministic au-
tomata just as for deterministic one. Different from the deterministic case, however, is
that nondeterministic Büchi automata have the same accepting power as their Muller
and parity variants.

Proposition 4.23 There is an effective procedure transforming a nondeterministic
Muller stream automaton into an equivalent nondeterministic Büchi stream automa-
ton.

Proof. Let A = 〈A,∆,M, aI〉 be a nondeterministic Muller automaton. The idea
underlying the definition of the Büchi equivalent A′ is that A′, while copying the be-
havior of A, guesses the set M = Inf (ρ) of a successful run of A, and at a certain
(nondeterministically chosen) moment confirms this choice by moving to a position of
the form (a,M,∅). In order to make sure that not too many streams are accepted, the
device has to keep track which of the states in M have been visited by A, resetting this
counter to the empty set every time when all M -states have been passed.

A′ := A ∪
⋃

M∈M

{(a,M, P ) | a ∈M,P ⊆M},

a′I := aI

∆′(a, c) := ∆(a, c) ∪
⋃

M∈M

{(b,M,∅) | b ∈ ∆(a, c) ∩M}

∆′((a,M, P ), c) :=

{
{(b,M, P ∪ {a}) | b ∈ ∆(a, c) ∩M} if P 6= M,
{(b,M, {a}) | b ∈ ∆(a, c) ∩M} if P = M,

F := {(a,M, P ) ∈ A′ | P = M}.
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We leave it as an exercise for the reader to verify that the resulting automaton is indeed
equivalent to A. qed

We now turn to the determinization problem for stream automata. In the case of
automata operating on finite words, it is not difficult to prove that nondeterminism
does not really add recognizing power: any nondeterministic finite automaton A may
be ‘determinized’, that is, transformed into an equivalent deterministic automaton Ad.

Remark 4.24 Finite word automata (see Example 4.9) can be determinized by a fairly
simple subset construction.

Let A = 〈A,∆, F, aI〉 be a nondeterministic finite word automaton. A run of A on
a finite word w = c1 · · · cn is defined as a finite sequence a0a1 · · · an such that a0 = aI
and ai

ci→ ai+1 for all i < n. A accepts a finite word w if there is a successful run, that
is, a run a0a1 · · · an ending in an accepting state an.

Given such a nondeterministic automaton, define a deterministic automaton A+ as
follows. For the states of A+ we take the macro-states of A, that is, the nonempty
subsets of A. The deterministic transition function δ is given by

δ(P, c) :=
⋃
a∈P

∆(a, c).

In words, δ(P, c) consists of those states that can be reached from some state in P by
making one a-step in A. The accepting states of A+ are those macro-states that contain
an accepting state from A: F+ := {P ∈ A+ | P ∩ F 6= ∅}, and its initial state is the
singleton {aI}.

In order to establish the equivalence of A and A+, we need to prove that for every
word w, A has an accepting run on w iff the unique run of A+ on w is successful. The
key claim in this proof is the following statement:

{aI}
w
�A+ P ⇐⇒ aI

w
�A a for all a ∈ P. (20)

Intuitively, (20) states that {aI}
w
�A+ P iff P contains all the states that A can reach

on input w. We leave the straightforward inductive proof of (20) as an exercise for the
reader. �

Unfortunately, the class of Büchi automata does not admit such a determinization
procedure. As a consequence of Proposition 4.23 below, and witnessed by the Exam-
ples 4.19 and 4.25, the recognizing power of nondeterministic Büchi automata is strictly
greater than that of their deterministic variants.

Example 4.25 For a nondeterministic Büchi automaton recognizing the language

L = {α ∈ Cω | r 6∈ Inf (α)}

of Example 4.19, consider the automaton given by the following picture:
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����
a0⇒ �����
��

a1

	

b, r

-b 	

b

In general, the Büchi acceptance condition F ⊆ A of an automaton A is depicted by
the set of states with double circles. So in this case, F = {a1}. �

There is positive news as well. A key result in automata theory states that when
we turn to Muller and parity automata, nondeterminism does not increase recognizing
power. This result follows from Proposition 4.23 and Theorem 4.26 below.

Theorem 4.26 There is an effective procedure transforming a nondeterministic Büchi
stream automaton into an equivalent deterministic Muller stream automaton.

The proof of Theorem 4.26 will be given in the next section. As an important
application we mention the following Complementation Lemma.

Proposition 4.27 Let A be a nondeterministic Muller or parity automaton. Then
there is an automaton A of the same kind, such that Lω(A) is the complement of the
language LωA.

Leaving the proof of this proposition as an exercise for the reader, we finish this
section with a summary of the relative power of the automata concept in the diagram
below. Arrows indicate the reducibility of one concept to another, ‘D’ and ‘ND’ are
short for ‘deterministic’ and ‘nondeterministic’, respectively.

D Büchi =⇒ D Muller ⇐⇒ D parity

⇓ m m

ND Büchi ⇐⇒ ND Muller ⇐⇒ ND parity

4.4 The Safra construction

This section is devoted to the proof of Theorem 4.26, which is based on a modification
of the subset construction of Remark 4.24.

Remark 4.28 This modification has to be fairly substantial: Theorem 4.26 cannot
be proved by a straightforward adaptation of the subset construction discussed in Re-
mark 4.24. Consider the Büchi automaton A given by the following picture:
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����
a0⇒ �����
��

a1

	

b, r

-r 	

b

We leave it for the reader to verify that Lω(A) consists of those streams of bs and rs
that contain at least one and at most finitely many red items. In particular, the stream
rω = rrrrr . . . is rejected, while the stream rbω = rbbbb . . . is accepted.

Now consider a deterministic automaton A+ of which the transition diagram is given
by the subset construction. Then the run of the automaton A+ on rω is identical to its
run on rbω:

a0{a0, a1}{a0, a1}{a0, a1} . . .

In other words, no matter which acceptance condition we give to A+, the automaton
will accept either both rω and rbω, or neither. In either case Lω(A+) will be different
from Lω(A).

As a matter of fact, it will be instructive to see in a bit more detail how the runs
of A on rω and rbω, respectively, appear as ‘traces’ in the run of Lω(A+) on these two
streams:
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Clearly, where the second run contains one single trace that corresponds to a suc-
cessful run of the automaton A, in the first run, all traces that reach a successful state
are aborted immediately. These two pictures make clear that there are some some sub-
tle but crucial distinctions that get lost if we do a straightforward subset construction.
�

In Safra’s modification of the subset construction, the states of the deterministic
automaton can be seen as finite sets of macro-states that are ordered by the inclusion
relation to form a certain kind of tree. The key idea underlying this modification is
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that at each step of the run, the accepting elements of each macro-state are given
some special treatment. In the end this enables one to single out the runs with a
sequence of macro-states containing a good trace (that is, an infinite sequence of states
constituting an accepting run of the nondeterministic automaton). Formally, we define
these ’tree-ordered finite sets of macro-states’ as Safra trees.

Definition 4.29 An ordered tree is a structure 〈S, r,�, <H〉 such that 〈S,�〉 is a tree
with root r, and <H is a sibling ordering relation, that is, a partial order on S which
totally orders the children of every node. Given two nodes s and t, we say that s is to
the left of t if s and t have ancestors s′ and t′, respectively, such that s′ <H t′.

A Safra tree over a set B is a pair (S, L) where S is a finite ordered tree, and
L : S → ℘+(B) is a labelling such that L(t) is a proper subset of L(s) if t is a child of
s, and L(s) ∩ L(t) = ∅ if s and t are siblings (that is, have the same parent). �

I number of Safra trees

It is not hard to see that for any Safra tree (S, L) and for every state b ∈ B, b
belongs to some label set of the tree iff it belongs to the label of the root. And, if b
belongs to the label of the root, then there is a unique node s ∈ S such that b ∈ L(s)
but s has no child t with b ∈ L(t). This node s is called the lowest node of b.

We now turn to the definition of the Safra construction.

Definition 4.30 Let B be a nondeterministic Büchi automaton B = 〈B, bI ,∆, F 〉. We
will define a deterministic Muller automaton BS = 〈BS, aI , δ,M〉.

Assume that B has n states. The carrier BS will consist of the collection of all Safra
trees (S, L) over B with S ⊆ {0, 1, . . . , 2n− 1}, that in addition have a map γ coloring
nodes of the tree either white or green. The initial state of BS will be the Safra tree
consisting of a single white node 0 labelled with the singleton {bI}.

For the transition function on BS, take an arbitrary colored Safra tree (S, L, γ). On
input c ∈ C, the deterministic transition function δ on BS transforms (S, L, γ) into a
new colored, labelled Safra tree, by performing the following sequence of actions:

1. Separate accepting states For any node s such that L(s) contains accepting states,
add a (canonically chosen) new node s′ 6∈ S to S as the youngest child of s, and
label s′ with the set L(s) ∩ F . (Note that such an s′ can always be found).

2. Make macro-move Apply the power set construction to the individual nodes: for
each node s, replace its label A ⊆ B with the set

⋃
a∈A ∆(a, c).

3. Merge traces For each node s, remove those members from its label that already
belong to the label of an older sibling of s (3a). After that, remove all nodes with
empty labels (3b).
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4. Mark successful nodes For every node s of which the label is identical to the the
union of the labels of its children, remove all the descendants of s, and mark s
by coloring it green. All other nodes are colored white.

For the Muller acceptance condition M of BS, put M ∈ M if there is some s ∈
{0, . . . , 2n− 1} such that s is a node of every tree in M , and s is colored green in some
tree in M . �

Example 4.31 I Example to be supplied

�

It is obvious from the construction that BS is a deterministic automaton, so all that
is left for the proof of Theorem 4.26 is to establish the equivalence of B and BS.

Proposition 4.32 Let B be a nondeterministic Büchi automaton. Then

Lω(B) = Lω(BS).

Proof. For the inclusion ⊆, suppose that there is a successful run ρ = b0b1 . . . of B on
some C-stream γ = c0c1 . . . . Consider the (unique) run σ = (S0, L0, θ0)(S1, L1, θ1) . . .
of BS on γ. Here each (Si, Li, γi) is a Safra tree with labeling L and coloring θi. We
claim that there is a object s which after some initial phase belongs to each Safra tree
of σ, and which is marked green infinitely often.

To see why this must be the case, first note that at every stage i, the state bi of ρ
belongs to the label Li(ri) of the root ri of the Safra tree Si. It follows that the root is
always nonempty, and hence never removed; with r := r0 we have ri = r for all i > 0.
Now if r is colored green infinitely often, we are done.

So suppose that this is not the case. In other words, after a certain moment i, r
will no longer be marked; consider the first time j > i for which bj is an accepting
state (such a j must exist since ρ is by assumption an accepting run). According to the
definition of δ, being an accepting state, in the next stage j + 1, first bj is put in the
label set of one of the children of r, and so after step 2 of stage j + 1, the next state
bj+1 of ρ belongs to one of the children of the root. In subsequent steps of this stage,
and in subsequent stages of the run σ, the contemporary state of ρ can be moved to
an older sibling (step 3a). Such a shift merge into an older sibling can only happen
finitely often, so there is some object s such that after some stage, s remains in every
Safra tree of σ as a child of r, and its label contains the contemporary state of ρ.

We can now repeat the argument with s taking the role of r: either s itself is marked
infinitely often, or else the state of ρ is eventually placed at the next level. Since the
depth of the Safra trees involved is bounded, there must be some node s which after
some initial phase belongs to each Safra tree in σ, and which is marked infinitely often.
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For the opposite inclusion⊇, suppose that the (unique) run σ = (S0, L0, θ0)(S1, L1, θ1) . . .
of BS on γ is successful. Then by definition there is some node s ∈ {0, . . . , 2n−1} which
after some initial phase will belong to each Safra tree in σ and which will subsequently
be marked infinitely often, say at stages k1 < k2 < · · · . For each i > 0, let Ai denote
the macro-state of s at stage ki, that is: Ai := Lki

(s).
Recall that γ is the infinite input stream c0c1c1 · · · . Let γ[p, q) denote the finite word

cp · · · cq−1. Since our construction is a refinement of the standard subset construction
of Remark 4.24, it easily follows from the definitions of δ, that for every state a ∈ A1

there is a γ[0, k1)-labeled path from bI to a, or briefly:

for all a ∈ A1 we have bI
γ[0,k0)
� a. (21)

With a little more effort, crucially involving the conditions for marking nodes, and the
rules governing the creation and maintenance of nodes, one may prove that for

for all i > 0 and for all a ∈ Ai+1 there is a a′ ∈ Ai such that a′
γ[ki,ki+1)

�F a. (22)

Here a′
γ[ki,ki+1)

�F a means that there is a γ[ki, ki+1)-labelled path from a′ to a which
passes through some state in F . Details of this proof are left as an exercise to the
reader.

The remainder of the proof consists of showing how to find a successful run of B on
γ as the concatenation of a run segment given by (21) and infinitely many run segments
given by (22). For this we use König’s Lemma.

Defining A0 := {bI}, construct a tree whose nodes are all pairs of the form (a, i) with
a ∈ Ai. As the parent of a node (a, i+ 1) we pick one of the pairs (a′, i) given by (21)
and (22), respectively. Obviously this is a well-formed, infinite, finitely branching tree.
So by König’s Lemma, there is an infinite branch (a0, 0)(a1, 1) . . . . By construction,

we have a0 = bI , while for each i ≥ 0 there is an
γ[ki,ki+1)

�F -labelled path in B from ai
to ai+1 which passes through some accepting state of B. The infinite concatenation of
these paths gives a run of B which visits infinitely often an accepting state of B, and
hence by finiteness of B, it visits some state of B infinitely often. Clearly then this run
is accepting. qed

4.5 A coalgebraic perspective

In this section we introduce a coalgebraic perspective on stream automata. We have two
reasons for doing so. First, we hope that this coalgebraic presentation will facilitate
the introduction, further on, of automata operating on different kinds of structures.
And second, we also believe that the coalgebraic perspective, in which the similarities
between automata and the objects they classify comes out more clearly, makes it easier
to understand some of the fundamental concepts and results in the area.

In this context, it makes sense to consider a slightly wider class than streams only.
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Definition 4.33 A C-flow is a pair S = 〈S, σ〉 with σ : S → C × S. Often we will
write σ(s) = (σC(s), σ0(s)). If we single out an (initial) state s0 ∈ S in such a structure,
we obtain a pointed C-flow (S, s0). �

Example 4.34 Streams over an alphabet C can be seen as pointed C-flows: simply
identify the word γ = c0c1c2 . . . with the pair (〈ω, λn.(cn, n + 1)〉, 0). Conversely, with
any pointed flow 〈S, s〉 we may associate a unique stream γS,s by inductively defining
s0 := s, si+1 := σ0(si), and putting γS(n) := σC(sn). �

It will be instructive to define the following notion of equivalence between flows. As
its name already indicates, we are dealing with the analog of the notion of a bisimulation
between two Kripke models. Since flows, having a deterministic transition structure,
are less complex objects than Kripke models, the notion of bisimulation is also, and
correspondingly, simpler.

Definition 4.35 Let S and S′ be two C-flows. Then a nonempty relation Z ⊆ S × S ′

is a bisimulation if the following holds, for every (s, s′) ∈ Z:

(color) σC(s) = σ′C(s′);

(successor) (σ0(s), σ
′
0(s

′)) ∈ Z.

Two pointed flows (S, s) and (S′, s′) are called bisimilar, notation: S, s↔ S′, s′ if there is
some bisimulation Z linking s to s′. In case the flows S and S′ are implicitly understood,
we may drop reference to them and simply call s and s′ bisimilar. �

As an example, it is not hard to see that any pointed flow (S, s) is bisimilar to the
stream γS,s that we may associate with it (see Example 4.34). Restricted to the class
of streams, bisimilarity means identity.

Definition 4.36 A stream is called regular if it is bisimilar to a finite pointed flow. �

Associated is a new perspective on nondeterministic stream automata which makes
them very much resemble these flows. Roughly speaking the idea is this. Think of es-
tablishing a bisimulation between two pointed flows in terms of one structure 〈A, aI , α〉
classifying the other, 〈S, sC , σ〉.

Now on the one hand make a restriction in the sense that the classifying flow must
be finite, but on the other hand, instead of demanding its transition function to be of
the form α : A→ C × A, allow objects α(a) to be sets of pairs in C × A, rather than
single pairs. That is, introduce non-determinism by letting the transition map ∆ of A
be of the form

∆ : A→ ℘(C × A). (23)
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Remark 4.37 This presentation (23) of nondeterminism is completely equivalent to
the one given earlier. The point is that there is a natural bijection between maps of
the above kind, and the ones given in Definition 4.20 as the transition structure of
nondeterministic automata:

A→ ℘(C × A) ∼= (A× C) → ℘(A). (24)

To see why this is so, an easy proof suffices. Using the principle of currying we can
show that

A→ ((C × A) → 2) ∼= (A× C × A) → 2 ∼= (A× C) → (A→ 2),

where the first and last set can be identified with respectively the left and right hand
side of (24) using the bijection between subsets and their characteristic functions.

Concretely, we may identify a map ∆ : (A × C) → ℘(A) with the map ∆′ : A →
℘(C × A) given by

∆′(a) := {(c, a′) | a′ ∈ ∆(a, c)}. (25)

�

Thus we arrive at the following reformulation of the definition of nondeterministic
automata. Note that with this definition, a stream automaton can be seen as a kind of
‘multi-stream’ in the sense that every state harbours a set of potential ‘local realizations’
as a flow. Apart from this, an obvious difference with flows is that stream automata
also have an acceptance condition.

Definition 4.38 A nondeterministic C-stream automaton is a quadruple A = 〈A,∆,Acc, aI〉
such that ∆ : A → ℘(C × A) is the transition function, Acc ⊆ Aω is the acceptance
condition, and aI ∈ A is the initial state of the automaton. �

Finally, it makes sense to formulate the notion of an automaton accepting a flow
in terms that are related to that of establishing the existence of a bisimulation. The
nondeterminism can nicely be captured in game-theoretic terms — note however, that
here we are dealing with a single player only.

In fact, bisimilarity between two pointed flows can itself be captured game-theoretically,
using a trivialized version of the bisimilarity game for Kripke models of Definition 1.24.
Consider two flows A and S. Then the bisimulation game B(A,S) between A and S is
defined as a board game with positions of the form (a, s) ∈ A × S, all belonging to
∃. At position (a, s), if a and s have a different color, ∃ loses immediately; if on the
other hand αC(a) = σC(s), then as the next position of the match she ‘chooses’ the
pair consisting of the successors of a and s, respectively. These rules can concisely be
formulated as in the following Table:
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Position Player Admissible moves
(a, s) ∈ A× S ∃ {(α0(a), σ0(s)) | αC(a) = σC(s)}

Finally, the winning conditions of the game specify that ∃ wins all infinite games. We
leave it for the reader to verify that a pair (a, s) ∈ A× S is a winning position for ∃ iff
a and s are bisimilar.

In order to proceed, however, we need to make a slight modification. We add
positions of the form (α, s) ∈ (C×A)×S, and insert an ‘automatic’ move immediately
after a basic position, resulting in the following Table.

Position Player Admissible moves
(a, s) ∈ A× S - {(α(a), s)}
(α, s) ∈ (C × A)× S ∃ {(α0, σ0(s)) | αC = σC(s)}

The acceptance game of a nondeterministic automaton A and a flow S can now be
formulated as a natural generalization of this game.

Definition 4.39 Given a nondeterministic C-stream automaton A = 〈A, aI ,∆,Acc〉
and a pointed flow S = 〈S, s0, σ〉, we now define the acceptance game A(A,S) as the
following board game.

Position Player Admissible moves
(a, s) ∈ A× S ∃ {(α, s) ∈ (C × A)× S | α ∈ ∆(a)}
(α, s) ∈ (C × A)× S ∃ {(α0, σ0(s)) | αC = σC(s)}

Table 6: Acceptance game for nondeterministic stream automata

Its positions and rules are given in Table 6, whereas the winning conditions of
infinite matches are specified as follows. Given an infinite match of this game, first
select the sequence

(a0, s0)(a1, s1)(a2, s2) . . .

of basic positions, that is, the positions reached during play that are of the form (a, s) ∈
A×S. Then the match is winning for ∃ if the ‘A-projection’ a0a1a2 . . . of this sequence
belongs to Acc. �

Definition 4.40 A nondeterministic C-stream automaton A = 〈A, aI ,∆,Acc〉 accepts
a pointed flow S = 〈S, s0, σ〉 if the pair (aI , s0) is a winning position for ∃ in the game
A(A,S). �

The following proposition states that the two ways of looking at nondeterministic
automata are equivalent.
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Proposition 4.41 Let A = 〈A, aI ,∆,Acc〉, with ∆ : (A × C) → ℘(A) be a non-
deterministic C-automaton, and let A′ be the nondeterministic C-stream automaton
〈A, aI ,∆′,Acc〉, where ∆′ : A → ℘(C × A) is given by (25). Then A and A′ are
equivalent.

In the sequel we will identify the two kinds of nondeterministic automata, speak-
ing of the coalgebraic presentation 〈A, aI ,∆′ : A → ℘(C × A),Acc〉 of an automaton
〈A, aI ,∆ : (A× C) → ℘(A),Acc〉.

Notes

The idea to use finite automata for the classification of infinite words originates with
Büchi. In [4] he used stream automata with (what we now call) a Büchi acceptance
condition to prove the decidability of the second-order theory of the natural numbers
(with the successor relation). In the subsequent development of the theory of stream
automata, other acceptance conditions were introduced. The Muller condition is named
after the author of [19]. The invention of the parity condition, which can be seen as
a refinement of the Rabin condition, is usually attributed to Emerson & Jutla [9],
Mostowski [18], and/or Wagner.

The first construction of a deterministic equivalent to a nondeterministic Muller
automaton was given by McNaughton [16]. The construction we presented in section 4.4
is due to Safra [28]. Finally, the coalgebraic perspective on stream automata presented
in the final section of this chapter is the author’s.

Exercises

Exercise 4.1 Provide Büchi automata recognizing exactly the following stream lan-
guages:

(a) La = {α ∈ {a, b, c}ω | a and b occur infinitely often in α}

(b) Lb = {α ∈ {a, b, c}ω | any a in α is eventually followed by a b}

(c) Lc = {α ∈ {a, b}ω | between any two a’s is an even number of b’s}

(d) Ld = {α ∈ {a, b, c}ω | ab and cc occur infinitely often in α}

Exercise 4.2 Let C be a finite set. A C-stream language L ⊆ Cω is called ω-regular
if there exists a parity C-stream automaton A = (A,∆,Ω, aI) such that L = Lω(A).
Show that the class of ω-regular languages is closed under the Boolean operations, i.e.,
show that

(a) If L ⊆ Cω is ω-regular then its complement L := {γ ∈ Cω | γ 6∈ L} is ω-regular.
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(b) If L1 and L2 are ω-regular C-stream languages, then L1 ∪ L2 is ω-regular.

(c) If L1 and L2 are ω-regular C-stream languages, then L1 ∩ L2 is ω-regular.

Exercise 4.3 Show the following, for any deterministic Büchi automaton A:

Lω(A) = {α ∈ Σω | infinitely many prefixes of α belong to L(A)}.

Exercise 4.4 Let C and D be finite sets and let f : C → D be a function. The
function f can be extended to a function f : Cω → Dω in the obvious way by putting
f(γ) := f(c0)f(c1)f(c2) . . . ∈ Dω for any C-stream γ ∈ Cω. For a given C-stream
language L ⊆ Cω we define

f(L) := {f(γ) | γ ∈ L} ⊆ Dω.

(a) Show that L ⊆ Cω is ω-regular implies f(L) ⊆ Dω is ω-regular.

(b) Show that there is a C-stream language L ⊆ Cω such that L = Lω(A) for some
deterministic Büchi automaton A and such that f(L) ⊆ Dω is not recognizable
by any deterministic Büchi automaton.

Exercise 4.5 Show that nondeterministic Büchi automata have the same recognizing
power as their Muller variants by showing that the automata A′ and A in the proof of
Proposition 4.23 are indeed equivalent.

Exercise 4.6 Consider the language Ld of exercise 4.1.

(a) Give a clear description of the complement Ld of Ld.

(b) Give a nondeterministic Büchi automaton recognizing exactly the language Ld.

(c) Prove that there is no deterministic Büchi automaton recognizing the language
Ld. (Hint: use the theorem from Exercise 4.3.)

Exercise 4.7 Provide deterministic Muller automata recognizing the following lan-
guages:

(a) Ld of exercise 4.1.

(b) La = {α ∈ {a, b, c}ω | between every pair of a’s is an occurrence of bb or cc }.

Exercise 4.8 Describe the languages that are recognized by the following Muller au-
tomata (presented in tabular form, with ⇒ indicating the initial state):
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(a)

A a b

⇒ q0 q1 q2
q1 q0 q2
q2 q1 q0

with F := {{q0, q1}, {q0, q2}}.

(b) The same automaton as in (a) but with F := {{q1, q2}, {q0, q1, q2}}.

(c)

A a b c

⇒ q0 q1 q0 q0
q1 q0 q2 q0
q2 q0 q0 q3
q3 q0 q0 q0

with F := {{q0}, {q0, q1}, {q0, q1, q2}}.



5 Tree automata

In this chapter we consider a second classic type of automata, namely, those operating
on infinite trees, of which the nodes are labeled by some finite alphabet C (to be fixed
for the remainder of this section).

For simplicity we will restrict to the binary case, i.e., trees where every node has
exactly two successors. Recall from Definition 1.12 that 2∗ denotes the set of finite
strings of 0s and 1s, that ε denotes the empty string, and that the left- and right
successor of a node s are denoted by s0 and s1, respectively.

Definition 5.1 Given an alphabet C, a binary C-labelled tree or binary C-tree is a
map τ : 2∗ → C. �

However, just as in the case of streams, we will take a coalgebraic approach, con-
sidering a wider class of structures than trees only.

Definition 5.2 Given an alphabet C, for any set S we denote the set C × S × S as
BCS. A binary C-flow or C-biflow is a structure S = 〈S, σ : S → BCS〉. We often write
σ(s) = (σC(s), σ0(s), σ1(s)), where σC(s), σ0(s), and σ1(s), denote the color, the left
successor, and the right successor of s, respectively. A pointed biflow is a pair (S, s)
with S a C-biflow, and s some designated point in S. �

It should be clear that, indeed, binary C-trees are examples of such pointed biflows
— we standardly take the root as the designated point. Observe too that Definition 5.2
is consistent with the terminology we introduced in Chapter 1.

Definition 5.3 A (C)-biflow language is a class of pointed C-biflows, and a (C-)tree
language is a set(!) of binary (C-)trees. �

5.1 Nondeterministic tree automata

In this section we introduce nondeterministic tree automata, and we discuss, in game-
theoretic terms, the associated notion of acceptance. Right from the start we take a
coalgebraic perspective on these automata, and so we immediately define how these
automata operate on arbitrary binary C-flows, rather than on binary C-trees only.

Automata and their acceptance games

Definition 5.4 A nondeterministic tree automaton is a structure A = 〈A, aI ,∆,Acc〉,
where A is a finite set, aI ∈ A is the initial state of A, ∆ : A→ ℘(BCA) its transition
function, and Acc ⊆ Aω its acceptance condition. Such an automaton is called a Büchi,
Muller, or parity automaton, respectively, if the acceptance condition is expressed in
the corresponding format. �
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Remark 5.5 The presentation in Definition 5.4 is slightly nonstandard, in the sense
that the transition map of a nondeterministic tree automaton is usually given as a
map ∆ : A × C → ℘(A × A). However, similar to the case of stream automata (see
Remark 4.37), one may use the natural bijection

A→ ℘(C × A× A) ∼= A× C → ℘(A× A) (26)

to show that our presentation is equivalent to the standard one. This bijection asso-
ciates, with a map ∆ : A→ ℘(C × A× A) the function ∆′ : A× C → ℘(A× A) given
by ∆′(a, c) := {(a0, a1) ∈ A× A | (c, a0, a1) ∈ ∆(a)}.

Our motivation from this minor deviation for the standard format is that in our
approach, automata closely resemble the structures that they are supposed to classify:
pointed biflows. Whereas the transition structure of such a biflow is a map of type
S → BC(S), that of an automaton is a nondeterministic version of this, namely a map
A→ ℘(BCA). �

Nondeterministic tree automata operate on pointed C-biflows. The acceptance cri-
terion is formulated in terms of a so-called acceptance game associated with an au-
tomaton A and a structure S. Matches of this game proceed in rounds, which start and
finish with a basic position, that is, a position of the form (a, s) ∈ A× S:

• At a basic position (a, s), ∃ chooses an element (c, a1, a2) ∈ ∆(a); the new position
is ((c, a1, a2), s).

• At position ((c, a1, a2), s), ∃ immediately loses if c 6= σC(s); otherwise, the next
position is the set {(a0, σ0(s)), (a1, σ1(s))};

• At position {(a0, s0), (a1, s1)}, ∀ chooses an element (ai, si), which is the new basic
position.

Observe that, in each round of the game, it is ∀ who chooses the direction to take
in the flow: left or right. He can thus effectively determine the path through the flow
that is taken during the match. This explains the name ‘Pathfinder’, that one may
often find for ∀ in the literature.

Concerning the winning conditions of this game, the clause concerning finite matches
is the same as always: any player that gets stuck loses the match immediately. In order
to determine the winner of an infinite match, we look at the associated sequence of
basic positions, i.e., positions of the form (a, s) ∈ A× S. Given such a sequence

ρ = (a0, s0)(a1, s1)(a2, s2) . . . ,

we consider the ‘projection’ of the sequence on A:

πA(ρ) := a0a1a2 . . .

We declare ∃ as the winner of the game if this sequence meets the acceptance condition,
that is, if πA(ρ) ∈ Acc; but if πA(ρ) 6∈ Acc, the infinite match is won by ∀.
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Definition 5.6 Let A = 〈A, aI ,∆,Acc〉 be a nondeterministic tree automaton. For
any binary C-flow S, we define the acceptance game A(A,S) as the two-player board
game given by the rules of Table 7, together with the following winning condition: To
determine the winner of an infinite match, consider the sequence (a0, s0)(a1, s1) . . . of
basic positions in the match; ∃ is the winnner of the match if the sequence a0a1 . . .
belongs to the set Acc, and ∀ if it does not.

Given a point s ∈ S, we say that A accepts the pointed structure (S, s) if ∃ has
a winning strategy in the game A(A,S)@(aI , s), that is, the acceptance game A(A,S)
initialized at position (aI , s).

Given an automaton A, we let L(A) denote the biflow language recognized by A,
that is, the class of C-biflows that are accepted by A. Likewise, Lt(A) denotes the tree
language recognized by A, i.e., Lt(A) is the set of binary C-trees in L(A). �

Position Player Admissible moves
(a, s) ∈ A× S ∃ {(α, s) | α ∈ ∆(a)}
((c, a0, a1), s) ∈ BCA× S ∃ {{(a0, σ0(s)), (a1, σ1(s))} | c = σC(s)}
{(a0, s0), (a1, s1)} ⊆ A× S ∀ {(a0, s0), (a1, s1)}

Table 7: Acceptance game for nondeterministic tree automaton

Examples

Example 5.7 Let K1 be the class of pointed biflows over the language C = {g, y}
(‘green’ and ‘yellow’) in which there is a (completely) green path starting from the
designated point. We claim that K is recognized by the following Muller automaton
A1. A1 has two states, ag (the initial state) and a>. The transition structure is given
by the map ∆:

∆(ag) := {(g, ag, a>), (g, a>, ag)},
∆(a>) := {(g, a>, a>), (y, a>, a>)},

and the Muller acceptance is simply the set M := ℘(A0). That is, all that ∃ has to
do in order to win is to stay alive. (Alternatively, given this particular ∆, we could
also define M :=

{
{ag}, {a>}

}
.) Roughly, when operating on a pointed biflow (S, s),

A1 ‘guesses’ a path starting at s, and checks whether this path contains green nodes
only. For some more detailed intuitions, think of a> as the ‘surely successful state’:
Once ∃ has managed to reach a> (i.e., a position of the form (a>, s)), she can no longer
loose the match. Hence, ∀ will avoid a> as much as he can: When faced with a choice
between two positions (ag, s0) and (a>, s1), he will always choose the first.

Think of ag as the state that marks the path through the flow. To see this, consider a
position (ag, s) in the acceptance game. If s is a yellow state, then ∃ looses immediately,



80 Tree automata

so suppose otherwise. If she picks the element (g, ag, a>) from ∆(ag), then ∀ has to
choose between the positions (ag, σ0(s)) (‘go left’) and (a>, σ1(s)) (‘go right’), but as
we saw, he will avoid a> and always go left. Likewise, if ∃ picks the other element,
(g, a>, ag) from ∆(ag), she forces ∀ to go right in his next move. Thus effectively, by the
way we have defined ∆, ∃ chooses the successor state in the biflow. As a consequence,
she can indeed ‘guess a path’ through the structure.

Details of the proof that L(A1) is indeed the class K1 are left to the reader. �

Example 5.8 For a second example, let K2 be the class of pointed {g, y}-biflows
containing a path (starting at the designated point of the biflow) on which every
green node is eventually followed by a yellow one. Consider the Muller automaton
A2 = 〈A2, ap,∆2,M2〉, where A2 = {ap, ay, a>}, M2 =

{
{a>}, {ap}, {ap, ay}

}
, and ∆2

is given by

∆2(ap) := {(g, ay, a>), (g, a>, ay), (y, ap, a>), (y, a>, ap)},
∆2(ay) := {(g, ay, a>), (g, a>, ay), (y, ap, a>), (y, a>, ap)},
∆2(a>) := {(g, a>, a>), (y, a>, a>)},

As in the previous example, the presence of the ‘surely successful state’ a>, and the
shape of ∆2 makes that A2 guesses a path and checks whether it is of the right shape.
The state ap simply encodes that the automaton is on the path; the ay in addition
remembers that the path has passed a green state, but is still waiting to encounter a
yellow state. As before, proof details are left to the reader. �

Example 5.9 For a slightly different example, consider the Büchi tree automaton
A3 = 〈A3, as,∆3, F3〉 given by A3 = {as, ag, ay}, F3 = {ag}, and

∆3(a) := {(g, ag, ag), (y, ay, ay)}

for each a ∈ A3.
The basic intuition underlying the definition of A3 is that the state ag (ay, respec-

tively), encode that the previous node in the tree was colored green (yellow, respec-
tively). From this it is not too hard to derive that this automaton accepts exactly those
trees in which every path contains infinitely many green points. �

Example 5.10 Let K4 denote the class of green/yellow trees in which immediately
after each green node, a path starts which contains infinitely many yellow nodes. We
leave it for the reader to verify that K4 is the language recognized by the automaton
A4 = 〈A4, as,∆4,M4〉, where A4 = {as, ay}, M4 =

{
{as}, {ay}, {as, ay}

}
, and ∆4 is

given by
∆4(as) := {(g, ay, as), (g, as, ay), (y, as, as)},
∆4(ay) := {(y, ay, as), (y, as, ay)},

Here the state as is a bit like the surely successful state a> of earlier examples, the
difference being that every time a green node is met, the automaton starts the search
for a completely yellow path by activating the state ay. �
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Acceptance and bisimilarity

As in the case of stream automata, our approach towards tree automata is strongly
inspired by the links between the notions of bisimilarity between biflows and the accep-
tance of a biflow by an automaton. For C-biflows, the natural notion of a bisimulation
is the following.

Definition 5.11 Let S and S′ be two C-biflows. Then a nonempty relation Z ⊆ S×S ′
is a bisimulation if the following holds, for every (s, s′) ∈ Z:

(color) σC(s) = σ′C(s′);

(successor) both (σ0(s), σ
′
0(s

′)) and (σ1(s), σ
′
1(s

′)) belong to Z.

Two pointed biflows (S, s) and (S′, s′) are called bisimilar, notation: S, s ↔ S′, s′ if
there is some bisimulation Z linking s to s′. In case the biflows S and S′ are implicitly
understood, we may drop reference to them and simply call s and s′ bisimilar. �

On the class of binary trees, the notion of bisimilarity reduces to the identity relation,
and so it is not of use as a tool for comparing trees. This is not to say that it is not
of interest in the study of trees. For instance, some concepts pertaining to trees can
nicely be defined in terms of bisimilarity.

Definition 5.12 A binary tree over an alphabet C is called regular if it is bisimilar to
a finite biflow over C. �

To see how the acceptance game for tree automata relates to the notion of bisimi-
larity, we first characterize the notion of bisimilarity by game-theoretic means.

Definition 5.13 Let A = 〈A,α, a〉 and S = 〈S, σ, s〉 be two pointed biflows. The
bisimilarity game B(A,S) is the two player board game, of which the set of positions
and admissible moves are specified by Table 8. The winning condition of the game is
simple: ∃ wins all infinite games. �

Position Player Admissible moves
(a, s) ∈ A× S ∃ {{(α0(a), σ0(s)), (α1(a), σ1(s))} | αC(a) = σC(s)}
{(a0, s0), (a1, s1)} ⊆ A× S ∀ {(a0, s0), (a1, s1)}

Table 8: Bisimilarity game for biflows

We leave it for the reader to verify that a pair (a, s) ∈ A× S is a winning position
for ∃ iff a and s are bisimilar.
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As in the case of stream automata, one can see the acceptance game as a more
sophisticated version of the bisimilarity game. Again, the starting point is to think
of establishing a bisimulation between two pointed biflows in terms of one structure
〈A,α, aI〉 classifying the other, 〈S, σ, s0〉. Then to obtain the acceptance game for tree
automata, three modifications are to be made. On the one hand, make a restriction in
the sense that the classifying structure (the automaton) must be finite. On the other
hand, instead of demanding that the transition function be of the form α : A→ BCA,
allow the one-step unfolding of an automaton state a to be dynamically determined,
with ∃ choosing from a set ∆(a) ⊆ BCA of options. And finally, add an acceptance
condition allowing ∀ to win infinite matches as well.

It is straightforward to turn a finite biflow into an automaton which accepts the
biflow modulo bisimilarity.

Proposition 5.14 Let S = 〈S, σ〉 be a finite C-biflow. Define the map σ̂ : S → ℘(S)
by putting σ̂(s) := {σ(s)}, and let MS be the set ℘(S). Then for any point s ∈ S, and
any pointed C-biflow (S′, s′),

S, s↔ S′, s′ iff the automaton AS,s := 〈S, s, σ̂,MS〉 accepts (S′, s′).

Proof. A straightforward inspection reveals that the acceptance game A(AS,s@(s, s′))
is essentially identical to the bisimilarity game B(S,S′)@(s, s′). The point is that at a
position (t, t′), in the acceptance game, ∃ has no choice but to pick the element σ(t) as
the one-step realization of t, and after the resulting move (σ(s), s′) the match proceeds
as in the bisimilarity game. The winning condition of the acceptance game specifies
that ∃ should win all infinite matches, exactly as in the bisimilarity game. From these
observations the proof is immediate. qed

The following proposition, the proof of which is left as an exercise for the reader,
states that for any kind of tree automata, the associated recognizable languages are
closed under bisimilarity.

Proposition 5.15 Let A be a nondeterministic tree automaton, and let (S, s) ↔ (S′, s′)
be two bisimilar pointed biflows. Then A accepts S iff it accepts S′.

As a corollary, it follows that every biflow language is completely determined by its
tree members.

Recognizability

Just as for stream automata, an important topic in the theory of tree automata is
to compare the recognizing power associated with various acceptance conditions. As
always, one can use the method of latest appearance records to show the equivalence
of Muller and parity automata. It is not the case, however, that every language that is
recognized by a Muller or parity automaton is also recognized by a Büchi automaton.
Let us see an example.



Lectures on the modal µ-calculus 83

Example 5.16 Let K5 be the class of pointed biflows (S, s) over the alphabet C =
{g, y} such that every path starting from s contains at most finitely many green points.
We leave it to the reader to find a Muller or parity automaton for this language. It is
more interesting to see that there is no Büchi automaton B recognizing K.

I Further details to be supplied

�

When it comes to recognizability, another obvious question is how the power of
deterministic automata relates to that of the nondeterministic ones. We call an au-
tomaton 〈A, aI ,∆ : A→ ℘(BCA),Acc〉 deterministic if for all a ∈ A and all c ∈ C there
is a unique pair (a0, a1) such that (c, a0, a1) ∈ ∆(a). (Modulo the equivalence (26), this
is the standard definition of determinism.)

Here we arrive at a significant difference with stream automata. Deterministic tree
automata, even when equipped with a parity or Muller acceptance condition, do not
have the same recognizing power as the nondeterministic ones, as the following example
shows.

Example 5.17 Let T0 be the binary {g, y}-tree in which the left successor 0 = σ0(ε)
of the root ε is the unique green element, and let T1 be defined analogously with respect
to the right successor 1 = σ1(ε). It is not very hard to prove that any deterministic
tree automaton A that accepts both T0 and T1, will also accept the tree in which 0 and
1 together form the complete set of green elements. But then such an automaton A
cannot recognize the tree language L in which the root has exactly one green successor
(i.e., either 0 or 1 is green).

On the other hand, it is easily seen that L = L(A6), where A6 = {aI , ag, ay, a>}, aI
is the initial state, ∆6 is given by

∆6(aI) := {(g, ag, ay), (g, ay, ag), (y, ag, ay), (y, ay, ag)},
∆6(ag) := {(g, a>, a>)},
∆6(ay) := {(y, a>, a>)},
∆6(a>) := {(g, a>, a>), (y, a>, a>)},

and M6 =
{
{a>}

}
. �

This weakness of deterministic automata causes some nontrivial complications when
it comes to applications in logic. To see why this is so, recall that in the previous
Chapter we proved a Complementation Lemma (Proposition 4.27) as an direct corollary
of the determinization of stream automata. We can prove a complementation lemma
for tree automata as well, but instead of proving closure under complementation for a
‘simpler’, that is, deterministic, automata type, here we have to move to a more complex
kind of automaton. This new type of automaton, involving the notion of alternation,
will be introduced in section 5.3.
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5.2 Emptiness

This section concerns the problem, whether a given tree automaton recognizes any
pointed flow at all. For nondeterministic parity automata we shall prove two important
results. First, we show that if a nondeterministic parity automaton accepts a pointed
binary flow at all, it accepts a finite one. As an immediate corollary of this, we show
that every nonempty recognizable tree language contains a regular tree. As the second
result, we give an algorithm which decides, given a nondeterministic tree automaton A,
whether L(A) = ∅ or not. As we shall see later on, these two properties are crucial in
proving, respectively, the finite model property and decidability of the modal µ-calculus
for binary flows. In both cases, the key tool in our proof will be the following emptiness
game that we may associate with an automaton.

Definition 5.18 Let A = 〈A, aI ,∆,Ω〉 be a nondeterministic parity tree automaton.
Then the emptiness game G∅(A) is given by Table 9. The winning condition for infinite
matches is defined using the priority map for game positions (see the table) as a parity
condition. �

Position Player Admissible moves Priority
a ∈ A ∃ ∆(a) Ω(a)
((c, a0, a1), s) ∈ BCA ∀ {a0, a1} 0

Table 9: Emptiness game for nondeterministic parity tree automaton

Intuitively the reader may think of this game as the simultaneous projection on A
of all acceptance games of A, as should become clear from the proof of the theorem
below.

This result, Theorem 5.19, establishes a kind of strong finite model property for
tree automata: if a tree automaton accepts some biflow, it accepts a finite one. The
‘strength’ of the property lies in the fact, that the size of the finite biflow accepted
by the automaton is bounded by the size of the automaton. In fact, the biflow 〈S, σ〉
‘lives inside’ the automaton 〈A, aI ,∆,Ω〉, in the following sense. The set S of states is
a subset of the carrier A of the automaton, and for each s ∈ S, the coalgebra unfolding
σ(s) is one of the realizations enabled by A: σ(s) ∈ ∆(s).

One final remark: the proof of Theorem 5.19 involves a crucial application of the
Memory-Free Determinacy of parity games, a fundamental result that we will prove
and discuss in Chapter 7 on Board Games.

Theorem 5.19 Let A = 〈A, aI ,∆,Ω〉 be a nondeterministic parity tree automaton.
Then the following are equivalent:
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1. L(A) 6= ∅;

2. aI ∈ Win∃(G∅(A));

3. A accepts a pointed biflow (S, σ, aI) with S ⊆ A and σ(a) ∈ ∆(a) for all a ∈ A.

Proof. 1 ⇒ 2 Suppose that A accepts some pointed flow (S, s0). Then by definition,
∃ has a winning strategy in the acceptance game A(A,S)@(aI , s0). This strategy will
be the basis of her winning strategy in the emptiness game of A.

Concretely, in G∅(A)@aI , ∃ will maintain the following condition. Let

aIγ1a1γ2 . . . ak,

be an initial segment of an G∅(A)-match (with γi+1 ∈ ∆(ai) being the move of ∃ at posi-
tion ai). Then ∃ sees this match as the projection of a parallel match ofA(A,S)@(aI , s0)
where ∃ plays her winning strategy Φ:

(aI , s0) (γ1, b
1
0, b

1
1) {(b10, σ0(s0), (b

1
1, σ1(s0)} (a1 = b1i , s1 = σi(s0)) . . . (ak, sk) . . .

⇓ ⇓ ⇓ ⇓ ⇓
aI γ1 − a1 = b1i . . . an . . .

The existence of such a parallel match is easily proved by an inductive argument,
of which the base case is immediate by the shape (aI versus (aI , s0)) of the initial game
positions. Inductively assume that at stage k, the matches of G∅(A) and A(A,S) have
arrived at the positions ak and (ak, sk) respectively. Suppose that ∃’s winning strategy
in A(A,S)@(aI , s0) tells her to choose γ = (c, b0, b1) ∈ ∆(ak) at this position. Then
define γk+1 := γ, and let ∃ choose this γ at position ak of G∅(A). Note that since
this strategy of ∃ is supposed to be winning, it must be the case that c = σC(sk), so
that ∃ does not get stuck. Now suppose that in the match of G∅(A), ∀ chooses the
direction i, picking ak+1 := bi as the next position. Then, returning to the match of the
acceptance game, we may let ∀ choose the same direction i there, making (bi, σi(s)) the
next position. In other words, we have proved that ∃ can maintain the parallel match
for one more round.

Using this strategy in the emptiness game will then guarantee her to win the match,
since the associated sequence of A-states is the same for both matches, and the A(A,S)-
match ∃ plays according to her supposedly winning strategy.

2 ⇒ 3 Assume that ∃ has a winning strategy in the emptiness game starting from the
initial state aI of A. The key point of the emptiness game for parity automata is that
G∅(A)@aI is a parity game, and so we may without loss of generality assume that this
strategy is positional, see Theorem 7.21. In other words, we may represent it as a map
σ : A → BCA. Let W := Win∃(G∅(A)) be the set of positions in A that are winning
for ∃. We invite the reader to check that σ(a) ∈ BCW for all a ∈ W . Now define S be
the binary flow 〈W,σ〉. We claim that A accepts (S, aI)
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To see why this is the case, we will prove that (aI , aI) is a winning position in the
acceptance game A(A,S) initialized at (aI , s). The winning strategy that we may equip
∃ with in this game is in fact very simple:

• at position (a, s), pick (σ(a), s) as the next position if a = s ∈ Win∃(G∅(A)), and
choose a random element otherwise.

It can be proved that any match of the acceptance game in which ∃ uses this strategy,
can be ‘projected’ onto a match of the emptiness game in which she plays her winning
strategy:

(aI , aI) (σ(aI), aI) {(σi(aI), σi(aI)) | i ∈ 2} (a1, a1) (σ(a1), a1) . . . (an, an) . . .
⇓ ⇓ ⇓ ⇓ ⇓ ⇓
aI σ(aI) − a1 σ(a1) . . . an . . .

Given the winning conditions of A(A,S) and G∅(A) it is then immediate that the given
strategy indeed guarantees that ∃ wins any match starting at position (aI , aI).

3 ⇒ 1 This implication is a direct consequence of the definitions. qed

From the computational version of Memory-Free Determinacy we can derive the
following decidability result.

Theorem 5.20 There is an algorithm deciding, for a given nondeterministic parity
tree automaton A, whether L(A) is empty or not.

Proof. Consider the associated emptiness game of the input automaton A. Given the
fact that G∅(A) is a parity game, it follows from ?? that it is computable whether aI
is a winning position in this game or not. By the previous proposition, this provides
an algorithm which determines whether L(A) is empty or not. qed

5.3 Alternation

Earlier on we saw that we can model the acceptance procedure of a nondeterminis-
tic tree automaton as a two-player game. However, the interaction between the two
players is fairly limited; in particular, the only role of ∀ in the game is to select the
direction of the path in the flow. Allowing for some more interaction, we arrive at a
fundamental concept from theoretical computer science, viz., that of machine models
based on alternation. Roughly, the idea underlying the alternating machine model is
that, apart from existential choices made by the player that is working towards some
successful run of the machine, there are also universal choices yielding parallel runs
all of which have to be successful. For a more precise formulation of the concept, a
game-theoretic framework is best. For instance, game theory allows us to naturally
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generalize the notion of a run of a machine on an input object, to that of a match
being played in order to determine the behavior of a machine on a given input object.

There are many ways to cast this idea of interaction between players into a formal
model (see Remark 5.23 for some more discussion). In this Chapter, we will represent
the transition function of an alternating tree automaton as a map

∆ : A→ ℘℘(BCA).

Here the first power set symbol represents a choice for ∃, and the second one, a choice
for ∀.

Convention 5.21 In the sequel, when giving the transition function of an automaton
in set-theoretical format, we will frequently make an explicit reference to the player
whose choice is represented.

For instance, suppose that we are in a context where positions of the form (X, s) ∈
℘(Q)×S belong to player σ, and that the move that σ makes is determined by picking
an element q ∈ Q. Then we may write, whenever it may be helpful, ℘σ(Q) rather than
℘(Q). In particular, we will often write

∆ : A→ ℘∃℘∀(BCA).

for the transition map of an alternating tree automaton.

This brings us to the following definition.

Definition 5.22 An alternating C-tree automaton is a quadruple A = 〈A,∆,Acc, aI〉
such that ∆ : A → ℘∃℘∀(BCA) is the transition function, Acc ⊆ Aω is the acceptance
condition, and aI ∈ A is the initial state of the automaton.

The admissible moves of the acceptance game associated with these automata are
given in Table 10, and its winning conditions are standardly derived from the acceptance
condition Acc. An alternating C-tree automaton A = 〈A, aI ,∆,Acc〉 accepts a C-biflow
S = 〈S, s0, σ〉, if the pair (aI , s0) is a winning position for ∃ in the acceptance game
A(A,S). �

Any round of this acceptance game consists of four moves, which can be naturally
grouped together as follows:

static part: (a, s)
∃−→ (Γ, s)

∀−→ (γ, s);

dynamic part ((c, a0, a1), s)
∃−→ {(a0, s0), (a1, s1)}

∀−→ (ai, σi(s)).

The name ‘static’ refers to the fact that the match stays in the same point s of
the biflow, while the players interactively determine the ‘successor’ γ ∈ BCA of a.
Then, the ‘dynamic’ stage of the round is as in the bisimilarity game for biflows, see
Definition 5.13.
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Position Player Admissible moves
(a, s) ∈ A× S ∃ {(Γ, s) ∈ ℘∀(BCA)× S | Γ ∈ ∆(a)}
(Γ, s) ∈ ℘∀(BCA)× S ∀ {(γ, s) ∈ BCA× S | γ ∈ Γ}
((c, a0, a1), s) ∈ BCA× S ∃ {{(a0, σ0(s)), (a1, σ1(s))} | c = σC(s)}
{(a0, s0), (a1, s1)} ⊆ A× S ∀ {(a0, s0), (a1, s1)}

Table 10: Acceptance game for alternating tree automata

I Example to be supplied

Remark 5.23 The choice to represent alternation as a map

∆ : A→ ℘∃℘∀(BCA).

may look rather arbitrary. Why not take a map fromA to ℘∀℘∃(BCA), or to ℘∃℘∀℘∃(BCA)?
As we will see in Chapter 6 when we discuss a logical presentation of alternation, all
these formalizations are in fact equivalent. The one we chose in Definition 5.22 provides
a natural choice in this spectrum, because it corresponds to some disjunctive normal
form. �

5.4 From alternation to nondeterminism

In this section we will see that every alternating tree automaton can be effectively
transformed into an equivalent nondeterministic one. As we will see later on, this
result is of fundamental importance in the theory of tree automata and its application
in logic.

Theorem 5.24 There is an effective procedure transforming an alternating parity tree
automaton into an equivalent nondeterministic parity tree automaton.

Before going into the technical details, let us first give some intuitions behind the
proof of Theorem 5.24. Let A = 〈A, aI ,∆,Ω〉 be a fixed alternating parity tree au-

tomaton. Our construction of its nondeterministic equivalent Â can be split into two
steps.

In the first (and most important) step of the construction, we define an nondeter-
ministic automaton A] via a variation of the power set construction. Roughly, the idea
is that a match of A(A],S) corresponds to ∃ playing various matches of A(A,S), all
on the same path through S. The automaton A] will allow ∃ to take care of all ∀’s
A-moves in parallel. (This only applies to his moves in the static part of the game. We
need not worry about ∀’s moves in the dynamic part since these concern a choice of
direction only, and this choice will still be assigned to ∀ in the nondeterministic case.)
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As a consequence, each basic position (R, s) of A(A],S) should somehow encode a col-
lection of basic positions in A(A,S). However, if we would simply take the states of A]

to be macro-states of A, i.e., subsets of A, we would get into trouble when defining the
acceptance condition of A, similar to the problems one encounters when determinizing
stream automata, see 4.4. An elegant way out is provided by defining the carrier set A]

of A] to be the set of binary relations over A, and to link A]-sequences and A-sequences
via the notion of a trace.

Definition 5.25 Given an infinite word ρ = R1R2R3 . . . over the set A] of binary
relations over a set A, a trace through ρ is a finite A-word α = a0a1a2 . . . ak, or an
A-stream α = a0a1a2 . . . , such that aiRi+1ai+1 for all i < k (respectively, for all i < ω).
�

The key idea behind the definition of A] and the proof of its equivalence to A, is
that with each A(A],S)-match

(R1, s1)(R2, s2)(R3, s3) . . .

and each trace a0a1a2 through R1R2R3 . . . we may associate an A(A,S)-match

(a1, s1)(a2, s2)(a3, s3) . . .

and conversely. This explains the winning condition of the automaton A]: a A]-stream
should be winning for ∃ if all traces through it are winning according to the acceptance
condition of A. From now on we focus on automata with parity conditions.

Definition 5.26 Relative to a parity condition Ω on A, call a trace α ∈ Aω bad if it
is infinite and the maximum priority occurring infinitely often on α, is an odd number.
Let NBTΩ denote the set of infinite A]-words that contain no bad traces relative to Ω.
�

While we can establish that A], equipped with the acceptance condition NBTΩ, is
equivalent to A, its own acceptance condition clearly is not a parity condition. The
second part of the construction then consists of showing that A] can be replaced with
a nondeterministic automaton of which the acceptance condition is of the required
format.

The automaton A]

Before giving the formal details, let us first provide some further intuitions behind the
definition of A]. Our starting point is that a state R of A] encodes the macro-state
Ran(R) := {b ∈ A | (a, b) ∈ R for some a ∈ A}, that is, the range of R. This already
suffices to motivate the definition of the initial state of A]:

RI := {(aI , aI)}
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In order to gather some intuitions concerning the definition of ∆], consider a biflow
S and a position of the form (R, s) in the acceptance game G] = A(A],S). Let c denote
the color of s. Take a state a ∈ Ran(R), and consider the set ∆(a) of ∃’s choices at
position (a, s) in the game G = A(A,S). The first observation is that if ∃ picks a set
Γ ∈ ∆(a), she better makes sure that all elements of Γ are of the form (c′, b0, b1) with
c′ = c, or else she would give ∀ an almost immediate win.

So, assume that ∃ has chosen an element Γ ∈ ∆c(a), with

∆c(a) := {Γ ∈ ∆(a) | c′ = c for all (c′, b0, b1) ∈ Γ}.

(If no such Γ exists, then it is to be expected that ∆](R) = ∅, with the effect that ∃
loses any match at any position (R, s).)

The crucial question is now, for each i = 0, 1: For which states b in A can ∃ expect
the pair (b, σi(s)) as the next basic position of the G-match (i.e., after (a, s))? Given
the key idea behind the definition of the automaton A] (see the discussion following
Definition 5.25), the point is that, for each such b, the pair (a, b) would form a possible
continuation of a trace through any A]-sequence ending at relation R. For an answer
to the crucial question, observe that bi ∈ A is such a state iff ∀ can choose a triple
(c, b0, b1) ∈ Γ, and then decide to go in the direction i. Thus the set of these positions
can be denoted as πi(Γ), where πi : C×A×A→ A denotes the appropriate projection
function.

Finally, for the definition of ∆], the idea is that for each c ∈ C, the elements of
∆](R) of the form (c,Q0, Q1) are in direct correspondence with the set

{Γ : Ran(R) → ℘(BCA) | Γ(a) ∈ ∆c(a) for all a ∈ Ran(R)},

which represents the vector of reasonable choices available to ∃, on the assumption that
the current state of the automaton is an element of Ran(R). More precisely, ∆](R) will
be given by putting (c,Q0, Q1) ∈ ∆](R) iff, for some Γ in the above set, we have
Q0[a] = π0[Γ(a)] and Q1[a] = π1[Γ(a)], for all a ∈ Ran(R).

Definition 5.27 Let A = 〈A, aI ,∆,Ω〉 be an alternating parity tree automaton. A]

is given as the nondeterministic tree automaton A] := 〈A], RI ,∆
],NBTΩ〉. Here A] =

℘(A × A) is the set of binary relations on A, the initial state RI is the relation RI :=
{(aI , aI)}, and the transition function ∆] is given by

∆](R) :=
{
(c,Q0, Q1) ∈ BCA

] | ∀a ∈ Ran(R)∃Γa ∈ ∆c(a) (Q0[a], Q1[a]) = (π0[Γa], π1[Γa])
}
.

Finally, the acceptance condition NBTΩ is as in Definition 5.26. �

In the sequel, we will standardly abbreviate G := A(A,S) and G] := A(A],S).

Proposition 5.28 Let A = 〈A, aI ,∆,Ω〉 be an alternating parity tree automaton.
Then A is equivalent to A].
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Proof. Let S = 〈S, σ〉 be an arbitrary binary C-biflow, and let r be an arbitrary point
in S. We will prove that

A accepts (S, r) iff A] accepts (S, r), (27)

which clearly suffices to prove the proposition.

⇒ For the direction from left to right of (27), assume that A accepts the binary C-
biflow (S, r). Then by definition, (aI , r) is a winning position for ∃ in the acceptance
game G := A(A,S). The argument can be simplified a bit because G is a board game
with a parity acceptance condition: Without loss of generality assume the existence of
a winning strategy that is positional, that is, we may represent it as a map Φ : A×S →
℘(BCA).

Define the following (positional) strategy for ∃ in G]. At position (R, s), she picks
the pair Ψ(R, s) := (σC(s), Q0, Q1) ∈ C × A] × A], where Q0 and Q1 are given, by
putting for a ∈ A:

Qi[a] :=

{
πi[Φ(a, s)] if a ∈ Ran(R),
∅ otherwise.

Note that Ψ(R, s) is not guaranteed to belong to ∆](R), so it need not be a legitimate
move for ∃ at every position (R, s) of G]. Nevertheless, we claim that Ψ is a winning
strategy for ∃ in the game G] starting at (RI , r).

Our main technical claim in our proof is the following. Call a position (R, s) of G]
safe if (a, s) ∈ Win∃(G), for each a ∈ Ran(R).

Claim 1 Let (R, s) be a safe position of G], and let Ψ(R, s) = (c,Q0, Q1). Then for
each a ∈ Ran(R), each i ∈ {0, 1}, and each b ∈ Qi[a] there is a scenario for a round
of the game G, starting at position (a, s) and ending at (b, σi(s)), in which ∃ plays her
strategy Φ.

Proof of Claim Assume the conditions in the claim, and let a, b and i be as stated.
Consider the following round of the game G, starting at position (a, s).

• At position (a, s), ∃ plays her winning strategy, picking Φ(a, s) ∈ ∆(a), thus
making (Φ(a, s), s) the next position.

Recall that c = σC(s) by definition of Ψ. We may assume that Φ(a, s) ∈ ∆c(a), for
otherwise, ∀ could pick an element (c′, b0, b1) ∈ Φ(a, s) with c′ 6= c. Then ∃ would
get stuck at her next move, contradicting the assumptions that (a, s) ∈ Win∃(G) and
Φ is a winning strategy. But if Φ(a, s) ∈ ∆c(a), it follows from the definition of Ψ
that Qi[a] = πi[Φ(a, s)]. So from b ∈ Qi[a] we may infer the existence of a triple
(c′, b0, b1) ∈ Φ(a, s) with b = bi. Now continue the round of G as follows.

• At position (Φ(a, s), s), ∀ picks ((c′, b0, b1), s) as the next position.
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It follows from Φ(a, s) ∈ ∆c(a) that c′ = c, and so ∃ will not get stuck here.

• At position ((c′, b0, b1), s), ∃ moves to position {(b0, s0), (b1, s1)}.

• Subsequently, ∀ chooses (bi, s) as the next position, finishing the round.

The claim then follows from the fact that b = bi. J

The following claim justifies the terminology for safe positions.

Claim 2 Let (R, s) be a safe position of G]. Then Ψ(R, s) = (c,Q0, Q1) is a legitimate
move for ∃, she will not get stuck after this move, and the next basic position of G] will
also be safe.

Proof of Claim Write Ψ(R, s) = (c,Q0, Q1). In order to prove that Ψ(R, s) is a
legitimate move at position (R, s), we need to show that Ψ(R, s) ∈ ∆](R), and for this
purpose it suffices to find, for each a ∈ Ran(R), a Γ ∈ ∆c(a) with Qi[a] = πi[Γ]. But in
the proof of Claim 1 we showed that the set Γ = Φ(s, a) meets all these criteria. Note
too that since Γ ∈ ∆c(a), and c = σC(s) by definition of Ψ, ∃ will not get stuck after
this move.

For the final statement of the claim, let (Qi, σi(s)) be the next basic position of
the game G] after (R, s). Take an arbitrary element b ∈ Ran(Qi). It follows from the
definition of Ψ(R, s) that b ∈ Qi[a] for some a ∈ Ran(R), and so (b, σi(s)) ∈ Win∃(G)
by Claim 1. Since b was arbitrary, this shows that (Qi, σi(s)) is a safe position. J

Turning our attention to G]-matches starting at position (RI , r), we first observe
that by definition of RI and the assumption that (aI , r) ∈ Win∃(G), (RI , r) is a safe
position. But then it follows by iterative applications of Claim 2, that any Ψ-conform
match of G]@(RI , r) is infinite, and that all basic positions of such a match are safe.
Let

(R1, s1)(R2, s2)(R3, s3) . . .

be the sequence of basic positions of such a match. In order to prove that Ψ is a winning
strategy, it suffices to prove that there are no bad traces through R1R2 . . ..

But, again using Claim 1, we may inductively show that with each trace ρ =
a0a1a2 . . . through the A]-stream R1R2R3 . . . , we may associate a G-match with basic
positions

(a1, s1)(a2, s2) . . .

starting at position (a1, s1) = (aI , r), in which ∃ plays her strategy Φ. Since the strategy
Φ was assumed to be winning for the game initialized at (aI , r), this means that the
trace ρ cannot be bad.

From this it follows that the A]-stream R1R2R3 . . . does not contain a bad trace,
and so ∃ wins any match of G] starting at position (RI , r), as long as she sticks to her
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strategy Ψ. In other words: (RI , r) ∈ Win∃(G]), and so by definition, A] accepts (S, r),
as required.

⇐ For the opposite direction of (27), assume that A] accepts (S, r). In other words,
we may assume that there is a strategy f which is winning for ∃ in the game G] starting
at (RI , r). In order to show that A accepts (S, r), we need to prove that (aI , r) is a
winning position for ∃ in G.

We will equip ∃ with a strategy f ′, in the game G initialized at (aI , r), which has
the following property. For any (possibly finite) f ′-conform match (a1, s1)(a2, s2) . . . of
G, with a1 = aI and s1 = r, there is an f -conform match (R1, s1)(R2, s2) . . . of G], with
R1 = RI , satisfying the condition that

ai+1 ∈ Ri+1[ai] for every stage i. (28)

Hence, the sequence of A-states a0a1a2 . . . (with a0 = a1) induced by such a match is a
trace of the A]-sequence R0R1R2 . . . which we may associate with the f -conform match.
Since f is by assumption winning for ∃, by definition of the winning condition NBTΩ

of A], the (maximum parity occurring infinitely often on) the trace must be even. This
will guarantee that ∃ wins all infinite matches of the game. Hence, it suffices to prove
that at any finite stage of an f ′-conform match, she either wins immediately, or else
she can keep the above condition for one more round.

Suppose then that ∃ has been able to keep this condition for k steps. That is,
with the partial G-match (s0, a0) . . . (sk, ak) (where aI = a0) we may associate a partial,
f -conform G]-match (s0, R0) . . . (sk, Rk) such that R0 = RI and

ai+1 ∈ Ri+1[ai] for all 0 < i < k. (29)

For notational convenience, write a = ak, R = Rk and s = sk, so we have a ∈ Ran(R).
Let (c,Q0, Q1) ∈ BCA

] be the move dictated by ∃’s strategy f in G]. Since f is a
winning strategy for ∃ this move must be legitimate, that is, (c,Q0, Q1) ∈ ∆](R). We
may also infer that c = σC(s), for otherwise, ∃ would get stuck immediately after this
move, and lose.

Let us now define ∃’s strategy f ′ in round k + 1 of G. Since (c,Q0, Q1) ∈ BCA
],

by definition of ∆], and the fact that a ∈ Ran(R), there is some Γ ∈ ∆c(a) such that
Qi[a] = πi[Γ], for i ∈ {0, 1}. This Γ is the next move of ∃ in the game G.

If Γ = ∅, then ∃ wins right away, in which case we are done. So assume that Γ 6= ∅,
and suppose that ∀ responds to ∃’s move with a triple (c′, b0, b1) ∈ Γ. Observe first that
c′ = c = σC(s), since Γ ∈ ∆c(a) and c = σC(s). From this it follows that ∃ does not
get stuck at position ((c′, b0, b1), s), and so she may safely move to the next position,
{(b0, σ0(s)), (b1, σ1(s))}.

Now suppose that at this stage of the match, ∀ chooses (ak+1, sk+1) ∈ {(b0, σ0(s)), (b1, σ1(s))}
as the next basic position. Let i be such that bi = ak+1 and σi(s) = sk+1, and let ∀, in
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G], at position ((c,Q0, Q1), sk+1) choose direction i, making (Qi, sk+1) the next (basic)
position of the match. That is, we define Rk+1 := Qi.

In order to prove (29) for k + 1, it suffices to show that (ak, ak+1) ∈ Rk+1, that is,
(a, bi) ∈ Qi. But this follows from the observation that bi = πi(c, b0, b1) ∈ πi[Γ] = Qi[a].
qed

Regular automata

In the previous subsection we defined a nondeterministic tree automaton A] and proved
it to be equivalent to the given automaton A = 〈A, aI ,∆,Ω〉. The problem with the
automaton A] is that its acceptance condition NBTΩ ⊆ (A])ω is not given by a parity
function. We will now see that this problem can easily be overcome since NBTΩ has
the form of an ω-regular language over the language A], that is, it is recognized by
some stream automaton.

Definition 5.29 An automaton A = 〈A, aI ,∆,Acc〉 is called ω-regular if Acc ⊆ Aω is
an ω-regular language. �

In this section we shall prove that, given an regular tree automaton A of which
the acceptance condition is given by some deterministic stream automaton Z, we can
effectively construct a parity automaton A� Z that is equivalent to A. First however,
we show that, indeed, A] is a regular automaton, by constructing a stream automaton
recognizing the ω-language NBTΩ.

Proposition 5.30 Let A be some finite set, and let Ω : A→ ω be a parity function on
A. Then the set NBTΩ is an ω-regular language over the alphabet A].

Proof. First we define a nondeterministic A]-stream parity automaton B which accepts
exactly those infinite A]-streams that do contain a bad trace. Given the properties of
parity stream automata it is fairly straightforward to continue from here. First, take
a deterministic equivalent B′ of B; such an automaton exists by Theorem 4.26. And
second, since B′ is deterministic, it is easy to perform complementation on it, that is,
define an automaton C that accepts exactly those A]-streams that are rejected by B′.
In short: Lω(C) = (A])ω \ Lω(B′) = (A])ω \ Lω(B). Clearly then Lω(C) = NBTΩ.

For the definition of B, take an object bI 6∈ A, and define B := A ∪ {bI}. Let
∆ : B × A] → ℘(B) be given by putting

∆(b, R) :=

{
Ran(R) if b = bI ,
R[b] if b ∈ A,

and define Ω+1 by putting Ω+1(a) := Ω(a) + 1 for a ∈ A, and Ω+(bI) := 0. Then B is
the automaton 〈B, bI ,∆,Ω+1〉.
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It is immediate from the definitions that bI
R−→ a iff a ∈ Ran(R), that is, if there is

some a′ ∈ A such that a′Ra. From this and the definition of ∆ it follows that

bI
R1−→ a1

R2−→ a2
R3−→ . . .

is a run of B iff there is some a0 ∈ A such that a0a1a2 . . . is a trace through R1R2 . . .
Then the definition of Ω+1 ensures that B indeed accepts those A]-streams that contain
a bad trace. qed

It follows from Proposition 5.30 that the automaton A] defined in the previous
section is a regular automaton. Hence we have proved the main result of this section
if we can show that every nondeterministic regular tree automaton can be replaced
with one with a parity acceptance condition. This is what we will focus on now. In
fact, we will effectively transform a nondeterministic, regular tree automaton into an
equivalent parity automaton, at least if we are also given a word automaton recognizing
the ω-regular language which forms the acceptance condition of the tree automaton.

Definition 5.31 Let Z = 〈Z, zI , δ,Ω〉 be a deterministic parity A-stream automaton,
and let A = 〈A, aI ,∆,Acc〉 be a nondeterministic tree automaton. Then A � Z is the
nondeterministic parity tree automaton given as A�Z = 〈A×Z, (aI , zI),∆δ,Ψ〉, where
∆δ : A× Z → ℘(BC(A× Z)) is given by

∆δ(a, z) := {(c, (a0, δ(z, a0)), (a1, δ(z, a1))) ∈ BC(A× Z) | (c, a0, a1) ∈ ∆(a)} ,

and Ψ : A× Z → ω by

Ψ(a, z) := Ω(z).

�

Theorem 5.32 Let Z = 〈Z, zI , δ,Ω〉 be a deterministic parity stream automaton, and
let A = 〈A, aI ,∆,Acc〉 be a nondeterministic tree automaton such that Acc = Lω(Z).
Then A and A� Z are equivalent.

I Proof to be supplied

Proof of Theorem 5.24

For a proof of Theorem 5.24, it suffices to combine the results of the previous two
subsections.

I Details to be supplied
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5.5 Notes

Tree automata, as finite devices operating on infinite trees, were introduced by Rabin
in his seminal paper [27]. The concept of alternation, introduced by Chandra, Kozen
& Stockmeyer [6], was brought to tree automata by Muller & Schupp [20]. The result
that alternating automata can be simulated by nondeterministic ones is due to Muller
& Schupp [21].

5.6 Exercises

Exercise 5.1 Consider the alphabet C = {b, g, y}.

(a) Construct a C-tree parity automaton A1 that accepts the class of pointed C-
biflows (S, s) with the property that every path starting from s contains at most
finitely many ‘green’ points (i.e., points coloured with ‘g’).

(b) Construct a C-tree Muller automaton A2 such that A2 accepts the class of pointed
C-biflows (S, s) with the property that there exists a path starting from s such
that every green node on this path has exactly one yellow son.

Exercise 5.2 (a) Let A = (A,∆,Acc, aI) be a non-deterministic C-tree automaton
for some finite alphabet C and let (S1, s1) and (S2, s2) be pointed C-biflows such
that (S1, s1) ↔ (S2, s2). Show that A accepts (S1, s1) iff A accepts (S2, s2).

(b) Let L1 and L2 be C-biflow languages and suppose that there are C-tree automata
A1 and A2 such that Ai recognizes the language Li for i ∈ {1, 2}. Show that there
is a C-tree automata A∩ such that A∩ accepts L1 ∩ L2.
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I introduction: logic and automata

Throughout this chapter we will be dealing with a set P of proposition letters. Recall
that the set µMFL2(P) of modal fixpoint formulas for binary flows, over P, is given as
follows:

ϕ ::= p | ¬p | ⊥ | > | ϕ ∨ ϕ | ϕ ∧ ϕ | ©iϕ | µx.ϕ | νx.ϕ,

where p, x ∈ P, and i ∈ {0, 1}, and all occurrences of x in µx.ϕ and νx.ϕ must be
positive. In order to compare formulas of this language to tree automata, we will fix
the set C := ℘P as the alphabet or colour set of the automata under consideration.
Observe that with this definition, we may indeed identify C-biflows with Kripke models
(based on biflows) for the language P.

I overview of chapter

6.1 Logical presentations of automata

In the previous chapter, we presented the choice of a player as a set of options. This
set-theoretic presentation is fairly rigid in that it fixed the order and the role of the two
players in the acceptance game — see our discussion in and preceding Convention 5.21.
An alternative, logic-based approach, uses formulas to guide the dynamics of the ac-
ceptance games associated with the automaton. In particular, in order to represent
players’ choices, we employ lattice connectives : disjunctions for ∃, conjunctions for ∀.
For instance, we might have chosen to define nondeterministic tree automata as struc-
tures with a transition function mapping a state a of the automaton to a disjunction
of pairs in BCA. In this set-up we would represent a set ∆(a) = {α1, . . . , αk} ⊆ BCA
by the term

∨
1≤i≤k αi. In case ∆(a) = ∅ this would yield the term

∨
∅ = ⊥. To

formalize this approach, we introduce the following syntax.

Definition 6.1 Given a set X, let SLatt(X) denote the set of finite disjunctions (semi-
lattice terms) of elements of X:

ϕ ::= x ∈ X |
∨

Φ,

whereas Latt(X) denotes the set of all finite lattice terms of elements of X:

ϕ ::= x ∈ X |
∨

Φ |
∧

Φ.

Here Φ denotes a finite set of semilattice terms (lattice terms, respectively). �
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Given this definition, we could now present alternating tree automata as struc-
tures A = 〈A,∆,Acc, qI〉, where the transition map is given as a function ∆ : A →
Latt(BCA), and the acceptance game is given by the table below. Since it is not a pri-
ori known whether ∆(a) is a conjunction or a disjunction, we cannot assign a position
of the form (a, s) to one of the players. This explains the ‘automatic’ move at basic
positions.

Position Player Admissible moves
(a, s) ∈ A× S − {(∆(a), s)}
(
∨

Φ, s) ∈ Latt(BCA)× S ∃ {(ϕ, s) | ϕ ∈ Φ}
(
∧

Φ, s) ∈ Latt(BCA)× S ∀ {(ϕ, s) | ϕ ∈ Φ}
((c, a0, a1), s) ∈ BCA× S ∃ {{(a0, σ0(s)), (a1, σ1(s))} | c = σC(s)}
{(a0, s0), (a1, s1)} ⊆ A× S ∀ {(a0, s0), (a1, s1)}

However, we may (and will) push the logical approach a bit further, and create even
more symmetry between the two players by giving a ‘logical deconstruction’ of elements
(c, a0, a1) ∈ BCA. Since ∃ loses a match at position

(
(c, a0, a1), s

)
if the color of s is

distinct from c, and ∀ may choose a successor, a position of the form ((c, a0, a1), s) can
be identified with a position ((c ∧ ©0a0 ∧ ©1a1), s), where the ‘formulas’ c, ©0a0 and
©1a1 get their obvious meaning (see Table 11 below). Given the connection between
colors and sets of proposition letters, there is in fact no need to stop here: we may
continue and ‘deconstruct’ any ‘formula’ c into its description in terms of proposition
letters:

∧
p∈c p ∧

∧
p6∈c ¬p.

In other words, there are many ways to define the notion of a ‘logical automaton’,
and we will consider a number of these.

Definition 6.2 Given sets D and X, we let TLatt(D,X) := Latt
(
D ∪ {©ix | x ∈ X}

)
denote the set of tree lattice terms over D and X. Given the set P of proposition letters,
we define ±P := {p,¬p | p ∈ P}. �

Note that the set TLatt(±P, X) consists of modal formulas where elements from P
occur at modal depth zero, and all elements of X occur only positively, and at modal
depth one.

Definition 6.3 A logical tree automaton is a quadruple A = 〈A,∆,Acc, qI〉 where qI
and Acc are as usual, and the transition function ∆ has one of the following three
shapes: ∆ : A→ Latt(BCA), ∆ : A→ TLatt(C,A), or ∆ : A→ TLatt(±P, A).

Given a logical C-tree automaton A = 〈A, qI ,∆,Acc〉 and a C-flow S = 〈S, σ〉, the
acceptance game A(A,S) is given by the rules of Table 11 (or the table given earlier
in this section), together with the winning conditions that we saw for tree automata.
A logical C-tree automaton A = 〈A, qI ,∆,Acc〉 accepts a pointed binary C-flow S =
〈S, s0, σ〉, if the pair (qI , s0) is a winning position for ∃ in the acceptance game A(A,S).
�
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Position Player Admissible moves
(a, s) ∈ A× S − {(∆(a), s)}
(
∨

Φ, s) ∃ {(ϕ, s) | ϕ ∈ Φ}
(
∧

Φ, s) ∀ {(ϕ, s) | ϕ ∈ Φ}
(©ia, s) − {(a, σi(s)}
(c, s) ∈ C × S, c 6= σC(s) ∃ ∅
(c, s) ∈ C × S, c = σC(s) ∀ ∅
(p, s) ∈ P× S, p ∈ σC(s) ∀ ∅
(p, s) ∈ P× S, p 6∈ σC(s) ∃ ∅
(¬p, s) ∈ P× S, p ∈ σC(s) ∃ ∅
(¬p, s) ∈ P× S, p 6∈ σC(s) ∀ ∅

Table 11: Acceptance game for logical tree automaton

As we will see now, the set-theoretic and three logical presentations of alternating
tree automata are in fact equivalent, in the sense that there are effective transformations
in all directions.

Proposition 6.4 Fix a set P of proposition letters, and let C := ℘P. Consider tree
automata of the form A = (A, aI ,∆,Acc), where the transition map ∆ has one of the
following four formats:
(1) ∆ : A→ ℘∃℘∀BCA,
(2) ∆ : A→ Latt(BCA),
(3) ∆ : A→ TLatt(C,A),
(4) ∆ : A→ TLatt(±P, A).
Then there are effective transformations transforming an automaton of any one kind
above to an equivalent automaton of any other kind.

From our discussion above it is easy to derive the transformations 1 → 2 → 3 → 4.
For the transformations in the opposite direction, two new ideas are needed that we
will formulate independently for future reference. First, in order to handle some of
the atomic ‘formulas’ of logical automata, we add a new, so-called true state to the
automaton, that is, a state from which ∃ has a guaranteed win.

Definition 6.5 A state a of an alternating automaton A = 〈A, qI ,∆,Acc〉 is called a
true state if ∆(a) = {∅} , and a false state if ∆(a) = ∅. In case of a logical automaton,
a true state has ∆(a) = >, and a false state has ∆(a) = ⊥. These states are usually
denoted as a> and a⊥, respectively. �

The second idea that we need to arrive at a set-theoretical representation of the au-
tomaton, is to bring this lattice term into a distributive normal form. The justification
of this step is provided by the proposition below.
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Proposition 6.6 Let A = 〈A, qI ,∆,Acc〉 and A′ = 〈A, qI ,∆′,Acc〉 be two logical tree
automata such that for all a ∈ A, ∆(a) and ∆′(a) are equivalent (as classical proposi-
tional formulas). Then A and A′ are equivalent automata.

I Proof to be added

Proof of Proposition 6.4. As mentioned, the transformations 1 → 2 → 3 → 4 can
easily be defined on the basis of our discussion leading to Definition 6.3. We now discuss
the opposite transformations.

4 → 3 Given a logical automaton A = 〈A, aI ,∆,Acc〉 with ∆ : A → TLatt(±P, A),
replace, in each ∆(a), each occcurrence of p with the disjunction

∨
{c ∈ C | p ∈ C},

and each occurrence of ¬p with
∨
{c ∈ C | p 6∈ C}. We leave it for the reader to verify

that this transforms A into an equivalent automaton of the right kind.

3 → 2 Starting from a logical automaton A = 〈A, aI ,∆,Acc〉 with ∆ : A→ TLatt(C,A),
first add a true state a> to A. The idea is then to replace, in each ∆(a) with a ∈ A,
the atomic terms occurring in ∆(a), with the following expressions:

c 7→ c ∧ ©0a> ∧ ©1a>
©0a0 7→

∨
{c ∧ ©0a0 ∧ ©1a> | c ∈ C}

©1a1 7→
∨
{c ∧ ©0a> ∧ ©1a1 | c ∈ C}

We leave it for the reader to verify that the resulting automaton A′ is equivalent to A.
Finally, since for each a′ ∈ A′, each atomic term in ∆′(a′) occurs in a subformula of
the form c ∧©0a0 ∧©1a1, we may easily transform A′ into an equivalent automaton of
type 2 above.

2 → 1 As a corollary of Proposition 6.6, every logical alternating automaton A =
〈A, qI ,∆,Acc〉 with ∆ : A→ Latt(BCA) can be brought into distributive normal form,
namely, by rewriting every ∆(a) as an equivalent disjunction of conjunctions of atomic
terms. But such a disjunction of conjunctions can also be represented as a set of sets:∨

i∈I

∧
j∈Ji

ϕij
∼=

{
{ϕij | j ∈ Ji} | i ∈ I

}
. (30)

Replacing, for each state a ∈ A, the left hand side of (30) by the right hand side, we
obtain an equivalent alternating tree automaton A′. We leave the final details to the
reader. qed

6.2 From formulas to automata

I introductory remarks
(now focus on parity automata)
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Theorem 6.7 There is an effective procedure that, given a binary modal flow formula
ξ, returns an alternating parity tree automaton Aξ that is equivalent to ξ.

I Corollary: decidability of logic

I finite model property of µMFL2

By the results in the previous section it suffices to find an equivalent logical au-
tomaton for the formula ξ. In fact, if we are willing to stretch our definitions a little
bit, allowing our automata to make so-called silent moves, then it is easy to find some
kind of automaton for a formula. This first candidate will have the set of subformulas
of ξ as its carrier set. The remainder of the section then consists in massaging this first
candidate into the right shape of a logical tree automaton.

Definition 6.8 A silent-step tree automaton over P is an automaton A = 〈A, aI ,∆,Ω〉,
with ∆ : A → TLatt(C ∪ A,A) or ∆ : A → TLatt(±P ∪ A,A). The acceptance
game A(A,S) associated with such an automaton A and a pointed binary flow (S, s) is
determined by the rules given in Table 11. �

The only difference with the logical automata of Definition 6.3 is that here, terms
∆(a) may contain unguarded occurrences of states in A, that is, occurrences of states
b ∈ A that are not in the scope of a modal operator. For instance, we may have
∆(a) = a. In case ∆(a) indeed contains an unguarded occurrence of a state b, there
may be rounds of the acceptance game in which the automaton changes state from a
to b while play stays in the same position of the flow — this explains the name ‘silent
step’. We will come back to this issue after the next proposition, which states that any
modal formula can be easily transformed into an equivalent silent-step automaton.

Proposition 6.9 There is an effective procedure that, given a binary modal flow for-
mula ξ, returns a silent-step parity automaton that is equivalent to ξ.

Proof. The automaton Bξ is directly based on the formula structure of ξ, that we may
without loss of generality assume to be clean. As usual we let, for a bound variable x
of ξ, ηxx.δx denote the unique subformula of ξ where x is bound.

For the states of Bξ we could take the subformulas of ξ themselves, but the definition
may be easier to understand if we make a formal distinction between formulas and
states, by putting

B := {ϕ̂ | ϕ ∈ Sfor(ξ)}.

The initial state bI of Bξ will clearly be the state ξ̂.
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In order to define the transition function ∆ we make a case distinction as to the
kind of subformula that we are dealing with.

∆(ϕ̂ ∨ ψ) := ϕ̂ ∨ ψ̂
∆(ϕ̂ ∧ ψ) := ϕ̂ ∧ ψ̂
∆(©̂iϕ) := ©iϕ̂

∆(η̂x.δ) := δ̂

∆(x̂) := δ̂x,

whereas for the atomic formulas we take

∆(p̂) :=
∨
{c ∈ C | p ∈ c} ∆(>̂) := >

∆(¬̂p) :=
∨
{c ∈ C | p 6∈ c} ∆(⊥̂) := ⊥.

We now turn to the parity function Ω. The only subformulas of which the parity
will be of interest are the variables that may get unfolded in the acceptance game for
ξ. That is, unless ϕ is a bound variable of ξ, we put Ω(ϕ̂) := 0. This leaves the task
of defining of Ω(x̂) where x ∈ BV (ξ). Recall that ≤ξ is the dependency order on these
bound variables. It is in fact easy to define a function Ω that is compatible with this
order, in the sense that

• Ω(x̂) is odd if x is a µ-variable, and even if x is a ν-variable, and

• Ω(x̂) < Ω(ŷ) if x <ξ y.

The details of such a definition are left as an exercise to the reader.
With this definition it is easy to see that for any Kripke model S, the acceptance

game A for Bξ and S on the one hand, and the evaluation game E for ξ and S on the
other, are very similar. It is in fact not hard to prove that for any state s of S, and for
any subformula ϕ of ξ, (ϕ, s) ∈ Win∃(E) iff (ϕ̂, s) ∈ Win∃(A). qed

For many purposes it is no problem to work with silent-step autamata, but there are
situations as well when we need to work with automata that are guarded in the sense
that the terms ∆(a) only contain guarded occurrences of states of A. Fortunately, we
may massage silent-step automata into the right guarded shape.

Proposition 6.10 There is an effective procedure that, given a silent-step tree automa-
ton, returns an equivalent logical automaton.

Proof. The main idea of the proof is to use semi-guarded automata as an intermediate
step. Formally, a silent-step tree automaton A is called semiguarded if Ω(b) > Ω(a)
whenever b�a. Here we define the relation � ⊆ A×A by putting b�a if ∆(a) contains
an unguarded occurrence of b.
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Claim 1 There is an effective procedure that, given a silent-step tree automaton, re-
turns an equivalent semiguarded one.

Proof of Claim Fix the silent-step automaton A = (A, aI ,∆,Ω), where ∆ is of the
form ∆ : A→ TLatt(±P ∪ A,A).

Without loss of generality, we may assume that Ω is injective. By induction we
will show that for all i ≥ −1 we may find an automaton Ai = (A, aI ,∆i,Ω) which is
equivalent to A and satisfies

Ω(b) > min(Ω(a), i) for all a ∈ A and for all b� a. (31)

Clearly then the proposition is proved once i takes the value of the maximum parity of
all states in A.

Since the base case of the induction (i = −1) is immediate by the definition of parity
functions, we move on to the inductive case, for i+ 1. By the inductive hypothesis we
have that Ω(b) > min(Ω(a), i) for all a ∈ A and for all b� a. Now distinguish cases. If
there is no a ∈ A such that Ω(a) = i+ 1, we simply put Ai+1 := Ai, and we leave it to
the reader to prove that this Ai+1 satisfies the required constraints.

Now suppose that, on the other hand, i + 1 does belong to the range of Ω. We
only consider the case that i + 1 is odd — the case that it is even can be treated in
a similar fashion. By our assumption on Ω there is in fact a unique state b ∈ A such
that Ω(b) = i+ 1. Define, for any natural number j, Aj := {a ∈ A | Ω(a) ≥ j}, then it
easily follows from the induction hypothesis that ∆i(b) ∈ TLatt(±P∪Ai+1, A). Due to
the validity of the distributive laws in this context (see Proposition 6.6), without loss
of generality we may assume that ∆i(b) is of the form (b ∨ δ1) ∧ δ2, where b does not
appear in δ1 or δ2.

Let θ := δ1 ∧ δ2, and let, for any ϕ ∈ TLatt(±P∪A,A)), ϕ[θ/c] denote the result of
uniformly substituting θ for unguarded occurrences of b in the lattice term ϕ (guarded
occurrences of b remain untouched under this operation). Now define ∆i+1 as follows:

∆i+1(a) :=


∆i(a) if Ω(a) < i+ 1,
θ if Ω(a) = i+ 1 (i.e., a = b),
∆i(a)[θ/b] if Ω(a) > i+ 1.

From the fact that ∆i(b) ∈ ∆i(b) ∈ TLatt(±P ∪ Ai+1, A), and the assumption that b
does not occur unguarded in δ1 and δ2, it follows that θ ∈ Latt(Ai+2 ∪ ΩA). Using the
induction hypothesis, it is straighforward to derive from this that ∆i+1 satisfies (31)
for i+ 1, whence Ai+1 is at least of the right format.

It is thus left to prove that Ai+1 is equivalent to A, so by the induction hypothesis
it suffices to show that Ai+1 is equivalent to Ai. Fix some biflow S = (S, σ), then we
must show, for all points s0 ∈ S, that

(aI , s0) ∈ Win∃(A(Ai,S)) iff (aI , s0) ∈ Win∃(A(Ai+1,S)). (32)
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For the direction (⇐) of (32), let f be a history free winning strategy for ∃ in
Ai+1 := A(Ai+1,S). In order to define a strategy f ′ for her in Ai := A(Ai,S), suppose
that play of Ai has arrived at a position (ϕ, s) with ϕ ∈ TLatt(±P ∪ A,A). Let (a, s)
be the last basic position that we passed in this match, and distinguish cases:

If Ω(a) ≤ i+ 1 and ϕ 6= b ∨ δ1, then it is easy to see that (ϕ, s) must be a position of
the game Ai+1 as well, so that we may simply define f ′(ϕ, s) := f(ϕ, s). In this
case we say that (ϕ, s) is its own corresponding position.

If Ω(a) = i + 1 and ϕ = b ∨ δ1, then ∃ chooses f ′(b ∨ δ1, s) := (δ1, s). In this case,
(ϕ, s) has no corresponding position.

If Ω(a) > i+1, then the pair (ϕ[θ/b], s) must be a position of Ai+1; since we are dealing
with positions for ∃, ϕ must be a disjunction. Now define f ′(ϕ, s) := (ψ[θ/b], s),
where ψ is the disjunct of ϕ given by f(ϕ, s) = (ψ, s). Also, call (ϕ[θ/b], s) the
corresponding position, in Ai+1, of (ϕ, s).

Now consider an arbitrary match β of Ai, starting from (aI , s0), and such that ∃
plays according to the strategy described above. It is easy to see that if we (i) replace
every Ai-position in β with its corresponding Ai+1-position, (ii) erase all positions of
the form (b ∨ δ1, s), and (iii) leave positions of the form Z ⊆ A × S untouched, then
we obtain an f -conform match β′ of Ai+1. It follows by the assumption on f that β′ is
won by ∃.

Now let k be the highest parity occurring infinitely often in β. If k < i + 1, then
from a certain moment on, the matches β and β′ are identical ; clearly then, β is also
won by ∃. If k > i + 1, then it is not hard to see that k must also be the highest
priority occurring infinitely often in β′, so that again, ∃ is the winner of β. Now
suppose for contradiction that k = i + 1. Since ∃ never chooses b in a position of the
form (b∨ δ1, s), we may infer that positions of the form (b, s) occur infinitely often in β
because they come about in a different way. Note as well that from a certain moment
on, these positions are the ones with the highest parity. But then by definition this
must apply to the match β′ as well. From this it is easy to derive that i + 1 is the
highest parity occurring infinitely often in β′. This provides the desired contradiction
with the assumption on f , and thus proves that k 6= i+ 1.

It follows that in all cases, ∃ wins β, and since β was arbitrary, we have proved that
(aI , s0) is a winning position for ∃. This proves the direction (⇐) of (32); we omit the
proof for the other direction, which is similar. J

Claim 2 There is an effective procedure that, given a semiguarded modal tree au-
tomaton, returns an equivalent guarded one.

Proof of Claim Let A = 〈A, aI ,∆,Ω〉 be a semiguarded modal tree automaton. For
the definition of its guarded equivalent A′, we need some preparations.
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For each state a ∈ A, we will construct, in finitely many steps, a tree T (a), to-
gether with a labelling and a (partial) marking of the nodes of the tree. To set up the
construction, we start with the construction tree of the TLatt(A)-term ∆(a), seen as a
lattice term. The inner nodes of this tree are labelled with a connective (∨ or ∧), and
the leaves with a term of the form >, ⊥, p, ¬p, ©ib or b. Furthermore, the root of this
tree is marked ‘a’, while all other nodes of the initial tree are marked with the empty
list.

Now recursively, replace each leaf labelled b ∈ A with its construction tree, and
mark the leaf, which ahs become an inner node of the tree, with ‘b’. Repeat the process
until no leaves are left that are labelled with elements of A, and (thus) all leaves are
labelled with terms of the form >, ⊥, p, ¬p, or ©ib

It is not difficult to see that this process must terminate after finitely many steps.
The key observation here is that for any two states a, b ∈ A, we find b as the label of
some leaf of the construction tree of ∆(a) if and only if b�a. And since A is semiguarded
we have Ω(b) > Ω(a) if b� a. From this it follows that there are no infinite sequences
a0 � a1 � a2 � . . ., and so the algorithm must terminate.

We define T (a) as the tree that is constructed by the algorithm that we just de-
scribed. Clearly, T (a) can be seen as the construction tree of some guarded TLatt(A)-
term ∆(a). Now consider a match of the game A(A,S) which has arrived at a basic
position (a0, s) ∈ A × S. The key observation is that T (a) represents the static stage
of the continuation of this match, that is, the part that is played until the automaton
moves to a successor of s. The point is that this part of the game is completely deter-
mined by the disjuncts and conjuncts chosen by ∃ and ∀, respectively. More specifically,
a maximal path through T (a) corresponds to a partial match of A(A,S)@(a0, s) that
is maximal in the sense that it either ends in a win for one of the players, or else in a
position of the form (©ib, s), where ©ib is the label of the leaf corresponding to the last
element of the maximal path through T (a).

Now in principle, as the guarded equivalent of A we would like to take the structure
A := 〈A, aI ,∆,Ω〉. Unfortunately, while it would not be hard to see that for any
pointed binary flow (S, s), the boards of the two gamesA(A,S) andA(A,S) are virtually
identical (isomorphic modulo some automatic moves), they are rather different when
we look at parities. The problem is that in a term ∆(a) many original states of A are
‘hidden’, with the effect that their parities go unnoticed when playing the acceptance
game for A rather than for A.

To take care of this, with each leaf l of the tree T (a0) associate, apart from its label
©ilbl, also a unique sequence an � an−1 � · · ·� a0, consisting of the marks encountered
on the path leading from the root to the leaf l. Since the original automaton A is
semiguarded, we find that Ω(an) > Ω(an−1) > · · · > Ω(a0). So Π(a0, l) := Ω(an) is
the highest parity of these ai — corresponding to the highest parity encountered in
the static partial match of A(A,S) from basic position (a0, s) to the non-basic position
(©ilbl, s). The key idea in the definition of A′ is to assign this number Π(a0, l) as priority
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to the state bl — but then A′ needs various copies of the element b. Formulated more
precisely, we take a copy (a, n) of a for each n in the range Ω[A] of Ω. Thus we arrive
at the following definition.

Given the semiguarded automaton A = 〈A, aI ,∆,Ω〉, we define the automaton
A′ = 〈A′, a′I ,∆′,Ω′〉 as follows:

A′ := A× Ω[A],

a′I := (aI ,Ω(aI)),

Ω′(a, n) := n,

while ∆′(a, n) is the term ∆(a) where, for each leaf l of T (a) that has a label of the
form ©ib, this label is replaced with ©i(b,Π(a, l)).

On the basis of the earlier given motivation for this definition, the reader should be
able to prove that A and A′ are indeed equivalent. Furthermore, it is obvious that A′

is a guarded automaton. This suffices to prove the Proposition. J

The proof of Proposition 6.10 is immediate by the Claims 1 and 2. qed

Proof of Theorem 6.7. The proof of the Theorem now consists simply of glueing
together the Propositions 6.9 and 6.10. qed

6.3 From automata to formulas

I in other direction

Theorem 6.11 There is an effective procedure that, given an alternating tree automa-
ton A, returns a modal fixpoint formula ξA that is equivalent to A.

The key idea underlying the proof of this theorem is to view an automaton as a
system of equations, of which the variables correspond to the states of the automaton.
The proof of this theorem will be by induction on a notion of ‘complexity’ of the
automaton which is called index.

Definition 6.12 Let A = 〈A, aI ,∆,Ω〉 be a logical automaton. The pair 〈A,EA〉 is
called the graph of A, where EA ⊆ A× A is defined by putting EAab holds if b occurs
in ∆(a). The index of A is defined as follows:

ind(A) :=

{
−1 if 〈A,EA〉 has no cycles
max{Ω(c) | c lies on a cycle of 〈A,EA〉} otherwise,

where SCC(A) denotes the set of strongly connected components of A.
�
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Remark 6.13 In fact, the definition above is a simplified version of the proper defini-
tion of index, but it suffices for the present purposes. We will come back to this issue
in a later version of these notes. �

Proof of Theorem 6.11. For a proper formulation of the inductive hypothesis we
introduce yet another type of automaton, the so-called (P, X)-automaton, which differs
from automata over the set of variables P∪X in that variables inX may occur within the
scope of a modality, and only there. Formally, given sets P and X, a (P, X)-automaton
is a structure A = 〈A, aI ,∆,Ω〉, where ∆ : A→ TLatt(±P, X ∪ A). Note that (P, X)-
automata operate on P ∪X-biflow models, and that ordinary logical automata can be
seen as (P,∅)-automata. The notion of acceptance for (P, X)-automata is defined as
expected.

We extend the definition of index to (P, X)-automata in the obvious way, so that
we may indeed use induction on the index in order to prove the following key claim.

Claim 1 There is an effective procedure that, given a (P, X)-automaton A, returns
a modal fixpoint formula ξA that is equivalent to A, and in which all occurrences of
variables in X are positive.

Proof of Claim As announced, we will prove the proposition by induction on the
index m := ind(A) of A.

In the base case of the induction, where ind(A) = −1, we are dealing with an
automaton without any strongly connected components. In this case we can easily
obtain the formula ξA as a basic modal formula (that is, no fixpoints involved), as
follows. For a ∈ A, let Aa be the automaton 〈A, a,∆,Ω〉, i.e., the same as A, but with
a as its starting state. Define the height h(a) of a state a as the length of the longest
EA-path starting in a. Clearly every state has a finite height, since the automaton has
no SCCs. Hence we may use a subinduction on the height of states to define a map ξ
that associates, with each state a, a basic modal formula ξa which is equivalent to Aa.
In the base case of this subinduction, we are dealing with states of height zero. Then,
by definition, in the term ∆(a) of such a state a there are no occurrences of states. In
other words, ∆(a) is a basic modal logic formula and so we may put ξa := ∆(a). The
equivalence of Aa and ξa is immediate. For the inductive case we consider a state a with
h(a) > 0. Every b occurring in ∆(a) has lesser height than a, and so by the inductive
hypothesis for each such b there is a formula ξb equivalent to the automaton Ab. We
define ξa as the formula we obtain from ∆(a) by substituting each b with ξb. We leave
it as an (easy) exercise for the reader to check that indeed, the resulting formula is
equivalent to the automaton Aa.

Now we turn to the inductive case, where ind(A) ≥ 0. Let M ⊆ A be the set
of states that belong to some strongly connected component of A, and actually have
parity ind(A). Then M is nonempty, say M = {a1, . . . , ak}. Without loss of generality
we may assume that the initial state aI of A does not belong to M .
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The main idea of the proof consists of removing the elements of M as states from
A, but at the same time adding them as variables. Formally, every term ∆(a) ∈
TLatt(P, X ∪A) is also a well-formed MLatt(P, (X ∪M) ∪ (A \M))-term, so that the
structure

AM := 〈A \M,aI ,∆�A\M ,Ω�A\M 〉

is a (P, X ∪M)-automaton. Furthermore, for each i ∈ {1, . . . , k}, we will consider the
automaton Ai, which is like the automaton AM , but with a copy of ai added as starting
state. (Note that we cannot take ai itself as the starting state since we need ai as a
variable.) Formally, put Ai := 〈Ai, ai,∆i,Ωi〉, where Ai is the set (A \M) ∪ {āi}; ∆i

is given by putting ∆i(a) := ∆(a) for a 6= āi, and ∆i(āi) := ∆(ai); for Ωi, we put
Ωi(a) := Ω(a) for a 6= āi, and Ωi(āi) := 0.

The inductive hypothesis applies to each of these automata. Thus we obtain fixed
point formulas ϕM , ϕ1, . . . , ϕk, all taking free variables from the set P ∪ X ∪M , and
such that for any P ∪X ∪M -model S and any point s in S, we have that AM accepts
(S, s) iff S, s 
 ϕM , and, for each i, Ai accepts (S, s) iff S, s 
 ϕi.

Clearly then, for any P ∪ X-model S, the k-tuple ϕ determines a monotone map
[[ϕ]]S : (P(S))k → (P(S))k given by

[[ϕ]]S,V (T1, . . . , Tk) := ([[ϕ1]]S[a 7→T ], . . . , [[ϕ1]]S[a 7→T ]).

Here S[a 7→ T ] denotes the variant of S with P ∪X ∪M -valuation V [a 7→ T ] given by

V [a 7→ T ](x) :=

{
Ti if x = ai ∈M,
V (x) if x ∈ P ∪X,

where V is the valuation of S.
It follows from standard fixed point theory (cf. the discussion following Proposi-

tion 3.9, of the Gaussian elimination method), that the least and greatest fixed points
of this map are given by µML-formulas. More precisely, there are formulas ϕµ1 , . . . , ϕ

µ
k

and ϕν1, . . . , ϕ
ν
k, all with free variables in P ∪X, such that

([[ϕµ1 ]]S, . . . , [[ϕµk ]]
S) is the least fixed point of [[ϕ]]S

for every P ∪ X-model S, and likewise for the greatest fixed point. Now define ξA as
the formula

ξA := ϕM [ϕη/a].

That is, we uniformly replace, in ϕM , each ai with the formula ϕηi , where η denotes µ
if ind(A) is odd, and ν if ind(A) is even.

In order to show that ξA is indeed equivalent to the automaton A, we need the
following auxiliary result.

Aai
is equivalent to ϕηi , for each i. (33)
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Here Aai
is the (P, X)-automaton A, but with ai as its starting state.

The proof of (33) is fairly similar to the proof of the Adequacy Theorem, whence
we omit further details for the moment.

I Further details to be supplied

Finally, in order to derive the equivalence of ξA and A, observe that it follows from
(33) and the inductive hypothesis on AM that, for any P ∪X-model S, and any state
s in S:

S, s 
 ξA iff AM accepts (S′, s),

where S′ is the P ∪ X ∪M -model which agrees with S on all variables in P ∪ X, and
makes the variable ai true at those states t such that Aai

accepts (S, t). Hence it suffices
to prove that

A accepts (S, s) iff AM accepts (S′, s). (34)

But this is in fact an easy exercise — further proof details are left to the reader. J

Since ordinary logical automata are (P,∅)-automata, Theorem 6.11 is an immediate
consequence of the Claim. qed

6.4 Closure properties

The class of recognizable tree languages has some nice closure properties These have
important applications, as we will see for instance in the next section, but they are
of interest in their own right too. Hence we devote this (fairly brief) subsection to
discussing and proving some of the more interesting closure properties.

Recall that a tree language L is called recognizable if there is a nondeterministic
tree automaton A such that L = Lt(A), and that the same applies to biflow languages.
By Theorem 5.24, in order to prove that some language is recognizable, it suffices to
find an alternating automaton for it. Throughout this section we will freely move from
one presentation of automata to another.

Closure under union and intersection

We first turn to the Boolean operations of union and intersection. In the framework of
alternating tree automata it is in fact not hard to show that the recognizable languages
are closed under these operations.

Proposition 6.14 Given two alternating parity tree automata A1 and A2 we can ef-
fectively construct alternating parity tree automata A∪ and A∩ such that L(A∪) =
L(A1) ∪ L(A2) and L(A∩) = L(A1) ∩ L(A2). Moreover A∪ is nondeterministic if A1

and A2 are so.
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Before we prove the proposition we define the automata A∪ and A∩.

Definition 6.15 Let A1 = 〈A1, a
1
I ,∆1,Ω1〉 and A2 = 〈A2, a

2
I ,∆2,Ω2〉 be two tree au-

tomata. We will define their sum A∪ and product A∩.

Both of these automata will have the disjoint union A12 := {∗} ] A1 ] A2 as their
collection of states. Also, the parity function Ω will be the same for both automata:

Ω(a) :=

{
0 if a = ∗,
Ωi(a) if a ∈ Ai.

The only difference between the automata lies in the transition functions, which are
defined as follows:

∆∪(a) :=

{
∆1(a

1
I) ∪∆2(a

2
I) if a = ∗

∆i(a) if a ∈ Ai,

∆∩(a) :=

{
{Φ1 ∪ Φ2 | Φi ∈ ∆i(q

i
I)} if a = ∗

∆i(a) if a ∈ Ai.

Finally, we put A∪ := 〈A12, aI ,∆∪,Ω〉 and A∩ := 〈A12, aI ,∆∩,Ω〉. �

Let us now turn to the proof of Proposition 6.14.

Proof. The automata A∪ and A∩ are constructed as defined above in Definition 6.15.
It is easy to see that A∪ is nondeterministic if A1 and A2 are nondeterministic automata.
We only show that

L(A∪) = L(A1) ∪ L(A2),

the other statements of the proposition admit similarly straightforward proofs. It suffice
to show, for an arbitrary pointed biflow (S, s), that A∪ accepts (S, s) iff A1 or A2 accepts
(S, s).

First suppose that the automaton A∪ accepts (S, s). Hence by definition, ∃ has a
winning strategy f in the game A := A(A∪,S) starting from position (∗, s). Let i be
such that f(s, ∗) ∈ ∆(qiI). It is then straightforward to verify that f , restricted to ∃’s
positions in A(Ai,S), is a winning strategy for ∃ from position (qiI , s). From this it is
immediate that Ai accepts (S, s).

Conversely, suppose that Ai accepts (S, s), and let g be a winning strategy for ∃ in
the gameA(Ai,S). Then in the gameA(A∪,S) starting at (∗, s), let ∃ start with playing
g(qiI , s) ∈ ∆∪(∗), and from then on, play her strategy g. It is again straightforward to
check that this constitutes a winning strategy for ∃. qed
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Closure under complementation

Closure under complementation is not easy to prove in the setting of nondeterministic
automata, but once we turn to the framework of logical automata, where there is
a strong symmetry between the two players, there is a rather intuitive construction
based on a role switch between the two players.

Proposition 6.16 Given an alternating parity tree automata A we can effectively con-
struct an alternating parity tree automaton Ã which recognizes the complement of L(A).

In the remainder we will assume that the alphabet C is of the form ℘P for some set
P of proposition letters. See Remark 6.19 for the general case.

Definition 6.17 Given an element ϕ ∈ TLatt(P, X), let ϕ̃ be the term obtained by
simultaneously replacing all symbols

∧
by

∨
, p by ¬p, and vice versa. Given a logical

parity automaton A = 〈A, qI ,∆,Ω〉 with ∆ : A→ TLatt(P, X), define the complement

of A as the automaton Ã := 〈A, qI , ∆̃, Ω̃〉, where ∆̃ is given by ∆̃(a) := ∆̃(a), and Ω̃

by putting Ω̃(a) := Ω(a) + 1, for all a ∈ A. �

Proposition 6.18 Let (S, s) be a pointed C-biflow. Then (S, s) is accepted by A iff it

is rejected by Ã.

Proof. The key observation underlying the proof (and the definition of Ã) is that,

for any C-biflow S, the two players ‘switch roles’ in the acceptance game A(Ã,S) as
compared to A(A,S). More precisely, consider the function

f : (ϕ, s) 7→ (ϕ̃, s)

which maps positions of A(A,S) to positions in A(Ã,S). A straightforward inspection

shows that f is in fact an isomorphism between the game graphs of A(A,S) and A(Ã,S)
— but with the twist that positions for ∃ are mapped to those of ∀, and vice versa. In
addition, it follows from the definition of the parity maps, that any infinite match of
A(A,S) is won by ∃ iff the (obviously defined) image of the match under f is won by
∀.

An immediate consequence of these observations is that for any position (ϕ, s) of
A(A,S) we have

(ϕ, s) ∈ Win∃(A(A,S)) iff (ϕ̃, s) ∈ Win∀(A(Ã,S)).

In particular, we see that (S, s) is accepted by A iff it is rejected by Ã. qed
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Remark 6.19 In case C is just an arbitrary set of colors, not necessarily linked to a
set P of proposition letters, one can do complementation as follows. Without loss of
generality (see Proposition 6.4) assume that ∆ is a map from A to TLatt(C,A). Now

given a term ∆(a)TLatt(C,X), obtain ∆̃(a) by swapping
∧

with
∨

and replacing each

occurrence of c with the term
∨
{c′ ∈ C | c′ 6= c}. Apart from this, the definition of Ã

is as in Definition 6.17. �

I Easier in the case of stream automata

I size matters

Closure under projection

An interesting operation on tree languages, corresponding to second-order quantifica-
tion, involves projection. For its definition, assume that the color set C is really a
cartesian product C = C1 × C2. As a specific example, think of C = ℘P as a P-fold
cartesian power of the set 2: C = 2× 2 · · · × 2 = 2P.

Definition 6.20 Assume that C = C1 × C2, with associated projections πi : C → Ci.
Then with any C-biflow S = (S, σ) we can naturally associate a Ci-projection Sπi =
〈S, σπi〉, for each i. Here the transition map σπi is given as σπi(s) := (πiσC(s), σ0(s), σ1(s)).

Given a C-biflow language L, we define its Ci-projection L�Ci as the class of Ci-
projections of structures in L. �

An obvious question is whether the class of recognizable biflow languages is closed
under taking such projections. The answer to this question is no, as an easy example
shows.

I example to be supplied

However, if we confine our attention to tree languages, then a positive result applies.
Of course, the question here only makes sense once we have checked that the projection
of a tree language is indeed a tree language, but that is almost immediate from the
definitions. Contrary to the case of closure under complementation, here we need the
automata to be nondeterministic rather than alternating.

Proposition 6.21 Let C = C1×C2 be a set of colors. Given a nondeterministic parity
C-tree automaton A, for each i we can effectively construct an nondeterministic parity
tree automaton A�Ci which recognizes the i-th projection Lt(A)�Ci of the tree language
Lt(A).
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Definition 6.22 Let C = C1 × C2 be a set of colors. Given a nondeterministic parity
C-automaton A = 〈A, qI ,∆,Ω〉 with ∆ : A→ ℘∃(BCA), define the Ci-automaton A�Ci
as the structure A�Ci := 〈A, qI ,∆′,Ω〉, where ∆′ : A→ ℘∃(BC1A) is given by

∆′(a) := {(πi(c), a0, a1) ∈ BC1A | (c, a0, a1) ∈ ∆(a)}

for all a ∈ A. �

Proof of Proposition 6.21. In this proof we will denote C-trees simply as maps
τ : 2∗ → C. Note that the Ci-projection of such a biflow can simply be denoted as the
tree πi ◦ τ . We need to show that for any Ci-tree ρ we have

A�Ci accepts ρ iff ρ = πi ◦ τ for some C-tree τ accepted by A. (35)

The direction from right to left is straightforward.

I Proof details for the other direction to be supplied

qed

Remark 6.23 For arbitrary biflows we can prove the following, for an arbitrary Ci-
biflow (S, s):

A�Ci accepts (S, s) iff A accepts some C-biflow (Q, q) with (Qπi , q) ↔ (S, s).

Because of this we say that L(A�Ci) = L(A)�Ci modulo bisimulation. �

6.5 Rabin’s Theorem

I intro: decidability of S2S (Rabin’s Theorem)

I Seminal decidability result to which many others may be reduced

Let us start with introducing and discussing the syntax and semantics of monadic
second-order logic. It will be convenient for us to work with the following version of
monadic second order logic in which all variables are set variables.

Definition 6.24 Given a set P of set variables, we define the language of monadic
second-order logic S2S as follows:

ϕ ::= p v q | Sipq | ¬ϕ | ϕ ∨ ϕ | ∃p.ϕ

Here p and q are variables from P, and i ∈ {0, 1}. �
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Definition 6.25 Given a binary flow model S = 〈S, V, σ0, σ1〉, we define the semantics
of S2S as follows:

S |= p v q if V (p) ⊆ V (q)
S |= Sipq if for all s ∈ S : s ∈ V (p) implies σi(s) ∈ V (q)
S |= ¬ϕ if S 6|= ϕ
S |= ϕ ∨ ψ if S |= ϕ or S |= ψ
S |= ∃p.ϕ if S[p 7→ X] |= ϕ for some X ⊆ S.

An S2S-formula is satisfiable in a binary flow model S if S |= ϕ. �

Remark 6.26 Rather than Definition 6.24, the reader may have expected a language
allowing both first- and second-order quantification. For instance, given a set X of
individual variables and a set P of set variables, we define the language of monadic
second-order logic MSOL as follows:

ϕ ::= Rixy | p(x) | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∃p.ϕ

Here x and y are variables from X, p is a variable from P, and Ri, for i = 0, 1 is
the predicate denoting the i-th accessibility relation. This semantics of this language
is completely standard, with ∃x denoting first-order quantification (that is, quantifi-
cation over individual states), and ∃p denoting second-order quantification (that is,
quantification over sets of states).

It is not too hard to see that the two languages are equivalent in a sense that we
will not make precise. The key point is that S2S can interpret MSOL, by encoding
individual variables as set variables denoting singletons. �

Theorem 6.27 (Rabin) It is decidable whether a given S2S-formula is satisfiable in
a binary tree.

The idea underlying the proof of Rabin’s Theorem is that with each monadic second-
order formula ξ we may associate an alternating automaton that is equivalent to ξ over
the class of binary trees.

Proposition 6.28 Let ϕ be some S2S-formula. Then for any set P of propositional
variables containing the free variables of ϕ there is a nondeterministic or alternating
automaton Bϕ over the alphabet ℘P, such that for any binary tree model S for P:

S |= ϕ iff Bϕ accepts (S, ε). (36)

Proof. We prove (36) by induction on the complexity of ϕ. Throughout the proof
we let C denote the set ℘P, and the automata we consider will be of transition type
B → ℘∃BCB, or B → ℘∃℘∀BCB.
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Regarding the base case, we only consider the case of the atomic formula p v q.
We define Bpvq as the structure 〈B, bI ,∆,Ω〉, where B contains only the state bI ,
∆ : B → BCB is given by ∆(bI) := {(c, bI , bI) | p 6∈ c or q ∈ c}, and Ω(bI) := 0. In
other words, ∃ wins any match in which she can stay alive. But as long as she does not
encounter states where p is true and q is false, she can continue her match. This shows
that Bpvq indeed satisfies (36).

The proof of the inductive case is based on the closure properties of recognizable
languages that we discussed in the previous section. We only consider the case where ϕ
is the formula ¬ψ. Let P be a set of propositional variables containing the free variables
of ϕ. Then obviously, P also contains all free variables of ψ, so that we may apply the
inductive hypothesis to ψ. This provides us with a tree automaton Bψ satisfying

S |= ψ iff Bψ accepts (S, ε). (37)

Now define Bϕ as the complement automaton B̃ψ given by Definition 6.17. It imme-
diately follows from Proposition 6.18 and (37) that Bϕ has the required properties for
(36). qed

Proof of Theorem 6.27. The proof of Rabin’s Theorem is an immediate conse-
quence of Proposition 6.28 and the decidability of the emptiness problem for tree
automata. qed

Notes

The equivalence between tree automata and the modal µ-calculus (interpreted on trees)
was established by Niwiński [22]. Rabin’s landmark decidability result was published
as [27].
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Games



7 Board games

Much of the work linking (fixpoint) logic to automata theory involves nontrivial con-
cepts and results from the theory of infinite games. In this chapter we discuss some
of the highlights of this theory in a fair amount of detail. This allows us to be rather
informal about game-theoretic concepts in the rest of the notes.

7.1 Board games

The games that we are dealing with here can be classified as board or graph games.
They are played by two agents, here to be called 0 and 1.

Definition 7.1 If σ ∈ {0, 1} is a player, then σ̄ denotes the opponent 1− σ of σ. �

A board game is played on a board or arena, which is nothing but a directed graph
in which each node is marked with either 0 or 1. A match of the game consists of the
two players moving a pebble or token across the board, following the edges of the graph.
To regulate this, the collection of graph nodes, usually referred to as positions of the
game, is partitioned into two sets, one for each player. Thus with each position we may
associate a unique player whose turn it is to move when the token lies on position p.

Definition 7.2 A board is a structure B = 〈B0, B1, E〉, such that B0 and B1 are
disjunct, and E ⊆ B2, where B := B0 ∪ B1. We will make use of the notation E[p]
for the set of admissible moves from a board position p ∈ B, that is, E[p] := {q ∈ B |
(p, q) ∈ E}. Positions not in E[p] will sometimes be referred to as illegitimate moves
with respect to p. A position p ∈ B is a dead end if E(p) = ∅. If p ∈ B, we let Pp
denote the (unique) player such that p ∈ BPp , and say that p belongs to Pp, or that it
is Pp’s turn to move at p. �

A match of the game may in fact be identified with the sequence of positions visited
during play, and thus corresponds to a path through the graph.

Definition 7.3 A path through a board B = 〈B0, B1, E〉 is a (finite or infinite) sequence
π ∈ B∞ such that Eπiπi+1 whenever applicable. A full or complete match through B is
either an infinite B-path, or a finite B-path π ending with a dead end (i.e. E[last(π)] =
∅).

A partial match is a finite path through B that is not a match; in other words, the
last position of a partial match is not a dead end. We let PMσ denote the set of partial
matches such that σ is the player whose turn it is to move at the last position of the
match. In the sequel, we will denote this player as Pπ; that is, Pπ := Plast(π). �
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Each full or completed match is won by one of the players, and lost by their oppo-
nent; that is, there are no draws. A finite match ends if one of the players gets stuck,
that is, is forced to move the token from a position without successors. Such a finite,
completed, match is lost by the player who got stuck.

The importance of this explains the definition of the notion of a subboard. Note
that any set of positions on a board naturally induces a board of its own, based on the
restricted edge relation. We will only call this structure a subboard, however, if there is
no disagreement between the two boards when it comes to players being stuck or not.

Definition 7.4 Given a board B = 〈B0, B1, E〉, a subset A ⊆ B determines the fol-
lowing board BA := 〈A ∩ B0, A ∩ B1, E�A

〉. This structure is called a subboard of B if
for all p ∈ A it holds that E[p] ∩ A = ∅ iff E�A

[p] ∩ A = ∅. �

If neither player ever gets stuck, an infinite match arises. The flavor of a board
game is very much determined by the winning conditions of these infinite matches.

Definition 7.5 Given a board B, a winning condition is a map W : Bω → {0, 1}. An
infinite match π is won by W (π). A board game is a structure G = 〈B0, B1, E,W 〉 such
that 〈B0, B1, E〉 is a board, and W is a winning condition on B. �

Although the winning condition given above applies to all infinite B-sequences, it
will only make sense when applied to matches. We have chosen the above definition
because it is usually much easier to formulate maps that are defined on all sequences.

Before players can actually start playing a game, they need a starting position. The
following definition introduces some terminology and notation.

Definition 7.6 An initialized board game is a pair consisting of a board game G and
a position q on the board of the game; such a pair is usually denoted G@q.

Given a (partial) match π, its first element first(π) is called the starting position of
the match. We let PMσ(q) denote the set of partial matches for σ that start at position
q. �

Central in the theory of games is the notion of a strategy. Roughly, a strategy for a
player is a method that the player uses to decide how to continue partial matches when
it is their turn to move. More precisely, a strategy is a function mapping partial plays
for the player to new positions, with the proviso that the new position must make a
legitimate move.

Definition 7.7 Given a board game G = 〈B0, B1, E,W 〉 and a player σ, a σ-strategy,
or a strategy for σ, is a map f : PMσ → B such that E(last(π), f(π)). In case we
are dealing with an initialized game G@q, then we may take a strategy to be a map
f : PMσ(q) → B (satisfying the legitimacy condition).
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A match π is consistent with a σ-strategy f if for any π′ < π with last(π′) ∈ Bσ,
the next position on π (after π′) is indeed the element f(π′).

A σ-strategy f is winning for σ if σ wins every play that is consistent with f . A
position q ∈ B is winning for σ if σ has a winning strategy for the game G starting at
q; the collection of winning positions for σ in G@q is denoted as Win(G@q). �

Convention 7.8 In practice, when defining strategies, it will often be convenient to
extend the definition of a strategy to include maps f that do not necessarily satisfy
the condition that E(last(π), f(π)) for every partial play π. In such a case we will say
that the map prescribes an illegitimate move in the partial play π. We will only permit
ourselves such a sloppiness in a context where in fact the partial play π is not consistent
with the pseudo-strategy f , and thus the situation where the pseudo-strategy would
actually ask for an illegitimate move will not occur.

Definition 7.9 The game G on the board B is determined if Win0(G)∪Win1(G) = B;
that is, each position is winning for one of the players. �

In principle, when deciding how to move in a match of a board game, players may
use information about the entire history of the match played thus far. However, it will
turn out to be advantageous to work with strategies that are simple to compute. This
applies for instance to so-called finite-memory strategies, which can be computed using
only a finite amount of information about the history of the match.

I discuss finite-memory strategy

Particularly nice are so-called memory-free or history-free strategies, which only
depend on the current position (i.e., the final position of the partial play). These will
be critically needed in the proofs of some of the most fundamental results in the area
of logic and automata theory, such as the Theorems 8.11 and 9.6.

Definition 7.10 A strategy f is memory-free if f(π) = f(π′) for any π, π′ with
last(π) = last(π′). �

7.2 Winning conditions

In case we are dealing with a finite board B, then we may nicely formulate winning
conditions in terms of the set of positions that occur infinitely often in a given match.
But in the case of an infinite board, there may be matches in which no position occurs
infinitely often (or more than once, for that matter). Nevertheless, we may still define
winning conditions in terms of objects that occur infinitely often, if we make use of
finite colorings of the board. If we assign to each position b ∈ B a color, taken from a
finite set C of colors, then we may formulate winning conditions in terms of the colors
that occur infinitely often in the match.
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Definition 7.11 A coloring of B is a function Γ assigning to each position p ∈ B a
color Γ(b) taken from some finite set C of colors. Such a coloring Γ : B → C naturally
extends to a map Γ : Bω → Cω by putting Γ(p0p1 . . . ) := Γ(p0)Γ(p1) . . . . �

Now if Γ : B → C is a coloring, for any infinite sequence π ∈ Bω, the map Γ◦π ∈ Cω

forms the associated sequence of colors. But then since C is finite there must be some
elements of C that occur infinitely often in this stream.

Definition 7.12 Let B be a board and Γ : B → C a coloring of B. Given an infinite
sequence π ∈ Bω, we let Inf Γ(π) denote the set of colors that occur infinitely often in
the sequence Γ ◦ π.

A Muller condition is a collection M ⊆ ℘(C) of subsets of C. The corresponding
winning condition is defined as the following map WM : Bω → {0, 1}:

WM(π) :=

{
0 if Inf Γ(π) ∈M
1 otherwise.

A Muller game is a board game of which the winning conditions are specified by a
Muller condition. �

In words, player 0 wins an infinite match π = p0p1 . . . if the set of colors one meets
infinitely often on this path, belongs to the Muller collection M.

I Examples to be supplied.

Muller games have two nice properties. First, they are determined. This follows
from a well-known general game-theoretic result, but can also be proved directly. In
addition, we may assume that the winning strategies of each player in a Muller game
are finite-memory strategies.

I Details to be supplied

The latter property becomes even nicer if the Muller condition allows a formulation
in terms of a parity map. In this case, as colors we take natural numbers. Note that by
definition of a coloring, the range Ω[B] of the coloring function Ω is finite. This means
that every subset of Ω[B] has a maximal element. Hence, every match determines a
unique natural number, namely, the ‘maximal color’ that one meets infinitely often
during the match. Now a parity winning condition states that the winner of an infinite
match is 0 if this number is even, and 1 if it is odd. More succinctly, we formulate the
following definition.

Definition 7.13 Let B be some set; a parity map on B is a coloring Ω : B → ω, that
is, a map of finite range. A parity game is a board game G = 〈B0, B1, E,WΩ〉 in which
the winning condition is given by

WΩ(π) := max(Inf Ω(π)) mod 2.

Such a parity game is usually denoted as G = 〈B0, B1, E,Ω〉. �
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The key property that makes parity games so interesting is that they enjoy memory-
free determinacy. We will prove this in section 7.4. First we turn to a special case, viz.,
the reachability games.

7.3 Reachability Games

Reachability games are a special kind of board games. They are played on a board
such as described in section 7.1, but now we also choose a subset A ⊆ B. The aim of
the game is for the one player to move the pebble into A and for the other to avoid
this to happen.

Definition 7.14 Fix a board B and a subset A ⊆ B. The reachability game Rσ(B, A)
is then defined as the game over B in which σ wins as soon as a position in A is reached
or if σ̄ gets stuck. On the other hand, σ̄ wins if he can manage to keep the token outside
of A infinitely long, or if σ gets stuck. �

Remark 7.15 If we want to fit reachability games exactly in the format of a board
game, we have to do the following. Given a reachability game Rσ(B, A), define the
board B′ := 〈B0, B1, E

′〉 by putting:

E ′ := {(p, q) ∈ E | p 6∈ Bσ̄ ∩ A}.

In other words, E ′ is like E except that player σ̄ gets stuck in a position belonging to
A. Furthermore, the winning conditions of such a game are very simple: simply define
W : Bω → {0, 1} as the constant function mapping all infinite matches to σ̄. This can
be formulated as a parity condition: put Ω(p) := σ̄ mod 2 for every p ∈ B. �

Since reachability games can thus be formulated as very simple parity games, the
following theorem can be seen as a warming up exercise for the general case.

Theorem 7.16 Reachability games enjoy Memory-Free Determinacy.

Proof. We leave this proof as an exercise to the reader. qed

Definition 7.17 The winning region for σ in Rσ(B, A) is called the attractor set of σ
for A in B, notation: AttrB

σ(A). In the sequel we will fix a positional winning strategy
for σ in Rσ(B, A) and denote it as attrB

σ(A). �

Note that σ-attractor sets always contain all points from which σ can make sure
that σ̄ gets stuck. Furthermore, it is easy to see that in attrσ(A)-conform matches the
pebble never leaves Attrσ(A) (at least if the match starts inside Attrσ(A)!).

Proposition 7.18 Attrσ is a closure operation on P(B), i.e.
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1. A ⊆ A′ implies Attrσ(A) ⊆ Attrσ(A
′),

2. A ⊆ Attrσ(A),

3. Attrσ(Attrσ(A)) = Attrσ(A).

A kind of counterpart to attractor sets are σ-traps. In words, a set A is a σ-trap if
σ can’t get the pebble out of A, while her opponent has the power to keep it inside A.

Definition 7.19 Given a board B, we call a subset A ⊆ B a σ-trap if E[b] ⊆ A for all
b ∈ A ∩Bσ, while E[b] ∩ A 6= ∅ for all b ∈ A ∩Bσ̄ �

Note that a σ-trap does not contain σ̄-endpoints and that σ̄ will therefore never get
stuck in a σ-trap. We conclude this section with a useful proposition.

Proposition 7.20 Let B be a board and A ⊆ B an arbitrary subset of B. Then the
following assertions hold.

1. If A is a σ-trap then A is a subboard of B.

2. The union
⋃
{Ai | i ∈ I} of an arbitrary collection of σ-traps is again a σ-trap.

3. If A is a σ-trap then so is Attr σ̄(A).

4. The complement of Attrσ(A) is a σ-trap.

5. If A is a σ-trap in B then any C ⊆ A is a σ-trap in B iff C is a σ-trap in BA.

Proof. All statements are easily verified and thus the proof is left to the reader. qed

7.4 Memory-Free Determinacy of Parity Games

Theorem 7.21 (Memory-Free Determinacy of Parity Games) For any parity game
G there are positional strategies f0 and f1 for 0 and 1, respectively, such that for every
position q there is a player σ such that fσ is a winning strategy for σ in G@q.

We start with the definition of players’ paradises. In words, a subset A ⊆ B is a
σ-paradise if σ has a positional strategy f guarantees her both that she wins the game,
and that the token stays in A.

Definition 7.22 Given a parity game G(B,Ω), we call a σ̄-trap A a σ-paradise if there
exists a positional winning strategy f : A ∩Bσ → A. �

The following proposition establishes some basic facts about paradises.
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Proposition 7.23 Let G(B,Ω) be a parity game. Then the following assertions hold:

1. The union
⋃
{Pi | i ∈ I} of an arbitrary set of σ-paradises is again a σ-paradise.

2. There exists a largest σ-paradise.

3. If P is a σ-paradise then so is Attrσ(P ).

Proof. The main point of the proof of part (1) is that we somehow have to uniformly
choose a strategy on the intersection of paradises, such that we will end up following the
strategy of only one paradise. For this purpose, we assume that we have a well-ordering
on the index set I (i.e., for the general case we assume the Axiom of Choice).

For the details, assume that {Pi | i ∈ I} is a family of paradises, and let fi be the
positional winning strategy for Pi. Note that P :=

⋃
{Pi | i ∈ I} is a trap for σ̄ by

Proposition 7.20. Assume that < is a well-ordering of I, so that for each q ∈ P there
is a minimal index min(q) such that p ∈ Pmin(q). Define a positional strategy on P by
putting

f(q) := fmin(q)(q).

This strategy ensures at all times that the pebble either stays in the current paradise,
or else it moves to a paradise of lower index, and so, any match where σ plays according
to f will proceed through a sequence of σ-paradises of decreasing index. Because of
the well-ordering, this decreasing sequence of paradises cannot be strictly decreasing,
and thus we know that after finitely many steps the pebble will remain in the paradise
where it is, say, Pj. From that moment on, the match is continued as an fj-conform
match inside Pj, and since fj is by assumption a winning strategy when played inside
Pj, this match is won by σ.

Part (2) of the proposition should now be obvious: clearly the union of all σ-
paradises is the greatest σ-paradise.

In order to proof part (3) we need to show that there exists a winning strategy
for σ. The principal idea is to first move to P by attrσ(P ) and once there to follow
the winning strategy in P . Let f ′ be the winning strategy for P , we then define the
following strategy f on Attrσ(P ) by

f(p) :=

{
f ′(p) if p ∈ P
attrσ(p) otherwise.

A match consistent with this strategy will stay in Attrσ(P ) because it is a σ̄-trap and
f(p) ∈ Attrσ(P ) for all p ∈ Attrσ(P ). It is winning because if ever the match arrives
at a point p ∈ P then play continues as if the match were completely in P and since f ′

was supposed to be winning strategy for σ this play is won by σ. However if we start
outside P we will at first follow the strategy attrσ(P ) which will ensure that σ either
wins or that the pebble ends up in P , in which case σ will also win. qed



124 Board games

Now we are ready to proof the main assertion from which Theorem 7.21 immediately
follows.

Proposition 7.24 The board of a parity game G(B,Ω) can be partitioned into a 0-
paradise and a 1-paradise.

Proof. We will prove this proposition by induction on n, the maximal parity in the
game (i.e. n = max(Ω[B])). If n = 0 we are dealing with a reachability game (namely
R1(B,∅)), and from the results in section 7.3 we may derive that Attr 1(∅) is a 1-
paradise and its complement is a 0-paradise. So the proposition holds in case n = 0.

Therefore in the remainder we can assume that n ≥ 1. Let σ := n mod 2 be the
player that wins an infinite play π if max(Inf (π)) = max(Ω[B]) = n. Let Pσ̄ be the
maximal σ̄-paradise with associated positional strategy f . It now suffices to show that
X := B \ Pσ̄ is a σ-paradise.

First we shall show that X is a σ̄-trap. By proposition 7.23(3) it follows that
Attr σ̄(Pσ̄) is itself also a σ̄-paradise. By maximality of Pσ̄ and the fact that Attr σ̄ is a
closure operation, it follows that Pσ̄ = Attr σ̄(Pσ̄). Thus by Proposition 7.20(4) we see
that X, being the complement of a σ̄-attractor set is a σ̄-trap.

Consider GX , the subgame of G restricted to X. Note that by proposition 7.20(1), X
is a subboard of B, so the name ‘subgame’ is justified. Define N := {b ∈ X | Ω(b) = n}
to be the set of all points in X with priority n and let Z := X \AttrBX

σ (N). Since Z is
the complement of a σ-attractor set in BX it is a σ-trap in BX and hence a σ-trap of
BX , and so, a subboard of B.

Pσ̄

N

AttrBX
σ (N)

Zσ̄ Zσ

By the induction hypothesis we can split the subgame GZ into a 0-paradise Z0 and a
1-paradise Z1, see the picture. The winning strategies in these paradises we call f0 and
f1 respectively. (All notions are with regard to the game GZ .) We want to show that
Zσ̄ = ∅, so that Z = Zσ.

To this aim, we claim that Pσ̄ ∪Zσ̄ is a σ̄-paradise in G, and in order to prove this,
we consider the following strategy g of σ̄:

g(b) :=

{
f(b) if b ∈ Pσ̄
fσ̄(b) if b ∈ Zσ̄.
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It is left as an exercise for the reader to show that this is indeed a winning strategy for σ̄
which keeps the pebble inside Pσ̄ ∪Zσ̄. (Here we need the fact that BZ is a subboard of
B — if this were not the case, then we could not rule out the existence of positions that
are dead ends for σ in BZ , but not in B.) By maximality of Pσ̄ we see that Pσ̄ = Pσ̄∪Zσ̄
and since Pσ̄ and Zσ̄ are disjoint we conclude that Zσ̄ is empty indeed.

This means we can write

X = Zσ ∪ AttrBX
σ (N).

We are now almost ready to define the winning strategy for σ which keeps the token
inside X. Recall that X is a σ̄-trap, so that for each b ∈ X∩Bσ, we may pick an element
k(b) ∈ E[b] ∩X. Now define the following strategy h in G for σ on X.

h(b) :=


k(b) if b ∈ N
attrσ(N)(b) if b ∈ AttrBX

σ (N) \N
fσ(b) if b ∈ Zσ = Z.

It is left as an exercise for the reader to show that h is indeed a winning strategy for σ
in G and that it keeps the pebble in X. qed

Finally, the assertion made in Theorem 7.21 follows directly from this proposition
because by definition of paradises there now exists for every point b ∈ B a positional
winning strategy for the game G(B,Ω).

Notes

The application of game-theoretic methods in the area of logic and automata theory
goes back to work of Büchi. The memory-free determinacy of parity games was proved
independently by Emerson & Jutla [9] and Mostowski in an unpublished technical
report. Our proof of this result is based on Zielonka [33].
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8 Graph automata

In this chapter we introduce and discuss the automata that we shall use for studying the
modal µ-calculus. These graph automata all operate on the same type of structures,
namely pointed Kripke models, or transition systems. Nevertheless, they come in a
large variety of shapes, so it is good to observe that roughly speaking, every graph
automaton belongs to either of the following two kinds.

1. Modal automata represent fairly straightforward generalizations of modal fixpoint
formulas;

2. Kripke automata closely resemble the pointed Kripke structures on which they
are supposed to operate.

Of these two kinds, the reader may at first sight find the modal automata more
intuitive and easy to understand — this is also the reason why they are introduced first.
However, working in the second format makes it easier to prove results about the modal
µ-calculus. In particular, a key result, here given as Theorem 8.11, states that every
alternating Kripke automaton can be effectively transformed into a nondeterministic
equivalent. As we will see further on, many crucial results concerning the modal µ-
calculus, such as its decidability and small model property, are direct consequences of
this fundamental theorem.

Convention 8.1 Throughout this chapter we define automata that are supposed to
accept or reject pointed Kripke models. In each case, such an automaton is of the form
A = 〈A, aI ,∆,Ω〉 where A is a set of states, aI ∈ A is the initial state, ∆ is some kind
of transition function on A, and Ω : A→ ω is a parity condition.

Also in each case, the question whether such an automaton accepts or rejects a
given pointed Kripke model (S, s) is determined by playing some kind of acceptance
game. This game will always proceeds in rounds, from one basic position (a, s) ∈ A×S
via some intermediate position(s) to a new basic position. The rules of this game are
determined by the precise shape of the transition function ∆, and in each case will
be given explicitly. However, the winning conditions are fixed. Finite matches, as
always, are lost by the player who got stuck. The winner of an infinite match β is
always determined by the infinite sequence (aI , s)(a1, s1)(a2, s2) . . . of basic positions
occurring in β, using the parity condition Ω on the sequence aIa1a2 . . . The definition
of acceptance is also fixed: the automaton A accepts the pointed Kripke model (S, s)
precisely if the pair (aI , s) is a winning position for ∃ in the acceptance game.

Finally, throughout the chapter we will be working with a completely standard
notion of equivalence between formulas and automata: We say that a modal µ-calculus
formula ξ is equivalent to some automaton A operating on Kripke models if

S, s 
 ξ iff A accepts (S, s)
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for every pointed Kripke model (S, s).

Definition 8.2 Let A be some kind of automaton for pointed Kripke models. The
class of pointed Kripke models that are accepted by a given automaton A is denoted
as L(A). �

Unless explicitly specified otherwise, throughout this chapter we work with a fixed
set P of propositional variables, and a fixed set D of atomic actions. For notational
convenience, we will usually abbreviate the associated Kripke functor (cf. Definition 1.4)
KD,P by K, and as before we will think of the set C := ℘P as an alphabet or set of
colors.

8.1 Modal automata

Formulas and automata are very much alike. As any reader going through the chapters 2
and 4 will have observed, there are many resemblances between the evaluation game
of a modal (fixpoint) formula and the acceptance game of an automaton. States of the
automata seem to have their counterpart in the bound variables of the formula, with
greatest and least fixpoint operators corresponding to even and odd parity, respectively.
In the case of tree automata, we have already made these resemblances explicit in
Chapter 6, and we will now do something very similar for the case of arbitrary (not
necessarily deterministic) transition systems.

Of course, an important difference with the case of deterministic models (i.e., the
flows and biflows studied in the previous chapters) is that there, once the atomic action
has been chosen, the next position of the game is completely determined. In the case of
nondeterministic accessibility relations that we are dealing with here, successor states
in Kripke models are not unique. The game reflects this by allowing one of the players
to choose the next point in the Kripke model. But there is in fact no reason why we
could not incorporate this kind of interaction in the definition of automata for Kripke
models.

Definition 8.3 Given sets D (of atomic actions), C, andA, the collection MLattD(C,A)
of (poly-)modal lattice terms over C and A is defined as the set Latt(C ∪ {3da,2da |
d ∈ D, a ∈ A}). �

In other words, the set MLattD(C,A) can be given as follows:

ϕ ::= c | 3da | 2da |
∨

Φ |
∧

Φ

Here c, a and d refer to arbitrary elements of C, A, and D, respectively, and Φ denotes
a finite set of modal lattice terms. Often we will consider modal lattice terms in which
proposition letters and their negations may occur. The set of these terms is denoted
by MLattD(±P, A).
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Position Player Admissible next moves
(a, s) ∈ A× S − {(∆(a), s)}
(
∨

Φ, s) ∃ {(ϕ, s) | ϕ ∈ Φ}
(
∧

Φ, s) ∀ {(ϕ, s) | ϕ ∈ Φ}
(c, s), with c = σC(s) ∀ ∅
(c, s), with c 6= σC(s) ∃ ∅
(p, s), with p ∈ P and s ∈ V (p) ∀ ∅
(p, s), with p ∈ P and s 6∈ V (p) ∃ ∅
(¬p, s), with p ∈ P and s ∈ V (p) ∃ ∅
(¬p, s), with p ∈ P and s 6∈ V (p) ∀ ∅
(3da, s) ∃ {(a, t) | t ∈ σd(s)}
(2da, s) ∀ {(a, t) | t ∈ σd(s)}

Table 12: Acceptance game for modal automata

We are now ready for the definition of modal automata. As before, we allow some
variation concerning the transition structure of these devices, and we also introduce the
silent-step version allowing unguarded occurrences of states of the automaton in lattice
terms.

Definition 8.4 A D-modal automaton over P is an automaton A = 〈A,∆,Ω, aI〉 such
that ∆ : A → MLattD(C,A) or ∆ : A → MLattD(±P, A). A silent-step automaton is
an automaton of which the transition map is of the form ∆ : A→ MLattD(C ∪ A,A).

The acceptance game A(A,S) associated with such an automaton A and a pointed
Kripke model (S, s) is determined by the rules given in Table 12 (given Convention 8.1).
�

Modal automata generalize the modal fixpoint formulas of Chapter 2. The differ-
ence between formulas and automata is that the latter allow more freedom in structure:
while formulas by definition are required to have a tree structure (with back edges rep-
resenting the unfolding relation between a fixpoint variable and its unfolding formula),
for automata we accept structures that allow cyclicity. Nevertheless, there are effective
procedures transforming fixpoint formulas into equivalent modal automata, and vice
versa.

Proposition 8.5 There are effective procedures that:

1. given a modal fixpoint formula ξ ∈ µPML(D,P), return an equivalent D-modal
automaton Aξ over P;

2. given a D-modal automaton A over P, return an equivalent modal fixpoint formula
ξA ∈ µPML(D,P).
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Proof sketch. In the same way as in Proposition 6.9, it is easy to show that a
modal fixpoint formula can be turned into a silent-step automaton by taking the set
of its subformulas as the collection of states. And similar to Proposition 6.10, we may
effectively bring any silent-step automaton into a guarded normal form which then
corresponds to a modal automaton.

Conversely, the procedure to transform an automaton into an equivalent modal
fixpoint formula is exactly as described in the proof of Theorem 6.11. qed

8.2 Kripke automata

We have now arrived at the introduction of the second kind of automata for Kripke
models: the ones that are similar to the Kripke models rather than to standard modal
fixpoint formulas. These automata can be introduced in the same way as the nondeter-
ministic or alternating stream and tree automata earlier on, namely, starting from the
notion of a bisimulation. In this section we will work from the (coalgebraic) perspec-
tive on bisimulation, based on the notion of relation lifting, cf. the discussion following
Definition 1.26.

So consider, for two Kripke models A = 〈A,α〉 and S := 〈S, σ〉, the bisimulation
game B(A,S) of Definition 1.24. The main conceptual step is to think of A as a ‘proto-
automaton’ that we use to classify S rather than as of a Kripke model that we are
comparing with S. In order to turn A into a proper Kripke automaton, four technical
modifications have to be made:

1. A small change is that we require A (i.e., its carrier set A) to be finite — but in
fact, it would be perfectly acceptable to allow for infinite automata as well.

2. Second, and equally undramatic, we add an initial state to the structure of A.

3. Third, whereas the winner of an infinite match of a bisimulation game is always
∃, the winner of an infinite acceptance match will be determined by an explicit
acceptance condition on Aω — a parity condition, in our case.

4. The fourth and foremost modification is that we introduce nondeterminism, and
even alternation to the transition structure of A. Just as stream and tree au-
tomata, Kripke automata will harbour many ‘realizations’ of models — and in
each round of the acceptance game, the actual local realization of a state is de-
termined by the interaction of the two players.

Our presentation of alternating Kripke automata is set-theoretic in nature, and uses
the ℘∃/℘∀ notation of Convention 5.21.

Definition 8.6 Given a Kripke functor K = KD,P, an (alternating) Kripke automaton
is a quadruple A = 〈A,∆,Ω, aI〉 such that the transition function ∆ is given as a map
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∆ : A → ℘∃℘∀(KA). Such a Kripke automaton is called nondeterministic if, for every
a ∈ A, |Γ| ≤ 1 for all Γ ∈ ∆(a) (that is, ∆(a) only contains singletons and possibly the
empty set).

The acceptance game A(A,S) associated with a Kripke automaton A = 〈A,∆,Ω, aI〉
and a Kripke structure S is given by Table 13. �

Position Player Admissible moves
(a, s) ∈ A× S ∃ {(Γ, s) ∈ ℘∀(K(A))× S | Γ ∈ ∆(a)}
(Γ, s) ∈ ℘∀(K(A))× S ∀ {(γ, s) ∈ K(A)× S | γ ∈ Γ}
(γ, s) ∈ KA× S ∃ {Z ⊆ A× S | (γ, σ(s)) ∈ KZ}
Z ∈ ℘(A× S) ∀ Z

Table 13: Acceptance game for alternating Kripke automata

For an informal description of the acceptance game A(A,S), the most important
observation is that matches of this game proceed in rounds moving from one basic
position to another. Think of a basic position (a, s) as a statement, defended by ∃
and attacked by ∀, that a and s ‘fit well together’, or that A, ‘as seen from a’, is an
adequate description of S, ‘as seen from s’.

Each round consists of exactly four moves, with interaction pattern ∃∀∃∀:

• At a basic position (a, s), the ‘K-successor’ σ(s) ∈ KS of s is fixed, but ∃ and
∀ first have to play a finite (two-move) subgame in order to determine which
element will temporarily act as the analogous ‘K-successor’ α ∈ KA of a. More
precisely, the rules of the game are such that first, ∃ chooses a subset Γ ⊆ KA
from ∆(a), after which ∀ chooses, from the set Γ of options, an actual element
γ ∈ KA. Halfway the round then, play has arrived at a position of the form
(γ, s) ∈ KA× S.

• The players now proceed as in the bisimilarity game for Kripke models. First,
∃ chooses a ‘local bisimulation’ linking γ and s (or rather: γ and σ(s)), that is,
a relation Z ⊆ A × S such that (γ, σ(s)) ∈ KZ. Spelled out, this means that
∃ can only choose such a relation Z if γ is of the form (c, B) ∈ ℘(P) × ℘(A)D

with c = σV (s), and that Z has to satisfy the back and forth conditions for each
atomic action d, stating that for all b ∈ B there is t ∈ σd(s) with bZt, and vice
versa. The second half of the round, ends with ∀ choosing an element from Z.
This element is of the form (b, t) ∈ A× S and forms the new basic position.

As before, we refer to these two ‘halves’ of a round as the ‘static’ and the ‘dynamic’
stage, respectively. This terminology refers to the fact that in the static part of the
round, the automaton remains in the same state of the transition system, whereas in the
dynamic stage of the round, the successor state in the transition system is determined.
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I associate automaton with Kripke model: example to be supplied

At first sight, these Kripke automata may look rather different from the modal
automata of section 8.1, they are in fact very similar. The best way to link Kripke
automata to modal logic is via the coalgebraic approach towards modal logic which
involves the coalgebraic modalities ∇ and • of Chapter 1. Recall that on the one hand,
the semantics of ∇ and • is expressed in terms of the same kind of relation lifting that
appears in the rules of the acceptance games for Kripke automata, and that on the
other hand, the coalgebraic modalities are equally expressive as the standard boxes
and diamonds.

I It will be convenient to introduce some intermediate kinds of aut’a

Definition 8.7 Given a set D of atomic actions, and sets C andA, the set MLatt∇D (C,A)
of nabla lattice terms over C and A is defined as the set Latt(C ∪ {∇dα | d ∈ D, α ∈
℘A}). �

In particular, the set MLatt∇D (±P, A) can be given by the following induction:

ϕ ::= p | ¬p | ∇dα |
∨

Φ |
∧

Φ

where p, d and α are arbitrary elements of the sets P, D, and ℘A, respectively, and Φ
is a finite subset of MLatt∇D (±P, A).

As an intermediate step between modal and Kripke automata we will consider au-
tomata A = 〈A,∆,Ω, aI〉 such that ∆ : A → MLatt∇D (±P, A). It should be fairly
obvious how to define the acceptance game associated with such automata, with the
possible exception of the rules for positions of the form (∇dα, s) ∈ ℘A× S:

Position Player Admissible next moves
(∇dα, s) ∃ {Z ⊆ A× S | (α, σd(s)) ∈ ℘Z}
Z ∈ ℘(A× S) ∀ Z

The following proposition states that all types of automata we have met in this
Chapter are in fact equivalent.

Proposition 8.8 Fix a set D of atomic actions, a set P of proposition letters, and let
C := ℘P. Consider automata of the form A = (A, aI ,∆,Acc), where the transition
map ∆ has one of the following four formats:
(1) ∆ : A→ ℘∃℘∀KD,PA,
(2) ∆ : A→ Latt(KD,PA),
(3) ∆ : A→ MLatt∇D (±P, A),
(4) ∆ : A→ MLattD(±P, A).
Then there are effective transformations transforming an automaton of any one kind
above to an equivalent automaton of any other kind.
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Proof. This proposition can be proved on the basis of ideas underlying the proofs of
Proposition 6.4 (1 ↔ 2), Theorem 1.36 (2 ↔ 3), and Proposition 1.31 (3 ↔ 4). We
leave the details for the reader. qed

8.3 A fundamental theorem

In many cases it will be convenient to work with nondeterministic Kripke automata.

Definition 8.9 Given a Kripke functor K, an alternating Kripke automaton A =
〈A,∆,Ω, aI〉 is called nondeterministic if, for every a ∈ A, all elements of ∆(a) are
singletons. �

Nondeterminism eliminates ∀’s role in the static part of the acceptance game — but
not from the dynamic part, where it is still he who chooses the next basic position of
the match.

Remark 8.10 To facilitate the presentation, we will often represent the transition
function of such a nondeterministic automaton A as a map δ : A → ℘∃(KA). That is,
rather than working with a set ∆(a) consisting of singletons we flatten the transition
function and deal with the elements of those singletons directly. The structure of the
associated acceptance game then looks as in Table 14. �

Position Player Admissible moves
(a, s) ∈ A× S ∃ {(γ, s) ∈ K(A)× S | γ ∈ δ(a)}
(γ, s) ∈ KA× S ∃ {Z ⊆ A× S | (γ, σ(s)) ∈ KZ}
Z ∈ ℘(A× S) ∀ Z

Table 14: Acceptance game for nondeterministic Kripke automata

The next theorem is perhaps the most fundamental result concerning the automata-
theoretic approach towards the modal µ-calculus.

Theorem 8.11 There is an effective procedure that transforms a given alternating
Kripke automaton into an equivalent nondeterministic one.

I Definition to be supplied
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8.4 Closure properties

In order to discuss the recognizing power of automata, we first need to introduce the
notion of a recognizable language.

Definition 8.12 We will refer to a class of pointed Kripke models as a K-language.
Such a class C is called recognizable if there is a modal or Kripke automaton A such
that C = L(A). �

It immediately follows from earlier results that recognizable K-languages have (at
least two) alternative characterizations.

Proposition 8.13 The following are equivalent for any K-language C:

1. C is recognizable;

2. C is nondeterministically recognizable, that is, C = L(A) for some nondetermin-
istic automaton A;

3. C is definable by some modal fixpoint formula.

The notion of recognizability can be used to study the recognizing power of certain
kinds of graph automata. In particular, it will be of interest to see which closure
properties are satisfied by graph automata.

Definition 8.14 Let Op be some operation on K-languages. We say that a class of
languages is closed under Op if we obtain a language from this class whenever we apply
Op to a family of languages from the class. �

Closure under union and intersection

It follows immediately from the equivalence 1 ⇔ 3 of Proposition 8.13 that the class of
recognizable K-languages is closed under taking union, intersection and complementa-
tion. However, it is of interest for future reference to have direct, automata-theoretic
proofs of the results for union and intersection. For that purpose, we define the sum
and product of two K-automata, and prove that they recognize, respectively, the union
and the intersection of the languages associated with the original automata.

Definition 8.15 Let A1 = (A1, a
1
I ,∆1,Ω1) and A2 = (A2, a

2
I ,∆2,Ω2) be two Kripke

automata. We will define their sum A∪ and product A∩.
Both of these automata will have the disjoint union A12∗ := {∗} ] A1 ] A2 as their

collection of states. Also, the parity function Ω will be the same for both automata:

Ω(a) :=

{
0 if a = ∗,
Ωi(a) if a ∈ Ai.
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The only difference between the automata lies in the transition functions, which are
defined as follows:

∆∪(a) :=

{
∆1(a

1
I) ∪∆2(a

2
I) if a = ∗

∆i(a) if a ∈ Ai,

∆∩(a) :=

{
{Φ1 ∪ Φ2 | Φi ∈ ∆i(a

i
I)} if a = ∗

∆i(a) if a ∈ Ai.

Finally, we put A∪ := (A12, ∗,∆∪,Ω) and A∩ := (A12, ∗,∆∩,Ω). �

Proposition 8.16 Let A1 and A2 be two Kripke automata. Then for any pointed K-
coalgebra (S, s) we have:

1. A∪ accepts (S, s) iff A1 or A2 accepts (S, s),

2. A∩ accepts (S, s) iff both A1 and A2 accept (S, s).

3. A∪ is non-deterministic if A1 and A2 are so.

Proof. First suppose that the automaton A∪ accepts (S, s). Hence by definition, ∃ has
a winning strategy f in the acceptance game A(A∪,S) starting from position (∗, s). Let
i be such that f(∗, s) ∈ ∆(aiI). It is then straightforward to verify that f , restricted to
∃’s positions in A(Ai,S), is a winning strategy for ∃ from position (s, aiI). From this it
is immediate that Ai accepts (S, s).

The other statements of the proof admit similarly straightforward proofs. qed

Closure under complementation

I Material to be supplied

Closure under projection

Just as in the case of biflow languages, we will be interested in the projection operation
on K-languages as well. Our formulation here will be in terms of proposition letters
rather than colors.

Definition 8.17 Let P = P1 ] P2 be the disjoint union of two sets of proposition
letters, and let S = 〈S, σV , σR〉 be a Kripke model over P. Then we let S�P1 denote the
restriction of S to P1, that is, the structure 〈S, σV,1, σR〉 with σV,1 : S → ℘(P1) given by
σV,1(s) := σV (s) ∩ P1.

Given a K-language L, L�P1 denotes the class of restriction to P1 of models in L. �
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As an easy example (generalizing results in the previous chapter) shows, the projec-
tion of a recognizable language is not necessarily recognizable. The point is that while
any recognizable class L is closed under bisimilarity, this does not necessarily hold for
the class L�P1 .

I Example to be added

On the other hand, this failure of bisimilarity invariance is the only thing that can
go wrong. That is, we can show that for any recognizable language L, the ‘bisimulation
closure’ of L �P1 , that is, the class of Kripke models that are bisimilar to a model in
L �P1 , is recognizable. In brief, the recognizable Kripke languages are closed under
projection modulo bisimilarity.

In order to prove this result, we need to work with nondeterministic automata. As
discussed in Remark 8.10, we will represent the transition function of such a device A
as a map δ : A→ ℘∃(KA).

Definition 8.18 Let P = P1 ] P2 be the disjoint union of two sets of proposition
letters, and let A = 〈A, aI ,∆,Ω〉 be a KP,D-automaton.

Then we define the KP1,D-automaton A�P1 as the structure 〈A, aI ,∆′,Ω〉, where

∆′(a) := {(c ∩ P1, B) ∈ KP1,D(A) | (c, B) ∈ ∆(a)}.
defines the transition map ∆′. �

In words, ∆′ is like ∆ but keeps all options open for the proposition letters not
in P1. As an immediate corollary of the proposition below, the class of recognizable
languages is closed under taking projections (modulo bisimilarity). The proof of the
proposition uses a strong notion of unravelling.

Definition 8.19 A Kripke model S is κ-unravelled, where κ ≥ 1 is some countable
cardinal, if S is in tree-shape, and for each s ∈ S, each atomic action d ∈ D, and each
t ∈ σd(s), there are at least κ may states t′ ∈ σd(s) that are bisimilar to t. �

Proposition 8.20 Let P = P1 ] P2 be the disjoint union of two sets of proposition
letters, and let A be some KP,D-automaton. Then

1. If A accepts some pointed Kripke model (S, s) over P, then A�P1 accepts (S�P1 , s).

2. If A �P1 accepts (S′, s′) and (S′, s′) is |A|-unravelled, then S′ = S �P1 for some
(S, s′) accepted by A.

3. If A�P1 accepts some Kripke model (S′, s′) over P1, then A accepts some P-model
(S, s) such that S′, s↔P1 S�P1 , s.

Finally, we summarize our findings.

Theorem 8.21 For any Kripke functor K, the class of recognizable K-languages is
closed under taking unions, intersections, complementation, and projections modulo
bisimulation.
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Position Player Admissible next moves
(a, s) ∈ A× S − {(∆(a, σC(s)), s)}
(
∨

Φ, s) ∃ {(ϕ, s) | ϕ ∈ Φ}
(
∧

Φ, s) ∀ {(ϕ, s) | ϕ ∈ Φ}
(3da, s) ∃ {(a, t) | t ∈ σd(s)}
(2da, s) ∀ {(a, t) | t ∈ σd(s)}
(∇dα, s) ∃ {Z | (α, σd(s)) ∈ ℘(Z)}
Z ⊆ A× S ∀ Z

Table 15: Acceptance game for chromatic automata

Notes

While Emerson & Jutla [9] already used automata-theoretic tools to prove results
about versions of the modal µ-calculus that are interpreted over binary trees, Janin
& Walukiewicz [10] were the first to introduce the (nondeterministic) Kripke automata
discussed in this chapter, under the name of µ-automata. The fundamental equivalence
between alternating and nondeterministic Kripke automata essentially goes back to this
paper. A very general approach connecting automata and fixpoint logics was taken by
Niwiński [23]. The automata we call modal were introduced in Wilke [32].

Exercises

Exercise 8.1 Fix a set P of proposition letters and let C := ℘(P) be the corresponding
alphabet. A chromatic automaton is a structure A = 〈A, aI ,∆,Ω〉 with ∆ : A ×
C → MLattD(∅, A) or ∆ : A × C → MLatt∇D (∅, A) (In other words, the information
about proposition letters and colors has been moved to the antecedent of the transition
function.) Given a Kripke model S, the acceptance game A(A,S) is defined in the
obvious way, see Table 15.

Provide effective transformations transformig ordinary automata into chromatic
ones, and vice versa.
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In the previous chapter we introduced various kinds of graph automata, that is, au-
tomata operating on pointed Kripke models, or labelled transition systems. The main
point about these automata as tools for studying the modal µ-calculus is that we may
effectively identify modal fixpoint formulas with these graph automata. Taking these
observations as our starting point, in this chapter we gather some of the most important
results concerning the modal µ-calculus.

I Summary of chapter.

9.1 Decidability and small model property

In this section we will see a number of corollaries of the fundamental result on Kripke
automata, Theorem 8.11, which states that every alternating Kripke automaton can be
replaced with an equivalent nondeterministic one.

Disjunctive normal form

As an first consequence, we now see that every formula of the modal µ-calculus can be
brought into so-called disjunctive normal form.

Definition 9.1 Given sets P of proposition letters, and D of atomic actions, respec-
tively, the set µCML−D(P) of disjunctive formulas is given by the following recursive
definition:

ϕ ::= x | ⊥ | ϕ ∨ ϕ | π • Φ | µx.ϕ | νx.ϕ

Here π denotes a subset of P, and Φ = {Φd | d ∈ D} a D-indexed collection of sets of
disjunctive formulas, and x a variable not in P. �

These formula are called disjunctive because the only admissible conjunctions are
the special ones of the form π • Φ.

Theorem 9.2 There is an effective algorithm that rewrites a modal fixpoint formula
ξ ∈ µPMLD(P) into an equivalent disjunctive formula ξd of length exponential in |ξ|.

I Proof (based on Theorem 8.11) to be supplied.

Decidability

I Intro

Theorem 9.3 There is an algorithm that decides in linear time whether a given dis-
junctive formula ξ is satisfiable or not.
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Proof. It is easy to see that the proof of this proposition is a direct consequence of
the following observations:

1. > is satisfiable;

2. ⊥ is not satisfiable;

3. ϕ1 ∨ ϕ2 is satisfiable iff ϕ1 or ϕ2 is satisfiable;

4. π • Φ is satisfiable iff both π and each ϕ ∈
⋃
d∈D Φd is satisfiable;

5. µx.ϕ is satisfiable iff ϕ[⊥/x] is satisfiable;

6. νx.ϕ is satisfiable iff ϕ[>/x] is satisfiable.

The proof of these claims is left as an exercise for the reader. qed

Decidability of the satisfiability problem for modal fixpoint formulas is then an
immediate consequence of the previous two results.

Theorem 9.4 There is an algorithm that decides in exponential time whether a given
modal fixpoint formula ξ is satisfiable or not.

Small model property

As a third immediate consequence of Theorem 8.11, we now show that any satisfiable
modal fixpoint formula can in fact already be satisfied in a model of size at most
exponential in the size of the formula.

For convenience here we will denote the transition function of a nondeterministic
Kripke automaton A = 〈A, aI ,∆,Ω〉 as a map ∆ : A→ ℘∃KA, cf. Remark 8.10.

Definition 9.5 Let A = 〈A, aI ,∆,Ω〉 be a nondeterministic Kripke automaton, and
let α : A′ → KA′ be such that α(a) ∈ ∆(a) for all a ∈ A′, where A′ is some subset of
A. Then we say that the pointed Kripke model 〈A′, α, aI〉 is a realization of A. �

Theorem 9.6 Let A = 〈A, a0,∆,Ω〉 be a nondeterministic Kripke automaton. If A
accepts some pointed Kripke model, then it accepts one that is a realization of A.

Proof. Defining a nonemptiness game on A, one may give a proof of this theorem
which is completely analogous to that of Theorem 5.19. qed

Corollary 9.7 Let ξ ∈ µML(P) be a modal fixpoint formula. Then ξ is satisfiable iff
ξ is satisfiable in a model of size exponential in |ξ|.

Proof.

I Immediate by earlier results, once size matters are taken into consideration

qed
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9.2 Uniform interpolation and bisimulation quantifiers

Definition 9.8 Given two modal fixpoint formulas ϕ and ψ, we say that ψ is a (local)
consequence of ϕ, notation: ϕ |= ψ, if S, s 
 ϕ implies S, s 
 ψ, for every pointed
Kripke model (S, s). �

A formalism has the (Craig) interpolation property if we can find an interpolant for
every pair of formulas ϕ and ψ such that ϕ |= ψ. This interpolant is a formula θ such
that ϕ |= θ and θ |= ψ; but most importantly, the requirement on θ is that it may only
use symbols that occur both in ϕ and ψ.

I why this is an important property

As we will see now, the modal µ-calculus has uniform interpolation. This is a very
strong version of interpolation in which the interpolant θ does not depend on the shape
of ψ, but only on the language of ψ. More precisely, we define the following.

Definition 9.9 Let ϕ be a modal fixpoint formula, and Q ⊆ FV (ϕ). Then a uniform
interpolant of ϕ with respect to Q is a formula θ with FV (θ) ⊆ Q, such that

ϕ |= ψ iff θ |= ψ. (38)

for all formulas ψ with FV (ψ) ∩ FV (ϕ) ⊆ Q. �

Remark 9.10 Instead of (38) we could have required

ϕ |= ψ iff ϕ |= θ and θ |= ψ, (39)

which perhaps shows more clearly that θ is indeed an interpolant.
These two definitions are in fact equivalent. The key observation to see this is that

(38) implies that from θ |= θ it follows that ϕ |= θ. �

Theorem 9.11 (Uniform Interpolation) Every modal fixpoint formula has a uni-
form interpolant.

The proof consists of showing that the modal µ-calculus can express bisimulation
quantifiers.

Proof. Fix the formula ϕ and the set Q, and define P := FV (ϕ) and R := P \ Q.
By the equivalence of modal fixpoint formulas and nondeterministic Kripke au-

tomata, it follows from Proposition 8.20 that the modal µ-calculus can express bisimu-
lation quantifiers. That is, given ϕ and Q, there is a formula IQ(ϕ) with FV (IQ(ϕ)) ⊆ Q
such that, for all pointed Q-models (S, s):

S, s 
 IQ(ϕ) iff S′, s′ 
 ϕ for some P-model S′ with S′ �Q , s
′ ↔Q S, s.

We leave the fairly straightforward (but not completely trivial) task of verifying that
this IQ(ϕ) is a uniform interpolant of ϕ with respect to Q as an exercise for the reader.
qed

I introduce bisimulation quantifiers
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9.3 Expressive completeness

One of the key results in the theory of modal logic is that the basic modal language
corresponds to the bisimulation invariant fragment of first-order logic. In this sec-
tion we will prove an extension of this result stating that the model µ-calculus is the
bisimulation invariant fragment of second-order logic.

Theorem 9.12 Let ϕ be a monadic second order property of pointed transition systems
which is bisimulation invariant. Then there is a µPML-formula ϕ̂, effectively obtainable
from ϕ, which is equivalent to ϕ.

Before giving the exact definition of our version MSOL of monadic second-order
logic, we roughly sketch the idea for proving Theorem 9.12. The proof is based on an
algorithm that transforms an MSOL-formula ϕ into a modal fixpoint formula ϕ̂ with
the property that for all pointed Kripke models (S, s):

S, s 
 ϕ̂ iff Eω(S, s), s 
 ϕ. (40)

Here Eω(S, s) denotes the ω-expansion of S around s, defined as follows.

Definition 9.13 Let κ be a countable cardinal with 1 ≤ κ ≤ ω, and let (S, s) be
a pointed Kripke model of type (P,D). A κ-path through S is a finite (non-empty)
(S ∪ D ∪ κ)-sequence of the form s0d1k1s1 · · · sn−1dnknsn, such that Rdsisi+1 for each
i < n. The set of such paths through S is denoted as Pathsκ(S); we use the notation
Pathsκs (S) for the set of paths starting at s.

The κ-expansion of S around s is the transition system Eκ(S, s) = 〈Pathsκs (S), σκ〉,
where

σκV (s0 · · · dnknsn) := σV (sn),

σκd (s0 · · · dnknsn) := {(s0 · · · dnknsndkt) ∈ Pathss(S) | Rdsnt, 0 < k < κ}.

defines the coalgebra map σκ = (σV , (σd | d ∈ D)). �

It is not hard to check that the unravellings of a model (Definition 8.19) can be
identified with its 1-expansions. The notion of κ-expansion generalizes that of the un-
ravelling in that we take κ many copies of each d-successor in the κ-expansion. It easily
follows from the definitions that S, s↔ Eω(S, s), s, for any pointed Kripke model (S, s),
and that every κ-expansion is κ-unravelled (see Definition 8.19): it is a tree in which
d-successor nodes come in packs, of size at least κ, consisting of bisimilar/isomorphic
siblings.

Returning to the proof sketch of our main result, Theorem 9.12 is in fact a direct
consequence of (40): if ϕ is invariant under bisimulation we have

S, s |= ϕ iff Eω(S, s), (s) |= ϕ,

and so the equivalence of ϕ and ϕ̂ is immediate by (40).
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Monadic Second-Order Logic

Definition 9.14 Given a collection P of set variables, and a set D of atomic actions,
we define the language of monadic second-order logic MSOL as follows:

ϕ ::= p v q | Rd(p, q) | ⇓p | ¬ϕ | ϕ ∨ ϕ | ∃p.ϕ

Here p and q are variables from P. �

Definition 9.15 Given a Kripke model S = 〈S, V,R〉, and a designated point s ∈ S,
we define the semantics of MSOL as follows:

S, s |= p v q if V (p) ⊆ V (q)
S, s |= R(p, q) if for all s ∈ V (p) there is a t ∈ V (q) with Rst
S, s |= ⇓p if V (p) = {s}
S, s |= ¬ϕ if S, s 6|= ϕ
S, s |= ϕ ∨ ψ if S, s |= ϕ or S, s |= ψ
S, s |= ∃p.ϕ if S, s[p 7→ X] |= ϕ for some X ⊆ S.

An MSOL-formula ϕ is bisimulation invariant if S, s ↔ S′, s′ implies that S, s |= ϕ ⇔
S′, s |= ϕ. �

Note that the connective ⇓ is there to encode the actual world. This is needed
if we want to compare MSOL with the modal µ-calculus, since formulas of the latter
formalism are always evaluated relative to a point in the model.

Remark 9.16 In our version of second-order logic, there are only second-order vari-
ables. (In fact, one may think of this formalism as a first-order logic of which the

intended models are first-order structures of the form 〈℘(S),⊆, ~R〉, where ~R(Y, Z) iff
for all y ∈ Y there is a z ∈ Z such that Ryz.)

Rather than Definition 9.14, the reader may have expected a language allowing both
first- and second-order quantification. For instance, given a set X of individual variables
and a set P of set variables, we define the language MSOL′ as follows:

ϕ ::= x ≈ y | Rdxy | p(x) | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∃p.ϕ

Here x and y are variables from X, p is a variable from P, and d ∈ D is an atomic
action. This semantics of this language is completely standard, with ∃x denoting first-
order quantification (that is, quantification over individual states), and ∃p denoting
second-order quantification (that is, quantification over sets of states). Formulas of
this languages are interpreted over Kripke models S with an assignment, that is, a map
α : X → S interpreting the variables as elements of S.

It is not too hard to see that the two languages are in some sense equivalent. The
key point is that MSOL can interpret MSOL′, by encoding individual variables as set
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variables denoting singletons. To understand how this works, we start with encoding
a MSOL′-mode M with assignment α, as the P ∪ X-model Mα = (M,R, V α), where
V α(p) := V (p) if p ∈ P, and V α(x) := {α(x)} if x ∈ X. It is then not hard to give a
translation (·)t from MSOL′ to MSOL, such that

M |= ϕ[α] iff Mα |= ϕt,

for all MSOL′-formulas ϕ, all Kripke models S, and all assignments α. The translation
(·)t crucially involves the MSOL-formulas empty(p) and sing(p) given by

empty(p) := ∀q (p v q)
sing(p) := ∀q

(
q v p→ (empty(q) ∨ p v q)

)
.

It is not hard to prove that these formulas hold in S iff, respectively, V (p) is empty and
V (p) is a singleton. �

I Examples of what you can say in msol, and not in muML:
- every point has exactly two d-successors
- relation R has no cycles (check!)

Automata for Monadic Second-Order Logic

We will now introduce the key instruments for proving Theorem 9.12, viz., the MSO-
automata that correspond to formulas of second-order logic. In order to simplify our
presentation we restrict to the uni-modal case in the remainder of this section.

In order to introduce MSO-automata, let us take a slightly different perspective on
the modal automata of the previous chapter. First of all, here we work with chromatic
automata, that is, the transition map ∆ of the automaton A is of the form ∆ : A×C →
MLatt(∅, A) or ∆ : A×C → MLatt∇(∅, A). (The reader has been asked to prove that
these automata are equivalent to the ordinary ones in Exercise 8.1).

The most important change of perspective is to think of states of A as monadic
predicates of some first-order language, and of each ∆(a) as a first-order formula in
this language. For instance, the term 2a1 ∧ (3a2 ∨ 2a3) corresponds to the formula
∀x a1(x) ∧

(
∃y a2(y) ∨ ∀z a3(z)

)
. If the acceptance game A(A,S) arrives at a basic

position (a, s), it is the task of ∃ to find an interpretation m of the predicates ai
occurring in ∆(a) as subsets of the set σR(s) of successors of s, in such a way that the
formula ∆(a) becomes true in the resulting model (σR(s),m).

That this new perspective corresponds to the old one is fairly easy to see for the
nabla formulas. To see this, suppose that the acceptance game arrives at a basic
position of the form (a, s), with ∆(a) = ∇α. Then ∃ has to come up with a relation Z
linking every a ∈ α to some t ∈ σR(s), and vice versa. But using the correspondence
between relations Z ⊆ A × σR(s) and maps m : A → ℘(σR(s)), this is the same as
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finding an interpretation mZ making the formula

∆′(a) =
∧
a∈α

∃y a(y) ∧ ∀z
∨
a∈α

a(z)

true in the model (σR(s),mZ).
The point of this new perspective is that we may now generalize this set-up to a

wider set of first-order sentencess, that may also use ≈ and its negation 6≈, and thus
properly extend the ones that are obtained as translations of modal formulas.

Definition 9.17 Given a set A, consider the set of first-order formulas defined by the
following grammar (where x and y range over some set X of variables):

ϕ ::= x ≈ y | a(x) | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ

We let FO(A) denote the set of sentences in this language.
A structure for this language is given as a pair (Q,m), where m : A → ℘(Q) is an

interpretation assigning a subset of Q to each ‘predicate’ a ∈ A. �

Given a FO(A)-formula ϕ and a structure (Q,m), we can use the standard semantics
of first-order logic to determine whether the formula is true in the structure, notation:
(Q,m) |= ϕ, or not.

Definition 9.18 Given a set P of proposition letters, an MSO-automaton is a structure
A = 〈A, aI ,∆,Ω〉, where A, aI and Ω are as usual, and ∆ is a map ∆ : A×C → FO(A).

Given a Kripke model S, the acceptance game of such an automaton with respect
to S is given in the table below.

Position Player Admissible moves
(a, s) ∈ A× S ∃ {m : A→ ℘(σR(s)) | (σR(s),m) |= ∆(a, σV (s))}
m : A→ ℘(S) ∀ {(b, t) | t ∈ m(b)}

The winning conditions for both finite and infinite matches are as usual. �

In words, the acceptance game proceeds as follows. At a basic position (a, s), ∃
chooses a so-called marking m interpreting each ‘predicate’ a ∈ A as a subset m(a)
of the set σR(s) of successors of s. In this choice, she is bound by the condition that
the formula ∆(a, σV (s)) must be true in the resulting FO(A)-model (σR(s),m). Once
chosen, this map m itself becomes the next position of the match. As such it belongs
to ∀, and all he has to do is to choose a pair (b, t) such that t satisfies the ‘predicate’
b, or equivalently, t ∈ m(b). This pair (b, t) is the next basic position of the match.

As it turns out, we may always transform an MSO-automaton into a special one, in
which every formula ∆(a) has been brought into a special normal form.
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Definition 9.19 A sentence ϕ ∈ FO(A) is in basic form if it has the following shape:

∃~y
(
diff(~y) ∧

∧
1≤i≤n

∧
a∈αi

a(yi) ∧ ∀z
(
diff(~y, z) →

∨
β∈B

∧
b∈β

b(z)
))
.

Here each β ∈ B and each αi is a subset of A, and diff(y1, . . . , yn) denotes the formula∧
{yi 6= yj | 1 ≤ i < j ≤ n}. Such a formula is in special basic form if each β ∈ B and

each αi is in fact a singleton. The sets of these sentences are denoted by BF (A) and
SBF (A), respectively.

An MSO-automaton is called nondeterministic if the range of ∆ is in SLatt(SBF (A)),
that is, every formula ∆(a, c) is a disjunction of special basic formulas. �

In the next proposition we first show that every MSO-automaton can be transformed
into one where every formula ∆(a, c) is a disjunction of special formulas. We then move
on to the much harder result, which can be seen as the analogon of Theorem 8.11, that
every MSO-automaton has a nondeterministic equivalent.

Proposition 9.20 Fix a set P of proposition letters, and let C := ℘P. Consider MSO-
automata of the form A = (A, aI ,∆,Acc), where the transition map ∆ has one of the
following four formats:
(1) ∆ : A× C → SLatt(FO(A)),
(2) ∆ : A× C → SLatt(BF (A)),
(3) ∆ : A× C → SLatt(SBF (A)),
Then there are effective transformations transforming an automaton of any one kind
above to an equivalent automaton of any other kind.

Proof. The equivalence 1 ↔ 2 is based on a result in first-order model theory, namely,
that every first-order sentence in FO(A) can be rewritten into an equivalent normal
form in SLatt(FO(A)).

For the hard direction of 1/2 ↔ 3, let A = 〈A, aI ,∆,Ω〉 be an MSO-automaton,
with ∆ : A→ SLatt(BF (A)).

I Details to be supplied

qed

Proposition 9.21 Let ϕ be some MSOL-formula. Then for any set P of propositional
variables containing the free variables of ϕ there is an effectively obtainable nonde-
terministic or alternating automaton Bϕ over the alphabet ℘P, such that for any ω-
unravelled tree model S for P, with root r:

S, r |= ϕ iff Bϕ accepts (S, r). (41)
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Proof. We prove the proposition by induction on the complexity of ϕ.
For the base case we only give the automaton characterizing the atomic formula

R(p, q). This automaton BR(p,q) is given as the structure 〈{a0, a1}, a0,∆,Ω〉, where ∆
is given by putting:

∆(a0, c) :=

{
∃y

(
a1(y) ∧ ∀z (z 6= y → a(z))

)
if p ∈ c

∀z a0(z) otherwise

∆(a1, c) :=


⊥ if q 6∈ c
∃y

(
a1(y) ∧ ∀z (z 6= y → a(z))

)
if q ∈ c and p ∈ c

∀z a0(z) otherwise

Furthermore, Ω is defined Ω(ai) := 0 for each ai — as a consequence, ∃ wins all infinite
games. We leave it for the reader to verify that this automaton is of the right shape,
and that it is equivalent to the formula R(p, q).

For the inductive step of the argument, there are three cases to consider. Leaving
the other cases as exercises for the reader, we treat formulas of the form ϕ = ∃p.ψ.
Inductively we may assume that there is a nondeterministic MSO-automaton Bψ =
〈B, bI ,∆,Ω〉, with alphabet C ′ = ℘(P ∪ {p}) which is equivalent to ψ on the class of
ω-unravelled trees.

We can define the automaton B = 〈B, bI ,∆C ,Ω〉, with alphabet C = ℘(P), by
putting

∆C(a, c) := ∆(a, c) ∨∆(a, c ∪ {p}).

Clearly then B is a nondeterministic MSO-automaton, so it remains to prove that B is
equivalent to ϕ. For the hard part of this proof, assume that S, r is an ω-unravelled tree
model accepted by B. We need to show that S, r |= ϕ, that is, we need to find a subset
P ⊆ S such that S[p 7→ P ], r |= ψ, or, equivalently, such that Bψ accepts (S[p 7→ P ], r).

We leave it for the reader to verify that due to the fact that S is an ω-unravelled
tree, we may without loss of generality assume that ∃ plays a scattered strategy. That
is, we may assume that for every point s ∈ S there is a unique automata state as such
that ∃’s strategy guarantees that s will only be visited by B if B is in state as. Putting
it differently, we may encode ∃’s winning strategy by a map s 7→ as such that ar = aI ,
and for each s ∈ S, the position (as, s) is a winning position for ∃, with her winning
strategy telling her to pick the following marking ms of the set σR(s):

ms(a) := {t ∈ σR(s) | at = a}.

Since this ms is part of a winning strategy, it holds that (σR(s),ms) |= ∆C(as, σC(s)).
Thus by definition, for each s ∈ S we have (σR(s),ms) |= ∆(as, σC(s)) ∨∆(as, σC(s) ∪
{p}). Now we define

P :=
{
s ∈ S | (σR(s),ms) |= ∆(as, σC(s) ∪ {p})

}
.
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From this definition it is not hard to prove that the very same strategy of ∃ that was
winning in the acceptance game of Bψ with respect to (S, r) is also winning in the
acceptance game of B with respect to (S[p 7→ P, r). qed

From monadic second-order logic to the modal µ-calculus

Definition 9.22 Consider an SBF (A)-sentence

ϕ = ∃y1 · · · yn
(
diff(~y) ∧

∧
1≤i≤n

ai(yi) ∧ ∀z
(
diff(~y, z) →

∨
b∈β

b(z)
))
,

Abbreviate α := {a1, . . . , an}, and define ϕ− as the FO(A)-sentence

ϕ− :=
∧
a∈α

∃y a(y) ∧ ∀z
( ∨
b∈β

b(z)
)
.

Furthermore, let ϕµ denote the MLatt(∅, A)-term

ϕµ :=
∧
a∈α

3a ∧2
∨
b∈β

b.

Given an MSO-automaton A = 〈A, aI ,∆,Ω〉, let A− be the MSO-automaton 〈A, aI ,∆−,Ω〉,
where, for each a ∈ A and c ∈ C, the formula ∆−(a, c) is obtained from ∆(a, c) by
replacing each disjunct ϕ of ∆(a, c) with the formula ϕ−.

The chromatic modal automaton Aµ (see Exercise 8.1) is defined analogously. That
is, we define ∆µ : A× C → MLatt∇(∅, A), by putting

∆µ(a, c) :=
∨

1≤i≤n

ϕµi

if ∆(a, c) =
∨

1≤i≤n ϕi �

Proposition 9.23 Let A be a MSO-automaton, and let (S, s) be some pointed Kripke
model. Then
(1) A− accepts (S, s) iff A accepts (Eω(S, s), s).
(2) A− accepts (S, s) iff Aµ accepts (S, s).

Proof. We leave the proof of this Proposition as an exercise for the reader. Note that
the proof of the second part is almost immediate. qed

Proof of Theorem 9.12. Let ϕ be a formula of monadic second-order logic, and let
(S, s) be an arbitrary pointed Kripke model. By Proposition 9.21 there is an MSO-
automaton A which is equivalent to ϕ on ω-unravelled models.

By the results in the previous chapter (including Exercise 8.1), we can effectively
obtain a modal fixpoint formula ϕ̂ which is equivalent to the automaton Aµ. But then
by Proposition 9.23 we may derive (40) above, and we already saw that this suffices to
prove the theorem. qed
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9.4 Preservation results

I Details to be supplied

9.5 Model checking

I Details to be supplied

Notes

The decidability of the satisfiability problem of the modal µ-calculus was first proved
by Kozen and Parikh [15] via a reduction to SnS. Emerson & Jutla [8] established
the exptime-completeness of this problem. The finite model property was proved by
Kozen [14].

Uniform interpolation of the modal µ-calculus was proved by D’Agostino & Hol-
lenberg [7], who established other model-theoretic results as well. The result that the
modal µ-calculus is the bisimulation-invariant fragment of monadic second-order logic
is due to Janin & Walukiewicz [11].

Exercises

Exercise 9.1 Let γ be some disjunctive fixed point formula.

(a) Show that µx.γ is satisfiable iff γ[⊥/x] is satisfiable.

(b) Show that νx.γ is satisfiable iff γ[>/x] is satisfiable.

(c) Do the above statements hold for arbitrary fixed point formulas as well?

Exercise 9.2 Provide the proof of Proposition 9.23, part (1).
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10 Axiomatization

Definition 10.1 Let Kµ be the logic obtained by adding the following axiom scheme

(prefix) ϕ[µx.ϕ/x] → µx.ϕ

and derivation rule:

(min) from ` ϕ[ψ/x] → ψ infer ` µx.ϕ→ ψ.

to the basic modal logic K. �

Clearly, (prefix) expresses that µx.ϕ is a prefixpoint of the formula ϕ(x), and (min)
says that µx.ϕ is in fact below any prefixpoint of ϕ(x).

Theorem 10.2 Kµ is sound and complete with respect to the standard semantics.

Notes

D. Kozen proposed the axiomatization Kµ already in the original paper [13] where
he introduced the formalism of the modal µ-calculus. He showed the axiomatization
to be complete for the so-called aconjunctive fragment. The completeness for the full
language turned out to be a hard nut to crack, but the problem was finally solved by
I. Walukiewicz [30, 31].
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A Mathematical preliminaries

Sets and functions We use standard notation for set-theoretic operations such as
union, intersection, product, etc. The power set of a set S is denoted as ℘(S) or ℘S,
and we sometimes denote the relative complement operation as ∼SX := S \ X. The
size or cardinality of a set S is denoted as |S|.

Let f : A → B be a function from A to B. Given a set X ⊆ A, we let f [X] :=
{f(a) ∈ B | a ∈ X} denote the image of X under f , and given Y ⊆ B, f−1[Y ] := {a ∈
A | f(a) ∈ Y } denotes the preimage of Y . In case f is a bijection, we let f−1 denote
its inverse. The composition of two functions f : A → B and g : B → A is denoted
as g ◦ f or gf , and the set of function from A to B will be denoted as either BA or
A→ B.

It is well-known that there is a bijective correspondence

(A×B) → C ∼= A→ (B → C).

With a function f : A×B → C, we associate the map that, for each a ∈ A, yields the
function fa : B → C given by fa(b) := f(a, b).

Relations Given a relation R ⊆ A×B, we introduce the following notation. Dom(R)
and Ran(R) denote the domain and range ofR, respectively. R−1 denotes the converse of
R. For R ⊆ S×S, R∗ denotes the reflexive-transitive closure of R, and R+ the transitive
closure. For X ⊆ A, we put R[X] := {b ∈ B | (a, b) ∈ R for some a ∈ X}; in case
X = {s} is a singleton, we write R[s] instead of R[{s}]. For Y ⊆ B, we will write 〈R〉Y
rather than R−1[Y ], while [R]Y denotes the set {a ∈ A | b ∈ Y whenever (a, b) ∈ R}.
Note that [R]Y = A \ 〈R〉(B \Y ). A relation R on S is acyclic if there are no elements
s such that R+ss.

Sequences, lists and streams Given a set C, we define C∗ as the set of finite
lists, words or sequences over C. We will write ε for the empty sequence, and define
C+ := C∗ \ {ε} as the set of nonempty words. An infinite word or sequence, of stream
over C is a map γ : ω → C mapping natural numbers to elements of C; the set of these
maps is denoted by Cω. We write Σ∞ := Σ∗ ∪ Σω for the set of all sequences over Σ.

We use v for the initial segment relation between sequences, and < for the proper
(i.e., irreflexive) version of this relation. For a nonempty sequence π, first(π) denotes
the first element of π. In the case that π is finite and nonempty we write last(π) for
the last element of π. Given a stream γ = c0c1 . . . and two natural numbers i < j, we
let γ[i, j) denote the finite word cici+1 . . . cj−1.

Graphs and trees A (directed) graph is a pair G = 〈G,E〉 consisting of a set G of
nodes or vertices and a binary edge relation E on G. A path through such a graph is a
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sequence (s0, . . . , sn) in G∗ such that Esisi+1 for all i < n. A (proper) cycle is a path
(s0, . . . , sn) such that n > 0 and s0 = sn (and all s0, . . . , sn−1 are all distinct). A graph
is acyclic if it has no cycles. A tree is a graph T = (T,R) which contains a node r,
called a root of T, such that every element t ∈ T is reachable by a unique path from r.
(In particular, this means that R is acyclic, and that the root is unique.)

Fact A.1 (König’s Lemma) Let G be a finitely branching, acyclic graph. If G is
infinite, then it has an infinite path.

Order and lattices A partial order is a structure P = 〈P,≤〉 such that ≤ is a
reflexive, transitive and antisymmetric relation on P . Given a partial order P, an
element p ∈ P is an upper bound (lower bound, respectively) of a set X ⊆ P if p ≥ x
for all x ∈ X (p ≤ x for all x ∈ X, respectively). If the set of upper bounds of X
has a minimum, this element is called the least upper bound, supremum, or join of X,
notation:

∨
X. Dually, the greatest lower bound, infimum, or meet of X, if existing, is

denoted as
∧
X.

A partial order P is called a lattice if every two-element subset of P has both an
infimum and a supremum; in this case, the notation is as follows: p ∧ q :=

∧
{p, q},

p∨q :=
∨
{p, q}. Such a lattice is bounded if it has a minimum ⊥ and a maximum >. A

partial order P is called a complete lattice if every subset of P has both an infimum and
a supremum. In this case we abbreviate ⊥ :=

∨
∅ and > :=

∧
∅; these are the smallest

and largest elements of C, respectively. A complete lattice will usually be denoted as a
structure C = 〈C,

∨
,
∧
〉. Key examples of complete lattices as full power set algebras:

given a set S, it is easy to show that the structure 〈℘(S),
⋃
,
⋂
〉 is a complete lattice.

Given a family {Pi | i ∈ I} of partial orders, we define the product order
∏

i∈I Pi
as the structure 〈

∏
i∈I Pi,≤〉 where

∏
i∈I Pi denotes the cartesian product of the family

{Pi | i ∈ I}, and ≤ is given by π ≤ π′ iff π(i) ≤i π
′(i) for all i ∈ I. It is not difficult

to see that the product of a family of (complete) lattices is again a (complete) lattice,
with meets and joins given coordinatewise. For instance, given a family {Ci | i ∈ I} of
complete lattices, and a subset Γ ⊆

∏
i∈I Ci, it is easy to see that Γ has a least upper

bound
∨

Γ given by ( ∨
Γ
)
(i) =

∨
{γ(i) | γ ∈ Γ},

where the join on the right hand side is taken in Ci.

Ordinals A set S is transitive if S ⊆ ℘(S); that is, if every element of S is a subset
of S, or, equivalently, if S ′′ ∈ S ′ ∈ S implies that S ′′ ∈ S. An ordinal is a transitive
set of which all elements are also transitive. From this definition it immediately follows
that any element of an ordinal is again an ordinal. We let O denote the class of all
ordinals, and use lower case Greek symbols (α, β, γ, . . . , λ, . . . ) to refer to individual
ordinals.
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The smallest, finite, ordinals are

0 := ∅
1 := {0} (= {∅})
2 := {0, 1} (= {∅, {∅}})
3 := {0, 1, 2} (= {∅, {∅}, {∅, {∅}}})
...

In general, the successor α+1 of an ordinal α is the set α∪{α}; it is easy to check that
α + 1 is again an ordinal. Ordinals that are not the successor of an ordinal are called
limit ordinals. Thus the smallest limit ordinal is 0; the next one is the first infinite
ordinal

ω := {0, 1, 2, 3, . . .}.

But it does not stop here: the successor of ω is the ordinal ω + 1, etc. It is important
to realize that there are in fact too many ordinals to form a set: O is a proper class.
As a consequence, whenever we are dealing with a function f : O → A from O into
some set A, we can conclude that there exist distinct ordinals α 6= β with f(α) = f(β).
(Such a function f will also be a class, not a set.)

We define an ordering relation < on ordinals by:

α < β if α ∈ β.

From this definition it follows that α = {β in O | β < α} for every ordinal α. The
relation < is obviously transitive (if we permit ourselves to apply such notions to
relations that are classes, not sets). It follows from the axioms of ZFC that < is in fact
linear (that is, for any two ordinals α and β, either α < β, or α = β, or β < α) and
well-founded (that is, every non-empty set of ordinals has a smallest element).

The fact that < is well-founded allows us to generalize the principle of induction on
the natural numbers to the transfinite case.

Transfinite Induction Principle In order to prove that all ordinals have a certain prop-
erty, it suffices to show that the property is true of an arbitrary ordinal α whenever
it is true of all ordinals β < α.

A proof by transfinite induction typically contains two cases: one for successor ordinals
and one for limit ordinals (the base case of the induction is then a special case of a limit
ordinal). Analogous to the transfinite inductive proof principle there is a transfinite
inductive way of defining functions on the class of ordinals.
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