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Abstract. For a region of the nearest-neighbour ferromagnetic Ashkin—Teller spin systems on
72, we characterize the existence of multiple Gibbs states via percolation. In particular, there
are multiple Gibbs states if and only if there exists percolation of any of the spin types (i.e.
the magnetized states are characterized by percolation of the dominant species). This result was
previously known only for the Potts models @8.

1. Introduction

An issue that sometimes arises in statistical mechanics concerns the connection between
percolation and phase transitions. For the Potts model&%there are characterization
theorems relating the uniqueness of the Gibbs states and the absence of spin-system
percolation [CNPR1, CNPR2, C1]. Explicitly, for the Ising magnet, the region of
nonuniqueness isharacterizedby percolation of+ spins in the+ state. The analogous
result holds for the Potts model and a number of similar results, for various systems, were
established in [GLM]. In this paper, we will establish such a result for a region of the
Ashkin—Teller models. Specifically, there are multiple limiting Gibbs states precisely at
those temperatures which foster percolation of one of the spin types.

We begin with a description of a general Ashkin—Teller model on an arbitrary graph with
spins at each vertex. There are four possible spin types, labelled: blue, yeliow, and
red—. The spins may be regarded as lying equidistant on the unit circle, occurring clockwise
in the order just named, with blue at 12 o’clock. There is complete symmetry around the
circle, so that interactions receive energy assignments based solely on the relative positions
of the spin colours on the circle. Here the model is ‘completely’ ferromagnetic: colours
opposite to each other receive the highest energy assignments; the like—like interactions the
lowest, and the adjacent colours receive an intermediate energy. Without loss of generality,
we may set this intermediate energy levd). For positivelC;; jy, ki j), we set the like—like
interaction between sitésand j along the edgei, j) = k; ;) —Cy; j, and the interaction for
spin pairs with colours opposite to each othektg,. Although theZ? Ashkin-Teller model
in our theorem has uniform couplings (and at most one edge between any two sites), some of
our proofs will use the flexibility of multiple edges between sites and nonuniform coupling
constants. In this paper, we confine attention to the parameter regign< KCy; j,/2 for

all G, j).
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Figure 1. Phase diagram for the 2d Ashkin—Teller model. (1) Line of (unique magnetic)
ordering transition. (2) (2 Self-dual line: for 0< y < T, this is presumed to coincide with

the magnetic ordering line. Further to the right, this line runs through an intermediate phase.
(3) (3) Respective transition lines for partial and complete ordering. For the standar@)(2
AT-model, the split is presumed to take plaatethe Potts line. Fofg x ¢) models withg large

or, presumably, i/ > 2 for the ordinary AT model, the split will occur further to the right. (A)
Model equivalent to the 4-state Potts model. (B) Model equivalent to the 4-state clock model
(two decoupled Ising models). (C) Model equivalent to a single Ising model (with two extra,
decoupled degrees of freedom for each site).

Let s; denote the Cartesian coordinates of the 8#ecolour on the unit circle. Then
the explicit energy valu€(s;, s;) between sites and j is

E(si,8)) =Ts; -5 +y(si-s))? (1)

where—T" = % and—y = % For any finite graply the Hamiltonian is given

by H = quj)eg E(si, s;), and the Boltzmann weight of any spin configuration ¥/
where 18 o« temperature.

The phase diagram of the Ashkin—Teller model is depicted in figure 1; this is the upper
right-hand quadrant of Baxter's diagram 12.12 [B], slightly tilted. In the notation of Baxter's
book, the change of variables (for the uniform case) is as follows= k, ¢ = k — K
ande; = ¢ = 0. The present work focuses on the region<Ok < K /2, where the
Ashkin—Teller model interpolates between the 4-state PottsZanmiodels. (For more on
Z, models and their relation to Ashkin—Teller models, see [Ca].) ¥ @ < K/2, then
there is a unique ordering transition [P]. Here we prove that the phase boundary of this
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unique ferromagnetic transition coincides precisely with the critical percolation boundary
for the Ashkin—Teller spin system.

We start with the forward direction of the characterization theorem. The existence
of multiple Gibbs states implies that there is percolation of individual spin types. For
the opposite direction we need some additional ammunition, in the form of the result of
[GKR] and two lemmas that we shall present. Both directions rely on a Wolff/FK-type
representation [W, FK] of the Ashkin—Teller model, similar to that used in [A, C2, CM2]
for the XY models.

2. Main section

We start by rewriting our spins’ circle positions; = (a;7;, b;o;), wherea;, b; € {0, 1},
a; = 1—b;, andt;,0; € {—1,+1}. For example, if site = blue, thens; = (0, 1) and
correspondingly;; = 0, b; = 1, t; = £1, ando; = +1. Note that there is some ambiguity
with this description: in this example, for instanage,does not have a set value because
a; = 0. This is of no consequence; the effect of summing over all configurations of the
b, o, T variables amounts to an unimportant extra factor of 2 for each site, and does not
alter the resultant probability measure.

Expanding the dot products in equation (1) with our new variables, and using the identity
0i0; = 28,5, — 1, we may rewrite our Hamiltonian as

H=H, +HS 2)

—H), = Z [Ki,jybibj (b0, — D) + (K, jy — ki, jy)bibj] 3)
(i,j)eG

—Hgﬂi = Z (K jyaiaj(e — 1) + (K jy — ki jyaiaj] 4)
(i,])€G

wheregq, b, o, T are configurations aof, b, o, t, respectively, an& denotes a configuration
of K. j). ki.j) over@©g, the set of all edges @f. Notice thatH,’,, H,*, each take the form of

an Ising Hamiltonian (with couplings determined by parametexada), plus an additional
term independent of the;’'s and z;’s. We denote the Ising terms algfg and /X | and the

a,t’
additional terms ag/“(b) and /¥ (a). For example:
vE® = Y (K —kaj)bib;. ®)
(i.)€g
The Boltzmann weight can now be written as’ ke fla:efV O eV @
It is now convenient to introduce related measures needed for upcoming proofs. Tracing

over t, and Iettingzé]K denote the Ising partition function fd@‘fl, we arrive at a new
measurevg (b, o):

vg(b, o) o ZlFe Plis gV DbV @ (6)
Now we expand the @< term into random cluster (RC) [FK] Isingy = 2) weights to
obtain the measure

$(b.0.w) < Z, VOV OB @) T 8 )

(i,j)ew

wherew C ©g is an Ising FK bond configuration, ar‘Blf(a)) is the Bernoulli weight for
o with probability p, j, = 1 — e"#*wbibi of the bond(i, j) being occupied. Specifically,

B (w) = l_[ Pii.j) l_[ A= pujp)-

(i,j)ew (i,j)¢w
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Let C(w) = the number of connected components of the configuratigawhere sites not
touching bonds are considered to be individual components). Summingcaed b, we
arrive at the marginal distribution:

g () o ZPEPVI@ N VD) BE ()20, (8)
b

Notice thatp,; ;, is nonzero only ifp; andb; are one; it is observed that bonds represent
full spin alignment so that each connected cluster must be monochrome—either of the blue
or yellow type.

So far, we have only considered free boundary conditions on the gfapAlso of
interest ardlueboundary conditions. LetG denote a set of ‘boundary’ sites¢h Consider
the analogous developments under the boundary conditions that all si€save fixed at
blue; we denote the corresponding measuresfiy-), ¢5 (—) and 5 (—) respectively. Of
course,vg(—) is just the marginal distribution of a canonical Gibbs measure. In equation (7),
the termss,,, must be modified if and/or is a boundary site, and in addition the partition
function Z!'* has to be recomputed. Finally, in the counting of clusters one arrives at
26w@=1 where Cy,(w) is the number of components counted as though all sitegjodire
identified as a single site. Hence, in thé(—) measure, the connected component of the
boundary represents sites that are all blue.

We are now ready for the first direction of our characterization proof.

Theorem 1In the region 0< & jy < Ky, jy/2 of the above-described Ashkin—Teller model

on Z2, the presence of multiple Gibbs states implies that there is percolation of blue spins
in the ‘blue’ state: the state obtained as the limit of finite volume conditional measures with
all boundary spins set to blue.

Proof. Let so be the spin at the origin, and 1&f be the unit vector in the blue direction. The
superscript B’ will denote blue boundary conditions dh By use of yet another (bi-layer)
graphical representation, theorem IIl.7 in [CM1] demonstrates that nonuniqueness of Gibbs
states in the regiok; ;, < Ky jy/2 of the Ashkin—Teller model is equivalent to positive
spontaneous magnetization. So for this direction of the argument, it suffices to assume
that we have this positive magnetization. L(et)gﬁw be the expectation with respect to a
measurew under blue boundary conditions ¢h

From positivity of the magnetization, we have

(booo)g , = (S0~ é,)5, =€ >0 9)

for somee > 0, for all finite G  Z2. Let E be the event that the origin is connected to
the boundary of; throughw bonds. Recalling the measure described in (7), we see that

(booo)g,, = (booo)G

= (booo| E)§ 405 (E) + (boool E)§ 496 (E°). (10)
Given E, bgog = 1; it is easy to see that the second term vanishes. Thus,
(boo0)g., = $G(E) = ug(E). (1)

Hence, (9) impliesu5(E) > € > 0V finite G C Z2. So we have percolation ef bonds.
The blue boundary condition now forces the percolating cluster to, in fact, be blue. In the
thermodynamic limit, this gives us percolation of blue spins. O

For the second direction of the argument we shall make use of a result by Gandolfi,
Keane and Russo [GKR]. Their result requires a measurg?athat
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e is invariant under translations and axis reflections

e is ergodic under vertical and horizontal translations

o satisfies the FKG condition: positive events are positively correlated.
Under these three conditions, if there is percolation, then an infinite cluster is unique with
probability one. Furthermore, all other spin types lie in finite star-connected clusters. (The
definition of star-connectedness is as follows: two sites are said to be star-connected if
they are nearest neighbours or next-nearest neighbours; i.e. if neithew their their y

coordinates differ, in modulus, by more than one.)

Let pB(b) dzeflimg/zz p§ (b), wherepf (b) is theb-marginal distribution obf (b, o). We

will demonstrate in the appendix that this measure satisfies the above conditions.

Theorem 2.In the regionk < K /2 of the Ashkin—Teller model ofZ?, percolation of blues
implies the existence of multiple Gibbs states.

Proof. We remind the reader that= 1 for the blue and yellow spins, whereas-= 0 for the

red spins. The FKG property ¢f3(b) (see appendix), then, actually establishes the FKG
property for the ordering blue, yellow reds. Suppose that we have percolation of blues.
By theorem 1, if there were no percolation of blues in the blue state, then we would not see
percolation in any purported state, all states being equivalent. Thus, blues are percolating
in the blue state. Then certainly the blue-yellow spin combination percolates under these
conditions. Since our blue measure satisfies the conditions of the GKR theorem, the blue—
yellow infinite cluster is unique [WP1], and all red clusters lie in finite star-connected
clusters. Now we may produce at least two distinct Gibbs states: one corresponding to the
blue—yellow percolation (a ‘green’ state) and one for red percolation (a ‘red’ state). We
have just learned that these are mutually exclusive situations. Consider the event that the
origin is part of an infinite cluster, given that the origin is blue or yellow. This event has
positive probability in the green state, but lz@soprobability in the red state. Hence, these
states are distinct, and we have nonuniqueness of Gibbs states. O

Together, theorems 1 and 2 give us our desired characterization.

Appendix

To facilitate the oncoming handling of boundary conditions, we shall congjder be a
general finite graph (not necessarily a subseZ®f and we shall use the more general
Hamiltonian H = H)}wI + Hbﬂﬁ, where L, analogous tdK, represents a configuration of
L jy, Li.jy on Og for thea andt variables.

At this point, we take interest in the marginal distributipgt™(b) = Y, v (&, 0),
with weights denoted bR ;"™ (b):

Rﬂé,K(é) _ ZQI,LZQI,KeﬂWK(Q)JrM/L(Q) (12)
wherey (b) = 3=, ;g (K jy — ki j)bibj, andy(@) = 3=, ;1oL jy — Lij))aia;.
Lemma 1.The measure;"(b) is strong FKG.
Proof. This is almost identical to a result found in [C2], with slightly different measures. In

this case the strong FKG property (which does imply the usual ‘weaker’ FKG condition) is
equivalent to the lattice condition. For this measure, the lattice condition states that for any
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two configurationg); andn, of b-variables on our grapim(niAn2) p(n1vn2) = p (1) p(n2).
(Here all subscripts and superscripts have been dropped.) The a@hjech, is a new
configuration for which each site chooses the higher value betwegnfrom n; and b;
from n,. Similarly, n1 A n, chooses the lower value at each site.

Sinceb; can only take the values 0 and 1, it is necessary and sufficient to check that

R (6" by b,=0RG™ @by b=t = R () p,=0.5, 1R (6" p,=1.6,=0 (13)
for arbitrary sitest, v, and forb* = afixedconfiguration of spins on all sites @f, excluding

u andv. Sinceq; = 1-b;, and becausélil and Hfl are identical in form, it is sufficient
to check this lattice condition foH = Hgfg. Our desired inequality is as follows:

LKy LK gy~
(2, Oy, b—0(Z, €V Py, 21

K K
> (2,5 D)y —00,-1(Z, €V D)y, _1p,-0. (14)

For ease of notation, we define
def
—Hy = Z K. jybibj (8,6, — 1)
(i, ), j¢{u,v}
def
_Hu =e Z K(i,u)bi(ao,-a/ - 1)
(i,u)i#v
and —H, is defined accordingly. With this notation, after cancelling the factor

2 i vy Ky =k j))bibj . .
e,?f_,]?;g# W TR from both sides, equation (14) reduces to

eﬂ(}c<ll.v>—k<u,v>) Tr[e—ﬁ(Hw-‘rHﬁ-Hu)eﬂ}C(u,v) Goyoy —1)] Tr[e—ﬂHw]
> Tr[e P HrtHO] Tr[e A HatH)] (15)
where the trace is understood to be taken aver
Now we will simplify things further by proving the following inequality:
eﬂ(/C<u.v>—k<u.n>) Tr[e_ﬁ(HM+sz+Hv>eﬁlc(u.u)(Sm(av_1)] > Tr[e—ﬂ(Hw-‘rHu-‘rHu)]. (16)

Dividing by the right-hand side, and lettirigy (—) be the Ising expectation with respect to
the HamiltonianH, this inequality is equivalent to

eﬂ(’%,u)—k<u.v>)EHw+Hu+HU[(1 _ e—ﬂ’%.w)(g%av 4 e—ﬂ/C<u,u>] > 1 (17)

Using the fact thaify, .y, +#, (85,0,) = % the left-hand side of the equation is bounded

Kuv)

below by &2~ —kww) cosh(@), which is always> 1, since we are in the region where
> k.
Having shown (16), the lemma is implied by the following ‘alteration’ of (15):
Tr[e—ﬁ(Hw+Hu+Hv)] Tr[e“’H”] > Tr[e—ﬂ(Hw+Hu)] Tr[e—ﬂ(Hva)] (18a)

which is tantamount t&, ., (e #) > Ep, (e ).
Let N(v) = {nearest neighbours af, excludingu}, {T} = the set of all subsets of
N(v), and

Y(T) = H(l — e Pk 1_[ e Pbikin, (19)
ieT i¢T
Now expanding FK style, (18 continues to transform into

> [T(T)IEHMHN ( I 5(%)} >y [T(T)IEHM ( I1 8@-%)] (18)

T ieT T ieT
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This will certainly be true if for arbitraryl’, the individual expectations in (&8 obey the
inequality. As in [C1], these expectations can be expressed with the Ising FK representation,
in terms of probabilities of cluster events. LBF°(—), (—)R be the RC probability and
expectation corresponding to the Ising Hamiltonidn and let|T| be the number of sites

in T. Given a bond configuratiom from this representation, l&f; (w) be the number of
connected components containing siteg'inConverting from spin-system expectations:

17|
EH(H60‘10V> = Z(%)nilPZC{CT = n}
n=1

ieT
1
- <2CT—1>§IC' (20)
So we want
1 >RC < 1 >RC
- >(— (21)
<2€T_1 Hy+H, 26r-1 Hy

which is true becaus(e.})CT‘l is an increasing function of bond configurations (added bonds

— smallerCy), andP +H (-) FKG domlnateng;f(—). By definition, one measure FKG
dominates a second measure if it assigns higher probabilities to all positive events than does
the second measure. In this case, positive events will receive higher probabilitie& with
added to the Hamiltonia/y. O

Let us now considep;“* (), which is defined as the marginal distribution obtained

from the blue measureéL lKB(—) and which has weights

LK, B K L L
Ry — BV O+BY (‘”Z’ Zeﬁ 2% X (0 5=D) X(byg=1) (22)

wherey is the indicator function. Expanding inte bonds with the constraint that all Ising
spins on the boundar&g are fixed ato; = 1,

Rg‘ K, B eﬂwﬂé()-&-ﬁl/f (Q)ZI L Z B]K(w)zCW(u)) 1X(bag—1) (23)
Corollary 1. p;"“® () is strong FKG.

Proof. Without loss of generality, we may assume that ¢ oG and thath; =1 Vi € 3G.

If either of these conditions are violated, the lattice condition holds trivially. Let us
defineG = G UG, whereG = {(i, j)}, a set of new edges connecting each boundary
site in G to every other boundary site ii. For each added edg(e J), set the values
Ly =13 = kij = 0andK 5, > 1. Notice that for allw on G such that all(i, j)
bonds are occup|ec{:(a)) Cw(a)) Considering the limit as alC~, — oo, we find that
pijy =1-e PRSP 5 1. Consequently, for al on G havmg a vacanti, j) bond,

BK(a))—>0 It follows that) ", & BK( )2€(@) —}:mzwong B ()26,

The key is thatp™®B(b) = limyc - )0 pg “(b). Recalling thatb;b; = 1 for all

(i, ]) € g we find that the ratio of the respectlve weights is given by
> BX(@)2¢@
ef s K<m><bfbf—1>% — constant (24)
® 7p

And our result is clear. O
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Define the partial orderin&’ > K if for each (i, j) € G, Ki; ;y = K jy. ki; j, = ki j)-
To establish the unique existence of an infinite volume limiting meastufe?®(—), we need
the following proposition.

Proposition 1.For K’ >~ K,

L,K.B LK,B
Pg (=) = Pg (=)
FKG

where the subscript on the inequality denotes FKG domination of measures, as discussed
after equation (21).

Proof. As in [C2], we shall express the ratio of pertinent weights as the Ising RC expectation
of an increasing function. It is sufficient to consider the case wkeér@ndK differ only in
thathu’u> — Ky = Ay = 0. Assume that we havesuch that; =1 Vi € 9G. If u and

v are both indG, the ratio of weights is simply/é«~? a decidedly increasing function

of b. For the case wherg andv are not both on the boundary, a bit of manipulation gives
LK.B !

Rg (l_J) _ 1 + (eﬁAuvbubu) Zw BE (0)) Zg n(i,j)ew 8(7,'0]’ X(Qag:].)(soudv

Rg™“F(b) 2, By (@2

Defining T, to be the event that and v are connected bw bonds, and splitting the
summation in the numerator according to this criterion, the ratio (25) becomes

L+ (@4 sinh(3 B Auububy)[L + (X(1,)"] (26)
indeed, another increasing function /af O

(25)

Let ,oj'('kK‘B(—) be the measure on a finite graph, and let{ Ay} be a nested sequence of

finite graphs such thaty,; D A, andAy ' Z? as k— oo. By the previous proposition,
PEEB () ae = o B (—)|a, for K > K. Let Qx = {(i, j) € Oa,,,\O4,}. Notice that for
FKG

Aks1 At

the measur@%ffl/'lg(—)m, letting IC;;, jy — o0, V(i, j) € Qk essentially wires the boundary

of Ay to the boundary of\y,; with @ bonds. This forces the limiting measure to have blue
boundary conditions om, so that

Jim ok Olag = o 6. (27)
Vé;jj;EQk
It follows that
FKG
K, B K,B
PP (=) = o SP (D, (28)

Hence the limiting measure™S2(—) Elim,_ Py F(~) exists, and by a squeezing

argument is independent of the particular nesting sequence: it is unique. Notice that
o K-B(—) must also satisfy the lattice condition, and thus retains the strong FKG property.
We now restoré. = KK, with uniform couplings org c Z2.

Lemma 2.08(—) is ergodic under translations, and invariant under translations and axis
reflections.

Proof. Without loss of generality, consider positive local cylinder evestsand B.

Let x € Z? and letT, be the linear translation operator which moves a spin at the
origin to the sitex. Translation invariance follows by translating any sequefsg}

that definesp®(A) and using this to obtaip®(7,A). Axis reflection invariance may be
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seen by simply choosing a nested sequenca g symmetric about the axis in question.
For ergodicity, we use our measure’s FKG property and translation invariance to get
PB(AT:B) > pB(A)pB(T,B) = pB(A)p®(B) Vx. Conditioning on the event that the
supports ofA and 7, B are each surrounded by a sea of blue, the reverse inequality is
demonstrated in the limit alg| — oo by applying FKG dominance of measures. [
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