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Abstract. For a region of the nearest-neighbour ferromagnetic Ashkin–Teller spin systems on
Z2, we characterize the existence of multiple Gibbs states via percolation. In particular, there
are multiple Gibbs states if and only if there exists percolation of any of the spin types (i.e.
the magnetized states are characterized by percolation of the dominant species). This result was
previously known only for the Potts models onZ2.

1. Introduction

An issue that sometimes arises in statistical mechanics concerns the connection between
percolation and phase transitions. For the Potts models onZ2 there are characterization
theorems relating the uniqueness of the Gibbs states and the absence of spin-system
percolation [CNPR1, CNPR2, C1]. Explicitly, for the Ising magnet, the region of
nonuniqueness ischaracterizedby percolation of+ spins in the+ state. The analogous
result holds for the Potts model and a number of similar results, for various systems, were
established in [GLM]. In this paper, we will establish such a result for a region of the
Ashkin–Teller models. Specifically, there are multiple limiting Gibbs states precisely at
those temperatures which foster percolation of one of the spin types.

We begin with a description of a general Ashkin–Teller model on an arbitrary graph with
spins at each vertex. There are four possible spin types, labelled: blue, red+, yellow, and
red−. The spins may be regarded as lying equidistant on the unit circle, occurring clockwise
in the order just named, with blue at 12 o’clock. There is complete symmetry around the
circle, so that interactions receive energy assignments based solely on the relative positions
of the spin colours on the circle. Here the model is ‘completely’ ferromagnetic: colours
opposite to each other receive the highest energy assignments; the like–like interactions the
lowest, and the adjacent colours receive an intermediate energy. Without loss of generality,
we may set this intermediate energy level=0. For positiveK〈i,j〉, k〈i,j〉, we set the like–like
interaction between sitesi andj along the edge〈i, j〉 = k〈i,j〉−K〈i,j〉, and the interaction for
spin pairs with colours opposite to each other tok〈i,j〉. Although theZ2 Ashkin–Teller model
in our theorem has uniform couplings (and at most one edge between any two sites), some of
our proofs will use the flexibility of multiple edges between sites and nonuniform coupling
constants. In this paper, we confine attention to the parameter regionk〈i,j〉 6 K〈i,j〉/2 for
all 〈i, j〉.
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Figure 1. Phase diagram for the 2d Ashkin–Teller model. (1) Line of (unique magnetic)
ordering transition. (2) (2′) Self-dual line: for 06 γ 6 0, this is presumed to coincide with
the magnetic ordering line. Further to the right, this line runs through an intermediate phase.
(3) (3′) Respective transition lines for partial and complete ordering. For the standard (2× 2)
AT-model, the split is presumed to take placeat the Potts line. For(q× q) models withq large
or, presumably, ind > 2 for the ordinary AT model, the split will occur further to the right. (A)
Model equivalent to the 4-state Potts model. (B) Model equivalent to the 4-state clock model
(two decoupled Ising models). (C) Model equivalent to a single Ising model (with two extra,
decoupled degrees of freedom for each site).

Let si denote the Cartesian coordinates of the sitei’s colour on the unit circle. Then
the explicit energy valueE(si , sj ) between sitesi andj is

E(si , sj ) = 0si · sj + γ (si · sj )2 (1)

where−0 = K〈i,j〉
2 and−γ = K〈i,j〉−2k〈i,j〉

2 . For any finite graphG the Hamiltonian is given
by H = ∑

〈i,j〉∈G E(si , sj ), and the Boltzmann weight of any spin configuration is e−βH

where 1/β ∝ temperature.
The phase diagram of the Ashkin–Teller model is depicted in figure 1; this is the upper

right-hand quadrant of Baxter’s diagram 12.12 [B], slightly tilted. In the notation of Baxter’s
book, the change of variables (for the uniform case) is as follows:ε3 = k, ε0 = k − K,
and ε1 = ε2 = 0. The present work focuses on the region 0< k < K/2, where the
Ashkin–Teller model interpolates between the 4-state Potts andZ4 models. (For more on
Zn models and their relation to Ashkin–Teller models, see [Ca].) If 0< k < K/2, then
there is a unique ordering transition [P]. Here we prove that the phase boundary of this
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unique ferromagnetic transition coincides precisely with the critical percolation boundary
for the Ashkin–Teller spin system.

We start with the forward direction of the characterization theorem. The existence
of multiple Gibbs states implies that there is percolation of individual spin types. For
the opposite direction we need some additional ammunition, in the form of the result of
[GKR] and two lemmas that we shall present. Both directions rely on a Wolff/FK-type
representation [W, FK] of the Ashkin–Teller model, similar to that used in [A, C2, CM2]
for theXY models.

2. Main section

We start by rewriting our spins’ circle positions:si = (aiτi, biσi), whereai, bi ∈ {0, 1},
ai = 1− bi , and τi, σi ∈ {−1,+1}. For example, if sitei = blue, thensi = (0, 1) and
correspondinglyai = 0, bi = 1, τi = ±1, andσi = +1. Note that there is some ambiguity
with this description: in this example, for instance,τi does not have a set value because
ai = 0. This is of no consequence; the effect of summing over all configurations of the
b, σ, τ variables amounts to an unimportant extra factor of 2 for each site, and does not
alter the resultant probability measure.

Expanding the dot products in equation (1) with our new variables, and using the identity
σiσj = 2δσiσj − 1, we may rewrite our Hamiltonian as

H = HK
b,σ +HK

a,τ (2)

−HK
b,σ =

∑
〈i,j〉∈G

[K〈i,j〉bibj (δσiσj − 1)+ (K〈i,j〉 − k〈i,j〉)bibj ] (3)

−HK
a,τ =

∑
〈i,j〉∈G

[K〈i,j〉aiaj (δτiτj − 1)+ (K〈i,j〉 − k〈i,j〉)aiaj ] (4)

wherea, b, σ , τ are configurations ofa, b, σ , τ , respectively, andK denotes a configuration
of K〈i,j〉, k〈i,j〉 over2G , the set of all edges ofG. Notice thatHK

b,σ ,HK
a,τ each take the form of

an Ising Hamiltonian (with couplings determined by parametersb anda), plus an additional
term independent of theσi ’s andτi ’s. We denote the Ising terms asIKb,σ and IKa,τ , and the

additional terms asψK(b) andψK(a). For example:

ψK(b) =
∑
〈i,j〉∈G

(K〈i,j〉 − k〈i,j〉)bibj . (5)

The Boltzmann weight can now be written as: e−βIKb,σ e−βI
K
a,τ eβψ

K(b)eβψ
K(a).

It is now convenient to introduce related measures needed for upcoming proofs. Tracing
over τ , and lettingZI,Ka denote the Ising partition function forIKa,τ , we arrive at a new
measureνG(b, σ ):

νG(b, σ ) ∝ ZI,Ka e−βI
K
b,σ eβψ

K(b)eβψ
K(a). (6)

Now we expand the e−βI
K
b,σ term into random cluster (RC) [FK] Ising(q = 2) weights to

obtain the measure

φ(b, σ , ω) ∝ ZI,Ka eβψ
K(b)eβψ

K(a)BKp (ω)
∏
〈i,j〉∈ω

δσiσj (7)

whereω ⊂ 2G is an Ising FK bond configuration, andBKp (ω) is the Bernoulli weight for
ω with probabilityp〈i,j〉 = 1− e−βK〈i,j〉bibj of the bond〈i, j〉 being occupied. Specifically,

BKp (ω) =
∏
〈i,j〉∈ω

p〈i,j〉
∏
〈i,j〉/∈ω

(1− p〈i,j〉).
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Let C(ω) = the number of connected components of the configurationω (where sites not
touching bonds are considered to be individual components). Summing overσ andb, we
arrive at the marginal distribution:

µG(ω) ∝ ZI,Ka eβψ
K(a)

∑
b

eβψ
K(b)BKp (ω)2

C(ω). (8)

Notice thatp〈i,j〉 is nonzero only ifbi andbj are one; it is observed thatω bonds represent
full spin alignment so that each connected cluster must be monochrome—either of the blue
or yellow type.

So far, we have only considered free boundary conditions on the graphG. Also of
interest areblueboundary conditions. Let∂G denote a set of ‘boundary’ sites inG. Consider
the analogous developments under the boundary conditions that all sites of∂G are fixed at
blue; we denote the corresponding measures byνBG (−), φBG (−) andµBG (−) respectively. Of
course,νBG (−) is just the marginal distribution of a canonical Gibbs measure. In equation (7),
the termsδσiσj must be modified ifi and/orj is a boundary site, and in addition the partition
function ZI,Ka has to be recomputed. Finally, in the counting of clusters one arrives at
2Cw(ω)−1 whereCw(ω) is the number of components counted as though all sites of∂G are
identified as a single site. Hence, in theµBG (−) measure, the connected component of the
boundary represents sites that are all blue.

We are now ready for the first direction of our characterization proof.

Theorem 1.In the region 06 k〈i,j〉 6 K〈i,j〉/2 of the above-described Ashkin–Teller model
on Z2, the presence of multiple Gibbs states implies that there is percolation of blue spins
in the ‘blue’ state: the state obtained as the limit of finite volume conditional measures with
all boundary spins set to blue.

Proof. Let s0 be the spin at the origin, and letêy be the unit vector in the blue direction. The
superscript ‘B’ will denote blue boundary conditions onG. By use of yet another (bi-layer)
graphical representation, theorem III.7 in [CM1] demonstrates that nonuniqueness of Gibbs
states in the regionk〈i,j〉 6 K〈i,j〉/2 of the Ashkin–Teller model is equivalent to positive
spontaneous magnetization. So for this direction of the argument, it suffices to assume
that we have this positive magnetization. Let〈−〉BG,w be the expectation with respect to a
measurew under blue boundary conditions onG.

From positivity of the magnetization, we have

〈b0σ0〉BG,ν = 〈s0 · êy〉BG,ν > ε > 0 (9)

for someε > 0, for all finite G ⊂ Z2. Let E be the event that the origin is connected to
the boundary ofG throughω bonds. Recalling the measure described in (7), we see that

〈b0σ0〉BG,ν = 〈b0σ0〉BG,φ
= 〈b0σ0|E〉BG,φφBG (E)+ 〈b0σ0|Ec〉BG,φφBG (Ec). (10)

GivenE, b0σ0 = 1; it is easy to see that the second term vanishes. Thus,

〈b0σ0〉BG,ν = φBG (E) = µBG (E). (11)

Hence, (9) impliesµBG (E) > ε > 0 ∀ finite G ⊂ Z2. So we have percolation ofω bonds.
The blue boundary condition now forces the percolating cluster to, in fact, be blue. In the
thermodynamic limit, this gives us percolation of blue spins. �

For the second direction of the argument we shall make use of a result by Gandolfi,
Keane and Russo [GKR]. Their result requires a measure onZ2 that
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• is invariant under translations and axis reflections
• is ergodic under vertical and horizontal translations
• satisfies the FKG condition: positive events are positively correlated.

Under these three conditions, if there is percolation, then an infinite cluster is unique with
probability one. Furthermore, all other spin types lie in finite star-connected clusters. (The
definition of star-connectedness is as follows: two sites are said to be star-connected if
they are nearest neighbours or next-nearest neighbours; i.e. if neither theirx nor their y
coordinates differ, in modulus, by more than one.)

Let ρB(b)
def= limG↗Z2 ρBG (b), whereρBG (b) is theb-marginal distribution ofνBG (b, σ ). We

will demonstrate in the appendix that this measure satisfies the above conditions.

Theorem 2.In the regionk 6 K/2 of the Ashkin–Teller model onZ2, percolation of blues
implies the existence of multiple Gibbs states.

Proof. We remind the reader thatb = 1 for the blue and yellow spins, whereasb = 0 for the
red spins. The FKG property ofρB(b) (see appendix), then, actually establishes the FKG
property for the ordering blue, yellow> reds. Suppose that we have percolation of blues.
By theorem 1, if there were no percolation of blues in the blue state, then we would not see
percolation in any purported state, all states being equivalent. Thus, blues are percolating
in the blue state. Then certainly the blue-yellow spin combination percolates under these
conditions. Since our blue measure satisfies the conditions of the GKR theorem, the blue–
yellow infinite cluster is unique [WP1], and all red clusters lie in finite star-connected
clusters. Now we may produce at least two distinct Gibbs states: one corresponding to the
blue–yellow percolation (a ‘green’ state) and one for red percolation (a ‘red’ state). We
have just learned that these are mutually exclusive situations. Consider the event that the
origin is part of an infinite cluster, given that the origin is blue or yellow. This event has
positive probability in the green state, but haszeroprobability in the red state. Hence, these
states are distinct, and we have nonuniqueness of Gibbs states. �

Together, theorems 1 and 2 give us our desired characterization.

Appendix

To facilitate the oncoming handling of boundary conditions, we shall considerG to be a
general finite graph (not necessarily a subset ofZ2) and we shall use the more general
HamiltonianH = HL

a,τ + HK
b,σ whereL, analogous toK, represents a configuration of

L〈i,j〉, l〈i,j〉 on2G for the a andτ variables.
At this point, we take interest in the marginal distributionρL,KG (b) = ∑

σ ν
L,K
G (b, σ ),

with weights denoted byRL,KG (b):

RL,KG (b) = ZI,La ZI,Kb eβψ
K(b)+βψL(a) (12)

whereψK(b) =∑〈i,j〉∈G(K〈i,j〉 − k〈i,j〉)bibj , andψL(a) =∑〈i,j〉∈G(L〈i,j〉 − l〈i,j〉)aiaj .
Lemma 1.The measureρL,KG (b) is strong FKG.

Proof. This is almost identical to a result found in [C2], with slightly different measures. In
this case the strong FKG property (which does imply the usual ‘weaker’ FKG condition) is
equivalent to the lattice condition. For this measure, the lattice condition states that for any
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two configurationsη1 andη2 of b-variables on our graph,ρ(η1∧η2)ρ(η1∨η2) > ρ(η1)ρ(η2).
(Here all subscripts and superscripts have been dropped.) The objectη1 ∨ η2 is a new
configuration for which each sitei chooses the higher value betweenbi from η1 and bi
from η2. Similarly, η1 ∧ η2 chooses the lower value at each site.

Sincebi can only take the values 0 and 1, it is necessary and sufficient to check that

RL,KG (b∗)|bu,bv=0RL,KG (b∗)|bu,bv=1 > RL,KG (b∗)|bu=0,bv=1RL,KG (b∗)|bu=1,bv=0 (13)

for arbitrary sitesu, v, and forb∗ = a fixedconfiguration of spins on all sites ofG, excluding
u andv. Sinceai = 1− bi , and becauseHL

a,τ andHK
b,σ are identical in form, it is sufficient

to check this lattice condition forH = HK
b,σ . Our desired inequality is as follows:

(ZI,Kb eβψ
K(b))|bu,bv=0(ZI,Kb eβψ

K(b))|bu,bv=1

> (ZI,Kb eβψ
K(b))|bu=0,bv=1(ZI,Kb eβψ

K(b))|bu=1,bv=0. (14)

For ease of notation, we define

−H∅ def=
∑

〈i,j〉:i,j /∈{u,v}
K〈i,j〉bibj (δσiσj − 1)

−Hu def=
∑
〈i,u〉:i 6=v

K〈i,u〉bi(δσiσj − 1)

and −Hv is defined accordingly. With this notation, after cancelling the factor

e
2β
∑
〈i,j〉6=〈u,v〉 (K〈i,j〉−k〈i,j〉)bibj

bu,bv=0 from both sides, equation (14) reduces to

eβ(K〈u,v〉−k〈u,v〉) Tr[e−β(H∅+Hu+Hv)eβK〈u,v〉(δσuσv−1)] Tr[e−βH∅ ]
> Tr[e−β(H∅+Hu)] Tr[e−β(H∅+Hv)] (15)

where the trace is understood to be taken overσ .
Now we will simplify things further by proving the following inequality:

eβ(K〈u,v〉−k〈u,v〉) Tr[e−β(H∅+Hu+Hv)eβK〈u,v〉(δσuσv−1)] > Tr[e−β(H∅+Hu+Hv)]. (16)

Dividing by the right-hand side, and lettingEH (−) be the Ising expectation with respect to
the HamiltonianH , this inequality is equivalent to

eβ(K〈u,v〉−k〈u,v〉)EH∅+Hu+Hv [(1− e−βK〈u,v〉)δσuσv + e−βK〈u,v〉 ] > 1. (17)

Using the fact thatEH∅+Hu+Hv (δσuσv ) > 1
2, the left-hand side of the equation is bounded

below by eβ(
K〈u,v〉

2 −k〈u,v〉) cosh( βK〈u,v〉2 ), which is always> 1, since we are in the region where
K〈i,j〉

2 > k〈i,j〉.
Having shown (16), the lemma is implied by the following ‘alteration’ of (15):

Tr[e−β(H∅+Hu+Hv)] Tr[e−βH∅ ] > Tr[e−β(H∅+Hu)] Tr[e−β(H∅+Hv)] (18a)

which is tantamount toEH∅+Hu(e−βHv ) > EH∅(e−βHv ).
Let N(v) = {nearest neighbours ofv, excludingu}, {T } = the set of all subsets of

N(v), and

ϒ(T ) =
∏
i∈T
(1− e−βbiK〈i,v〉)

∏
i /∈T

e−βbiK〈i,v〉 . (19)

Now expanding FK style, (18a) continues to transform into∑
T

[
ϒ(T )EH∅+Hu

(∏
i∈T
δσiσv

)]
>
∑
T

[
ϒ(T )EH∅

(∏
i∈T
δσiσv

)]
. (18b)
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This will certainly be true if for arbitraryT , the individual expectations in (18b) obey the
inequality. As in [C1], these expectations can be expressed with the Ising FK representation,
in terms of probabilities of cluster events. LetPRC

H (−), 〈−〉RC
H be the RC probability and

expectation corresponding to the Ising HamiltonianH , and let|T | be the number of sites
in T . Given a bond configurationω from this representation, letCT (ω) be the number of
connected components containing sites inT . Converting from spin-system expectations:

EH
(∏
i∈T
δσiσv

)
=
|T |∑
n=1

( 1
2)
n−1PRC

H {CT = n}

= 〈 1

2CT−1
〉RC
H . (20)

So we want 〈
1

2CT−1

〉RC

H∅+Hu
>
〈

1

2CT−1

〉RC

H∅
(21)

which is true because( 1
2)
CT−1 is an increasing function of bond configurations (added bonds

→ smallerCT ), andPRC
H∅+Hu(−) FKG dominatesPRC

H∅ (−). By definition, one measure FKG
dominates a second measure if it assigns higher probabilities to all positive events than does
the second measure. In this case, positive events will receive higher probabilities withHu
added to the HamiltonianH∅. �

Let us now considerρL,K,BG (−), which is defined as the marginal distribution obtained

from the blue measureνL,K,BG (−), and which has weights

R
L,K,B
G (b) = eβψ

K(b)+βψL(a)ZI,La
∑
σ

eβI
K
b,σ χ(σ ∂G=1)χ(b∂G=1) (22)

whereχ is the indicator function. Expanding intoω bonds with the constraint that all Ising
spins on the boundary∂G are fixed atσi = 1,

R
L,K,B
G (b) = eβψ

K(b)+βψL(a)ZI,La
∑
ω

BKp (ω)2
Cw(ω)−1χ(b∂G=1). (23)

Corollary 1. ρL,K,BG (−) is strong FKG.

Proof. Without loss of generality, we may assume thatu, v /∈ ∂G and thatbi = 1 ∀i ∈ ∂G.
If either of these conditions are violated, the lattice condition holds trivially. Let us
define Ĝ = G ∪ G̃, where G̃ = {〈ĩ, j〉}, a set of new edges connecting each boundary
site in G to every other boundary site inG. For each added edge〈ĩ, j〉, set the values
L〈ĩ,j〉 = l〈ĩ,j〉 = k〈ĩ,j〉 = 0 andK〈ĩ,j〉 � 1. Notice that for all̂ω on Ĝ such that all〈ĩ, j〉
bonds are occupied,C(ω̂) = Cw(ω). Considering the limit as allK〈ĩ,j〉 → ∞, we find that

p〈ĩ,j〉 = 1− e−βK〈ĩ,j〉bibj → 1. Consequently, for all̂ω on Ĝ having a vacant〈ĩ, j〉 bond,

BK̂p (ω̂)→ 0. It follows that
∑

ω̂onĜ B
K̂
p (ω̂)2

C(ω̂) −→
{K〈ĩ,j〉}→∞

∑
ωonG B

K
p (ω)2

Cw(ω).

The key is thatρL,K,B(b) = lim{K〈ĩ,j〉}→∞ ρ
L̂,K̂
Ĝ (b). Recalling thatbibj = 1 for all

〈ĩ, j〉 ∈ Ĝ, we find that the ratio of the respective weights is given by

eβ
∑
G̃ K〈ĩ,j〉(bibj−1)

∑
ω̂ B

K̂
p (ω̂)2

C(ω̂)∑
ω B

K
p (ω)2Cw(ω)

→ constant. (24)

And our result is clear. �
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Define the partial orderingK′ � K if for each 〈i, j〉 ∈ G, K′〈i,j〉 > K〈i,j〉, k′〈i,j〉 = k〈i,j〉.
To establish the unique existence of an infinite volume limiting measureρL,K,B(−), we need
the following proposition.

Proposition 1.ForK′ � K,

ρ
L,K′,B
G (−) >

FKG
ρ
L,K,B
G (−)

where the subscript on the inequality denotes FKG domination of measures, as discussed
after equation (21).

Proof. As in [C2], we shall express the ratio of pertinent weights as the Ising RC expectation
of an increasing function. It is sufficient to consider the case whereK′ andK differ only in
thatK′〈u,v〉−K〈u,v〉 = 1uv > 0. Assume that we haveb such thatbi = 1 ∀i ∈ ∂G. If u and
v are both in∂G, the ratio of weights is simply eβ1uvbubv , a decidedly increasing function
of b. For the case whereu andv are not both on the boundary, a bit of manipulation gives

R
L,K′,B
G (b)

R
L,K,B
G (b)

= 1+ (eβ1uvbubv )
∑

ω B
K′
p (ω)

∑
σ

∏
〈i,j〉∈ω δσiσj χ(σ ∂G=1)δσuσv∑

ω B
K
p (ω)2Cw(ω)−1

. (25)

Defining Tuv to be the event thatu and v are connected byω bonds, and splitting the
summation in the numerator according to this criterion, the ratio (25) becomes

1+ (eβ1uvbubv ) sinh( 1
2β1uvbubv)[1+ 〈χ(Tuv)〉RC] (26)

indeed, another increasing function ofb. �

Let ρL,K,B3k
(−) be the measure on a finite graph3k, and let{3k} be a nested sequence of

finite graphs such that3k+1 ⊃ 3k, and3k ↗ Z2 as k→∞. By the previous proposition,
ρ
L,K′,B
3k+1

(−)|3k >
FKG

ρ
L,K,B
3k+1

(−)|3k for K′ � K. LetQk = {〈i, j〉 ∈ 23k+1\23k}. Notice that for

the measureρL,K
′,B

3k+1
(−)|3k , lettingK〈i,j〉 → ∞, ∀〈i, j〉 ∈ Qk essentially wires the boundary

of 3k to the boundary of3k+1 with ω bonds. This forces the limiting measure to have blue
boundary conditions on3k, so that

lim
K〈i,j〉→∞
∀〈i,j〉∈Qk

ρ
L,K′,B
3k+1

(−)|3k = ρL,K,B3k
(−). (27)

It follows that

ρ
L,K,B
3k

(−) FKG
> ρ

L,K,B
3k+1

(−)|3k . (28)

Hence the limiting measureρL,K,B(−) def= limk→∞ ρ
L,K,B
3k

(−) exists, and by a squeezing
argument is independent of the particular nesting sequence: it is unique. Notice that
ρL,K,B(−) must also satisfy the lattice condition, and thus retains the strong FKG property.

We now restoreL = K, with uniform couplings onG ⊂ Z2.

Lemma 2.ρB(−) is ergodic under translations, and invariant under translations and axis
reflections.

Proof. Without loss of generality, consider positive local cylinder eventsA and B.
Let x ∈ Z2, and let Tx be the linear translation operator which moves a spin at the
origin to the sitex. Translation invariance follows by translating any sequence{3k}
that definesρB(A) and using this to obtainρB(TxA). Axis reflection invariance may be
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seen by simply choosing a nested sequence of3k’s symmetric about the axis in question.
For ergodicity, we use our measure’s FKG property and translation invariance to get
ρB(ATxB) > ρB(A)ρB(TxB) = ρB(A)ρB(B) ∀x. Conditioning on the event that the
supports ofA and TxB are each surrounded by a sea of blue, the reverse inequality is
demonstrated in the limit as|x| → ∞ by applying FKG dominance of measures. �
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