
MIDI and MOD format Karen Collins www.gamessound.com

MIDI
Musical Instrument Digital Interface (MIDI) was a protocol defined in 1982 to allow musical devices (synthesizers,
keyboards, sequencers, mixing desks, computers, etc.) to be compatible in a standardised format. Only
commands are transmitted, rather than actual sounds, meaning file size is very small—a distinct advantage for
games, which taxed the memory of the machines. A MIDI command might, for instance, tell a synthesizer when
to start and stop playing a note, at what volume and what pitch, and what “voice” or sound to use. Initially,
some of this information would vary greatly depending on the devices used, which complicated programming
for sound cards, but in 1991 a General MIDI standard was agreed upon. This standard laid out a template for 128
instruments and sound effects, so that the same number setting would be the same on any MIDI device: so a
command saying “play number 39” would always play a slap bass. Each note played on the instrument was also
given a specific number. Middle C, for instance, is note 60. There are also various MIDI controllers, including
volume, tempo, timing, and duration, key pressure, each of which contains a specific number assigned to that
control.1

The advantage of MIDI to games composers was enormous. No longer encumbered with the awkward tunings or
difficult programming languages of the 8-bit machines, composers could now write their music on keyboards and
give that data to developers. The most important advantage of MIDI, however, was the fact that the audio file
consisted of only code, rather than recorded digital audio files (which would come later), and thereby take up
little of a game’s limited amount of RAM.

There were, however, several complaints about the General MIDI standard. First, the selection was limited to 128
instruments, and some of these were taken up with the seemingly ridiculous sound effects such as “bird tweet”
(123) and “helicopter” (125), which may have been useful for some game composers and sound designers, but
for standard musicians were rarely usable. These effects, however, are perhaps indicative of the impact that
games audio was having on the manufacturers of sound chips. Roland responded to the limitations of the GM
standard by creating the GS MIDI standard, which would allow for 128 variations of each of the 128 available MIDI
channels. Another problem with MIDI, however, was the fact that most MIDI devices sounded differently: a “slap
bass” on one person’s sound card might sound very different from a slap bass on another person’s sound card:
the timbre, volume, or sound quality might vary (even the form of synthesis might be different, as shown above).
Although for composers of console games this was not a problem, since the consoles had the same hardware in
every unit, for PC users, this meant widely varying music playback quality. A few solutions were tried: many game
composers would write songs using Roland’s Sound Canvas, and this became a standard by which to compare MIDI
cards. Another solution was to return to the idea of SysEx (System Exclusive Data), which had previously been
used by some sound devices, and meant that each sound device would have an ID code specific to that device.
The playback device could then read this code and know exactly what hardware configuration to use; in other
words, what sounds and what effects were on which channel—so number 39, voice 16 might mean slap bass with
reverb on a specific card. In order to address compatibility issues, the MIDI device would always default to the
standard GM instrument. The trouble with this method was, of course, the time involved in programming for the
different devices. Despite the difficulties with MIDI composing, MIDI offered an effective new standard for games
composers, and although MIDI was unpredictable in the sound quality, MIDI games sequencing led to some quite
original ideas, such as the creation of non-linear editing with LucasArts’ iMUSE.

MOD
Despite being designed as a games and music computer, there were initially few utilities available to create
sound on the Commodore Amiga. Most games developers created in-house programs to sequence music.2 One
such program was created by Karsten Obarski, a programmer and composer at the German reLINE Software game
company. Based loosely on earlier sequencing techniques of the Commodore 64, Obarski’s Ultimate SoundTracker
sequenced patterns and would export them to assembly language for the composer. The software was released
as a commercial product in 1987 and quickly became a standard for games sound on the Amiga. It was, however,
quite limited, in that it viewed the use of channels in a quite strict fashion, as melody, accompaniment, bass

�	 For	the	full	MIDI	specifications,	see:	http://www.borg.com/~jglatt/tech/midispec.htm
�	 e.g.	Darius	Zendeh’s	Sound	System,	used	in	R-Type	and	Katakis	games),	and	David	Whittaker’s	at	
Psygnosis,	Aegis’	SOnix,	EA’s	Deluxe	Music

MOD,	cont.
and	lead,	and	only	supported	sixteen	instruments	(samples).	Swedish	programmers	Pex	“Mahoney”	Tufvesson	
and	Anders	“Kaktus”	Berkeman	released	an	update	to	the	software	in	�989	known	as	NoiseTracker,	which	al-
lowed	for	thirty-two	instruments	and	was	more	open	in	terms	of	channel	usage.�

Later	versions	of	SoundTracker	used	what	became	known	as	the	module	format,	or	MOD,	which	included	
both	patterns	and	instruments	in	the	same	
file.	Most	games	music	on	the	Amiga	was	
written	in	the	MOD	format	(other	formats	
are	now	known	as	“exotic”).	Compositions	
were	created	using	a	software	program	
known	as	a	tracker,	and	resulting	music	
was	stored	in	MOD.	MOD	was	originally	
designed	with	four	channels	to	correspond	
with	the	Amiga	sound	chip,	but	has	since	
been	expanded.	Tracker	programs	worked	
much	like	modern	MIDI	sequencers.	A	
tracker	program	would	store	data	on	the	
notes,	volume	setting,	effects	and	instru-
ment	(like	MIDI),	but	also	record	digital	
samples	of	the	instruments	in	the	actual	
file,	limited	only	by	the	size	of	the	file	(the	
880Kb	floppy	disk).

MOD	files	had	the	advantage	over	MIDI,	
then,	in	that	music	or	other	sound	events	would	sound	as	the	composer	intended,	and	in	that	more	possible	
sounds	were	opened	up	for	the	composer	to	use.		MOD	files	were	also	easier	to	program	for	non-musicians—
like	many	game	composers—and	made	it	easy	to	sequence	repetitive	loops.		In	fact,	the	tracker	format	of	using	
blocks	to	represent	music	in	a	linear	fashion	has	been	incorporated	into	today’s	sequencing	software.	The	MOD	
format	was	easily	adaptable	to	games	sound,	in	that	patterns	(sequences)	could	be	arranged	to	change	volume,	
jump	to	other	sequences,	start	or	stop	instruments,	etc.		Although	MOD	files	dominated	the	Amiga	games	scene,	
the	MOD	format	never	really	caught	on	for	gaming	in	general	because	of	the	required	file	size,	and	the	fact	
that	there	were	nearly	twenty	different	formats,	which	would	allow	for	a	different	sampling	rates,	and	different	
numbers	of	tracks.	Although	there	were	a	few	game	companies	outside	the	Amiga	scene	that	used	tracker	format	
(Epic	Megagames,	for	instance),	the	majority	outside	of	Amiga	composers	used	the	better	supported	MIDI.

By	using	the	Windows	program	Modplug	Tracker,	MOD	files	can	now	be	opened	and	explored,	to	hear	the	
samples	individually	and	view	the	sequencing	data.		Using	Modplug	to	open	one	of	the	files	from	the	Shadow
of the Beast II	game	(Prison	song),	we	can	see	how	the	tracker	format	lays	out	the	song.	The	squares	listing	
the	numbers	“8”,	“9”,	“�0”	etc.	are	the	patterns	(sequences)	that	make	up	this	particular	song.	This	song	plays	
pattern	8,	followed	by	pattern	9,	pattern	�0	twice,	pattern	��,	and	pattern	��	twice,	before	looping.	Pattern	�0	
is	open	below,	showing	the	64	notes	in	the	pattern	(each	pattern	in	this	song	has	64	beats).	Each	row	is	played	
in	sequenced	order	following	the	64	numbers	in	the	leftmost	column.	The	four	channels	of	available	sound	are	
shown	in	columns.			The	channel	information	shows	the	note	to	be	played	based	on	the	sample	referred	to.	Sam-
ples	have	been	transposed	and	all	set	to	C5	originally,	and	these	are	then	transposed	to	the	notes	indicated.	The	
second	number	in	each	column	tells	the	tracker	which	sample	to	use	for	the	note.	There	are	only	four	sounds	
in	this	sequence:	Channel	one	and	two	both	contain	sample	#07,	a	thin	electric	guitar-like	sound	(called	“g�	
lead�”),	Channel	three	has	sample	#08,	a	fat	analogue	bass,	and	Channel	four	has	sample	#0�,	pitched	percus-
sion.	(see	Page	3)
�	 For	samples,	see	Mahoney’s	website,	http://www.ejeson.se/mahoney/index_download.php

