MAT370
Applied Probability
Prof. Thistleton
So far:

- Introduction
- Mathematical Preliminaries
- Histograms

Problems from text.
1.15 Peanut Butter
1.21 Subdivisions

Simple Counting Arguments:

- Suppose you are putting together a Mr. Potato Head and you have in front of you 4 mouths, 3 noses, and 2 sets of eyes. How many different faces can you make?
- multistage process: Let $=k_{i}$ be the number of ways to perform the $i^{\text {th }}$ stage of an n stage process. Then the number of ways to perform the composite procedure is

$$
N=\prod_{i=1}^{n} k_{i}
$$

- Suppose you have 3 probability books: Feller, Olkin, and Billingsley. call them F, O, and B. In how many ways can you arrange them in order?
- Suppose now you add Kolmogorov (call it K). In how many ways can you arrange 2 of these 4 books? In how many ways can you arrange 3 of these 4 books?
- permutations: The number of possible sequences (ordered arrangements) of n objects is n !. If the arrangement is to contain only k of these n objects, then the number of ways to form sequences is

$$
{ }_{n} P_{k} \equiv \frac{n!}{(n-k)!}
$$

- Consider again the 4 books: F, O, B, and K. In how many ways may you select 2 of these books if the order of the selection is unimportant to you? That is, FK is the same grouping as KF.
- combinations: The number of possible unordered groups which contain k out of n objects is simply the number of possible permutations divided by the number of ways to arrange k objects (eliminate the redundant groups).

$$
{ }_{n} C_{k} \equiv\binom{n}{k} \equiv \frac{n!}{(n-k)!k!}
$$

- multistage process: Let $=k_{i}$ be the number of ways to perform the $i^{t h}$ stage of an n stage process. Then the number of ways to perform the composite procedure is

$$
N=\prod_{i=1}^{n} k_{i}
$$

- permutations: The number of possible sequences (ordered arrangements) of n objects is n !. If the arrangement is to contain only k of these n objects, then the number of ways to form sequences is

$$
{ }_{n} P_{k} \equiv \frac{n!}{(n-k)!}
$$

- combinations: The number of possible unordered groups which contain k out of n objects is simply the number of possible permutations divided by the number of ways to arrange k objects (eliminate the redundant groups).

$$
{ }_{n} C_{k} \equiv\binom{n}{k} \equiv \frac{n!}{(n-k)!k!}
$$

An excellent reference for combinatorics is the text Applied Combinatorics by Alan Tucker.

Examples

1. How many (5 card) poker hands are possible?
2. How many of these hands are flushes?
3. How many ways can r flags of different colors be displayed on n poles placed in a row? At most one flag allowed on each pole.
4. You have 6 computers in front of you, call them A, B, C, D, E, and F. Suppose for a moment that 2 of these computers, say E and F, have defective monitors. You will turn on 3 of them on at random. In how many groups of three, selected as above, are there

- no defective monitors?
- one defective monitors?
- two defective monitors?

5. There are 10 math majors, 15 engineering majors, and 5 students from other majors in a probability class. In how many ways can you select two students from this class in such a way that they are from different majors?
6. In how many distinct ways can you arrange the letters a, b, c, d ?
7. In how many distinct ways can you arrange the letters b, o, o, k ? The letters m, i, s, s, i, s, s, i, p, p, i ?
8. In how many ways can a set of n elements be arranged if there are n_{1} objects of one type, n_{2} objects of another type, and so on till n_{k} objects of the $k^{t h}$ type, where $\sum_{i=1}^{k} n_{k}=n$?
9. How many different binary numbers of length 7 are possible if 3 of the digits are 1 's?
10. An urn holds 5 red balls and 3 green balls. How many different results are possible if you select 1 ball? Two balls? 3 balls?
11. An urn holds 15 red balls and 10 green balls. How many different results are possible if you select 5 balls?
12. A coffee shop has both decaffeinated and regular coffee. In how many ways can you buy 1 cup of coffee? 2 cups? 3 cups? 4 cups?
13. A coffee shop has regular, decaffeinated, and hazelnut coffees. In how many ways can you buy 5 cups of coffee?
14. In how many ways can you distribute a dozen eggs to 30 people?
15. In how many ways can a group of 8 people be divided into working groups of 2 people each?
16. In how many ways can a set of n elements be partitioned into k subsets with $n_{1}, n_{2}, \ldots, n_{k}$ elements in each subset?
17. The Binomial Theorem
