
MAT370 Applied Probability L17
Prof. Thistleton

Consider random variables defined with non rectangular support. Define a joint density as follows:

f(x, y) =

{
ky(1 − x − y) 0 < x, 0 < y, x + y < 1

0 else

Calculate the marginal distributions fX(x) and fY (y) and calculate the covariance of X and Y .
Also, define Z = X + Y and calculate the PDF of the univariate random variable Z.
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As an interesting example, define Y = F (X) for a random variable X where F (x) is the cumulative
distribution function of X. What is the PDF of Y ?
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Recall: Conditional Distributions

fY |X(y|x) =
f(x, y)

fX(x)
, fX|Y (x|y) =

f(x, y)

fY (y)

Consider the following example taken from our text: Suppose that two components of a minicom-
puter have the following joint PDF for their useful lifetimes X and Y .

f(x, y) =

{
xe−x(1+y) 0 < x, 0 < y

0 else

Calculate the probability that the lifetime of the first component, X, exceeds 5 years given that the
second component lasted exactly 3 years, i.e. Y = 3.
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Transformations of Random Vectors Recall that the PDF of Y = u(X) may be found, under the
relatively common assumptions that u is strictly monotone and also differentiable, as

fY (y) = fX(u−1(y))|du−1(y)

dx
|

This approach may be extended to random vectors as well. As a motivating example, suppose that
X1 and X2 are independent, identically distributed exponential random variables with expected

value equal to one, i.e. X1, X2
iid∼ exp(1). Define Y1 ≡ X1 + X2 and Y2 ≡ X1/(X1 + X2).

Our goal: to find the joint pdf of (Y1, Y2) and the marginal distributions of Y1 and Y2. First we’ll
need to establish some notation.

Y1 = u1(X1, X2), Y2 = u2(X1, X2)

X1 = w1(Y1, Y2), X2 = w2(Y1, Y2)

Then we’ll need the following definition. Define the Jacobian of our transformation as the determi-
nant of the 2 × 2 matrix of partial derivatives

J =

[
∂x1

∂y1

∂x1

∂y2
∂x2

∂y1

∂x2

∂y2

]

The key result, which may be extended to higher dimensions in a direct manner, is as follows. Note
the similar structure of the formula to those obtained above in the single variable case.

fY (y1, y2) = fX(w1(y1, y2), w2(y1, y2))|J |

where |J | denotes the absolute value of the Jacobian. Apply this result to our problem.
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Moment Generating Functions: These functions will be very convenient tools and computa-
tional aides as we work with both continuous and discrete random variables. In particular, once
we have computed the moment generating function for a random variable, the calculations of that
random variable’s mean and variance are greatly simplified. We will also make use of these functions
to calculate the probability distributions of functions, especially sums, of random variables.

Denote by MX(t) the moment generating function of a random variable X and define this function
as

MX(t) ≡ E(etX)

Recall that for discrete distributions with probability mass function f(xi)

E(g(X)) =
∑
xi

g(xi)f(xi)

Therefore
E(etX) =

∑
xi

etxif(xi)

Similarly, for continuous RV’s

E(etX) =
∫ ∞

−∞
etxf(x)dx

Examples :

1. Gamma Random Variables

2. Normal Random Variables
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Calculating Means: We can use the previously calculated moment generating functions to calculate
the mean and variance (in fact, all the moments) of the corresponding random variables as follows.
Take a first derivative of MX(t) with respect to t (assuming that we can bring the derivative into
the summation)

d

dt
MX(t) =

d

dt

∑
xi

etxip(xi)

=
∑
xi

d

dt
etxip(xi)

=
∑
xi

xie
txip(xi)

Now evaluate the derivative at t = 0.

M ′
X(0) =

∑
xi

xie
0xip(xi) =

∑
xi

xip(xi)

We see that the first derivative of the moment generating function evaluated at t = 0 is the
expectation of the random variable! This result holds in the continuous case as well.

Examples :

1. Gamma Random Variables

2. Normal Random Variables
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Calculating Variances: Recall that we may compute the variance of a random variable as

V (X) = E(X2) − E(X)2

Take a second derivative of the moment generating function

d2

dt2
MX(t) =

d

dt

∑
xi

xie
txip(xi)

=
∑
xi

x2
i e

txip(xi)

and so

M ′′
X(0) =

∑
xi

x2
i e

0xip(xi) = E(X2)

Examples :

1. Gamma Random Variables

2. Normal Random Variables
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Reproductive Property of Gamma Random Variables
Using moment generating functions, show (for what conditions?) that the sum of two independent
Gamma random variables is also a Gamma Random Variable.
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(Reproductive Property of Normal Random Variables)
Using moment generating functions, show that the sum of two independent normal random variables
is also a normal random variable.
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