Prof. Thistleton
You will perform the following experiment: From a fair deck, deal two cards. Let the random variable X indicate the number of spades in your hand and let the random variable Y indicate the number of hearts.
We may construct the following table showing the possible counts in each of the categories shown.

	0	1	2	$\sum x_{i}$
0				
1				
2				
$\sum y_{i}$				

Now construct the joint distribution of X and Y.

	0	1	2	$\sum f\left(x_{i}\right)$
0				
1				
2				
$\sum f\left(y_{i}\right)$				

Are X and Y independent?

Example Now keep X, the number of spades, as above, but let Z indicate the number of face cards, i.e. Jack, Queen, King.

Construct the table showing the possible counts in each of the categories shown.

	0	1	2	$\sum x_{i}$
0				
1				
2				
$\sum z_{i}$				

Now construct the joint distribution of X and Z.

	0	1	2	$\sum f\left(x_{i}\right)$
0				
1				
2				
$\sum f\left(z_{i}\right)$				

Are X and Z independent?

Define the correlation function of two random variables X and Y as

$$
\rho(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
$$

In order to better understand what $\operatorname{cov}(X, Y)$ and $\rho(X, Y)$ are designed to measure we present two important results.

Result 1 Let X and Y be independent random variables. Then

$$
\operatorname{cov}(X, Y)=0 \text { and } \rho(X, Y)=0
$$

Result 2 Let X and Y be random variables such that $Y=a X+b$. Then 1.

$$
\mu_{Y}=a \mu_{X}+b
$$

2.

$$
E[X Y]=a E\left[X^{2}\right]+b E[X]
$$

3.

$$
V(Y)=a^{2} V(X)
$$

or

$$
\sigma(Y)=|a| \sigma(X)
$$

From these, conclude that
4.

$$
\rho(X, Y)= \pm 1
$$

Result 3 Suppose that X and Y are random variables, and define $S=a X+b Y$. Calculate $V(S)$.

Note the following special case.
Result 4 If X and Y are independent, then $V(X+Y)=V(X)+V(Y)$.

We may extend the above in a natural way as

$$
V\left(\sum_{i} a_{i} X_{i}\right)=\sum_{i} a_{i}^{2} V\left(X_{i}\right)
$$

