Prof. Thistleton
Working With Continuous Distributions Consider the following examples.
Define

$$
f(x, y)= \begin{cases}a x(x+y) & 0<x<1,0<y<2 \\ 0 & \text { else }\end{cases}
$$

1. Calculate a to make this a legitimate PDF.
2. Calculate the joint CDF $F(x, y)=P(X<x, Y<y)$.
3. Calculate $P(X<.5,1<y<1.5)$.

Define

$$
F(x, y)= \begin{cases}\left(1-e^{-x}\right)\left(1-e^{-y}\right) & x, y>0 \\ 0 & \text { else }\end{cases}
$$

1. Calculate the joint PDF $f(x, y)$.
2. Calculate the marginal distributions.

Define

$$
f(x, y)= \begin{cases}\frac{2}{3}(x+2 y) & 0<x, y<1 \\ 0 & \text { else }\end{cases}
$$

1. Calculate the marginal distributions.
2. Calculate the conditional distribution $X \mid Y=y$.

Define

$$
f(x, y)= \begin{cases}4 x y & 0<x, y<1 \\ 0 & \text { else }\end{cases}
$$

1. Calculate the marginal distributions.
2. Calculate the conditional distributions $X \mid Y=y$ and $Y \mid X=x$.

Given a joint distribution $f(x, y)$, we say that X and Y are independent if

$$
f(x, y)=f_{X}(x) f_{Y}(y)
$$

Let X and Y be independent, identically distributed uniform random variables uniformly distributed on $(0,1)$. (Note: we can write this as $X, Y \stackrel{i i d}{\sim}$ unif $(0,1)$). Calculate the density of $Z=X+Y$ and verify your result numerically.

Let X and Y be independent, identically distributed random variables exponentially distributed with $\lambda=1$. (Note: we can write this as $X, Y \stackrel{i i d}{\sim} \exp (1)$). Calculate the density of $Z=X+Y$ and verify your result numerically.

