
Noise-Robust Voice Activity Detector Based on Hidden Semi-Markov Models

Xianglong Liu∗, Yuan Liang, Yihua Lou, He Li, Baosong Shan

State Key Laboratory of Software Development Environment

Beihang University, Beijing 100191, P.R.China

Abstract

This paper concentrates on speech duration distribu-

tions that are usually invariant to noises and proposes a

noise-robust and real-time voice activity detector (VAD)

using the hidden semi-Markov model (HSMM) to ex-

plicitly model state durations. Motivated by statistical

observations and tests on TIMIT and the IEEE sentence

database, we use Weibull distributions to model state

durations approximately and estimate their parameters

by maximum likelihood estimators. The final VAD deci-

sion is made according to the likelihood ratio test (LRT)

incorporating state prior knowledge and modified for-

ward variables. An efficient way that recursively cal-

culates modified forward variables is devised and a dy-

namic adjustment scheme is used to update parameters.

Experiments on noisy speech data show that the pro-

posed method performs more robustly and accurately

than the standard ITU-T G.729B VAD and AMR2.

1 Introduction

Voice activity detector (VAD) refers to the system of

distinguishing active speech from non-speech frames.

It has been used for various real-time applications like

speech coding and recognition. Recently many attrac-

tive statistical model-based VADs using the likelihood

ratio test (LRT) have been developed [1]. The statisti-

cal methods using hidden Markov models (HMMs) as

a hangover scheme have made significant contributions

to voice activity detection progress [2, 3]. However one

major drawback of HMMs is that they might not pro-

vide an adequate representation of the temporal struc-

ture of speech that is usually unaffected by noises [3, 4].

To alleviate this limitation and to improve the noise-

robustness, we concentrate on speech durations. We
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Figure 1. Duration distribution of a TIMIT
subset compared with HMMs.

view the signal composed of speech and noise as a time

duration hidden markov chain with two states (speech

and non-speech) and propose a novel VAD algorithm

based on the hidden semi-Markov model (HSMM) [5]

to explicitly model the state duration invariant to noises.

Statistical observations on TIMIT and IEEE sentence

database [6] show that the state duration follows the

Weibull distribution. For final VAD decisions, we adopt

likelihood ratio test (LRT) combining both state prior

knowledge and probabilities of observation sequence

with either state (named modified forward variables).

The proposed method derives an efficient way similar to

Vertibi of HMMs to recursively calculate the modified

forward variables, and dynamically adjusts parameters

to improve robustness to the varying noisy environment.

This paper is organized as follows. In Section 2 we

present the segmental HSMM-based modeling frame-

work for VAD. Section 3 gives implementation details

including dynamical parameter adjustment and modi-

fied forward variables calculation. Experiments with

HSMM-based VAD are provided in Section 4. Finally,

conclusions are drawn in Section 5.

2 HSMM-Based Voice Activity Detection

Modern VAD algorithms’ hangover schemes using

HMMs implicitly describe the state duration effect on

likelihood of state transition. Their geometric state du-
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Figure 2. A hidden semi-Markov model

with two states.

ration probabilities P (d|qi) = ad−1
ii (1 − aii) [4] are

inappropriate for most real-life applications [4]. Fig.

1 shows state duration distribution of a TIMIT subset

compared with that of HMMs. It can be concluded that

real-world duration distribution (the solid curve) differs

from the geometrical function (dot lines).

In this paper, signals composed of speech and noise

are regarded as a time duration hidden markov chain

with two states (speech and non-speech) that can be

modeled by the HSMM λ = (A, B, τ, π). Fig. 2 shows

that there exist two states in voice activity detection,

named non-speech (or noise) q0 and speech q1. Signal

frames remaining at the same state can be regarded as

a segment, and sojourn time d of each segmentation is

named state duration. For either state the likelihood of

transiting to the other one varies over its duration which

can be modeled by certain distribution τ = {P (d|qi)}
or implicit techniques [3], therefore either state dura-

tion reflects the temporal dependence of the state. Next

we will present components of the segmental HSMM-

based modeling framework λ for VAD.

2.1 The Hidden Layer

Here, the transition matrix A = (aij) is given by

A =

(

0 1
1 0

)

(1)

To obtain duration distribution τ , one way is to esti-

mate it from the training samples. Statistics of subsets

of both TIMIT database and the IEEE sentence database

[6] show that the durations of noise and speech states

share similar properties and fit the Weibull distribution

well. The Weibull distribution, known as the life dis-

tribution, is usually employed to analyze life data. The

fact indicates that duration of speech can be viewed as

a lifetime of vocalization subject to cyclic patterns of

stress and strain, which is consistent with the mecha-

nism of human vocalization.

Thus, we choose the Weibull distribution to model

state duration of speech and non-speech:

P (d|qi) =
ki

ωi

(
d

ωi

)ki−1e
( d

ωi
)ki

, (2)

where d > 0 is the length of duration in state qi, ki > 0
is the shape parameter and ωi > 0 is the scale param-

eter of the distribution.Duration statistics of a TIMIT

subset are fitted to Weibull distributions well according

to Pearson test. We expect that the HSMM with proper

duration distributions will be able to model the signal

sequence well.

2.2 The Observation Layer

In the observation layer, the likelihood B =
{bi(Ot)} of the observation Ot, namely the frame at

moment t, being a speech or a noise frame is concerned.

We choose GD to model the spectra for noise and LD

for clean speech [2]. The observation Ot consists of K

independent DCT coefficients oi, (0 < i ≤ K) whose

probability density function conditioned on state qi are

respectively given by

b0(oi) = p(oi|St = q0)

=
1√

2πσi

e
−

(oi−µG
i )2

2σ2
i ,

(3)

b1(oi) = p(oi|St = q1)

=
1

4li
e

σ2
i

2l2
i [e

o′i
li erfc(

lio
′
i + σ2

i√
2liσi

)

+ e
−

o′i
li erfc(

−lio
′
i + σ2

i√
2liσi

)],

(4)

where o′i = oi−µG
i −µL

i . µG
i and σi in GD are the mean

and variance of oi, and µL
i and li in LD are the location

parameter and scale parameter. Then given qi the join

distributionfor the observation is bi(Ot) = ΠK
s=1bi(os).

2.3 Likelihood Ratio Test

For each frame, there are two hypotheses H0 and H1

corresponding to either state q0 and q1. To detect which

hypothesis holds in real time, a decision of hidden state

can be derived from likelihood ratio test:

LRT (t) = ln
P (Ot

1|St = q1, λ)

P (Ot
1|St = q0, λ)

= ln
P (St = q0|λ)

P (St = q1|λ)

P (Ot
1, St = q1|λ)

P (Ot
1, St = q0|λ)

(5)

P (St=q0|λ)
P (St=q1|λ) is the prior probability ratio. We assume

the stationarity of the HSMM to have P (St = qi|λ) =

8282828282



P (Hi) where p(H0) + p(H1) = 1. Define modified

forward variables αt(i) = P (Ot
1, St = qi|λ) and then:

LRT (t) = ln
P (H0)

P (H1)

αt(1)

αt(0)
(6)

Then a VAD decision can be made based on LRT. If

LRT (t) ≥ η where η is a dynamic threshold, then H1

holds; otherwise H0 holds. Details about how to effec-

tively calculate αt(i) and how to adjust η adaptive to

different environment will be presented in next section.

3 Implementation

This section will discuss details about parameter es-

timation and modified forward variables calculation.

3.1 Parameter Estimation and Adjustment

To improve the performance of HSMM-based VAD,

we need estimate parameters of HSMM λ and LRT

threshold η accurately.

1) According to properties of the on-off process π =

{πi} can be estimated by
ωiΓ(1+ 1

ki
)

∑

j ωjΓ(1+ 1
kj

)
initially.

2) The maximum likelihood estimators for ki and ωi

of Weibull distributions are achieved shown in Table 1.

3) In order to make the algorithm more robust and

adaptive to the varying noise environment, we devise a

dynamical parameter adjusting mechanism. The update

procedure is summarized in Table 2.

Table 1. Parameter Estimation
i πi ki ωi ρi

0 0.478 11.958 0.679 0.99

1 0.522 12.292 0.677 0.79

Table 2. Parameter adjustment
t > P, i = 1, 2, . . . , K

if S(t) = q0 then

µG
i = ρ0µ

G
i + (1 − ρ0)oi

σi = ρ0σi + (1 − ρ0)(oi − µG
i )(oi − µG

i )T

η = ρ0η + (1 − ρ0)LRT (t− 1)
else

µL
i = ρ1µ

L
i + (1 − ρ1)oi

li = ρ1li + (1 − ρ1)|oi − µL
i |

η = ρ1η + (1 − ρ1)LRT (t− 1)
end

Initially µG
i = µL

i , σi, li and η can be estimated

from the first P frames. In our evaluation, smaller ρ1

(see Table 1) is chosen for speech state, because speech

can be assumed to be more stationary than noise.
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Figure 3. Likelihood ratio test on noisy

speech (Babble 15dB).

3.2 Forward Variables

Similar to forward variables of HMMs, modified for-

ward variables αt(i) = P (Ot
1, St = qi|λ) are given by:

αt(i) =

D
∑

d=1

d
∑

d′=0

∑

j 6=i

α∗
t−d′(j)ajiP (d|qi)Π

t
s=t−d′+1bi(Os),

(7)

where t = 1, 2, . . . , T , i = 0, 1, and α∗
t = P (Ot

1, St =
qi|St+1 6= qi, λ) [5] that means at moment t duration in

qi will finish:

α∗
t (i) =

D
∑

d=1

∑

j 6=i

α∗
t−d(j)ajiP (d|qi)Π

t
s=t−d+1bi(Os)

(8)

where initially α∗
1(i) = πiP (d = 1|qi)bi(O1).

Since α∗
t can be easily obtained by iteration accord-

ing to (8), αt(i) will be be efficiently calculated. The-

oretically, by limiting the maximum duration to D, the

time complexity will be O(N2DT ) [7]. We can see this

modified variable brings no much more complexity than

inference of HMMs.

4 Experiments

A noisy speech corpus (NOIZEUS) [6] is used to

evaluate the proposed algorithm. NOIZEUS contains

thirty 80kHz voice streams (three male and three female

speakers, all phonemes in the American English lan-

guage) corrupted by different real-world noises (from

the AURORA database) including train, babble, car,

and street noise at different SNR levels between 15

dB and 0 dB. We made reference decisions for a clean

speech material by labeling manually at every 10 ms

frame. The percentage of the hand-marked speech

frames is 75.13%. In our experiments, the G.729B

[8] encoder performs on 80 samples/frame. For Adap-

tive MultiRate VAD phase 2 (AMR2) [9] 160 sam-

ples/frame is used and the VAD option 2 is selected

since it performs better than option 1 in our experiment.
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Table 3. Performance of the Proposed
VAD compared with G.729B and AMR2

Environment G.729B AMR2 Proposed

Noise SNR Pc Pe Pc Pe Pc Pe

0 3.8 91.4 41.6 37.2 4.3 69.6

5 3.0 90.6 64.8 64.8 5.1 69.9

Babble 10 2.8 90.5 5.7 71.9 5.9 68.3

15 1.7 91.1 1.8 80.0 6.2 68.6

0 13.6 68.6 22.1 55.5 3.7 70.3

5 8.7 71.8 7.6 76.8 4.3 70.9

Car 10 5.7 72.9 1.1 84.4 4.6 68.9

15 5.4 70.5 0.4 89.3 4.8 68.2

0 8.2 81.1 9.3 83.8 4.3 71.4

5 5.8 82.0 8.9 77.6 4.8 70.1

Street 10 2.5 83.0 0.1 99.1 4.4 69.5

15 3.5 83.5 0.5 93.2 5.1 69.7

0 6.2 83.9 32.6 51.2 3.5 71.0

5 4.8 87.3 19.4 54.9 4.4 70.2

Train 10 2.7 84.8 6.3 69.9 4.7 68.7

15 2.2 82.4 1.2 81.6 4.7 68.9

1Pc: the ratio of speech frames classified as noise to

total speech frames; Pe: the ratio of noise frames

classified as speech to total noise frames.

As shown in Fig. 3, the LRT threshold dynamically

varies as LRT value changes. Also under different noisy

environment, we found that the adaptive threshold can

be able to capture the variation of LRT values and tunes

its value to approximate a better decision over time.

Table 3 shows the performance of the proposed

HSMM-based VAD compared with AMR2 and ITU

G.729B VAD. On average G.729B VAD provides the

lowest clipping rate over AMR VAD and the proposed

VAD. This happens at the cost of higher false detec-

tion rate (most over 80% and 84.80% on average). In

contrast, the proposed VAD achieves the very closed

clipping rate with much lower false detection rate. The

proposed VAD owns a lower clipping rate below 4.83%

than G.729B VAD in most situations except for Babble

noise, and achieves the lowest false detection rate be-

low 70% among the three algorithms. On the whole,

the proposed HSMM-based VAD provides a balanced

performance: (1) a significant improvement to G.729B

and AMR2 for false detection rate; (2) a low clipping

rate in most situations especially with low SNR levels.

Furthermore it can be noted that the proposed VAD

performs almost equally well under different noises and

different SNR levels (about 4.68% clipping rate and

69.63% false detection rate). We believe it is partially

due to that the explicit state duration models of the

HSMM estimated properly from a TIMIT subset ap-

proximates the true speech/non-speech duration distri-

bution invariant to noises in real world. Therefore with

such a powerful probabilistic framework it can capture

the duration variation in different noisy environments

and thus performs robustly. Also the adaptive ability

deriving from the dynamic adjusting mechanism con-

tributes to the performance. Therefore, it can be safely

concluded that the proposed HSMM-based VAD is ro-

bust and adaptive to varying noise environment.

5 Conclusion

In this paper we concentrate on noise-invariant prop-

erties of speech like state durations and first propose a

novel VAD algorithm based on a HSMM using Weibull

distributions. To detect voice activity in real time, a de-

cision rule is made by LRT combining state prior prob-

abilities and modified forward variables which is de-

signed to be recursively calculated. The proposed VAD

performs robustly and provides an improvement to stan-

dard ITU-T G.729B VAD and AMR2 on the noise data.

Further work can concentrate on the duration distribu-

tion mechanism and theoretically optimal thresholds.
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