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Preface

In their present incarnation, these notes serve as material for The modal µ-calculus, a
course to be given at the ESSLLI summer school in Malaga, Spain, 2006. Earlier, they
accompanied the second part of the course, Advanced Modal Logic, that I taught at the
University of Amsterdam, 2006.

The text is written for students and researchers in logic and (theoretical) computer
science who are interested in (modal) logic, and its connections with automata theory.
The present version assumes some familiarity with the basic definitions of modal logic,
as can be found in any recent text book.

This is very much work in progress. The final version of this text will be at least
twice as long as the current one. It will contain full proofs of all results mentioned
here, and additional material on for instance game theory, monadic second order logic,
coalgebra (and the automata operating on them), and on other modal fixpoint logics
besides the modal µ-calculus, such as fragments like CTL. Also, in the final version I
hope to pay attention to more computational aspects of fixpoint logics such as model
checking, and the complexity of various problems related to logic and automata theory.

The most serious shortcoming of the present text is that it contains no references,
and I apologize to all the researchers that have contributed to this beautiful theory and
do not find their work acknowledged here. Unfortunately, for lack of time I could not
manage to provide a proper collection of notes, and hence, with hesitation, I decided
better to have no references at all, than to have incomplete (and hence, unfair) ones.
I hope to take care of this omission as soon as possible. Readers who want references
on specific results mentioned in the text can either contact me, or consult one of the
books listed in the References.

Finally, comments are appreciated very much!

Amsterdam, June 27, 2006
Yde Venema



1 Introduction

The study of the modal µ-calculus can be motivated from various (not necessarily
disjoint!) directions.

Process Theory In this area of theoretical computer science, one studies formalisms for
describing and reasoning about labelled transition systems — these being mathematical
structures that model processes. Here the modal µ-calculus strikes a very good balance
between computational efficiency and expressiveness. On the one hand, the presence of
fixpoint operators make it possible to express most, if not all, of the properties that are
of interest in the study of (ongoing) behavior. But on the other hand, the formalism is
still simple enough to allow an (almost) polynomial model checking complexity and a
exponential time satisfiability problem.

Modal Logic From the perspective of modal logic, the modal µ-calculus is a well-
behaved formalism, with a great number of attractive logical properties. For instance,
it is the bisimulation invariant fragment of second order logic, it enjoys uniform in-
terpolation, and the set of its validities admits a transparent, finitary axiomatization,
and has the finite model property. In short, the modal µ-calculus shares (or naturally
generalizes) all the nice properties of ordinary modal logic.

Mathematics and Theoretical Computer Science More in general, the modal µ-calculus
has a very interesting theory, with lots of connections with neighboring areas in math-
ematics and theoretical computer science. We mention automata theory (more specifi-
cally, the theory of finite automata operating on infinite objects), game theory, universal
algebra and lattice theory, and the theory of universal coalgebra.

Open Problems Finally, there are still a number of interesting open problems concern-
ing the modal µ-calculus. For instance, it is open whether the characterization of the
modal µ-calculus as the bisimulation invariant fragment of monadic second order logic
still holds if we restrict attention to finite structures, and in fact there are many open
problems related to the expressiveness of the formalism. Also, the exact complexity
of the model checking problem is not known. And to mention a third example: the
completeness theory of modal fixpoint logics is still a largely undeveloped field.

Summarizing, the modal µ-calculus is a formalism with important applications in the
field of process theory, with interesting metalogical properties, various nontrivial links
with other areas in mathematics and theoretical computer science, and a number of
intriguing open problems. Time to study it in more detail.



2 Modal logic

As mentioned in the preface, we assume familiarity with the basic definitions concerning
the syntax and semantics of modal logic. The purpose of this first chapter is to briefly
recall notation and terminology, and to provide an introduction to the coalgebraic
perspective on modal logic.

2.1 Basics

Syntax

Working with fixpoint operators, we may benefit from a set-up in which the use of the
negation symbol may only be applied to atomic formulas. The price that one has to
pay for this is an enlarged arsenal of primitive symbols. In the context of modal logic
we then arrive at the following definition.

Definition 2.1 Let P be a set of proposition letters, whose elements are usually de-
noted as p, q, r, x, y, z, . . ., and let D be a set of (atomic) actions, whose elements are
usually denoted as d, e, c, . . . The set PMLD(P) of Polymodal Logic in D and P as follows:

ϕ ::= p | ¬p | ⊥ | > | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈d〉ϕ | [d]ϕ

where p ∈ P, and d ∈ D. Elements of PMLD(P) are called (poly-)modal formulas, or
briefly, formulas. Formulas of the form p or ¬p are called literals.

In case the set D is a singleton, we speak of the language BML(P) of Basic Modal
Logic. �

Usually the sets P and D are implicitly understood, and suppressed in the notation.

Remark 2.2 Generally it will suffice to treat examples, proofs, etc., from basic modal
logic. �

Remark 2.3 The negation ∼ϕ of a formula ϕ can inductively be defined as follows:

∼⊥ := > ∼> := ⊥
∼p := ¬p ∼¬p := p
∼(ϕ ∨ ψ) := ∼ϕ ∧ ∼ψ ∼(ϕ ∧ ψ) := ∼ϕ ∨ ∼ψ
∼[d]ϕ := 〈d〉∼ϕ ∼〈d〉ϕ := [d]∼ϕ

On the basis of this, we can also define the other standard abbreviated connectives,
such as → and ↔. �

We assume that the reader is familiar with standard syntactic notions such as those
of a subformula or the construction tree of a formula, and with standard syntactic
operations such as substitution. Concerning the latter, we let ϕ[ψ/x] denote the formula
that we obtain by substituting all occurrences of p in ϕ by ψ.
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Semantics

The relational semantics of modal logic is well known. The basic idea is that the modal
operators 〈d〉 and [d] are both interpreted using an accessibility relation Rd.

Definition 2.4 Fix a set P of proposition letters and a set D of atomic actions. A
(P,D)-transition system or (P,D)-Kripke model is a triple S = 〈S, V,R〉 such that S
is a set of objects called states or points, V : S → ℘(P) is a valuation, and R =
{Rd ⊆ S × S | d ∈ D} is a family of binary accessibility relations. Elements of the set
Rd[s] := {t ∈ S | (s, t) ∈ R} are called d-successors of s. The pair (P,D) is called the
type of the transition system.

A pointed transition system or Kripke model is a pair (S, s) consisting of a transition
system S and a state s in S. �

As in the case of the syntax we will often suppress explicit reference to P and D.

The notion of truth (or satisfaction) is also defined as usual.

Definition 2.5 Let P and D be sets of proposition letters and actions, respectively,
and let S = 〈S, σ〉 be a transition system for this language. Then the satisfaction
relation 
 between states of S and formulas of PML is defined by the following formula
induction.

S, s 
 p if s ∈ V (p),
S, s 
 ¬p if s 6∈ V (p),
S, s 
 ⊥ never,
S, s 
 > always,
S, s 
 ϕ ∨ ψ if S, s 
 ϕ or S, s 
 ψ,
S, s 
 ϕ ∧ ψ if S, s 
 ϕ and S, s 
 ψ,
S, s 
 〈d〉ϕ if S, t 
 ϕ for some t ∈ R[s],
S, s 
 [d]ϕ if S, t 
 ϕ for all t ∈ R[s].

We say that ϕ is true or holds at s if S, s 
 ϕ, and we let the set

[[ϕ]]S := {s ∈ S | S, s 
 ϕ}.
denote the meaning or extension of ϕ in S. �

Remark 2.6 We can define semantics of modal logic in terms of [[·]] as well. Fix an
LTS S, then define [[ϕ]]S by induction on the complexity of ϕ:

[[p]]S = V (p)
[[¬p]]S = S \ V (p)
[[⊥]]S = ∅
[[>]]S = S
[[ϕ ∨ ψ]]S = [[ϕ]]S ∪ [[ψ]]S

[[ϕ ∧ ψ]]S = [[ϕ]]S ∩ [[ψ]]S

[[〈d〉ϕ]]S = 〈Rd〉[[ϕ]]S

[[[d]ϕ]]S = [Rd][[ϕ]]S
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Here the operations 〈Rd〉 and [Rd] are defined in Appendix B.
The satisfaction relation 
 may be recovered from this by putting S, s 
 ϕ iff

s ∈ [[ϕ]]S. �

Modal logic by now has a quite substantial model theory. One of the most funda-
mental notions in that theory is the following notion.

Definition 2.7 Let S and S′ be two transition systems of the same type (P,D). Then
a non-empty relation Z ⊆ S × S ′ is a bisimulation if the following holds, for every
(s, s′) ∈ Z:

(prop) s ∈ V (p) iff s′ ∈ V ′(p), for all p ∈ P;

(forth) for all actions d, and for all t ∈ Rd[s] there is a t′ ∈ R′d[s′] with (t, t′) ∈ Z;

(back) for all actions d, and for all t′ ∈ R′d[s′] there is a t ∈ Rd[s] with (t, t′) ∈ Z.

Two states s and s′ are called bisimilar, notation: S, s↔ S′, s′ if there is some bisimu-
lation Z with (s, s′) ∈ Z.

Relations satisfying the back and forth clauses, but the (prop) clause only for a
subset Q ⊆ P are called Q-bisimulations, and the corresponding notion of bisimilarity
is denoted by ↔Q. �

I bisimulation game

I bisimulation invariance of modal logic

2.2 Game semantics

We will now describe the semantics defined above in game-theoretic terms. That is, we
will define the evaluation game E(ξ,S) associated with a (fixed) formula ξ and a (fixed)
LTS S.

Every match of this game will be played by two players : Éloise (∃ or 0) and Abélard
(∀ or 1). Given a player P , we always denote the opponent of P by P̄ . A match of the
game consists of the two players moving a token from one position to another. That
is, we are dealing with a board game, see Chapter 4. Positions are of the form (ϕ, s)
with ϕ a subformula of ξ, and s a state of S.

It is useful to assign goals to both players: in an arbitrary position (ϕ, s), think of
∃ trying to show that ϕ is true at s in S, and of ∀ of trying to convince her that ϕ is
false at s.

Depending on the type of the position (more precisely, on the formula part of the
position), one of the two players may move the token to a next position. For instance, if
the position is of the (〈d〉ϕ, s), it is ∃ who is to move, and she may choose an arbitrary
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d-successor t of s where to make ϕ true. That is, the set of next positions that she may
choose from is given as the set {(ϕ, t) | t ∈ Rd[s]}.

In the case there is no successor of s to choose, she immediately loses the game.
This is a convenient way to formulate the rules for winning and losing this game: if a
position (ϕ, s) has no admissible next positions, the player whose turn it is to play at
(ϕ, s) immediately loses the game.

This convention gives us a nice handle on positions of the form (p, s) where p is a
proposition letter: we always assign such a position an empty set of admissible moves,
but we make ∃ responsible for (p, s) in case p is false at s, and ∀ in case p is true at s.
In this way, ∃ immediately wins if p is true at s, and ∀ if it is otherwise. The rules for
the negative literals (¬p) and the constants, ⊥ and >, follow a similar pattern.

The full set of rules of the game is given in Table 1. Observe that all matches of
this game are finite, since at each move of the game the active formula is reduced in
size. (From the general perspective of board games, this means that we need not worry
about winning conditions for matches of infinite length since no such matches occur.)
We may now summarize the game as follows.

Definition 2.8 Given a modal formula ξ and a transition system S, the evaluation
game E(ξ,S) is defined as the board game given by Table 1. The instantiation of this
game with starting point (ξ, s) is denoted as E(ξ,S)@(ξ, s). �

An instance of an evaluation game is a pair consisting of an evaluation game and a
starting position of the game. Such an instance will also be called an initialized game,
or sometimes, if no confusion is likely, simply a game.

A strategy for a player in an initialized game, say P , is a function telling P what to
do in any match from the starting position. Such a strategy is winning for P if every
match of the game is won by P , at least if P plays according to this strategy.

A position (ϕ, s) is winning for P if P has a winning strategy for the game initialized
in that position. The set of winning positions in E(ξ,S) is denoted as Win(E(ξ,S)).

The main result concerning these games is that they provide an alternative, but
equivalent semantics for modal logic.

Theorem 2.9 Let ξ be a modal formula, and let S be an LTS. Then for any state s in
S it holds that

(ξ, s) ∈ Win(E(ξ,S)) ⇐⇒ S, s 
 ξ.

The proof of this Theorem is straightforward and left to the reader.

2.3 Kripke coalgebras

It will be convenient to have an alternative, coalgebraic presentation of transition sys-
tems. We first give the formal definition, and then explain that is nothing more than
an alternative presentation of the standard framework.
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Position Player Admissible moves
(ϕ1 ∨ ϕ2, s) ∃ {(ϕ1, s), (ϕ2, s)}
(ϕ1 ∧ ϕ2, s) ∀ {(ϕ1, s), (ϕ2, s)}
(〈d〉ϕ, s) ∃ {(ϕ, t) | t ∈ Rd[s]}
([d]ϕ, s) ∀ {(ϕ, t) | t ∈ Rd[s]}
(⊥, s) ∃ ∅
(>, s) ∀ ∅
(p, s), s ∈ V (p) ∀ ∅
(p, s), s 6∈ V (p) ∃ ∅
(¬p, s), s 6∈ V (p) ∀ ∅
(¬p, s), s ∈ V (p) ∃ ∅

Table 1: Evaluation game for modal logic

Definition 2.10 Fix a set P of proposition letters and a set D of atomic actions. Given
a set S, let KD,PS denote the set

KD,PS := ℘(P)× ℘(S)D.

This operation will be called the Kripke functor associated with D and P.
A typical element of KD,PS will be denoted as (π,X), with π ⊆ P and X = {Xd |

d ∈ D} with Xd ⊆ S for each d ∈ D. �

We will now see that any transition systems can be presented as a pair S = 〈S, σ :
S → KS〉 where K is the Kripke functor associated with S. The idea is that a state s
in S may be characterized by the pair consisting of the set of proposition letters true
at s, together with, for each d ∈ D, the set of Rd-successors of s.

Definition 2.11 Fix a set P of proposition letters and a set D of atomic actions. A
KD,P-coalgebra, or Kripke coalgebras of type (D,P) is a pair S = 〈S, σ〉 with σ : S →
KD,PS. �

When we say that Kripke coalgebras are nothing more than a different presentation
of transition systems, we feel justified by the following proposition.

Proposition 2.12 Let P and D be sets of proposition letters and of atomic actions,
respectively. Then for each set S, there is an isomorphism between the collection of
(P,D)-transition systems on S, and the KD,P-coalgebras with carrier S.

Proof. Fix a set S. To see why the proposition holds, we first make some preparations.
Given that the codomain of aKD,P-coalgebra map is the cartesian product ℘(P)×℘(S)D,
we may clearly represent a coalgebra map σ : S → KD,PS as a pair of maps σ0 : S →
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℘(P) and σ1 : S → ℘(S)D. On the other hand, a transition model can be seen as a
structure 〈S, V,R〉 with V : P → ℘(S) and R : D → ℘(S × S).

Thus it suffices to show that there is an isomorphism

S → ℘(P) ∼= P → ℘(S) (1)

for the ‘static’ part, and another one

S → ℘(S)D ∼= D → ℘(S × S) (2)

for the ‘dynamic’ side of the structures.
In both cases, the proofs are based on two key observations holding in a very general

context. The first concerns the isomorphism between the sets

(A×B) → C ∼= A→ (B → C),

where the bijection from left to right is given by currying (see Appendix B). And the
second observation is that

℘(A) ∼= A→ 2,

where 2 denotes the set {0, 1}, and the bijection from left to right is given by the
characteristic function.

Now the ‘static isomorphism’ (1) directly follows from

S → ℘(P) ∼= S → (P → 2) ∼= (S × P) → 2 ∼= P → (S → 2) ∼= P → ℘(S).

Concretely, a map σV : S → ℘(P) gives for each state s ∈ S the set of proposition
letters that are true at s. This provides the same information as the map V which
associates with a proposition letter p the set of states in S where p holds.

Concerning the ‘dynamic’ part, the key observation is that any relation R ⊆ A×B
can be represented as the map sending a point a ∈ A to the collection R[a] := {b ∈ B |
(a, b) ∈ R} of its R-successors. In the present context of an accessibility relation R on
a set S we find that

S → ℘(S) ∼= S → (S → 2) ∼= (S × S) → 2 ∼= ℘(S × S)

Then, bringing the set D into the picture, we find (recall that ℘(S)D is just another
notation for D → ℘(S)):

S → (D → ℘(S)) ∼= (S × D) → ℘(S) ∼= D → (S → ℘(S)) ∼= D → ℘(S × S).

This shows (2) and thus proves the proposition. qed

Convention 2.13 In the sequel, we will identify transition systems with their associ-
ated Kripke coalgebras. For instance, even if we represent a transition system S as a
Kripke coalgebra 〈S, σ〉, we will still speak, for each action d, of the accessibility relation
Rd of S.

I morphisms to be discussed.
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2.4 Bisimulations via relation lifting

It will be convenient to reformulate the definition of a bisimulation using the notion of
relation lifting.

Definition 2.14 Given a relation Z ⊆ A× A′, define the relation ℘Z ⊆ ℘A× ℘A′ as
follows:

℘Z := {(X,X ′) | for all x ∈ X there is an x′ ∈ X ′ with (x, x′) ∈ Z
& for all x′ ∈ X ′ there is an x ∈ X with (x, x′) ∈ Z}.

We say that Z ⊆ A× A′ is full on A and A′, notation: Z ∈ A ./ A′, if (A,A′) ∈ ℘Z.
Similarly, given Z ⊆ A × A′, define, for a Kripke functor K = KD,P, the relation

KZ ⊆ KA×KA′ as follows:

KZ := {((π,X), (π′, X ′)) | π = π′ and (Xd, X
′
d) ∈ ℘Z for each d ∈ D}.

The relations ℘Z and KZ are called the lifting of Z with respect to ℘ and K,
respectively. �

The following characterization of bisimulations is then a straightforward conse-
quence of the definitions.

Proposition 2.15 Let S and S′ be two K-coalgebras for some Kripke functor K, and
let Z ⊆ S × S ′ be some relation. Then

Z is a bisimulation iff (σ(s), σ′(s′)) ∈ KZ for all (s, s′) ∈ Z. (3)

Using this proposition we may also give a game-theoretic characterization of the
notion of bisimilarity. We first give an informal description. A match of the bisimilarity
game between two Kripke models S and S′ is played by two players, ∃ and ∀. As in the
evaluation game, these players move a token around from one position of the game to
another.

In the game there are two kinds of positions: pairs of the form (s, s′) ∈ S × S ′ are
called basic positions and belong to ∃. The other positions are of the form Z ⊆ S × S ′

and belong to ∀.
The idea of the game is that at a position (s, s′), ∃ claims that s and s′ are bisimilar,

and to substantiate this claim she proposes a local bisimulation, that is, a relation
Z ⊆ S × S ′ with (σ(s), σ′(s′)) ∈ KZ. Implicitly, her claim at a position Z ⊆ S × S ′ is
that all pairs in Z are bisimilar, so ∀ can pick an arbitrary pair (t, t′) ∈ Z and challenge
∃ to show that this t and t′ are bisimilar.

If a player gets stuck in a match of this game, then their opponent wins the match.
For instance, if s and s′ disagree about the truth of some proposition letter, then no
relation Z ⊆ S × S ′ will satisfy that (σ(s), σ′(s′)) ∈ KZ. Hence such positions are an
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immediate loss for ∃. But on the other hand, if neither s nor s′ has successors, and
agree on the truth of all proposition letters, then ∃ could choose the empty relation as
a local bisimulation, and ∀ would lose the match at his next move.

A new option arises if neither player gets stuck: this game may also have matches
that last forever. Nevertheless, we can still declare a winner for such matches, and the
agreement is that ∃ is the winner of any infinite match. Formally, we put the following.

Definition 2.16 The bisimilarity game B(S,S′) between two Kripke models S and S′
is given as the board game defined by Table 2, where the winning condition for infinite
matches is simply that ∃ wins all infinite matches. �

Position Player Admissible moves

(s, s′) ∈ S × S ′ ∃ {Z ∈ ℘(S × S ′) | (σ(s), σ′(s′)) ∈ KZ}
Z ∈ ℘(S × S ′) ∀ Z

Table 2: Bisimilarity game for Kripke models

The following theorem states that the collection of basic winning positions for ∃
forms the largest bisimulation between S and S′.

Theorem 2.17 Let (S, s) and (S′, s′) be two pointed Kripke models. Then S, s↔ S, s′
iff (s, s′) ∈ Win∃(B(S,S′)).

Proof. For the direction from left to right: suppose that Z is a bisimulation between
S and S′ linking s and s′. Suppose that ∃, starting from position (s, s′), always chooses
the relation Z itself as the local bisimulation. It is then easy to verify, by induction on
the length of the match, that this strategy always provides her with a legitimate move,
and that it keeps her alive forever. This shows that it is a winning strategy.

For the converse direction, it suffices to show that the relation Win∃(B(S,S′)) itself
is in fact a bisimulation. The proof of this is straightforward, and we leave the details
for the reader. qed

2.5 The cover modality

As we will see now, there is an interesting alternative for the standard formulation of
basic modal logic in terms of boxes and diamonds. This alternative set-up is based on
a connective which turns sets of formulas into formulas.

Definition 2.18 Let Φ be a finite set of formulas. Then ∇Φ is a formula, which holds
at a state s in a Kripke model if every formula in Φ holds at some successor of s, while
at the same time, every successor of s makes some formula in Φ true. The operator ∇
is called the cover modality. �
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Observe that this definition involves the ∀∃&∀∃ pattern that we know from the
notion of relation lifting ℘ defined in the previous section. In other words, the semantics
of the cover modality can be expressed in terms of relation lifting. For that purpose,
observe that we may think of the forcing or satisfaction relation 
 simply as a binary
relation between states and formulas.

Proposition 2.19 Let s be some state in a Kripke model S, and let Φ be a set of
formulas. Then

S, s 
 ∇Φ iff (σ(s),Φ) ∈ ℘(
).

Proof. Immediate by unravelling the definitions. qed

It is not so hard to see that the cover modality can be defined in the standard modal
language:

∇Φ ≡ 2
∨

Φ ∧
∧

3Φ, (4)

where 3Φ denotes the set {3ϕ | ϕ ∈ Φ}.
Things start to get interesting once we realize that both the ordinary diamond 3

and the ordinary box 2 can be expressed in terms of the cover modality (and the
disjunction):

3ϕ ≡ ∇{ϕ,>},
2ϕ ≡ ∇∅ ∨∇{ϕ}. (5)

Here, as always, we use the convention that
∨

∅ = ⊥ and
∧

∅ = >.
Making the above observations more precise, we arrive at the following definition

and proposition.

Definition 2.20 Formulas of the language BML∇ are given by the following recursive
definition:

ϕ ::= p | ¬p | ⊥ | > | ϕ ∨ ϕ | ϕ ∧ ϕ | ∇Φ

where Φ denotes a set of formulas. �

Proposition 2.21 The languages BML and BML∇ are equally expressive.

Proof. Immediate by (4) and (5). qed

The real importance of the cover modality is that it allows us to almost completely
eliminate the Boolean conjunction. This remarkable fact is based on the following
distributive law. Recall from Definition 2.14 that we write Z ∈ A ./ A′ if a relation
Z ⊆ A× A′ is full on A and A′, that is, if (A,A′) ∈ ℘Z.
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Proposition 2.22 For all pairs Φ, Φ′ of sets of formulas, the following two formulas
are equivalent:

∇Φ ∧∇Φ′ ≡
∨

Z∈Φ./Φ′

∇{ϕ ∧ ϕ′ | (ϕ, ϕ′) ∈ Z}. (6)

Proof. For the direction from left to right, suppose that S, s 
 ∇Φ ∧ ∇Φ′. Let
Z ⊆ Φ × Φ′ consist of those pairs (ϕ, ϕ′) such that the conjunction ϕ ∧ ϕ′ is true at
some successor t of s. It is then straightforward to verify that Z is full on Φ and Φ′,
and that S, s 
 ∇{ϕ ∧ ϕ′ | (ϕ, ϕ′) ∈ Z}.

The converse direction follows fairly directly from the definitions. qed

2.6 Coalgebraic modal logic

Using the cover modality introduced in the previous section, we can show that we
can restrict the use of conjunction in modal logic to that of the special conjunction
connective •. First however, we take care of the proposition letters.

Definition 2.23 Fix a set P of proposition letters. Given a subset π ⊆ P, we let �π
denote the formula with semantics given by

S, s 
 �π iff σV (s) = π

for any KD,P-coalgebra S = 〈S, σ〉. �

In words, the formula �π holds at a state s iff π consists precisely of those propo-
sition letters in P that are true at s, or equivalently,

�π :=
∧
p∈π

p ∧
∧
p6∈π

¬p.

It is not difficult to see that every propositional formula with proposition letters from
P can be expressed as disjunctions of formulas of the form �π. In particular, it is
straightforward to verify that

q ≡
∨
q∈π

�π

for every q ∈ P.
We are now ready for the introduction of the coalgebraic modal connective •.

Definition 2.24 Fix sets P of proposition letters and D of atomic actions, respectively.
Given a subset π ⊆ P, and a D-indexed family Φ = {Φd | d ∈ D} of formulas, then
π • Φ is a formula, of which the semantics is defined by the following equivalence:

π • Φ ≡ �π ∧
∧
d∈D

∇dΦd.
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Here ∇d is the cover modality associated with the accessibility relation Rd of d.
The set CMLD(P) of coalgebraic modal formulas is given as follows:

ϕ ::= ⊥ | > | ϕ ∨ ϕ | ϕ ∧ ϕ | π • Φ.

�

In words, π •Φ is the conjunction of (i) a complete description of the local situation
in terms of the proposition letters being true or false, and (ii) for each action d, a
description of the d-successor set of the current state, using the cover modality for Rd.

The bullet modality and the language CML built on it, are called ‘coalgebraic’ for
two reasons. First, we may identify the formula π •Φ with the pair (π,Φ) belonging to
the set KP,D(CMLD(P)). But more importantly, the point is that the semantics of the
bullet modality can be expressed in coalgebraic terms of relation lifting with respect
to the associated Kripke functor, witness the following proposition. Note that for any
transition system S of type K, the satisfaction relation 
 ⊆ S × CML can be lifted to
a relation K(
) ⊆ K(S)×K(CML).

Proposition 2.25 Fix sets P of proposition letters and D of atomic actions, respec-
tively. Then we have

S, s 
 π • Φ iff (σ(s), (π,Φ)) ∈ K(
) (7)

for any π ∈ ℘(P) any D-indexed family Φ = {Φd | d ∈ D}, and for any pointed
transition system (S, s) of type (P,D), the following equivalence holds.

Proof. Simply spell out the definitions. qed

In fact, we could have taken (7) below as the definition of the semantics of the
bullet modality.

The following result is not very hard to prove.

Theorem 2.26 For any P and D, the languages PMLD(P) and CMLD(P) are expres-
sively equivalent.

Proof. There is a straightforward translation from CML-formulas to ordinary modal
formulas, so we focus on the other direction.

It is not hard to verify that every polymodal formula can be rewritten to an equiv-
alent formula using the connectives >,⊥,∧,∨,� and ∇d. But then the proof of the
theorem is straightforward by the observation that both �π and ∇dϕ can be rewritten
to formulas using the bullet connective, using the equivalences below:

> ≡ ∇d∅ ∨∇d{>}
> ≡

∨
π⊆P

�π.
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For instance, this allows us to write

�π ≡ �π ∧
∧
d∈D

>

≡ �π ∧
∧
d

(∇d∅ ∨∇d{>})

≡
∨

Φ:D→{∅,{>}}

π • {Φ(d) | d ∈ D}.

qed

It may come as a surprise to the reader that the bullet operator is in fact the only
form of conjunction that we need! More precisely, Theorem 2.28 below states that
every formula of CML can be rewritten into an equivalent version that does not use
the ordinary Boolean conjunction, but only the special ‘bullet conjunction’.

Definition 2.27 Formulas of the language CML−D(P) are given by the following recur-
sive definition:

ϕ ::= > | ⊥ | ϕ ∨ ϕ | π • Φ

where π denotes a subset of P, and Φ a D-indexed set of CML−D(P)-formulas. �

Theorem 2.28 For any P and D, the languages PMLD(P) and CML−D(P) are expres-
sively equivalent.

Proof. Obviously it suffices to prove that every CML-formula ϕ has an equivalent
formula ϕ′ that does not use the conjunction symbol. We will prove this result by
formula induction, confining ourselves to the case of basic modal logic (with one action).

In the base step of this induction there is nothing to prove. In the inductive step,
the clauses for the disjunction and the cover modality speak for themselves:

ϕ ∨ ψ := ϕ ∨ ψ,
π • Φ :=

∨
π⊆P

π • Φ.

This leaves the case of a conjunction ϕ∧ϕ′, where we make a further case distinction.
If either of the formulas is of the form > or ⊥ it is obvious how to proceed: ⊥ ∧ ϕ := ⊥,
> ∧ ϕ := ϕ, etc. Also, in case either of the two conjuncts is a disjunction, say ϕ =
ϕ0 ∨ ϕ1, using induction loading we may correctly define ϕ ∧ ϕ′ := ϕ0 ∧ ϕ′ ∨ ϕ0 ∧ ϕ′.

The heart of the proof lies in the one remaining inductive case, namely, where
ϕ = π • Φ and ϕ′ = π′ • Φ′. Here we put

ϕ ∧ ϕ′ :=

{
⊥ if π 6= π′,∨

Z∈Φ./Φ′(π • {ϕ ∧ ϕ′ | (ϕ, ϕ′) ∈ Z}) if π 6= π′.

It then follows immediately from the inductive assumptions that ϕ ∧ ϕ′ is a BML−∇-
formula, and from Proposition 2.22 that ϕ ∧ ϕ′ is equivalent to ϕ ∧ ϕ′. qed



3 The modal µ-calculus

This chapter is a first introduction to the modal µ-calculus. We first introduce the
language and some syntactic issues, and then proceed to the semantics. In fact we
will provide two kinds of semantics: first the fixpoint semantics, and then the game-
theoretic approach. We then show that these two approaches are equivalent. First
however, we give an example of a fixpoint formula.

Example 3.1 Consider the formula 〈a∗〉p from propositional dynamic logic. By def-
inition, this formula holds at those points in an LTS S from which there is a finite
path, of unspecified length, leading to a state where p is true — in our notation (see
Appendix B) this set is denoted as 〈R∗a〉V (p).

It is then easy to see, and left to the reader as an exercise, that

S 
 〈a∗〉p↔ (p ∨ 〈d〉〈a∗〉p)

Informally, one might say that 〈a∗〉p is a fixed point or solution of the ‘equation’ x ↔
p ∨ 〈d〉x.

Making this intuition more precise, we have to look at the formula δ = p ∨ 〈d〉x as
an operation. The idea is that the value (that is, the extension) of this formula is a
function of the value of x, provided that we keep the value of p constant. Varying the
value of x boils down to considering ‘x-variants’ of the valuation V of S = 〈S,R, V 〉.
Let, for X ⊆ S, V [x 7→ X] denote the valuation that is exactly like V apart from
mapping x to X, and let S[x 7→ X] denote the x-variant 〈S,R, V [x 7→ X]〉 of S. Then
[[δ]]S[x 7→X] denotes the extension of δ in this x-variant. It follows from this that the
formula δ induces the following function δS

x on the power set of S:

δS
x(X) := [[δ]]S[x 7→X].

Now we can make precise in which sense 〈a∗〉p is a fixpoint formula: it is simply
because its extension, that is, the set 〈R∗a〉V (p), is a fixpoint of this map δS

x:

δS
x([[〈a∗〉p]]S) = [[〈a∗〉p]]S.

One may show that 〈R∗a〉V (p) is not the only fixpoint of the map δS
x. Let dom(R∞a )

denote the set of points from which some infinite path emanates. Then we leave it as
an exercise to the reader that the set

〈R∗a〉V (p) ∪ dom(R∞a )

is another fixpoint of δ.
In fact, one may prove that the two mentioned fixpoints are the smallest and largest

possible solutions of the equation δS
x(X) = X, respectively.

I evaluation game for this formula: unfolding of x �
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As we will see in this section, the modal µ-calculus allows one to explicitly refer to
such smallest and largest solutions. For instance, the formula 〈a∗〉p of propositional
dynamic logic can be written as µx.p ∨ 〈d〉x.

3.1 Syntax

In the case of fixpoint formulas we will usually work with formulas in positive normal
form in which the only admissible occurrences of the negation symbol is in front of
atomic formulas. As always, the price that we have to pay for this is an enlarged
repertoire of primitive symbols.

Definition 3.2 Given sets P and D of proposition letters and atomic actions, respec-
tively, define the collection µPML(D,P) of (poly-)modal fixpoint formulas as follows:

ϕ ::= > | ⊥ | p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈d〉ϕ | [d]ϕ | µx.ϕ | νx.ϕ

where p, x ∈ P, a ∈ D, and in µx.ϕ, x may not occur in ϕ in a subformula ¬x.
As before, we will usually write µPML rather than µPML(D,P) in order not to

clutter up notation. In case the set D of atomic actions is a singleton, we will simply
speak of the modal µ-calculus, notation: µML(P), or µML if P is understood.

The syntactic combinations µx and νx are called the least and greatest fixpoint
operators, respectively. We use the symbol η to denote either µ or ν. A fixpoint
formula of the form µx.ϕ is called a µ-formula, while ν-formulas are the ones of the
form νx.ϕ. �

Definition 3.3 The concepts of subformula and proper subformula are defined as
usual. We write ϕ � ψ if ϕ is a subformula of ψ. The set of subformulas of ψ is
denoted as Sfor(ψ). �

Syntactically, the fixpoint operators are very similar to quantifiers in the way they
bind variables.

Definition 3.4 Fix a formula ϕ. The sets FV (ϕ) and BV (ϕ) of free and bound vari-
ables of ϕ are defined by the following induction on ϕ:

FV (⊥) := ∅ BV (⊥) := ∅
FV (>) := ∅ BV (>) := ∅
FV (p) := {p} BV (p) := ∅
FV (¬p) := {p} BV (¬p) := ∅
FV (ϕ ∨ ψ) := FV (ϕ) ∪ FV (ψ) BV (ϕ ∨ ψ) := BV (ϕ) ∪ BV (ψ)
FV (ϕ ∧ ψ) := FV (ϕ) ∪ FV (ψ) BV (ϕ ∧ ψ) := BV (ϕ) ∪ BV (ψ)
FV (〈d〉ϕ) := FV (ϕ) BV (〈d〉ϕ) := BV (ϕ)
FV ([d]ϕ) := FV (ϕ) BV ([d]ϕ) := BV (ϕ)
FV (µx.ϕ) := FV (ϕ) \ {x} BV (µx.ϕ) := BV (ϕ) ∪ {x}

�
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Formulas like x ∨ µx.((p ∨ x) ∧ 2νx.3x) may be well formed, in practice they are
unreadable. In the sequel we will almost exclusively work with formulas in which every
bound variable uniquely determines a fixpoint operator binding it, and in which there
is no overlap between free and bound variables.

Definition 3.5 A formula ϕ ∈ µPML is clean if no two distinct (occurrences of) fixed
point operators in ϕ bind the same variable, and no variable has both free and bound
occurrences in ϕ. If x is a bound variable of the clean formula ϕ, we let ϕx = ηxx.δx
denote the unique subformula of ϕ where x is bound by the fixpoint operator ηx.

Given a clean formula ϕ, we define a dependency order on the set BV (ϕ), saying
that y ranks higher than x, notation: x ≤ϕ y iff ϕx � ϕy. �

The idea behind the dependency order is that if x ≤ y, the meaning of ϕx is (in
principle) dependent on the meaning of y, because y may occur freely in ϕx.

Definition 3.6 A variable x is guarded in a µPML-formula ϕ if every occurrence of x
in ϕ is in the scope of a modal operator. A formula ξ ∈ µPML is guarded if for every
subformula of ξ of the form ηx.δ, x is guarded in δ. �

3.2 Semantics

The intended semantics of µx.ϕ in an LTS S is as a least fixpoint (see Appendix A for
the basics of fixpoint theory). For this purpose, we will consider the formula ϕ as an
operation on the power set of (the state space of) S, and we have to prove that this
operation indeed has a least fixpoint. Basically, as in Example 3.1, the idea is that the
meaning of the formula ϕ in S is a function of the meaning of x. In order to make this
precise, we need some preliminary definitions.

Definition 3.7 Given an LTS S = 〈S, V,R〉 and subset X ⊆ S, define the valuation
V [x 7→ X] by putting

V [x 7→ X](y) :=

{
V (y) if y 6= x,
X if y = x.

Then, the LTS S[x 7→ X] is given as the structure 〈S, V [x 7→ X], R〉. �

Now inductively assume that [[ϕ]]S has been defined for all LTSs. Given a labelled
transition system S and a propositional variable x ∈ P, each formula ϕ induces a map
ϕS

x : ℘(S) → ℘(S) defined by

ϕS
x(X) := [[ϕ]]S[x 7→X]
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Example 3.8 a) Where ϕa = p ∨ x we have (ϕa)
S
x(X) = [[p ∨ x]]S[x 7→X] = V (p) ∪X.

b) Where ϕb = ¬x we have (ϕb)
S
x(X) = [[¬x]]S[x 7→X] = S \X.

c) Where ϕc = p ∨ 〈d〉x we find (ϕc)
S
x(X) = [[p ∨ 〈d〉x]]S[x 7→X] = V (p) ∪ 〈Ra〉X.

d) Where ϕd = 〈d〉¬x we find (ϕd)
S
x(X) = [[〈d〉¬x]]S[x 7→X] = 〈Ra〉(S \X). �

Recall from the basic fixpoint theory sketched in Appendix A that a fixpoint of
the map ϕS

x is a subset X ⊆ S such that ϕS
x(X) = X. Alternatively but equivalently,

X is a fixpoint of ϕS
x iff S[x 7→ X] 
 x ↔ ϕ. Likewise, X is a prefixpoint of ϕS

x iff
S[x 7→ X] 
 ϕ→ x, and a postfixpoint of ϕS

x iff S[x 7→ X] 
 x→ ϕ.

Example 3.9 Consider the formulas of Example 3.8.
a) The sets V (p) and S are fixpoints of ϕa, as is in fact any X with V (p) ⊆ X ⊆ S.
b) Since we do not consider structures with empty domain, the formula ¬x has no

fixpoints at all.
c) Two fixpoints of ϕc were already given in Example 3.1.
d) Consider any model Z = 〈Z, S, V 〉 based on the set Z of integers, where S =

{(z, z + 1) | z ∈ Z} is the successor relation. Then the only two fixpoints of ϕd are the
sets of even and odd numbers, respectively. �

In particular, it is not the case that every formula has a least fixpoint. However,
if we can guarantee that the induced function ϕS

x of ϕ is monotone, then the Knaster-
Tarski theorem (Theorem A.5) provides both least and greatest fixpoints of ϕS

x. But
this is the reason why in the definition of fixpoint formulas, there is a condition in the
clauses for ηx.ϕ, namely that x may not occur in a subformula of the form ¬x. This
condition on x guarantees monotonicity of the function ϕS

x.

Definition 3.10 Given a µPML-formula ϕ and a labelled transition system S =
〈S, V,R〉, we define the meaning [[ϕ]]S of ϕ in S, by the following formula induction:

[[⊥]]S = ∅
[[>]]S = S
[[p]]S = V (p)
[[¬p]]S = S \ V (p)
[[ϕ ∨ ψ]]S = [[ϕ]]S ∪ [[ψ]]S

[[ϕ ∧ ψ]]S = [[ϕ]]S ∩ [[ψ]]S

[[〈d〉ϕ]]S = 〈Ra〉[[ϕ]]S

[[[d]ϕ]]S = [Ra][[ϕ]]S

[[µx.ϕ]]S =
⋂

PRE(ϕS
x)

[[νx.ϕ]]S =
⋃

POS(ϕS
x)

Here the map ϕS
x, for x ∈ P, is (inductively) given as ϕS

x(X) = [[ϕ]]S[x 7→X].
We write S, s 
 ϕ in case s ∈ [[ϕ]]S. �
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Theorem 3.11 Let ϕ be an µPML-formula, in which x occurs only positively, and let
S be a labelled transition system. Then [[µx.ϕ]]S = LFP.ϕS

x, and [[νx.ϕ]]S = GFP.ϕS
x.

Proof. This is an immediate consequence of the Knaster-Tarski theorem, provided we
can prove that ϕS

x is monotone in x if all occurrences of x in ϕ are positive.

I Details to be supplied

qed

It follows from the definitions that the set µPML is closed under taking negations.

Definition 3.12 Given a modal fixpoint formula ϕ, define ∼ϕ inductively as follows:

∼⊥ := > ∼> := ⊥
∼¬p := p ∼p := ¬p
∼ϕ ∨ ψ := ∼ϕ ∧ ∼ψ ∼ϕ ∧ ψ := ∼ϕ ∨ ∼ψ
∼[d]ϕ := 〈d〉∼ϕ ∼〈d〉ϕ := [d]∼ϕ
∼µx.ϕ := νx.∼ϕ[x/¬x] ∼νx.ϕ := µx.∼ϕ[x/¬x]

Here ϕ[x/¬x] denotes the formula ϕ with (note!) all occurrences of ¬x replaced with
x. �

As an example, the reader is invited to check that ∼(µx.p ∨3x) = νx.¬p ∧2x.
Perhaps the clause for the fixpoint operators requires some explanation. Consider

for instance the case of ∼µx.ϕ. In the proof of Proposition 3.13 we explain why our
definition is the right one, here we only argue that at least it produces a well-formed
modal fixpoint formula. First observe that since in ϕ no x occurs in a subformula ¬x,
in ∼ϕ all occurrences of x are negated. Hence, if we replace every occurrence of ¬x
with x, we again obtain a formula in which no occurrence of x is below a negation sign,
and hence, we may legitimately put a fixpoint operator in front of ∼ϕ[¬x/x]. Note
that the net effect of these syntactic transformations is that the bound variables of a
fixpoint formula remain unchanged.

Informally then, ∼ϕ is the result of simultaneously replacing all occurrences of >
with ⊥, of p with ¬p (for free variables p), of ∧ with ∨, of [d] with 〈d〉, of µx with νx,
and vice versa, while leaving occurrences of bound variables unchanged.

Proposition 3.13 Let ϕ be a modal fixpoint formula. Then ∼ϕ corresponds to the
negation of ϕ, that is,

[[∼ϕ]]S = S \ [[ϕ]]S

for every labelled transition system S.
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Proof. We prove this proposition by induction on the complexity of ϕ. We only
consider the inductive case of the fixpoint operators. Leaving all other cases as exercises
for the reader, we concentrate on the inductive case where ϕ is of the form µx.ψ.

The point is the following. Given a monotone map f : ℘(S) → ℘(S), the comple-
ment of the least fixpoint of f is equal to the greatest fixpoint of the dual map f̃ of f ,
given by f̃(X) = ∼Sf(∼SX), cf. Proposition A.13. (Here ∼SX = S \ X denotes the
complement of X in S). Thus we are done if we can show that

ψ̃S
x = (∼ψ[x/¬x])S

x. (8)

But in the case that f = ψS
x, inductively we have that f̃(X) = ∼Sψ

S
x(∼SX) =

(∼ψ)S
x(∼SX). Since all occurrences of x in ∼ψ are inside a subformula ¬x, it follows

that (∼ψ)S
x(∼SX) = (∼ψ[x/¬x])S

x(X). This proves (8). qed

Remark 3.14 It follows from the Proposition above that we could indeed have defined
the language of the modal µ-calculus with a far more parsimonious supply of primitives.
Given sets P and D of proposition letters and atomic actions, respectively, we could
have defined the set of modal fixpoint formulas using the following induction:

ϕ ::= > | p | ¬ϕ | ϕ ∨ ϕ | 〈d〉ϕ | µx.ϕ

where p, x ∈ P, a ∈ D, and in µx.ϕ, all free occurrences of x must be positive (that is,
under an even number of negation symbols). Here we define FV (¬ϕ) = FV (ϕ) and
BV (¬ϕ) = BV (ϕ).

In this set-up, the connectives ∧ and [d] are defined using the standard abbrevia-
tions, while for the greatest fixpoint operator we may put

νx.ϕ := ¬µx.¬ϕ(¬x).

Note the triple use of the negation symbol that is required to maintain the positivity
of x — explained by the earlier remarks. �

Earlier on we defined the notions of clean and guarded formulas.

I ...

Proposition 3.15 Every fixpoint formula is equivalent to a clean one.

Proof. We leave this proof as an exercise for the reader. qed

Proposition 3.16 Every fixpoint formula is equivalent to a guarded one.
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Proof.(Sketch) We prove this proposition by formula induction. Clearly the only non-
trivial case to consider concerns the fixpoint operators. Consider a formula of the
form ηx.δ(x), where δ(x) is guarded and clean, and suppose that x has an unguarded
occurrence in δ.

First consider an unguarded occurrence of x in δ(x) inside a fixpoint subformula,
say, of the form θy.γ(x, y). By induction hypothesis, all occurrences of y in γ(x, y)
are guarded. Obtain the formula δ from δ by replacing the subformula θy.γ(x, y) with
γ(x, θy.γ(x, y)). Then clearly δ is equivalent to δ, and all of the unguarded occurrences
of x in δ are outside of the scope of the fixpoint operator θ.

Continuing like this we obtain a formula ηx.δ(x) which is equivalent to ηx.δ(x),
and in which none of the unguarded occurrences of x lies inside the scope of a fixpoint
operator. That leaves ∧ and ∨ as the only operation symbols in the scope of which we
may find unguarded occurrences of x.

From now on we only consider the case that η = µ, the case where η = ν is very
similar. Clearly, using the laws of classical propositional logic, we may bring the formula
δ into conjunctive normal form

(x ∨ α1(x)) ∧ · · · ∧ (x ∨ α1(x)) ∧ β(x), (9)

where all occurrences of x in α1, . . . , αn and β are guarded. (Note that we may have
β = >, or αi = ⊥ for some i.)

Clearly (9) is equivalent to the formula

δ′(x) := (x ∨ α(x)) ∧ β(x),

where α = α1 ∧ · · · ∧ αn. Thus we are done if we can show that

µx.δ′(x) ≡ µx.α(x) ∧ β(x). (10)

Since α ∧ β implies δ′, it is easy to see (and left for the reader to prove) that µx.α ∧ β
implies µx.δ′. For the converse, it suffices to show that ϕ := µx.α(x) ∧ β(x) is a
prefixpoint of δ′(x). But it is not hard to derive from ϕ ≡ α(ϕ) ∧ β(ϕ) that

δ′(ϕ) = (ϕ ∨ α(ϕ)) ∧ β(ϕ) ≡ ((α(ϕ) ∧ β(ϕ)) ∨ α(ϕ)) ∧ β(ϕ) ≡ α(ϕ) ∧ β(ϕ) ≡ ϕ,

which shows that in fact, ϕ is a fixpoint, and hence certainly a prefixpoint, of δ′(x).
qed

Combining the proofs of the previous two propositions one easily shows the follow-
ing.

Proposition 3.17 Every fixpoint formula is equivalent to a clean, guarded one.
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3.3 Game semantics

The formal definition of the semantics of the modal µ-calculus may be mathematically
transparent, it is of little help when it comes to unravelling the actual meaning of
individual formulas. In practice, it is much easier to work with the evaluation games
that we are about to introduce now. Obviously, this framework builds on the game-
theoretical semantics for ordinary modal logic as described in subsection 2.2, extending
it with features for the fixpoint operators. Nice about the game-theoretic semantics is
that it brings out the key idea underlying the semantics of fixpoint formulas so clearly:

ν means unfolding, µ means finite unfolding.

From a theoretical perspective, the importance of the game-theoretical semantics of
fixpoint logics lies in the fact that the evaluation games are so-called parity games, see
Chapter 4 for more details. Parity games have a number of very useful properties. In
particular, it can be shown that winning strategies for either player can always assumed
to be history free, that is, do not depend on moves made earlier in the match, but only
on the current position. As we will see further on, this property is crucial in establishing
various results about the modal µ-calculus.

3.3.1 The evaluation game

For a definition of the evaluation game of the modal µ-calculus, fix a formula ξ and
an LTS S. Without loss of generality we may assume that ξ is clean. Basically, the
game E(ξ,S) for ξ a fixpoint formula is defined in the same way as for plain modal logic
formulas.

Definition 3.18 E(ξ,S) is a board game, with players ∃ and ∀ moving a token around
positions of the form (ϕ, s) ∈ Sfor(ξ)×S. The rules, determining the admissible moves
from a given position, together with the player who is supposed to make this move, are
given in Table 3. �

Clearly, one difference is that the µ-calculus has new formula constructors: the
fixpoint operators. These are dealt with in the most straightforward way possible: in
a position of the form (ηx.δ, s), the next position is uniquely determined as the pair
(δ, s). Since neither ∃ nor ∀ thus has any influence over the next position, a position
of this form is assigned to neither of the players.

The crucial difference however lies in the treatment of the bound variables of ξ.
Previously, and still in the case of free variables, positions of the form (p, ϕ) would be
final positions of the game, immediately determining the winner of the match. However,
at a position (x, s) with x bound, the fixpoint variable x gets unfolded ; this means that
the new position is given as (δx, s), where ηxx.δx is the unique subformula of ξ where x
is bound. Note that for this to be well defined, we need ξ to be clean. The disjointness
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of FV (ξ) and BV (ξ) ensures that it is always clear whether a variable is to be unfolded
or not, and the fact that bound formulas are bound by unique occurrences of fixpoint
operators guarantees that δx is uniquely determined. Finally, since in this case the next
position is also completely determined by the current one, positions of the form (x, s)
with x bound are not assigned to one of the players.

Position Player Admissible moves
(ϕ1 ∨ ϕ2, s) ∃ {(ϕ1, s), (ϕ2, s)}
(ϕ1 ∧ ϕ2, s) ∀ {(ϕ1, s), (ϕ2, s)}
(〈d〉ϕ, s) ∃ {(ϕ, t) | t ∈ σd(s)}
([d]ϕ, s) ∀ {(ϕ, t) | t ∈ σd(s)}
(⊥, s) ∃ ∅
(>, s) ∀ ∅
(p, s), with p ∈ FV (ξ) and s ∈ V (p) ∀ ∅
(p, s), with p ∈ FV (ξ) and s 6∈ V (p) ∃ ∅
(¬p, s), with p ∈ FV (ξ) and s ∈ V (p) ∃ ∅
(¬p, s), with p ∈ FV (ξ) and s 6∈ V (p) ∀ ∅
(ηxx.δx, s) − {(δx, s)}
(x, s), with x ∈ BV (ξ) − {(δx, s)}

Table 3: Evaluation game for modal fixpoint logic

Example 3.19 Let S = 〈S,R, V 〉 be the Kripke model with S = {0, 1, 2}, R =
{(0, 1), (1, 1), (2, 2)}, while V is given by V (p) = {2}. Now let ξ be the formula
ηx.p ∨2x, and consider the game E(ξ,S) initialized at (ξ, 0).

The second position of any match of this game will be (p ∨ 2x, 0) belonging to ∃.
Clearly, she chooses the disjunct 2x since otherwise p being false at 0 would mean an
immediate loss for her. Now the position (2x, 0) belongs to ∀ and he will make the only
move allowed to him, choosing (x, 1) as the next position. Here an automatic move is
made, unfolding the variable x, and thus changing the position to (p ∨2x, 1). And as
before, ∃ will choose the right disjunct: (2x, 1).

At (2x, 1), ∀ does have a choice. However it is not difficult to show that choosing
(x, 2) would mean that ∃ wins the match since p being true at 2 enables her to finally
choose the first disjunct of the formula p∨2x. So ∀ chooses (x, 1), a position that the
match already crossed before.

This means that these strategies force the match to be infinite, with the variable
x unfolding infinitely often at positions of the form (x, 1), and the match taking the
following form::

(ξ, 0)(p ∨2x, 0)(2x, 0)(x, 1)(p ∨2x, 1)(2x, 1)(x, 1)(p ∨2x, 1) . . .
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So who is declared to be the winner of this match? This is where the difference
between the two fixpoint operators shows up. In case η = µ, the above infinite match is
lost by ∃ since the fixpoint variable that is unfolded infinitely often is a µ-variable, and
µ-variables are to be unfolded only finitely often. In case η = ν, the variable unfolded
infinitely often is a ν-variable, and this is unproblematic: ∃ wins the match. �

The above example shows the principle of unfolding at work. Its effect is that
matches may now be of infinite length since formulas are no longer deconstructed at
every move of the game. Nevertheless, as we will see, it will still be very useful to
declare a winner of such an infinite game. Implementing the slogan at the beginning
of this section, in case of a unique variable that is unfolded infinitely often during a
match π, we will declare ∃ to be the winner of π if this variable is a ν-variable, and ∀ in
case we are dealing with a µ-variable. So what happens in case that various variables
are unfolded infinitely often? As we will see, in such a case there is always a unique
such variable that ranks higher than any other.

Definition 3.20 Let ξ be a µPML-formula, and S a labelled transition system. A
match of the game E(ξ,S) is a (finite or infinite) sequence of positions

(s, ξ) = (s0, ϕ0)(s1, ϕ1)(s2, ϕ2) . . .

which are in accordance with the rules of Table 3. A full match is either an infinite
match, or a finite match in which the player responsible for the last position got stuck.
In practice we will always refer to full matches simply as matches. A match that is not
full is called partial.

Given an infinite match π, we let Unf ∞(π) ⊆ BV (ξ) denote the set of variables
that are unfolded infinitely often during π. �

Proposition 3.21 Let ξ be a µPML-formula, and S a labelled transition system. Then
for any infinite match π of the game E(ξ,S), the set Unf ∞(π) has a highest ranking
member.

Proof. Since ξ consists of finitely many symbols, Unf ∞(π) is not empty. We claim
that it is in fact directed (with respect to the ranking order). That is, for any x and y
in Unf ∞(π) there is a variable z ∈ Unf ∞(π) such that x ≤ξ z and y ≤ξ z.

For suppose otherwise. Then in particular, ϕx = ηxx.δx and ϕy = ηyy.δy are not
subformulas of one another. However, π goes through both ϕx and ϕy infinitely often.
Now the only way it can move from ϕx to ϕy is by unfolding some variable z such that
both ϕx and ϕy are subformulas of ϕz, that is, x ≤ξ z and y ≤ξ z. Since this happens
infinitely often, some such z must belong to Unf ∞(π), as required.

But if Unf ∞(π) is directed, being finite it must have a maximum. That is, there is
indeed a highest variable in BV (ξ) that gets unfolded infinitely often during π. qed
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Given this result, there is now a natural formulation of the winning conditions for
infinite matches of evaluation games.

Definition 3.22 The winning conditions of the game E(ξ,S) are given in Table 4. �

∃ wins π ∀ wins π
π is finite ∀ got stuck ∃ got stuck
π is infinite max(Unf ∞(π)) is a ν-variable max(Unf ∞(π)) is a µ-variable

Table 4: Winning conditions of E(ξ,S)

The point of these evaluation games is that they provide an alternative yet equivalent
perspective on the semantics of fixpoint formulas. That is, we can prove that for any
labelled transition system S, any state s in S, and any clean µPML-formula ξ, we have
that

S, s 
 ξ ⇐⇒ (ξ, s) ∈ Win(E(ξ,S)),

where Win∃(E(ξ,S) denotes the set of winning positions for ∃ in E(ξ,S). This adequacy
result is formulated as Theorem 3.26 and will be proved in subsection 3.4.

3.3.2 Examples

Example 3.23 As a first example, consider the formulas ηx.p ∨ x. Observe that any
match of such a game starts with the positions (ηx.p ∨ x, s)(p ∨ x), after which ∃ can
make a choice. We claim that

S, s 
 µx.p ∨ x iff s ∈ V (p).

For the direction from right to left, assume that s ∈ V (p). Now, if ∃ chooses the
disjunct p at the position (s, p ∨ x), she wins the match because ∀ will get stuck at
(s, p). Hence s ∈ Win∃(E(ηx.p ∨ x, S)).

On the other hand, if s 6∈ V (p), then ∃ will lose if she chooses disjunct p at position
(s, p ∨ x). So she must choose the disjunct x which then unfolds to p ∨ x so that ∃ is
back at the position (s, p ∨ x). Thus if ∃ does not want to get stuck her only way to
survive is to keep playing the position (s, x), thus causing the match to be infinite. But
such a match is won by ∀ since the only variable that gets unfolded infinitely often is
a µ-variable. So in this case we see that s 6∈ Win∃(E(ηx.p ∨ x, S)).

If on the other hand we take η = ν, then ∃ can win any match:

S, s 
 νx.p ∨ x.
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It is easy to see that the strategy of always choosing the disjunct x at a position of
the form (s, p∨ x) is winning. For, it forces all games to be infinite, and since the only
fixpoint variable that gets ever unfolded here is a ν-variable, all infinite matches are
won by ∃. �

Example 3.24 Now we turn to the formulas µx.3x and νx.3x. First consider how a
match for any of these formulas proceeds. The first two positions of such a match will
be of the form (ηx.3x, s)(3x, s), at which point it is ∃’s turn to make a move. Now
she either is stuck (in case the state s has no successor) or else the next two positions
are (x, t)(3x, t) for some successor t of s, chosen by ∃. Continuing this analysis, we see
that there are two possibilities for a match of the game E(ηx.3x, S):

1. the match is an infinite sequence of positions

(ηx.3x, s0)(3x, s0)(x, s1)(3x, s1)(x, s2) . . .

corresponding to an infinite path s0Rs1Rs2R . . . through S.

2. the match is an finite sequence of positions

(ηx.3x, s0)(3x, s0)(x, s1)(3x, s1) . . . (3x, sk)

corresponding to a finite path s0Rs1R . . . sk through S, where sk has no successors.

Note too that in either case it is only ∃ who has turns, and that her strategy corresponds
to choosing a path through S. From this it is easy to derive that

S, s 6
 µx.3x,
S, s 
 νx.3x iff there is an infinite path starting at s.

�

I Until operator

Until now all examples that we consider involved only a single fixpoint operator.
Let us now consider a slightly more involved example, containing both a least and a
greatest fixpoint operator.

Example 3.25 Let ξ be the following formula:

ξ = νx.µy. (p ∧3x)︸ ︷︷ ︸
αp

∨ (¬p ∧3y)︸ ︷︷ ︸
α¬p

Then we claim that for any LTS S, and any state s in S:

S, s 
 ξ iff there is some path from s on which p is true infinitely often. (11)

To see why this is so, first suppose that there is a path π = s0s1s2 . . . as described
in the right hand side of (11). Now suppose that ∃ plays according to the following
strategy:
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(a) at a position (αp ∨ α¬p, t), choose (αp, t) if S, t 
 p and choose (α¬p, t) otherwise;

(b) at a position (3ϕ, t), choose (ϕ, sk+1) if t = sk on the path, and choose an
arbitrary successor (if possible) if t is off the path.

We claim that this is a winning strategy for ∃ in the evaluation game initialized at
(ξ, s). For consider a match of this game. Since ∃ always chooses the propositionally
safe disjunct of αp∨α¬p, she forces ∀, when faced with a position of the form (α±p, t) =
(±p ∧ 3z, t) to always choose the diamond conjunct 3z, or lose immediately. In this
way she guarantees that she always gets to positions of the form (si,3z), and thus she
can force the match to last infinitely long, following the infinite path π. But why does
she actually win this match? The point is that whenever she chooses αp, three moves
later, x will be unfolded, and likewise with α¬p and y. Thus, p being true infinitely
often on π means that the ν-variable x gets unfolded infinitely often. And so, even
though the µ-variable y may perhaps get unfolded infinitely often as well, she wins the
match since x ranks higher than y anyway.

For the other direction, assume that S, s 
 ξ so that ∃ has a winning strategy in
the game E(ξ,S) initialized at (ξ, s). It should be clear that any winning strategy must
follow (a) above. So whenever ∀ faces a position (p∧3z, t), p will be true, and likewise
with positions (¬p ∧ 3z, t). Now consider a match in which ∀ plays propositionally
sound, that is, always chooses the diamond conjunct of these positions. This match
must be infinite since neither of the players will ever get stuck: ∀ not, because he can
always choose a diamond conjunct, and ∃ not, because we assumed her strategy to be
winning. But a second consequence of ∃’s strategy being winning, is that it cannot
happen that y is unfolded infinitely often, while x is not. So x is unfolded infinitely
often, and as before, x only gets unfolded right after the match passed a world where p
is true. Thus the path chosen by ∃ must contain infinitely many states where p holds.
�

3.4 Adequacy

In this section we prove the adequacy of the game semantics: We will show that a
fixpoint formula ξ is true at a state precisely if ∃ has a winning strategy in the corre-
sponding initialized evaluation game.

Theorem 3.26 Let ξ be a clean µPML-formula in positive format. Then for all labelled
transition systems S and all states s in S:

S, s 
 ξ ⇐⇒ (ξ, s) ∈ Win(E(ξ,S)).

Proof. The theorem is proved by induction on the complexity of ξ. We only discuss
the case that ξ is of the form µx.δ, leaving the other cases as exercises to the reader.
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⇒ For the direction from left to right, it suffices to show that the set W := {s ∈
S | (ξ, s) ∈ Win(E(ξ,S))} is a prefixpoint of δ in S, for this implies that [[ξ]]S ⊆ W by
definition of the semantics of the least fixpoint operator. Showing that W ∈ PRE(δS

x)
boils down to proving that S[x 7→ W ] 
 δ → x. Abbreviate S′ := S[x 7→ W ], and
assume that S′, t 
 δ. We will prove that S′, t 
 x, or equivalently, that t ∈ W . In
other words, we have to provide ∃ with a winning strategy in the game G@(ξ, t).

To start with, it inductively follows from S′, t 
 δ that ∃ has a winning strategy
f ′ in the game G ′ := E(δ,S′) initialized at (δ, t). But G@(ξ, t) and G ′@(δ, t) are very
similar games: apart from the starting position (ξ, t) of the first game — which will
be immediately replaced with the initial position (δ, t) of the second game anyway —
the positions of the two games are exactly the same. In fact, the only real difference
between the games shows up in the rule concerning positions of the form (x, u). In G ′,
x is a free variable (x ∈ FV (δ)), so in a position (u, x) the game is over, the winner
being determined by whether u ∈ W or not. In G however, x is bound, so at a state
(u, x), the variable x will get unfolded.

Second, observe that by definition of W , for every state w ∈ W , ∃ has a winning
strategy fw for the variant of game G starting at (ξ, w). Clearly this strategy is also
winning in the same game G if we take (x,w) as starting position: In both variants of
G, the second position will be the pair (δ, w).

Now consider the following strategy g for ∃ in G:

• after the initial move, the position of the match is (δ, t);

• ∃ first plays her strategy f ′ (note that this is well-defined);

• as soon as a position (u, x) is reached, distinguish cases:

– if u ∈ W then ∃ continues with fu;

– if u /∈ W then ∃ continues with a random strategy.

We claim that this g is a winning strategy for ∃ in G. To see this, make the following
case distinction concerning an arbitrary match π which is consistent with g:

No state (u, x) is reached. This means that π, seen as a G ′-match, is won by ∃. Since
G and G ′ only differ when it comes to x this means that π is also a win for ∃ in
G. Note that here it does not matter whether π is finite or infinite.

At some stage a position (u, x) is reached. In the G ′-perspective on π, the match would
have reached a final position. Since f ′ was a winning strategy for ∃, this can only
happen if u ∈ W . (In other words, the second case mentioned above does not
occur.) So ∃ consequently plays according to fu; note that the first position after
(u, x) is (u, δ). But by definition, fu is a winning strategy for ∃ in G@(u, δ). It is
then easy to see that any continuation of the match in which ∃ plays fu, is won
by ∃.
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Altogether this shows that indeed, g is a winning strategy for ∃.

⇒ For the opposite direction, assume that ∃ has a winning strategy f for the evaluation
game E(ξ,S) initialized at (ξ, s). Suppose for contradiction that s 6∈ [[ξ]]S.

First consider an arbitrary point t 6∈ [[ξ]]S. Since [[ξ]]S is a prefixpoint of δ, we have
S′ 
 δ → x where S′ := S[x 7→ [[ξ]]S]. Then from S′, s 6
 x (because s 6∈ [[ξ]]S) it follows
that S′, t 6
 δ. Thus by the inductive hypothesis it follows that ∃ does not have a
winning strategy for the game G ′ = G(δ,S′)@(δ, t). That is, for each strategy g of ∃
starting at (δ, t), ∀ has a counter strategy ḡt such that the match of G ′ determined by
g and ḡt is won by ∀. Furthermore, note that by the resemblance of the games G and
G ′, the strategy f may be taken as a strategy in G ′@(δ, s) as well.

Now consider the matches of G, starting at (ξ, s), in which ∃ plays according to her
supposedly winning strategy f . Suppose that ∀ counters the strategy f as follows:

• ∀ starts with the strategy f̄s;

• from that moment on, ∀ sticks to his current strategy, unless a position (x, u) is
reached; now distinguish cases:

1. if u ∈ Q then ∀ continues with a random strategy;

2. if u 6∈ Q then ∀ plays as follows. Let β be the match this far (including
(x, u)), and let fβ denote the strategy of ∃ for the G-game starting at (δ, u)
given by fβ(γ) = f(βγ). Then by our earlier discussion, fβ can be seen as
an G ′-strategy for matches starting at (δ, u), and so ∀ may adopt his counter
strategy ¯(fβ)u from this moment on.

Consider the G-match β starting at (µx.δ, s) determined by ∃ playing her strategy f
and ∀ using the strategy defined above. First observe that β can pass through positions
of the form (x, u) only finitely many times, for otherwise, the µ-variable x would be
the highest fixed point variable unfolded infinitely often, contradicting the assumption
that f is winning for ∃. Second, observe that the first possibility of passing x-positions
mentioned above will never occur. This is because arriving at a position (x, u) with
u ∈ Q would mean that, contrary to our earlier conclusion, ∃ would have a successful
strategy in G ′ at a point v 6∈ Q after all.

This means, however, that after a certain initial partial play β, ending in a position
(x, u) with u 6∈ Q, ∀ will stick to his strategy ¯(fβ)u, while no further position (v, x)
is ever reached. It follows from our assumptions on ¯(fβ)u that the match γ resulting
from ∃ playing fβ against ∀ playing ¯(fβ)u is winning for ∀ in G ′, and from this it is
not hard to derive that the G-match δ = βγ is won by ∀. This provides the desired
contradiction, since it shows that the strategy f is not winning for ∃ after all. qed
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3.5 Coalgebraic modal fixpoint logic

In section 2.6 we introduced a coalgebraic reformulation of the syntax and semantics
of modal logic, introducing the bullet modality. It is in fact straightforward to give a
similar coalgebraic version of modal fixpoint logic.

Definition 3.27 Formulas of the language µCMLD(P) are given by the following re-
cursive definition:

ϕ ::= x | ⊥ | > | ϕ ∨ ϕ | ϕ ∧ ϕ | π • Φ | µx.ϕ | νx.ϕ

where π denotes a subset of P, and Φ is a D-indexed set of µCMLD(P)-formulas. �

An interesting observation on the plain (i.e. fixpoint-free) version of this language,
Theorem 2.28 states that every formula of CML can be rewritten into an equivalent
version that only uses the special bullet conjunction. An important result, here for-
mulated as Theorem 9.5, states that the same observation also applies to the language
CML introduced in Definition 3.27. In fact, this is perhaps the most fundamental re-
sults underlying the theory of the modal µ-calculus, and one of the main reasons for
introducing the coalgebraic reformulation of µPML. Before we can prove this theorem,
however, quite a bit of work is needed.



4 Board games

Much of the work linking (fixpoint) logic to automata theory involves nontrivial con-
cepts and results from the theory of infinite games. In this chapter we discuss some
of the highlights of this theory in a fair amount of detail. This allows us to be rather
informal about game-theoretic concepts in the rest of the notes.

4.1 Board games

The games that we are dealing with here can be classified as board or graph games.
They are played by two agents, here to be called 0 and 1.

Definition 4.1 If P ∈ {0, 1} is a player, then P̄ denotes the opponent 1− P of P . �

A board game is played on a board, which is nothing but a directed graph, in which
each node is marked with either 0 or 1. A match of the game consists of the two players
moving a token across the board, following the edges of the graph. To regulate this, the
collection of graph nodes, usually referred to as positions of the game, is partitioned
into two sets, one for each player. Thus with each position we may associate a unique
player whose turn it is to move when the token lies on position p.

Definition 4.2 A board is a structure B = 〈B0, B1, E〉, such that B0 and B1 are
disjunct, and E ⊆ B2, where B := B0 ∪ B1. We will make use of the notation E[p]
for the set of admissible moves from a board position p ∈ B, that is, E[p] := {q ∈ B |
(p, q) ∈ E}. Positions not in E[p] will sometimes be referred to as illegitimate moves
with respect to p. A position p ∈ B is a dead end if E(p) = ∅. If p ∈ B, we let Pp

denote the (unique) player such that p ∈ BPp , and say that p belongs to Pp, or that it
is Pp’s turn to move at p. �

A match of the game may in fact be identified with the sequence of positions visited
during play, and thus corresponds to a path through the graph.

Definition 4.3 A path through a board B = 〈B0, B1, E〉 is a (finite or infinite) sequence
π ∈ B∞ such that Eπiπi+1 whenever applicable. A match through B is either an infinite
B-path, or a finite B-path π ending with a dead end (i.e. E[last(π)] = ∅).

A partial match is a finite path through B that is not a match; in other words, the
last position of a partial match is not a dead end. We let PMP denote the set of partial
matches such that P is the player whose turn it is to move at the last position of the
match. In the sequel, we will denote this player as Pπ; that is, Pπ := Plast(π). �

Each full or completed match is won by one of the players, and lost by their oppo-
nent; that is, there are no draws. A finite match ends if one of the players gets stuck,
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that is, is forced to move the token from a position without successors. Such a finite,
completed, match is lost by the player who got stuck. If neither player ever gets stuck,
an infinite match arises. The flavor of a board game is very much determined by the
winning conditions of these infinite matches.

Definition 4.4 Given a board B, a winning condition is a map W : Bω → {0, 1}. An
infinite match π is won by W (π). A board game is a structure G = 〈B0, B1, E,W 〉 such
that 〈B0, B1, E〉 is a board, and W is a winning condition on B. �

Although the winning condition given above applies to all infinite B-sequences, it
will only make sense when applied to matches. We have chosen the above definition
because it is usually much easier to formulate maps that are defined on all sequences.

Before players can actually start playing a game, they need a starting position. The
following definition introduces some terminology and notation.

Definition 4.5 An initialized board game is a pair consisting of a board game G and
a position q on the board of the game; such a pair is usually denoted G@q.

Given a (partial) match π, its first element first(π) is called the starting position
of the match. We let PMP (q) denote the set of partial matches for P that start at
position q. �

Central in the theory of games is the notion of a strategy. Roughly, a strategy for
a player is a set of instructions advising the player how to continue partial matches
when it is their turn to move. More precisely, a strategy maps partial plays for the
player to new positions, with the proviso that the new position must be a legitimate
continuation of the partial match.

Definition 4.6 Given a board game G = 〈B0, B1, E,W 〉 and a player P , a P -strategy,
or a strategy for P , is a map f : PMP → B such that E(last(π), f(π)). A strategy for
the game G@q is a map f : PMP (q) → B satisfying this condition.

A match π is consistent with a P -strategy f if for any π′ < π with last(π′) ∈ BP ,
the next position on π is indeed the element f(π).

A P -strategy f is winning for P if P wins every play that is consistent with f . A
position q ∈ B is winning for P if P has a winning strategy for the game G starting at
q; the collection of winning positions for P in G@q is denoted as Win(G@q). �

Convention 4.7 In practice, when defining strategies, it will often be convenient to
extend the definition of a strategy to include maps f that do not necessarily satisfy
the condition that E(last(π), f(π)) for every partial play π. In such a case we will say
that the map prescribes an illegitimate move in the partial play π. We will only permit
ourselves such a sloppiness in a context where in fact the partial play π is not consistent
with the pseudo-strategy f , and thus the situation where the pseudo-strategy would
actually ask for an illegitimate move will not occur.
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Definition 4.8 The game G on the board B is determined if Win0(G)∪Win1(G) = B;
that is, each position is winning for one of the players. �

In principle, when deciding how to move in a match of a board game, players may
use information about the entire history of the match played thus far. However, it will
turn out to be advantageous to work with strategies that are simple to compute. This
applies for instance to so-called finite memory strategies, which can be computed using
only a finite amount of information about the history of the match.

I discuss finite memory strategy

Particularly nice are so-called history-free or memoryless strategies, which only
depend on the current position (i.e., the final position of the partial play). These will
be critically needed in the proofs of some of the most fundamental results in the area
of logic and automata theory, such as the Theorems 6.17 and 9.9.

Definition 4.9 A strategy f is history free if f(π) = f(π′) for any π, π′ with last(π) =
last(π′). �

4.2 Winning conditions

In case we are dealing with a finite board B, then we may nicely formulate winning
conditions in terms of the set of positions that occur infinitely often in a given match.
But in the case of an infinite board, there may be matches in which no position occurs
infinitely often (or more than once, for that matter). Nevertheless, we may still define
winning conditions in terms of objects that occur infinitely often, if we make use of
finite colorings of the board. If we assign to each position b ∈ B a color, taken from a
finite set C of colors, then we may formulate winning conditions in terms of the colors
that occur infinitely often in the match.

Definition 4.10 A coloring of B is a function Γ assigning to each position p ∈ B a
color Γ(b) taken from some finite set C of colors. Such a coloring Γ : B → C naturally
extends to a map Γ : Bω → Cω by putting Γ(p0p1 . . . ) := Γ(p0)Γ(p1) . . . . �

Now if Γ : B → C is a coloring, for any infinite sequence π ∈ Bω, the map Γ ◦ π
forms the associated sequence of colors. But then since C is finite there must be some
elements of C that occur infinitely often in this stream.

Definition 4.11 Let B be a board and Γ : B → C a coloring of B. Given an infinite
sequence π ∈ Bω, we let Inf Γ(π) denote the set of colors that occur infinitely often in
the sequence Γ ◦ π.
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A Muller condition is a collection M ⊆ ℘(C) of subsets of C. The corresponding
winning condition is defined as the following map WM : Bω → {0, 1}:

WM(π) :=

{
0 if Inf Γ(π) ∈M
1 otherwise.

A Muller game is a board game of which the winning conditions are specified by a
Muller condition. �

In words, player 0 wins an infinite match π = p0p1 . . . if the set of colors one meets
infinitely often on this path, belongs to the Muller collection M.

I Examples to be supplied.

Muller games have two nice properties. First, they are determined. This follows
from a well-known general game-theoretic result, but can also be proved directly. In
addition, we may assume that the winning strategies of each player in a Muller game
are finite memory strategies.

I Details to be supplied

The latter property becomes even nicer if the Muller condition allows a formulation
in terms of a parity map. In this case, as colors we take natural numbers. Note that by
definition of a coloring, the range Ω[B] of the coloring function Ω is finite. This means
that every subset of Ω[B] has a maximal element. Hence, every match determines a
unique natural number, namely, the ‘maximal color’ that one meets infinitely often
during the match. Now a parity winning condition states that the winner of an infinite
match is 0 if this number is even, and 1 if it is odd. More succinctly, we formulate the
following definition.

Definition 4.12 Let B be some set; a parity map on B is a coloring Ω : B → ω, that
is, a map of finite range. A parity game is a board game G = 〈B0, B1, E,WΩ〉 in which
the winning condition is given by

WΩ(π) := max(Inf Ω(π)) mod 2.

Such a parity game is usually denoted as G = 〈B0, B1, E,Ω〉. �

The key property that makes parity games so interesting is the following.

Theorem 4.13 (History-Free Determinacy of Parity Games) For any parity game
G there are history-free strategies f0 and f1 for 0 and 1, respectively, such that for every
position q there is a player P such that fP is a winning strategy for P in G@q.

I Proof of this theorem to be supplied



5 Stream automata

As we already mentioned in the introduction, automata are of fundamental importance
in the theory of the modal µ-calculus and other fixpoint logics. This chapter gives an
introduction to the theory of automata operating on (potentially infinite) objects. In
particular, we discuss issues such as determinism, nondeterminism, and alternation,
together with the game-theoretic definition of acceptance.

Whereas in the next chapter we will meet various kinds of automata for classifying
(pointed) Kripke structures, here we confine our attention to the devices that operate
on streams or infinite words, these being the simplest nontrivial examples of infinite
behavior.

Definition 5.1 Given an alphabet C, a C-stream or infinite word over C is just an
infinite C-sequence. Sets of C-streams are called ω-languages over C. �

The material treated in this chapter may be completely standard, our perspective
is less so. In particular, at a certain moment we will make a switch from looking at
streams themselves to considering objects that produce such streams. These objects
will be called stream coalgebras, and we believe that our coalgebraic point of view has
some conceptual advantages, which may perhaps become fully clear in the next chapter.

5.1 Deterministic stream automata

We start with the standard definition.

Definition 5.2 Given an alphabet C, a deterministic C-automaton is a quadruple
A = 〈A, δ,Acc, aI〉, where A is a finite set, aI ∈ A is the initial state of A, δ : A×C → A
its transition function of A, and Acc ⊆ Aω its acceptance condition. The pair 〈A, δ〉 is
called the transition diagram of A. �

Example 5.3 The transition diagram and initial state of a deterministic automaton
can nicely be represented graphically, as in the picture below, where C = {a, b, c}:

����
q0⇒ ����

q1 ����
q2

	

b, c

-a 	

b, c

~

b, c

}

a

	

a

An automaton comes to live if we supply it with input, in the form of a stream over
its alphabet: It will process this stream, as follows. Starting from the initial state aI ,
the automaton will step by step pass through the stream, jumping from one state to
another as prescribed by the transition function.
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For example: let A0 be any automaton with transition diagram and initial state as
given above, and suppose that we give this device as input the stream α = abcabcabcabcabc · · · .
Then we find that A0 will make an infinite series of transitions, determined by α:

q0
a→ q1

b→ q2
c→ q2

a→ q1 · · ·

Thus the machine passes through an infinite sequence of states:

ρ = q0q1q2q2q1q2q2q1q2q2 . . .

This sequence is called the run of the automaton on the word α — a run of A is thus
an A-stream.

For a second example, on the word α′ = abacabcbcbcbcbcb · · · the run of the automa-
ton A0 looks as follows:

q0
a→ q1

b→ q2
a→ q1

c→ q2
a→ q1

b→ q2
c→ q2

b→ q2
c→ · · ·

we see that from the sixth step onwards, the machine device remains circling in its

state q2: · · · q2
b→ q2

c→ q2
b→ · · · . �

Definition 5.4 The run of a finite automaton A = 〈A, δ,Acc, aI〉 on an C-stream
γ = c0c1c2 . . . is the infinite A-sequence

ρ = a0a1a2 . . .

such that a0 = aI and ai+1 = δ(ai, ci) for every i ∈ ω. �

In order to determine which runs are successful, we need the acceptance condition.

Definition 5.5 A run ρ ∈ Aω is successful with respect to an acceptance condition
Acc if ρ ∈ Acc.

A finite C-automaton A = 〈A, δ,Acc, aI〉 accepts a C-stream γ if the (unique) run
of A on γ is successful. The ω-language Lω(A) associated with A is defined as the set
of streams that are accepted by A. Two automata are called equivalent if they accept
the same streams. �

Very often, the acceptance condition is defined in terms of the states of the automa-
ton that are visited infinitely often during a run.

Definition 5.6 Given an infinite sequence α over some finite set A, let Occ(α) and
Inf (α) denote the set of elements of A that occur in α at least once, respectively,
infinitely often. �



Lectures on the modal µ-calculus 35

Definition 5.7 Given a transition diagram 〈A, δ〉, we define the following types of
acceptance conditions:

• A Muller condition is given as a collection M ⊆ ℘(A) of subsets of A. The
corresponding acceptance condition is defined as

AccM := {α ∈ Aω | Inf (α) ∈M}.

• A Büchi condition is given as a subset F ⊆ A. The corresponding acceptance
condition is defined as

AccF := {α ∈ Aω | Inf (α) ∩ F 6= ∅}.

• A parity condition is given as a map Ω : A → ω. The corresponding acceptance
condition is defined as

AccΩ := {α ∈ Aω | max(Inf (Ω ◦ α)) is even }.

Automata with these acceptance conditions are called Muller, Büchi and parity au-
tomata, respectively. �

Of these three types of acceptance conditions, the Muller condition perhaps is the
most natural. It exactly and directly specifies the subsets of A that are admissible
as the set Inf (ρ) of a successful run. The Büchi condition is also fairly intuitive: an
automaton with Büchi condition F accepts a stream α if the run on α infinitely often
passes through some state in F . This makes Büchi automata the natural analog of the
automata that operate on finite words.

I elaborate

The parity condition at first sight seems rather artificial. Nevertheless, for a number
of reasons the parity automaton is destined to play the leading role in these notes. Most
importantly, the distinction between even and odd parities directly corresponds to that
between least and greatest fixpoint operators, so that parity automata are the more
direct automata-theoretic counterparts of fixpoint formulas. An additional theoretic
motivation to use parity automata is that their associated acceptance games have some
very nice game-theoretical properties, see Theorem 4.13.

Example 5.8 Suppose that we supply the device of Example 5.3 with the Büchi ac-
ceptance condition F0 = {q1}. That is, the resulting automaton A0 accepts a stream
α iff the run of A0 passes through the state q1 infinitely often. For instance, A0

will accept the word α = abcabcabcabcabc · · · , because the run of A0 is the stream
q0q1q2q2q1q2q2q1q2q2 . . . which indeed contains q1 infinitely many times. On the other
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hand, as we saw already, the run of A0 on the stream α′ = abacabcbcbcbcbcb · · · loops
in state q2, and so α′ will not be accepted.

In general, it is not hard to prove that A0 accepts a C-stream γ iff γ contains
infinitely many a’s. �

Example 5.9 Consider the automaton A1 given by the following diagram and initial
state:

����
q0 ����

qa⇒ ����
qc

����
qf ����

qb
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b, c
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c

}
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a, b, c

� a

The Muller acceptance condition of the automaton is given as the set{
{q0} , {qc} , {qa, qc} , {qa, qb, qc}

}
We leave it as an exercise for the reader that this automaton accepts those infinite
streams in which every a is followed by a finite number of b’s, followed by a c. �

I Example of parity automaton to be added

It is important to understand the relative strength of Muller, Büchi and parity
automata when it comes to recognizing ω-languages. The Muller acceptance condition
is the more fundamental one in the sense that the other two are easily represented by
it.

Proposition 5.10 There is an effective procedure transforming a deterministic Büchi
stream automaton into an equivalent deterministic Muller stream automaton.

Proof. Given a Büchi condition F on a set A, define the corresponding Muller condition
MF ⊆ ℘(A) as follows:

MF := {B ⊆ A | B ∩ F 6= ∅}.

Trivially then, AccMF
= AccF . It is now immediate that any Büchi automaton A =

〈A, δ, F, aI〉 is equivalent to the Muller automaton 〈A, δ,MF , aI〉. qed
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Proposition 5.11 There is an effective procedure transforming a deterministic parity
stream automaton into an equivalent deterministic Muller stream automaton.

Proof. Analogous to the proof of the previous proposition. qed

Interestingly enough, Muller automata can be simulated by devices with a parity
condition.

Proposition 5.12 There is an effective procedure transforming a deterministic Muller
stream automaton into an equivalent deterministic parity stream automaton.

Proof. Given a Muller automaton A = 〈A, δ,M, aI〉, define the corresponding parity
automaton A′ = 〈A′, δ′,Ω, a′I〉 as follows. The crucial concept used in this construction
is that of latest appearance records. The following notation will be convenient: given a
sequence in A∗, say, α = a1 . . . an, we let α̃ denote the set {a1, . . . , an}, and α[O/a] the
sequence α with every occurrence of a being replaced with the symbol O.

To start with, the set A′ of states is defined as the collection of those finite sequences
over the set A ∪ {O} in which every symbol occurs exactly once:

A′ = {a1 . . . akOak+1 . . . am | m = |A| and A = {a1, . . . , am}}.

Intuitively, these states encode information about the states of A that have been visited
during some initial part of its run on some word. Given a state αOβ with α = a1 . . . ak

and β = ak+1 . . . am, this information consists of two parts. First, there is an n such
that the states a1 . . . an are the states that have never been visited during the run, and
the remaining sequence an+1 . . . am lists the states that have been visited, in reverse
order. Second then, the O marks the previous position of am in the list. Note that it
follows from this that s ≤ k.

For the initial position of A′, let a1, . . . , am be some enumeration of A with aI = am,
and define

a′I := a1 . . . amO.

For the transition function, consider a state α = a1 . . . akOak+1 . . . am in A′, and a
color c ∈ C. To obtain the state δ′(α, c), replace the occurrence of δ(am, c) in a1 . . . am

with O, and place state δ(am, c) itself right after the result of this substitution. Thus
the O in the new sequence marks the latest appearance of the state δ(am, c). Formally,
we put

δ′(a1 . . . akOak+1 . . . am, c) := (a1 . . . am)[O/δ(am, c)]δ(am, c).

Finally, for the parity condition of this automaton, put

Ω(αOβ) :=

{
2 · |β|+ 1 if β̃ 6∈ M,

2 · |β|+ 2 if β̃ ∈M.
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In order to prove the equivalence of A and A′, consider the runs ρ and ρ′ of A and
A′, respectively, on some C-stream σ. Let Q = Inf (ρ) denote the set of states of A
that are visited infinitely often during ρ. Clearly then from a certain moment on, ρ
will only pass states in Q. It is not so hard to see that from that same moment, ρ′ will
only pass states of the form αOβ with β̃ ⊆ Q. In other words, we have

Inf (ρ′) ⊆ {αOβ | |β| ≤ |Q|}.

But also, since Q consists exactly of the states that ρ passes infinitely often, ρ′ will
infinitely often pass states αOβ with β̃ = Q. Clearly, among the ones in the right
hand side of (12), these will be the ones with the longest β-part, and hence, the highest
parity. From this it follows that

the highest parity of the states in Inf (ρ′) is even iff Q ∈M.

But this then clearly shows that ρ′ is accepting iff ρ is accepting, which suffices to prove
the equivalence of A and A′. qed

The following example shows that, in the case of deterministic stream automata,
the recognizing power of Muller and parity automata is strictly stronger than that of
Büchi automata.

Example 5.13 Consider the following language over the alphabet C = {a, b}:

L = {α ∈ Cω | a 6∈ Inf (α)}.

That is, L consists of those C-streams in which the symbol a occurs at most finitely
often.

It is not difficult to see that there is a deterministic Muller automaton recognizing
this language. Consider the automaton A2 given by the following diagram,

����
qb⇒ ����

qa
	

b

~

a

}

b

	

a

and Muller acceptance condition M2 := {{qb}}. It is straightforward to verify that the
run of A2 on an {a, b}-stream α keeps circling in qb iff from a certain moment on, α
only produces b’s.

However, there is no deterministic Büchi automaton recognizing L. Suppose for
contradiction that L = Lω(A), where A = 〈A, δ, F, aI〉 is some Büchi automaton. Since
the stream α0 = bbb . . . belongs to L, it is accepted by A. Hence in particular, the run
ρ0 of A on α0 will pass some state f0 ∈ F after a finite number, say n0, of steps.
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Now consider the stream α1 = bn0abbb . . .. Since runs are uniquely determined, the
initial n0 steps of the run ρ1 of A on α1 are identical to the first n0 steps of A on α0. But
since α1 belongs to L too, it too is accepted by A. Thus on input α1, A will visit a state
in F infinitely often. That is, we may certainly choose an n1 ≥ 1 such that ρ1 passes
some state f1 ∈ F after n0 + n1 steps. Now consider the stream α2 = bn0abn1abbb . . .,
and analyze the run ρ2 of A on α2. Continuing like this, we can find positive numbers
n0, n1, . . . such that for every k ∈ ω, the stream

αk = bn0abn1 . . . abnkabbb . . . ∈ L, for all k. (12)

Consider the stream
α = (bn0a)(bn1a) . . . (bnka) . . .

Containing infinitely many a’s, α does not belong to L. Nevertheless, it follows from
(12) that the run ρ of A on α passes through the states f0, f1, . . . as described above.
Since F is finite, there is then at least one f ∈ F appearing infinitely often in this
sequence. Thus we have found an f ∈ F that is passed infinitely often by ρ, showing
that A accepts α. This gives the desired contradiction. �

5.2 Nondeterministic automata

Nondeterministic automata generalize deterministic ones in that, given a state and a
color, the next state is not uniquely determined, and in fact need not exist at all.

Definition 5.14 Given an alphabet C, a nondeterministic C-automaton is a quadruple
A = 〈A,∆,Acc, aI〉, where A is a finite set, aI ∈ A is the initial state of A, ∆ : A×C →
℘(A) its transition function of A, and Acc ⊆ A its acceptance condition. �

As a consequence, the run of an nondeterministic automaton on a stream is no
longer uniquely determined either.

Definition 5.15 A run of a deterministic automaton A = 〈A,∆,Acc, aI〉 on an C-
stream γ = c0c1c2 is an infinite A-sequence

ρ = a0a1a2 . . .

such that a0 = aI and ai+1 ∈ ∆(ai, ci) for every i ∈ ω. �

Now that runs are no longer unique, an automaton may have both successful and
unsuccessful runs on a given stream. Consequently, there is a choice to made concerning
the notion of acceptance.

Definition 5.16 A nondeterministic C-automaton A = 〈A,∆,Acc, aI〉 accepts an C-
stream γ if there is a successful run of A on γ. �
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Further concepts, such as the language recognized by an automaton, the notion
of equivalence of two automata, and the Büchi, Muller and parity acceptance condi-
tions, are defined as for deterministic automata. Also, the transformations given in the
Propositions 5.10, 5.11 and 5.12 are equivalence-preserving for nondeterministic au-
tomata just as for deterministic one. Different from the deterministic case, however, is
that nondeterministic Büchi automata have the same accepting power as their Muller
and parity variants.

Proposition 5.17 There is an effective procedure transforming a nondeterministic
Muller stream automaton into an equivalent nondeterministic Büchi stream automa-
ton.

Proof. Let A = 〈A,∆,M, aI〉 be a nondeterministic Muller automaton. The idea un-
derlying the definition of the Büchi equivalent A′ is that A′, while copying the behavior
of A, guesses the set Inf (ρ) of a successful run of A, and at a certain (nondeterministi-
cally chosen) moment confirms this choice by moving to a position of the form (a,M,∅).
In order to make sure that not too many streams are accepted, the device has to keep
track which of the states in M have been visited by A, resetting this counter to the
empty set every time when all M -states have been passed.

A′ := A ∪
⋃

M∈M

{(a,M,B) | a ∈M,B ⊆M},

a′I := aI

∆(a, c) := ∆(a, c) ∪
⋃

M∈M

{(b,M,∅) | b ∈ ∆(a, c) ∩M}

∆((a,M,B), c) :=

{
{(b,M,B ∪ {a}) | b ∈ ∆(a, c) ∩M} if B 6= M,
{(b,M, {a}) | b ∈ ∆(a, c) ∩M} if B = M,

F := {(a,M,B) ∈ A′ | B = M}.

We leave it as an exercise for the reader to verify that the thus constructed automaton
is indeed equivalent to A. qed

Example 5.18 For a nondeterministic Büchi automaton recognizing the language

L = {α ∈ Cω | a 6∈ Inf (α)}

of Example 5.13, consider the automaton given by the following picture:

����
q0⇒ �����
��

q1
	

a, b

-b 	

b
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In general, the Büchi acceptance condition F ⊆ A of an automaton A is depicted by
the set of states with double circles. So in this case, F = {q1}. �

As a consequence of Proposition 5.17, and witnessed by the Examples 5.13 and 5.18,
the recognizing power of nondeterministic Büchi automata is strictly greater than that
of their deterministic variants. A key result in automata theory states that when we
turn to Muller and parity automata, nondeterminism does not increase recognizing
power.

Theorem 5.19 There is an effective procedure transforming a nondeterministic Büchi
stream automaton into an equivalent deterministic Muller stream automaton.

Proof.

I Proof using Safra construction to be supplied

qed

We may summarize the relative power of the automata concept in the diagram
below. Arrows indicate the reducibility of one concept to another, ‘D’ and ‘ND’ are
short for ‘deterministic’ and ‘nondeterministic’, respectively.

D Büchi =⇒ D Muller =⇒ D parity

⇓ m m

ND Büchi ⇐⇒ D Muller ⇐⇒ ND parity

5.3 A coalgebraic perspective

In this section we introduce a coalgebraic perspective on streams and stream automata.
We have two reasons for doing so. First, we hope that this coalgebraic presentation
will facilitate the introduction of automata operating on different kinds of structures,
in particular, the Kripke automata of the next Chapter. And second, we also believe
that the coalgebraic perspective, in which the similarities between automata and the
objects they classify comes out more clearly, makes it easier to understand some of the
fundamental concepts and results in the area.

Definition 5.20 A C-stream coalgebra is a pair S = 〈S, σ〉 with σ : S → C × S. If
we add an (initial) state s0 ∈ S to such a structure, we obtain a pointed C-stream
coalgebra. �
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Clearly then, streams over an alphabet C can be seen as pointed C-stream coalge-
bras: simply identify the word γ = c0c1c2 . . . with the structure 〈ω, 0, λn.(cn, n + 1)〉.
Conversely, with any pointed stream coalgebra S = 〈S, s0, σ〉 we may associate a unique
word γS by inductively defining si+1 := σ1(si), and putting γS(n) := σ0(sn). In the se-
quel, we will swap between these two kinds of objects without explicit notice.

It will be instructive to define the following notion of equivalence between stream
coalgebras. As its name already indicates, we are dealing with the analog of the notion
of a bisimulation between two Kripke models. Since stream coalgebras, having a deter-
ministic transition structure, are less complex objects than Kripke models, the notion
of bisimulation is also, and correspondingly, simpler.

Definition 5.21 Let S and S′ be two C-stream coalgebras. Then a nonempty relation
Z ⊆ S × S ′ is a bisimulation if the following holds, for every (s, s′) ∈ Z:

(color) σ0(s) = σ′0(s
′);

(successor) (σ1(s), σ
′
1(s

′)) ∈ Z.

Two pointed coalgebras (S, s) and (S′, s′) are called bisimilar, notation: S, s↔ S′, s′ if
there is some bisimulation Z linking s to s′. In case the coalgebras S and S′ are implicitly
understood, we may drop reference to them and simply call s and s′ bisimilar. �

It is not difficult to verify that among ‘real’ C-streams, (i.e., stream coalgebras
stemming from maps ω → C), bisimilarity means identity.

Definition 5.22 A stream is called regular if it is bisimilar to a finite stream coalgebra.
�

Associated is a new perspective on nondeterministic stream automata which makes
them very much resemble these stream coalgebras. Roughly speaking the idea is this.
Think of establishing a bisimulation between two coalgebras in terms of one pointed
coalgebra A = 〈A, aI , α〉 classifying the other, S = 〈S, s0, σ〉.

Now on the one hand make a restriction in the sense that the classifying coalgebra
A must be finite, but on the other hand, instead of demanding its transition function
to be of the form α : A→ C×A, allow objects α(a) to be sets of pairs in C×A, rather
than single pairs. That is, introduce non-determinism by letting the transition map ∆
of A be of the form

∆ : A→ ℘(C × A).

Remark 5.23 This presentation is completely equivalent to the one given earlier. The
point is that there is a natural bijection between maps of the above kind, and the ones
given in Definition 5.14 as the transition structure of nondeterministic automata:

A→ ℘(C × A) ∼= (A× C) → ℘(A). (13)
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To see why this is so, an easy proof suffices. Using the principle of currying (as in the
proof of Proposition 2.12), we can show that

A→ ((C × A) → 2) ∼= (A× C × A) → 2 ∼= (A× C) → (A→ 2),

where the first and last set can be identified with respectively the left and right hand
side of (13) using the bijection between subsets and their characteristic functions. �

Thus we arrive at the following reformulation of the definition of nondeterministic
automata. Note that with this definition, a stream automaton can be seen as a kind of
‘multi-stream’ in the sense that every state harbours a set of potential ‘local realizations’
as a stream coalgebra. Apart from this, an obvious difference with stream coalgebras
is that stream automata also have an acceptance condition.

Definition 5.24 A nondeterministic C-stream automaton is a quadruple A = 〈A,∆,Acc, aI〉
such that ∆ : A → ℘(C × A) is the transition function, Acc ⊆ Aω is the acceptance
condition, and aI ∈ A is the initial state of the automaton. �

Finally, it makes sense to formulate the notion of an automaton accepting a stream
coalgebra in terms that are related to that of establishing the existence of a bisimulation.
The nondeterminism can nicely be captured in game-theoretic terms — note however,
that here we are dealing with a single player only.

In fact, bisimilarity between two pointed stream coalgebras can itself be captured
game-theoretically, using a trivialized version of the bisimilarity game for Kripke models
of Definition 2.16. Consider two stream coalgebras A and S. Then the bisimulation
game B(A,S) between A and S is defined as a board game with positions of the form
(a, s) ∈ A × S, all belonging to ∃. At position (a, s), if a and s have a different color,
∃ looses immediately; if on the other hand α0(a) = σ0(s), then as the next position of
the match she ‘chooses’ the pair consisting of the successors of a and s, respectively.
These rules can concisely be formulated as in the following Table:

Position Player Admissible moves
(a, s) ∈ A× S ∃ {(α1(a), σ1(s)) | α0(a) = σ0(s)}

Finally, the winning conditions of the game specify that ∃ wins all infinite games. We
leave it for the reader to verify that a pair (a, s) ∈ A× S is a winning position for ∃ iff
a and s are bisimilar.

In order to proceed, however, we need to make a slight modification. We add
positions of the form (α, s) ∈ (C×A)×S, and insert an ‘automatic’ move immediately
after a basic position, resulting in the following Table.

Position Player Admissible moves
(a, s) ∈ A× S - {(α(a), s)}
(α, s) ∈ (C × A)× S ∃ {(α1, σ1(s)) | α0 = σ0(s)}
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The acceptance game of a nondeterministic automaton A and a stream coalgebra S
can now be formulated as a natural generalization of this game.

Definition 5.25 Given a nondeterministic C-stream automaton A = 〈A, aI ,∆,Acc〉
and a pointed stream coalgebra S = 〈S, s0, σ〉, we now define the acceptance game
A(A,S) as the following board game.

Position Player Admissible moves
(a, s) ∈ A× S ∃ {(α, s) ∈ (C × A)× S | α ∈ ∆(a)}
(α, s) ∈ (C × A)× S ∃ {(α1, σ1(s)) | α0 = σ0(s)}

Table 5: Acceptance game for nondeterministic stream automata

Its positions and rules are given in Table 5, whereas the winning conditions of
infinite matches are specified as follows. Given an infinite match of this game, first
select the sequence

(a0, s0)(a1, s1)(a2, s2) . . .

of basic positions, that is, the positions reached during play that are of the form (a, s) ∈
A×S. Then the match is winning for ∃ if the ‘A-projection’ a0a1a2 . . . of this sequence
belongs to Acc. �

Definition 5.26 A nondeterministic C-stream automaton A = 〈A, aI ,∆,Acc〉 accepts
a pointed stream coalgebra S = 〈S, s0, σ〉 if the pair (aI , s0) is a winning position for ∃
in the game A(A,S). �

5.4 Alternation

In the previous section we saw that we can model the acceptance procedure of a non-
deterministic automaton as a single player game. This immediately begs the question
why not to allow some interaction in the form of a second player. We thus arrive at a
fundamental concept from theoretical computer science, viz., that of machine models
based on alternation. Very roughly, the idea underlying the alternating machine model
is that apart from existential choices made by the player that is working towards a
successful run of the machine, there are also universal choices yielding parallel runs
each of which have to be successful by the machine. For a more precise formulation of
the concept, a game-theoretic framework is the best context. For instance, game theory
allows us to naturally generalize the notion of a run of a machine on an input object,
to that of a match being played in order to determine the behavior of a machine on a
given input object.

Before we can move to the definition of alternating stream automata, we first need
to look at the details of how to represent players’ choices in acceptance games. In these
notes we will consider the following two approaches:
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set-theoretic : represent the choice of a player as a set of options, as in Definition 5.24;

logical : represent choices using connectives (disjunctions for ∃, conjunctions for ∀).

The two approaches are in fact interchangeable. In one direction, this is easy to see.
For instance, we might have chosen to define nondeterministic automata as structures
with a transition function mapping a state a of the automaton to a disjunction of pairs
in C × B. In this set-up we would represent a set ∆(a) = {(α1), . . . , αk} by one of
the terms (α1 ∨ · · · ∨ αk) or

∨
1≤i≤k αi. In case ∆(a) = ∅ this would yield the term

⊥ =
∨

∅.
The disadvantage of the set-theoretic approach is that one has to specify explicitly

to which player the set of options belongs. Hence for the time being we will focus on
the logical approach.

Definition 5.27 Given set X, let SLatt(X) denote the set of finite disjunctions (semi-
lattice terms) of elements of X:

ϕ ::= x ∈ X |
∨

Φ

whereas Latt(X) denotes the set of all finite lattice terms of elements of X:

ϕ ::= x ∈ X |
∨

Φ |
∧

Φ

Here Φ denotes a finite set of semilattice terms (lattice terms, respectively). �

Definition 5.28 An logical C-stream automaton is a quadruple A = 〈A,∆,Acc, aI〉
such that ∆ : A→ Latt(C × A) is the transition function, Acc ⊆ Aω is the acceptance
condition, and aI ∈ A is the initial state of the automaton. �

Given this definition it is fairly obvious how to define acceptance.

Definition 5.29 Given a logical C-stream automaton A = 〈A, aI ,∆,Acc〉 and a stream
coalgebra S = 〈S, σ〉, the acceptance game A(A,S) is given by the rules of Table 6, to-
gether with the winning conditions that specify that the winner of an infinite match is
determined by the projection on A of the sequence of basic positions (a, s) ∈ A× S in
the match, using Acc. �

We needed to add automatic moves at basic positions. Since it is not a priori known
whether ∆(a) is a conjunction or a disjunction, we cannot assign a position of the form
(a, s) to one of the players.

Definition 5.30 A logical C-stream automaton A = 〈A, aI ,∆,Acc〉 accepts a pointed
stream coalgebra S = 〈S, s0, σ〉, if the pair (aI , s0) is a winning position for ∃ in the
acceptance game A(A,S). �
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Position Player Admissible moves
(a, s) ∈ A× S − {(∆(a), s)}
(
∨

Φ, s) ∈ Latt(C × A) ∃ {(ϕ, s) | ϕ ∈ Φ}
(
∧

Φ, s) ∈ Latt(C × A) ∀ {(ϕ, s) | ϕ ∈ Φ}
(α, s) ∈ (C × A)× S ∃ {(α1, σ1(s)) | α0 = σ0(s)}

Table 6: Acceptance game for logical stream automaton

I Examples to be added

We will now discuss how to give a set-theoretic definition of alternating automaton.
These will be based on a distributive normal form that we may develop for logical
alternating automata.

Definition 5.31 Two lattice terms ϕ and ψ are equivalent if the equation ϕ ≈ ψ holds
in the variety of distributive lattices. �

Alternatively, ϕ and ψ are equivalent if they are equivalent as (classical) proposi-
tional formulas.

Proposition 5.32 Let A = 〈A, aI ,∆,Acc〉 and A′ = 〈A, aI ,∆
′,Acc〉 be two logical

stream automata such that for all a ∈ A, ∆(a) and ∆′(a) are equivalent. Then A and
A′ are equivalent automata.

I Proof to be added

As a corollary, every logical alternating automaton A = 〈A, aI ,∆,Acc〉 can be
brought into distributive normal form, namely, by rewriting every ∆(a) as an equivalent
disjunction of conjunctions of atomic terms. But such a disjunction of conjunctions can
also be represented as a set of sets:∨

i∈I

∧
j∈Ji

ϕij
∼=

{
{ϕij | j ∈ Ji} | i ∈ I

}
This suggests to represent the transition function of an alternating stream automaton
as a map

∆ : A→ ℘℘(C × A).

Here the first power set symbol represents a choice for ∃, and the second one, a choice
for ∀.
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Convention 5.33 In the sequel, when giving the transition function of an automaton
in set-theoretical format, we will frequently mention the player explicitly whose choice
is represented. In particular, we will write ℘P (S) to indicate the collection of subsets
of S, with the understanding that at any position involving such a set X ⊆ S, this
position belongs to P , that P ’s move consists of choosing an element x of X, and that
the next position is obtained by replacing X with this chosen element x.

Thus we will often write, for instance,

∆ : A→ ℘∃℘∀(C × A).

for the transition map of an alternating automaton.

This brings us to the following definition.

Definition 5.34 An alternating C-stream automaton is a quadruple A = 〈A,α,Acc, aI〉
such that ∆ : A→ ℘∃℘∀(C ×A) is the transition function, Acc ⊆ Aω is the acceptance
condition, and aI ∈ A is the initial state of the automaton.

The admissible moves of the acceptance game associated with these automata are
given in Table 7, and its winning conditions are standardly derived from the acceptance
condition Acc. An alternating C-stream automaton A = 〈A, aI ,∆,Acc〉 accepts a
pointed stream coalgebra S = 〈S, s0, σ〉, if the pair (aI , s0) is a winning position for ∃
in the acceptance game A(A,S). �

Position Player Admissible moves
(a, s) ∈ A× S ∃ {(Γ, s) ∈ ℘∀(C × A)× S | Γ ∈ ∆(a)}
(Γ, s) ∈ ℘∀(C × A)× S ∀ {(γ, s) ∈ (C × A)× S | γ ∈ Γ}
(γ, s) ∈ (C × A)× S ∃ {(γ1, σ1(s)) | γ0 = σ0(s)}

Table 7: Acceptance game for alternating stream automata
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In this chapter we introduce and discuss the automata that are used to study the modal
µ-calculus. These graph automata all operate on the same type of structures, namely
pointed Kripke models. Nevertheless, they come in a large variety of shapes, so it is
good to observe that roughly speaking, every graph automaton belongs to either of the
following two kinds.

1. First we introduce modal automata; these represent fairly straightforward gener-
alizations of modal fixpoint formulas in µPML.

2. We then consider Kripke automata, which closely resemble the pointed Kripke
structures on which they are supposed to operate.

Of these two kinds, the reader may at first sight find the first one more intuitive
and easy to understand — this is also the reason why they are introduced first.

However, the Kripke automata are far more important since they allow us to prove
strong results about the modal µ-calculus. In particular, a key result, here given as
Theorem 6.17, states that every alternating Kripke automaton can be effectively trans-
formed into a nondeterministic equivalent. As we will see in Chapter 9, many crucial
results concerning the modal µ-calculus, such as its decidability and small model prop-
erty, are direct consequences of this fundamental theorem.

Finally, it should be stressed that the second kind of automaton also generalizes fix-
point formulas, namely, the ones that use the coalgebraic connective • of the sections 2.6
and 3.5 rather than the standard boxes and diamonds.

Convention 6.1 Throughout this chapter we define automata that are supposed to
accept or reject pointed Kripke models. In each case, this automaton is of the form
A = 〈A, aI ,∆,Ω〉 where A is a set of states, aI ∈ A is the initial state, ∆ is some kind
of transition function on A, and Ω : A→ ω is a parity condition.

Also in each case, the question whether such an automaton accepts or rejects a
given pointed Kripke model (S, s) is determined by playing some kind of acceptance
game. This game will always proceeds in rounds, from one basic position (a, s) ∈ A×S
via some intermediate position(s) to a new basic position. The rules of this game are
determined by the precise shape of the transition function ∆, and in each case will be
given explicitly. However, the winning conditions are fixed. Finite matches, as always,
are lost by the player who got stuck. The winner of an infinite match β is always
determined by the infinite sequence (aI , s)(a1, s1)(a2, s2) . . . of basic positions occurring
in β, using the parity condition Ω on the sequence aIa1a2 . . .

Finally, the definition of acceptance is also fixed: the automaton A accepts the
pointed Kripke model (S, s) precisely if the pair (aI , s) is a winning position for ∃ in
the acceptance game.
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Definition 6.2 Let A be some kind of automaton for pointed Kripke models. The
class of pointed Kripke models that are accepted by a given automaton A is denoted
as L(A). �

Unless explicitly specified otherwise, throughout this chapter we work with a fixed
set P of propositional variables, and a fixed set D of atomic actions. For notational con-
venience, we will usually abbreviate the associated Kripke functor (cf. Definition 2.10)
KD,P by K.

6.1 Modal automata

Formulas and automata are very much alike. As any reader going through the chapters 3
and 5 will have observed, there are many resemblances between the evaluation game
of a modal (fixpoint) formula and the acceptance game of an automaton. States of the
automata seem to have their counterpart in the bound variables of the formula, with
greatest and least fixpoint operators corresponding to even and odd parity, respectively.

Of course, an important difference is that in the case of a modal formula, interaction
between players is not restricted to the Boolean connectives. Unlike in streams, suc-
cessor states in Kripke models are not unique, and the game reflects this by allowing,
depending on the modal connective, one of the players to chooses a next state in the
Kripke model. But there is in fact no reason why we could not incorporate this kind
of interaction in the definition of automata for Kripke models.

Definition 6.3 Given a set A and a Kripke functor K = KD,P, the set MLattK(A) of
K-modal lattice terms over A is inductively defined as follows:

ϕ ::= p | ¬p | 〈d〉a | [d]a | a | ⊥ | > | ϕ ∨ ϕ | ϕ ∧ ϕ.

Here p, a and d refer to arbitrary elements of P, A, and D, respectively. �

Definition 6.4 A modal automaton over P is an automaton A = 〈A,∆,Ω, aI〉 such
that ∆ : A→ MLattK(A).

The acceptance game A(A,S) associated with such an automaton A and a pointed
Kripke model (S, s) is determined by the rules given in Table 8 (given Convention 6.1).
�

As will become clear from Theorem 6.6 and its proof, perhaps the best perspec-
tive on these modal automata is that they generalize the modal fixpoint formulas of
Chapter 3. The basic idea is to be more liberal concerning structure: while formulas
by definition are required to have a tree structure (with back edges representing the
unfolding relation between a fixpoint variable and its unfolding formula), for automata
we accept structures that allow cyclicity.

I examples to be added
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Position Player Admissible next moves
(a, s) ∈ A× S − {(∆(a), s)}
(ϕ1 ∨ ϕ2, s) ∈ MLattK(A) ∃ {(ϕ1, s), (ϕ2, s)}
(ϕ1 ∧ ϕ2, s) ∈ MLattK(A) ∀ {(ϕ1, s), (ϕ2, s)}
(⊥, s) ∈ MLattK(A) ∃ ∅
(>, s) ∈ MLattK(A) ∀ ∅
(p, s), with p ∈ P and s ∈ V (p) ∀ ∅
(p, s), with p ∈ P and s 6∈ V (p) ∃ ∅
(¬p, s), with p ∈ P and s ∈ V (p) ∃ ∅
(¬p, s), with p ∈ P and s 6∈ V (p) ∀ ∅
(〈d〉a, s) ∈ MLattK(A) ∃ {(a, t) | t ∈ σd(s)}
([d]a, s) ∈ MLattK(A) ∀ {(a, t) | t ∈ σd(s)}

Table 8: Acceptance game for modal automaton

6.2 Formulas and modal automata

Definition 6.5 Let ξ be a formula of the modal µ-calculus, and A an automaton
operating on Kripke models. Then ξ and A are equivalent if

S, s 
 ξ iff A accepts (S, s)

for every pointed Kripke model (S, s). �

Theorem 6.6 There is an effective procedure that, given a modal fixpoint formula ξ,
returns a modal automaton Aξ that is equivalent to ξ.

Proof. Aξ is directly based on the formula structure of ξ, that we may without loss
of generality assume to be clean. As usual we let, for a bound variable x of ξ, ηxx.δx
denote the unique subformula of ξ where x is bound.

For the states of Aξ we could take the subformulas of ξ themselves, but the definition
may be easier to understand if we make a formal distinction between formulas and
states, by putting

A := {ϕ̂ | ϕ ∈ Sfor(ξ)}.

The initial state aI of Aξ will clearly be the state ξ̂.

In order to define the transition function ∆ we make a case distinction as to the
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kind of subformula that we are dealing with.

∆(ϕ̂ ∨ ψ) := ϕ̂ ∨ ψ̂
∆(ϕ̂ ∧ ψ) := ϕ̂ ∧ ψ̂
∆(χ̂) := χ for χ ∈ {>,⊥, p,¬p}
∆(〈̂d〉ϕ) := 〈d〉ϕ̂
∆([̂d]ϕ) := [d]ϕ̂

∆(η̂x.δ) := δ̂

∆(x̂) := δ̂x

Readers having worries concerning this definition should realize that correctness is in
fact trivial — this is not an inductive definition!

The acceptance condition of modal automata is given by a parity function Ω that
we define now. The only subformulas of which the parity will be of interest are the
variables that may get unfolded in the acceptance game for ξ. That is, unless ϕ is a
bound variable of ξ, we put Ω(ϕ̂) := 0.

This leaves the task of defining of Ω(x̂) where x ∈ BV (ξ). Recall that ≤ξ is the
dependency order on these bound variables. It is in fact easy to define a function Ω
such that

• Ω(x̂) is odd if x is a µ-variable, and even if x is a ν-variable, and

• Ω(x̂) ≤ Ω(ŷ) iff x ≤ξ y.

The details of this definition are left as an exercise to the reader.
With this definition it is easy to see that for any Kripke model S, the acceptance

game A for Aξ and S on the one hand, and the evaluation game E for ξ and S on the
other, are very similar. It is in fact not hard to prove that for any state s of S, and for
any subformula ϕ of ξ, (ϕ, s) ∈ Win∃(E) iff (ϕ̂, s) ∈ Win∃(A). qed

Theorem 6.7 There is an effective procedure that, given a modal automaton A, returns
a modal fixpoint formula ξA that is equivalent to A.

Proof. The proof of this theorem will be by induction on the ‘complexity’ of the
automaton which we may simply define as the highest parity mA := max(Ω[A]) of A.

In the base case of the induction, where mA = 0, all states of A have parity 0.

I This case will be addressed later.

Now we turn to the inductive case, where mA > 0. Let M ⊆ A be the set of states
that actually have parity mA, then M is nonempty, say M = {a1, . . . , ak}. Without
loss of generality we may assume that the initial state aI of A does not belong to M .
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The main idea of the proof consists of removing the elements of M as states in A,
but at the same time adding them as variables. This makes that every term ∆(a) is
now a well-formed MLatt(P ∪M,A \M)-term, so that the structure

AM := 〈A \M,aI ,∆�A\M ,Ω�A\M 〉

is a modal automaton over P∪M . Furthermore, for each i ∈ {1, . . . , k}, we will consider
the automaton Ai := (A \M,ai,∆ �A\M ,Ω �A\M ) which is the version of AM that has
ai as its initial position.

Obviously, the inductive hypothesis applies to each of these automata. Thus we
obtain fixed point formulas ϕM , ϕ1, . . . , ϕk, all taking free variables from the set P∪M ,
and such that for any P ∪M -model S and any point s in S, we have that AM accepts
(S, s) iff S, s 
 ϕM , and, for each i, Ai accepts (S, s) iff S, s 
 ϕi.

Clearly then, for any P ∪M -model S, the k-tuple ϕ determines a monotone map
[[ϕ]]S : (P(S))k → (P(S))k given by

[[ϕ]]S,V (T1, . . . , Tk) := ([[ϕ1]]S[a 7→T ], . . . , [[ϕ1]]S[a 7→T ]).

Here S[a 7→ T ] denotes the variant of S with P ∪M -valuation V [a 7→ T ] given by

V [a 7→ T ](x) :=

{
Ti if x = ai ∈M,
V (x) if x ∈ P,

where V is the valuation of S.
It follows from standard fixed point theory (cf. the discussion in Appendix A, follow-

ing Proposition A.10, of the Gaussian elimination method), that the least and greatest
fixed points of this map are given by µML-formulas. More precisely, there are formulas
ϕµ

1 , . . . , ϕ
µ
k and ϕν

1, . . . , ϕ
ν
k, all with free variables in P, such that

([[ϕµ
1 ]]S, . . . , [[ϕµ

k ]]S) is the least fixed point of [[ϕ]]S

for every P-model S, and likewise for the greatest fixed point.
Now let ψA be the formula

ξA := ϕM [ϕη/a].

That is, we uniformly substitute, in ϕM , each ai with the formula ϕη
i , where η denotes

µ if mA is odd, and ν if mA is even. The proof that this formula ξA is indeed equivalent
to the automaton A is fairly similar to the proof of the Adequacy Theorem, whence we
omit further details. qed

6.3 Kripke automata

We have now arrived at the introduction of the second kind of automata for Kripke
models: the ones that are similar to the Kripke models rather than to standard modal
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fixpoint formulas. These automata can be introduced in the same way as the alter-
nating stream automata of subsection 5.4, with the understanding that the notion of
bisimulation between Kripke models is far more complicated than that between stream
coalgebras.

So consider, for two Kripke models A = 〈A,α〉 and S := 〈S, σ〉, the bisimulation
game B(A,S) of Definition 2.16. The main conceptual step is to think of A as a ‘proto-
automaton’ that we use to classify S rather than as of a Kripke model that we are
comparing with S. In order to turn A into a proper Kripke automaton, four technical
modifications have to be made:

1. A small change is that we require A (i.e., its base set A) to be finite — but in
fact, it would be perfectly acceptable to allow for infinite automata as well.

2. Second, and equally undramatic, we have to add an initial state to the structure
of A.

3. Third, whereas the winner of an infinite match of a bisimulation game is always
∃, the winner of an infinite acceptance match will be determined by an explicit
acceptance condition on Aω — a parity condition, in our case.

4. The fourth and foremost modification is that we introduce nondeterminism, or
even alternation to the transition structure of A. Just as for stream automata,
Kripke automata will harbour many ‘realizations’ of Kripke models — and as for
stream automata our approach is set-theoretic rather than logical.

Our presentation of alternating Kripke automata is of a set-theoretic nature, and
uses the ℘∃/℘∀ notation of Convention 5.33.

Definition 6.8 Given a Kripke functor K, an (alternating) Kripke automaton is a
quadruple A = 〈A,∆,Ω, aI〉 such that the transition function ∆ is given as a map
∆ : A→ ℘∃℘∀(KA). Such a Kripke automaton is called nondeterministic if, for every
a ∈ A, |Γ| ≤ 1 for all Γ ∈ ∆(a) (that is, ∆(a) only contains singletons and possibly the
empty set).

The acceptance game A(A,S) associated with a Kripke automaton A = 〈A,∆,Ω, aI〉
and a Kripke structure S is given by Table 9. �

For an informal description of the acceptance game A(A,S), the most important
observation is that matches of this game proceed in rounds moving from one basic
position to another. Think of a basic position (a, s) as a statement, defended by ∃
and attacked by ∀, that a and s ‘fit well together’, or that A, ‘as seen from a’, is an
adequate description of S, ‘as seen from s’.

Each round consists of exactly four moves, with interaction pattern ∃∀∃∀:
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Position Player Admissible moves
(a, s) ∈ A× S ∃ {(Γ, s) ∈ ℘∀(K(A))× S | Γ ∈ ∆(a)}
(Γ, s) ∈ ℘∀(K(A))× S ∀ {(γ, s) ∈ K(A)× S | γ ∈ Γ}
(γ, s) ∈ KA× S ∃ {Z ⊆ A× S | (γ, σ(s)) ∈ KZ}
Z ∈ ℘(A× S) ∀ Z

Table 9: Acceptance game for alternating Kripke automata

• At a basic position (a, s), the ‘K-successor’ σ(s) ∈ KS of s is fixed, but ∃ and ∀
first have to play a finite (two-move) subgame in order to determine which element
will temporarily act as the analogous ‘K-successor’ α of a. More precisely, the
rules of the game are such that first, ∃ chooses a subset Γ ⊆ KA from ∆(a), after
which ∀ chooses, from the set Γ of options, an actual element γ ∈ KA. (Since
the order of the players is fixed we do not need to add an additional, automatic
move from (a, s) to (∆(a), s) as would be the case if we had chosen for a logical,
rather than a set-theoretic formalization, cf. the discussion at the beginning of
subsection 5.4).

• Halfway the round then, play has arrived at a position of the form (γ, s) ∈ KA×S.
The players now proceed as in the bisimilarity game for Kripke models. First,
∃ chooses a ‘local bisimulation’ linking γ and s (or rather: γ and σ(s)), that is,
a relation Z ⊆ A × S such that (γ, σ(s)) ∈ KZ. Spelled out, this means that
∃ can only choose such a relation Z if γ is of the form (π,B) ∈ ℘(P) × ℘(A)D

with π = σV (s), and that Z has to satisfy the back and forth conditions for each
atomic action d, stating that for all b ∈ B there is t ∈ σd(s) with bZt, and vice
versa.

The second, ‘dynamic’ half of the round, ends with ∀ choosing an element from
Z. This element is of the form (b, t) ∈ A× S and forms the new basic position.

I associate automaton with Kripke model

In many cases we will need to work with nondeterministic Kripke automata.

Definition 6.9 Given a Kripke functor K, an alternating Kripke automaton A =
〈A,∆,Ω, aI〉 is called nondeterministic if, for every a ∈ A, all elements of ∆(a) are in
fact singletons. �

Remark 6.10 To facilitate the presentation, we will often represent the transition
function of such a device A as a map δ : A → ℘∃(KA). That is, rather than taking a
set ∆(a) consisting of singletons we deal with the elements of those singletons directly.
The structure of the associated acceptance game then looks as in Table 10.

�
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Position Player Admissible moves
(a, s) ∈ A× S ∃ {(γ, s) ∈ K(A)× S | γ ∈ δ(a)}
(γ, s) ∈ KA× S ∃ {Z ⊆ A× S | (γ, σ(s)) ∈ KZ}
Z ∈ ℘(A× S) ∀ Z

Table 10: Acceptance game for nondeterministic Kripke automata

6.4 Formulas and Kripke automata

Even though these Kripke automata resemble Kripke models much more than the
modal automata of section 6.1, we can prove the same equivalence between formulas
and automata.

Theorem 6.11 There is an effective procedure that, given a modal fixpoint formula ξ
returns a Kripke automaton Aξ that is equivalent to ξ.

In order to prove this result we need to introduce some automata of ‘intermediate’
type.

Definition 6.12 A logical Kripke automaton or LKA is a quadruple A = 〈A,∆,Ω, aI〉
with A, aI and Ω as usual, while ∆ : A→ Latt(A ∪KA).

Such a device is called guarded if ∆(a) ∈ Latt(KA) for every a ∈ A, and semiguarded
if Ω(a) > Ω(b) whenever b� a. Here we define the relation � ⊆ A×A by putting b� a
if and only if b occurs in ∆(a) (that is, b is an atomic subterm of ∆(a)). �

Proof of Theorem 6.11. The proof of Theorem 6.11 is based on the Propositions 6.13,
6.14 and 6.15 below. The basic idea is to turn a modal fixpoint formula into an equiva-
lent Kripke automaton using the following three equivalence preserving transformations:

fixpoint formula ; semiguarded LKA ; guarded LKA ; Kripke automaton.

Of these three constructions, the first and third are fairly direct and do not require
any new ideas. The only interesting transformation is the one from a semiguarded
automaton to a guarded automaton. qed

Proposition 6.13 There is an effective procedure that, given a formula ξ ∈ µML,
returns an equivalent semiguarded logical Kripke automaton.

Proof. The proof of this proposition is based on a variation of the ideas underlying
the proof of Proposition 3.16. qed

Proposition 6.14 There is an effective procedure that, given a semiguarded logical
Kripke automaton, returns an equivalent guarded one.
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Proof. Let A = 〈A, aI ,∆,Ω〉 be a semiguarded logical Kripke automaton. For the
definition of its guarded equivalent A′, we need some preparations.

For each state a ∈ A, we will construct, in finitely many steps, a tree T (a), together
with a labelling and a (partial) marking of the nodes of the tree. To set up the con-
struction, we start with the construction tree of the Latt(A ∪ KA)-term ∆(a). The
inner nodes of this tree are labelled with a connective (

∨
or

∧
), and the leaves with

an atomic term of the form b ∈ A or ξ ∈ KA. (Nodes labelled with terms
∨

or
∧

will be considered as inner nodes also if they have no children.) Furthermore, the root
of this tree is marked ‘a’, while all other nodes of the initial tree are marked with the
empty list. Now recursively, replace each leaf labelled b ∈ A with its construction tree,
and add ‘b’ to the mark of the new inner node of the tree. Repeat the process until no
leaves are left that are labelled with elements of A, and (thus) all leaves are labelled
with elements of KA.

It is not difficult to see that this process must terminate after finitely many steps.
The key observation here is that for any two states a, b ∈ A, we find b as the label of
some leaf of the construction tree of ∆(a) if and only if b�a. And since A is semiguarded
we have Ω(b) > Ω(a) if b� a. From this it follows that there are no infinite sequences
a0 � a1 � a2 � . . ., and so the algorithm must terminate.

We define T (a) as the tree that is constructed by the algorithm that we just de-
scribed. Clearly, T (a) can be seen as the construction tree of some Latt(KA) term
∆′(a). Now consider a match of the game A(A,S) which has arrived at a basic position
(a0, s) ∈ A × S — or simply the game A(A,S) initialized at (a0, s). The key observa-
tion is that T (a) represents the static initial part of this game, that is, the part that
is played until the automaton moves to a successor of s. The point is that this part of
the game is completely determined by the disjuncts and conjuncts chosen by ∃ and ∀,
respectively. More specifically, a maximal path through T (a) corresponds to a partial
match of A(A,S)@(a0, s) that is maximal in the sense that it either ends in a win for
one of the players, or else in a position of the form (γ, s) ∈ KA × S, where γ is the
label of the leaf corresponding to the last element of the maximal path through T (a).

Now in principle, as the guarded equivalent of A we would like to take the structure
A := 〈A, aI ,∆,Ω〉. Unfortunately, while it would not be hard to see that for any pointed
Kripke model (S, s), the boards of the two games A(A,S) and A(A,S) are virtually
identical (isomorphic modulo some automatic moves), they are rather different when
we look at parities. The problem is that in a term ∆(a) many original states of A are
‘hidden’, with the effect that their parities go unnoticed when playing the acceptance
game for A rather than for A.

To take care of this, with each leaf l of the tree T (a0) associate, apart from its
label γl ∈ KA, also a unique sequence an � an−1 � · · · � a0, consisting of the marks
encountered on the path leading from the root to the leaf l. Since the original automaton
A is semiguarded, we find that Ω(an) > Ω(an−1) > · · · < Ω(a0). So Π(a0, l) := Ω(an)
is the highest parity of these ai — corresponding to the highest parity encountered in
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the static partial match of A(A,S) from basic position (a0, s) to the non-basic position
(γl, s). The key idea in the definition of A′ is to assign this parity to the children of
γl, that is, to the elements of the set Bl where γl = (πl, Bl). (Here we assume for the
moment that we are dealing with the basic case of one single atomic action. In the
general case Bl would not be a subset of A but rather a D-indexed collection of such
subsets, and we would have to work with the union of these subsets.) However, since
elements of A can occur in many of such sets, we cannot base A′ on the state set A of
A; rather, we take a copy (a, n) of a for each n in the range Ω[A] of Ω. Thus we arrive
at the following definition.

Given the semiguarded automaton A = 〈A, aI ,∆,Ω〉, we define the automaton
A′ = 〈A′, a′I ,∆′,Ω′〉 as follows:

A′ := A× Ω[A],

a′I := (aI ,Ω(aI)),

Ω′(a, n) := n,

while ∆′(a, n) is the term ∆(a) where, for each leaf l of T (a), the atom γl = (πl, Bl) ∈
KA of ∆(a) is replaced with the object (πl, {(b,Π(a, l)) | b ∈ Bl}) ∈ KA′.

On the basis of the earlier given motivation for this definition, the reader should be
able to prove that A and A′ are indeed equivalent. Furthermore, it is obvious that A′

is a guarded automaton. This suffices to prove the Proposition. qed

Proposition 6.15 There is an effective procedure that, given a guarded logical Kripke
automaton, returns an equivalent Kripke automaton.

Proof. This proof is straightforward, given the discussion preceding Definition 5.34.
qed

Theorem 6.16 There is an effective procedure that, given a Kripke automaton A,
returns a modal fixpoint formula ξA that is equivalent to A.

Proof. The proof of this theorem is completely analogous to that of Theorem 6.7. qed

6.5 A fundamental theorem

The next theorem is perhaps the most fundamental result concerning the automata-
theoretic approach towards the modal µ-calculus.

Theorem 6.17 There is an effective procedure that transforms a given alternating
Kripke automaton into an equivalent nondeterministic one.

I Proof to be supplied
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6.6 Closure properties

In order to discuss the recognizing power of automata, we first need to introduce the
notion of a recognizable language.

Definition 6.18 We will refer to a class of pointed Kripke models as a K-language.
Such a class C is called recognizable if there is a Kripke automaton A such that C = L(A).
�

It immediately follows from earlier results that recognizable K-languages have (at
least two) alternative characterizations.

Proposition 6.19 The following are equivalent for any K-language C:

1. C is recognizable;

2. C is nondeterministically recognizable, that is, C = L(A) for some nondetermin-
istic automaton A;

3. C is definable by some modal fixpoint formula.

Clearly, the recognizing power of a certain type of automaton corresponds to the
notion of recognizability. One way to study this notion is to investigate under which
class operations the recognizable languages are closed.

Definition 6.20 Let Op be some operation on K-languages, then we say that a class
of languages is closed under Op if we obtain a language from this class whenever we
apply Op to a family of languages from the class. �

It follows immediately from the equivalence 1 ⇔ 3 of Proposition 6.19 that the class
of recognizable K-languages is closed under taking union, intersection and complemen-
tation. However, it is of interest for future reference to have direct, automata-theoretic
proofs of the results for union and intersection. For that purpose, we define the sum
and product of two K-automata, and prove that they recognize, respectively, the union
and the intersection of the languages associated with the original automata.

Definition 6.21 Let A1 = (A1, a
1
I ,∆1,Ω1) and A2 = (A2, a

2
I ,∆2,Ω2) be two Kripke

automata. We will define their sum A∪ and product A∩.
Both of these automata will have the disjoint union A12∗ := {∗} ] A1 ] A2 as their

collection of states. Also, the parity function Ω will be the same for both automata:

Ω(a) :=

{
0 if a = ∗,
Ωi(a) if a ∈ Ai.
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The only difference between the automata lies in the transition functions, which are
defined as follows:

∆∪(a) :=

{
∆1(a

1
I) ∪∆2(a

2
I) if a = ∗

∆i(a) if a ∈ Ai,

∆∩(a) :=

{
{Φ1 ∪ Φ2 | Φi ∈ ∆i(a

i
I)} if a = ∗

∆i(a) if a ∈ Ai.

Finally, we put A∪ := (A12, ∗,∆∪,Ω) and A∩ := (A12, ∗,∆∩,Ω). �

Proposition 6.22 Let A1 and A2 be two Kripke automata. Then for any pointed K-
coalgebra (S, s) we have:

1. A∪ accepts (S, s) iff A1 or A2 accepts (S, s),

2. A∩ accepts (S, s) iff both A1 and A2 accept (S, s).

3. A∪ is non-deterministic if A1 and A2 are so.

Proof. First suppose that the automaton A∪ accepts (S, s). Hence by definition, ∃ has
a winning strategy f in the acceptance game A(A∪,S) starting from position (∗, s). Let
i be such that f(∗, s) ∈ ∆(ai

I). It is then straightforward to verify that f , restricted to
∃’s positions in A(Ai,S), is a winning strategy for ∃ from position (s, ai

I). From this it
is immediate that Ai accepts (S, s).

The other statements of the proof admit similarly straightforward proofs. qed

Definition 6.23 Let P′ ⊆ P be two sets of proposition letters, and let S = 〈S, σV , σR〉
be a Kripke model over P. Then we let S �P′ denote the restriction of S to P′, that is,
the structure 〈S, σ′V , σR〉 with σ′V : S → ℘(P′) given by σ′V (s) := σV (s) ∩ P′. �

In the remainder of the section we discuss closure of recognizable Kripke languages
under projection (modulo bisimulation). We need to work with nondeterministic au-
tomata here. As discussed in Remark 6.10, we will represent the transition function of
such a device A as a map δ : A→ ℘∃(KA).

Definition 6.24 Let P′ and P be two sets of proposition letters such that P′ is a proper
subset of P, and let A = 〈A, aI ,∆,Ω〉 be a KP,D-automaton.

Then we define the KP′,D-automaton A�P′ as the structure 〈A, aI ,∆
′,Ω〉 given by

∆′(a) := {(π ∩ P′, B) ∈ KP′,D(A) | (π,B) ∈ ∆(a)}.

�



60 Graph automata

In words, ∆′ is like ∆ but keeps all options open for the proposition letters not in
P′.

As an immediate corollary of the following proposition, the class of recognizable
languages is closed under taking projections (modulo bisimulation).

Proposition 6.25 Let P′ ⊆ P be two sets of proposition letters, and let A be some
KP,D-automaton. Then

1. If A accepts some pointed Kripke model (S, s) over P, then A�P′ accepts (S�P′ , s).

2. If A�P′ accepts some Kripke model (M,m) over P′, then A accepts some P-model
(S, s) such that M,m↔P′ S�P′ , s.

Proof.

I Proof details to be added.

qed

Finally, we summarize our findings.

Theorem 6.26 For any Kripke functor K, the class of recognizable K-languages is
closed under taking unions, intersections, complementation, and projections modulo
bisimulation.



9 Results on the modal µ-calculus

In this chapter we gather some of the most important results concerning the modal
µ-calculus.

9.1 Tree model property

Given the game-theoretic characterization of the semantics, it is rather straightforward
to prove that formulas of the modal µ-calculus are bisimulation invariant. From this it
is immediate that the modal mu-calculus has the tree model property. But in fact, we
can use the game semantics to do better than this, proving that every satisfiable modal
fixpoint formula is satisfied in a tree of which the branching degree is bounded by the
size of the formula.

Theorem 9.1 (Bisimulation Invariance) Let ξ be a modal fixpoint formula with
FV (ξ) ⊆ P, and let S and S′ be two labelled transition systems with points s and s′,
respectively. If S, s↔P S′, s′, then

S, s 
 ξ iff S′, s′ 
 ξ.

Proof. Assume that s ↔P s′ and that S, s 
 ξ, with FV (ξ) ⊆ P. We will show
that S′, s′ 
 ξ. By the Adequacy Theorem we may assume that ∃ has a history
free winning strategy f in the evaluation game E := E(ξ,S) initialized at (ξ, s), and
by the same theorem it suffices to provide her with a winning strategy in the game
E ′ := E(ξ,S′)@(ξ, s′). She obtains her strategy f ′ in E ′ from playing a shadow match
of E , using the bisimilarity relation to guide her choices.

To see how this works, let’s simply start with comparing the initial position (ξ, s′)
of E ′ with its counterpart (ξ, s) of E . (From now on we will write s ↔ s′ instead of
s↔P s

′).
In case ξ is an atomic formula, then it is easy to see that both (ξ, s) and (ξ, s′) are

final positions. Also, since f is assumed to be winning, ξ must be true at s, and so it
must hold at s′ as well. Hence, ∃ wins the match.

If ξ is not atomic, we distinguish cases. First suppose that ξ = ξ1 ∨ ξ2. If f tells ∃
to choose disjunct ξi at (ξ, s), then she chooses the same disjunct ξi at position (ξ, s′).
If ξ = ξ1 ∧ ξ2, it is ∀ who moves. Suppose in E ′ he chooses ξi, making (ξi, s

′) the next
position. We now consider in E the same move of ∀, so that the next position in the
shadow match is (ξi, s).

A third possibility is that ξ = 3ψ. In order to make her move at (ξ, s′), ∃ first
looks at (ξ, s). Since f is a winning strategy, it indeed picks a successor t of s. Then
because s ↔ s′, there is a successor t′ of s′ such that t ↔ t′. This t′ is ∃’s move in E ,
so that (ψ, t) and (ψ, t′) are the next positions in E and E ′, respectively.
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Finally, if ξ = 2ψ, we are dealing again with positions for ∀. Suppose in E ′ he
chooses the successor t′ of s′, so that the next position is (ψ, t′). (In case s′ has no
successors, ∀ immediately looses, so that there is nothing left to prove.) Now again we
turn to the shadow match; by bisimilarity of s and s′ there is a successor t of s such
that t↔ t′. So we may assume that ∀ moves the game token of E to position (ψ, t).

The crucial observation is that if ∃ does not win immediately, then at least she
can guarantee that the next positions in E and E ′ are of the form (ϕ, u) and (ϕ, u′)
respectively, with u↔ u′, and such that the move in E is consistent with f .

Continuing in this fashion, ∃ is able to maintain the condition (*) that for any
match

β′ = (ϕ0, s
′
0)(ϕ1, s

′
1) . . . (ϕn, s

′
n)

played thus far, there is a shadow match

β = (ϕ0, s0)(ϕ1, s1) . . . (ϕn, sn)

in E which is consistent with f , and such that Z : si ↔ s′i for all i ≤ n.
It is not hard to see why this suffices to prove the theorem; for infinite matches, the

key observation is that the sequence of formulas in the E ′-match and its E-shadow are
exactly the same. qed

As an immediate corollary, we obtain the tree model property for the modal µ-
calculus.

Corollary 9.2 (Tree Model Property) Let ξ be a modal fixpoint formula. If ξ is
satisfiable, then it is satisfiable at the root of a tree model.

Proof. For simplicity, we confine ourselves to the basic modal language. Suppose that
ξ is satisfiable at state s of the Kripke model S.

Define the unravelling ~Ss of S at s as the following model. Its states are the finite
paths through S that start at s. We define the (coalgebraic) structure ~σ on this set as
follows:

~σ(s0 · · · sk) := (σV (sk), {s0 · · · sksk+1 | sk+1 ∈ σ(sk)}).

It is left for the reader to verify that ~Ss, s↔ S, s. From this it follows by bisimulation
invariance that ~S, s 
 ξ, and since it is clear that ~Ss is a tree with root s, the result is
immediate. qed

For the next theorem, recall that the size of a formula is simply defined as its length,
that is, the number of symbols occurring in it.

Theorem 9.3 (Bounded Tree Model Property) Let ξ be a modal fixpoint formula.
If ξ is satisfiable, then it is satisfiable at the root of a tree, of which the branching degree
is bounded by the size |ξ| of the formula.
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Proof. Suppose that ξ is satisfiable. By the Bisimulation Invariance Theorem it
follows that ξ is satisfiable at the root r of some tree model T = 〈T,R, V 〉. So, by
the Adequacy Theorem, ∃ has a winning strategy f in the game E := E(ξ,T) starting
at position (ξ, r). And using the History-Free Determinacy of parity games, we may
assume that this strategy is positional, that is, only depends on the current position in
the game.

We will prune the tree T, keeping only the nodes that ∃ needs in order to win the
match. Formally, define subsets (Tn)n∈ω as follows:

T0 := {r},
Tn+1 := Tn ∪ {s | (ϕ, s) = f(3ϕ, t) for some t ∈ Tn and 3ϕ� ξ},
Tω :=

⋃
n∈ω Tn.

Let Tω be the subtree of T based on Tω (so Tω is not a generated submodel of T). From
the construction it is obvious that the branching degree of Tω is bounded by the length
of ξ, because ξ has at most |ξ| diamond subformulas.

We claim that Tω, r 
 ξ. To see why this is so, let E ′ := E(ξ,Tω) be the evaluation
game played on the pruned tree. It suffices to show that the strategy f ′, defined as the
restriction of f to positions of the game E ′, is winning for ∃ in the game starting at
(ξ, r). Consider an arbitrary E ′-match π = (ξ, r)(ϕ1, t1) . . . which is consistent with f ′.
The key observation of the proof is that π is also a match of E@(ξ, r), that is consistent
with f . To see this, simply observe that all moves of ∀ in π could have been made in
the game on T as well, whereas by construction, all f ′ moves of ∃ in E ′ are f moves in
E .

Now by assumption, f is a winning strategy for ∃ in E , so she wins π in E . But
then π is winning as such, i.e., no matter whether we see it as a match in E or in E ′. In
other words, π is also winning as an E ′-match. And since π was an arbitrary E ′ match
starting at (ξ, r), this shows that f ′ is a winning strategy, as required. qed

9.2 Disjunctive normal form and decidability

As an immediate consequence of the fundamental result on Kripke automata (Theo-
rem 6.17) it follows that every formula of the modal µ-calculus can be brought into
so-called disjunctive normal form.

Definition 9.4 Given sets P of proposition letters, and D of atomic actions, respec-
tively, the set µCML−D(P) of disjunctive formulas is given by the following recursive
definition:

ϕ ::= x | ⊥ | > | ϕ ∨ ϕ | π • Φ | µx.ϕ | νx.ϕ

where π denotes a subset of P, and Φ = {Φd | d ∈ D} a D-indexed collection of sets of
disjunctive formulas, and x a variable not in P. �
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These formula are called disjunctive because the only admissible conjunctions are
the special ones of the form π • Φ.

Theorem 9.5 There is an effective algorithm that rewrites a modal fixpoint formula
ξ ∈ µPMLD(P) into an equivalent disjunctive formula ξd of length exponential in |ξ|.

Proof. Immediate by Theorem 6.17. qed

Theorem 9.6 There is an algorithm that decides in linear time whether a given dis-
junctive formula ξ is satisfiable or not.

Proof. It is easy to see that the proof of this proposition is a direct consequence of
the following observations:

1. > is satisfiable;

2. ⊥ is not satisfiable;

3. ϕ1 ∨ ϕ2 is satisfiable iff ϕ1 or ϕ2 is satisfiable;

4. π • Φ is satisfiable iff both π and each ϕ ∈
⋃

d∈D Φd is satisfiable;

5. µx.ϕ is satisfiable iff ϕ[⊥/x] is satisfiable;

6. νx.ϕ is satisfiable iff ϕ[>/x] is satisfiable.

The proof of these claims is left as an exercise for the reader. qed

Decidability of the satisfiability problem for modal fixpoint formulas is then an
immediate consequence of the previous two results.

Theorem 9.7 There is an algorithm that decides in exponential time whether a given
modal fixpoint formula ξ is satisfiable or not.

9.3 Small model property

In this section we will show that any satisfiable modal fixpoint formula can in fact
already be satisfied in a model of size at most exponential in the size of the formula.
Given the Theorems 6.11 and Theorem 6.17, with any modal fixpoint formula ξ we
may associate an equivalent non-deterministic Kripke automaton A of size exponential
in ξ.

For convenience here we will denote the transition function of nondeterministic
Kripke automaton A = 〈A, aI ,∆,Ω〉 as a map ∆ : A→ ℘∃KA, cf. Remark 6.10.
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Definition 9.8 Let A = 〈A, aI ,∆,Ω〉 be a nondeterministic Kripke automaton, and
let α : A→ KA be such that α(a) ∈ ∆(a) for all a ∈ A. Then we say that the pointed
Kripke model 〈A,α, aI〉 is a realization of A. �

Theorem 9.9 Let A = 〈A, a0,∆,Ω〉 be a nondeterministic Kripke automaton. If A
accepts some pointed Kripke model, then it accepts one that is a realization of A.

Proof. Fix the automaton A = 〈A, a0,∆,Ω〉. For simplicity we assume that we are
dealing with a Kripke functor for the basic modal language.

Define the following nonemptiness game N (A). N (A) is a board game with board
A ∪ KA ∪ ℘A. Its rules are given by the Table 11 below. The winning conditions
for finite matches are standard; the winner of an infinite match is determined by the
sequence of parities of states of A occurring as positions during the match.

Position Player Admissible moves
a ∈ A ∃ ∆(a)
(π,B) ∈ KA - {B}
B ∈ ℘(A) ∀ B

Table 11: Nonemptiness game for nondeterministic Kripke automata

Intuitively, this game corresponds to the ‘projection’ on A of acceptance games
associated with A. We will make this intuition more precise in the following two claims,
from which the theorem follows immediately.

Claim 1 If A accepts some pointed Kripke model, then a0 is a winning position for ∃
in N (A).

For a proof of this claim, assume that A accepts the pointed Kripke model (S, s0).
Then ∃ has a winning strategy f in the acceptance game A(A,S) initialized at (a0, s0).
Without loss of generality we may assume that this strategy leaves ∀ as little options as
possible. In particular, at a position of the form ((π,B), s) ∈ KA× S, we may assume
that she chooses a minimal relation Z ⊆ A×S such that ((π,B), σ(s)) ∈ K(Z). So for
instance, we may assume that Z only contains pairs (b, t) ∈ B × σR(s). Observe that
it then follows from ((π,B), Z) ∈ K(Z), that B must be the domain of Z, and σR(s)
the range.

She will use this strategy to win the game N (A) initialized at a0. More precisely,
in the latter game she will maintain the condition that with every partial match

a0α0B0 . . . anαiBnan+1

in N (A) she can associate a shadow match

(a0, s0)(α0, s0)Z0 . . . (an, sn)(αn, sn)Zn(an+1, sn+1)
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in A(A,S) such that Bi = dom(Zi) for each i, and in which she plays her (winning)
strategy f . The latter means that αi = f(ai, si) and Zi = f(αi, si), for each i.

It suffices to show inductively that she can prolong this condition for one more
round. For this purpose, at a position ai in N (A) she looks at the corresponding
A(A,S)-position (ai, si); if there her strategy f tells her to move to (β, si), her choice
in N (A) will be β. Write β = (π,B), then the next position in N (A) is B. In
A(A,S), at position (β, si), f tells ∃ to choose some local bisimulation Z ⊆ A×S with
((π,B), σ(s)) ∈ K(Z). By our assumption on ∃’s winning strategy f , B is the domain
of Z. Finally, if ∀ at position B in N (A) chooses a new position b ∈ B, in the shadow
match, ∃ lets ∀ play some position (b, t) ∈ Z. This is a legitimate move, because Z is
full on B and σR(s), so that in particular for every b ∈ B there is a t ∈ σR(s) with
(b, t) ∈ Z.

Note that maintaining the above mentioned condition, she effectively plays some
strategy that we now prove to be winning. Recall that by assumption, f is winning.

I Leave the case of finite matches to the reader

In the case of an infinite match, the sequence a0a1a2 . . . satisfies the parity condition.
But then the N (A)-match is won by ∃ as well. This finishes the proof of the claim.

Now the point of introducing this nonemptiness game is that it is a parity game,
and hence, it satisfies History Free Determinacy. That is, we may assume the existence
of a history free strategy for ∃ that is winning when played from any position in Win∃.
Given the nature of ∃’s positions, this strategy will be a map α : A → KA. That is,
her winning strategy uniquely determines a pointed Kripke model Aα living inside A.

Claim 2 If a0 is a winning position for ∃ in N (A), then A accepts Aα.

For a proof of this claim it suffices to prove that the following strategy for ∃ guar-
antees that she wins the acceptance game associated with A and Aα:

• at a position of the form (a, a), choose (α(a), a);

• at a position of the form (α(a), a), with α(a) = (π,B), choose the set IdB =
{(b, b) | b ∈ B} as a candidate local bisimulation;

• at other positions, choose randomly.

It is not hard to see that playing this strategy, ∃ guarantees that only basic positions
(a, a) with a ∈ Win∃(N (A)) are played. In fact, it is easy to prove as well that the
resulting A(A,Aα)-match is of the form

(a0, a0) . . . (ai, ai)(α(ai), ai)IdBi
(ai+1, ai+1)(α(ai+1), ai+1)IdBi+1

. . .
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such that the corresponding match of N (A) is of the form

a0 . . . aiα(ai)Biai+1α(ai+1)Bi+1 . . .

(Here every α(ai) is of the form (πi, Bi).)

From this and the assumption that a0 ∈ Win∃(N (A)), it is immediate that the
A(A,Aα)-match is won by ∃. Thus the strategy described above is a winning strategy,
which suffices to prove the claim, and hence, the theorem. qed

Corollary 9.10 Let ξ ∈ µML(P) be a modal fixpoint formula. Then ξ is satisfiable iff
ξ is satisfiable in a model of size at most 2|ξ|.

Proof.

I Immediate by ...

qed

9.4 Expressive completeness

Theorem 9.11 Let ϕ be a monadic second order property of LTSs which is bisimula-
tion invariant. Then there is a µPML-formula ϕ′ which is equivalent to ϕ.

9.5 Axiomatization

Definition 9.12 Let Kµ be the logic obtained by adding the following axiom scheme

(prefix) ϕ[µx.ϕ/x] → µx.ϕ

and derivation rule:

(min) from ` ϕ[ψ/x] → ψ infer ` µx.ϕ→ ψ.

to the basic modal logic K. �

Clearly, (prefix) expresses that µx.ϕ is a prefixpoint of the formula ϕ(x), and (min)
says that µx.ϕ is in fact below any prefixpoint of ϕ(x).

Theorem 9.13 Kµ is sound and complete with respect to the standard semantics.
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9.6 Uniform interpolation

Definition 9.14 Given two modal fixpoint formulas ϕ and ψ, we say that ψ is a (local)
consequence of ϕ, notation: ϕ |= ψ, if S, s 
 ϕ implies S, s 
 ψ, for every pointed Kripke
model (S, s). �

Recall that a formalism has the interpolation property if we can find an interpolant
for every pair of formulas ϕ and ψ such that ϕ |= ψ. This interpolant is a formula θ
such that ϕ |= θ and θ |= ψ; but most importantly, the requirement on θ is that it may
only use symbols that occur both in ϕ and ψ.

I why this is an important property

As we will see now, the modal µ-calculus has uniform interpolation. This is a very
strong version of interpolation in which the interpolant θ does not depend on the shape
of ψ, but only on the language of ψ. More precisely, we define the following.

Definition 9.15 Let ϕ be a modal fixpoint formula, and Q ⊆ FV (ϕ). Then a uniform
interpolant of ϕ with respect to Q is a formula θ with FV (θ) ⊆ Q, such that for all
formulas ψ with FV (ψ) ∩ FV (ϕ) ⊆ Q:

ϕ |= ψ iff θ |= ψ. (14)

�

Remark 9.16 Instead of (14) we could have required

ϕ |= ψ iff ϕ |= θ and θ |= ψ, (15)

which perhaps shows more clearly that θ is indeed an interpolant.
These two definitions are in fact equivalent. The key observation to see this is that

(14) implies that from θ |= θ it follows that ϕ |= θ. �

Theorem 9.17 (Uniform Interpolation) Every modal fixpoint formula has a uni-
form interpolant.

The proof consists of showing that the modal µ-calculus can express bisimulation
quantifiers.

Proof. Fix the formula ϕ and the set Q, and define P := FV (ϕ) and R := P \ Q.
By the equivalence of modal fixpoint formulas and nondeterministic Kripke au-

tomata, it follows from Proposition 6.25 that the modal µ-calculus can express bisimu-
lation quantifiers. That is, given ϕ and Q, there is a formula IQ(ϕ) with FV (IQ(ϕ)) ⊆ Q
such that, for all pointed Q-models (M, s):

M, s 
 IQ(ϕ) iff S, s 
 ϕ for some P-model S with S�Q↔Q M.

We leave the fairly straightforward (but not completely trivial) task of verifying that
this IQ(ϕ) is a uniform interpolant of ϕ with respect to Q as an exercise for the reader.
qed
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9.7 Model checking

I Details to be supplied



A Basic fixpoint theory

Orders and lattices

Definition A.1 A partial order is a structure P = 〈P,≤〉 such that ≤ is a reflexive,
transitive and antisymmetric relation on P .

Given a partial order P, an element p ∈ P is an upper bound (lower bound, respec-
tively) of a set X ⊆ P if p ≥ x for all x ∈ X (p ≤ x for all x ∈ X, respectively). If the
set of upper bounds of X has a minimum, this element is called the least upper bound,
supremum, or join of X, notation:

∨
X. Dually, the greatest lower bound, infimum, or

meet of X, if existing, is denoted as
∧
X.

A partial order P is called a lattice if every two-element subset of P has both an
infimum and a supremum; in this case, the notation is as follows: p ∧ q :=

∧
{p, q},

p ∨ q :=
∨
{p, q}. Such a lattice is bounded if it has a minimum ⊥ and a maximum >.

A partial order P is called a complete lattice if every subset of P has both an infimum
and a supremum. In this case we abbreviate ⊥ :=

∨
∅ and > :=

∧
∅; these are the

smallest and largest elements of C, respectively. A complete lattice will usually be
denoted as a structure C = 〈C,

∨
,
∧
〉. �

Definition A.2 Given a family {Pi | i ∈ I} of partial orders, we define the product
order

∏
i∈I Pi as the structure 〈

∏
i∈I Pi,≤〉 where

∏
i∈I Pi denotes the cartesian product

of the family {Pi | i ∈ I}, and ≤ is given by π ≤ π′ iff π(i) ≤i π
′(i) for all i ∈ I. �

It is not difficult to see that the product of a family of (complete) lattices is again a
(complete) lattice, with meets and joins given pointwise. For instance, given a family
{Ci | i ∈ I} of complete lattices, and a subset Γ ⊆

∏
i∈I Ci, it is easy to see that Γ has

a least upper bound
∨

Γ given by( ∨
Γ
)
(i) =

∨
{γ(i) | γ ∈ Γ},

where the join on the right hand side is taken in Ci.

Definition A.3 Let P and P′ be two partial orders and let f : P → P ′ be some map.
Then f is called monotone if f(x) ≤′ f(y) whenever x ≤ y, and antitone if f(x) ≥′ f(y)
whenever x ≤ y. �

Fixpoints

Definition A.4 Let P = 〈P,≤〉 be some partial order, and let f : P → P be some
map. Then an element p ∈ P is called a prefixpoint of f if f(p) ≤ p, a postfixpoint of
f if f(p) ≥ p, and a fixpoint if f(p) = p. The sets of prefixpoints, postfixpoints, and
fixpoints of f are denoted respectively as PRE(f), POS(f) and FIX(f).

In case the set of fixpoints of f has a least, respectively greatest member, this
element is denoted as LFP.f , (GFP.f , respectively). �
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The following theorem is a celebrated result in fixpoint theory.

Theorem A.5 (Knaster-Tarski) Let C = 〈C,
∨
,
∧
〉 be a complete lattice, and let

f : P → P be monotone. Then f has both a least and a greatest fixpoint, and these are
given as

LFP.f =
∧

PRE(f),

GFP.f =
∨

POS(f).

Proof. We will only prove the result for the least fixpoint, the proof for the greatest
fixpoint is completely analogous.

Define q :=
∧

PRE(f), then we have that q ≤ x for all prefixpoints x of f . From
this it follows that f(q) ≤ f(x) for all such x, and hence by definition of prefixpoints,
f(q) ≤ x for all x ∈ PRE(f), so that f(q) is a lower bound of the set PRE(f). Hence,
by definition of q as the greatest such lower bound, we find f(q) ≤ q. In other words:
q itself is a prefixpoint of f .

It now suffices to prove that q ≤ f(q), and for this we may show that f(q) is a
prefixpoint of f as well, since q is by definition a lower bound of the set of prefixpoints.
But in fact, we may show that f(y) is a prefixpoint of f for every prefixpoint y of f —
this immediately follows by monotonicity of f . qed

Another way to obtain least and greatest fixpoint is to approximate them from
below, respectively, above.

Definition A.6 Let C = 〈C,
∨
,
∧
〉 be a complete lattice, and let f : C → C be some

map. Then by ordinal induction we define the following maps on C:

f 0
µ(c) := c,

fα+1
µ (c) := f(fα

µ (c))

fλ
µ (c) :=

∨
α<λ

fα
µ (c),

where λ denotes an arbitrary limit ordinal. Dually, we put

f 0
ν (c) := c,

fα+1
ν (c) := f(fα

ν (c)),

fλ
ν (c) :=

∧
α<λ

fα
ν (c),

�
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Proposition A.7 Let C = 〈C,
∨
,
∧
〉 be a complete lattice, and let f : C → C be

monotone. Then f is inductive, that is, fα
µ (⊥) ≤ fβ

µ (⊥) for all ordinals α and β such
that α < β.

Proof. Proof to be supplied qed

Corollary A.8 Let C = 〈C,
∨
,
∧
〉 be a complete lattice, and let f : C → C be mono-

tone. Then there is some α ≤ |C| such that LFP.f = fα
µ (⊥).

Proof. By inductiveness (Proposition A.7) there must be some ordinal α ≤ |C| such
that fα

µ (⊥) = fα+1
µ (⊥). From this it follows that fα

µ (⊥) is a fixpoint of f . To show
that it is the smallest fixpoint, one may prove that fβ

µ (⊥) ≤ LFP.f for every ordinal
β. This follows from a straightforward ordinal induction. qed

Definition A.9 Let C = 〈C,
∨
,
∧
〉 be a complete lattice, and let f : C → C be

monotone. The least ordinal α such that fα
µ (⊥) = fα+1

µ (⊥) is called the closure ordinal
of f . �

Multidimensional fixpoints

Suppose that we are given a finite family {C1, . . . ,Cn} of complete lattices, and put
C =

∏
1≤i≤n Ci. Given a finite family of monotone maps f1, . . . , fn with fi : C → Ci,

we may define the map f : C → C given by f(c) = (f1(c), . . . , fn(c)). It is easy to
prove that this f is monotone, so that by completeness of C it has a least and a greatest
fixpoint. An obvious question is whether one may express these multi-dimensional
fixpoints in terms of one-dimensional fixpoints of maps that one may associate with
f1, . . . , fn.

It will be convenient to introduce some notation. Given a map g : C → Ci and an
n − 1-tuple x̄ = (x1, . . . , xi−1, xi+1, . . . , xn), we let gx̄ : Ci → Ci denote the map given
by

gx̄(xi) := g(x1, x2, . . . , xn).

The least and greatest fixpoints of this operation will be denoted as µxi.g(x1, x2, . . . , xn)
and νxi.g(x1, x2, . . . , xn), respectively.

Furthermore, in this context we will also use vector notation, for instance writing

µ


x1

x2
...
xn

 .


f1(x1, . . . , xn)
f2(x1, . . . , xn)

...
f2(x1, . . . , xn)


for LFP.f .

The basic observation facilitating the computation of multidimensional fixpoints is
the following.
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Proposition A.10 Let D1 and D2 be two complete lattices, and let fi : D1×D2 → Di

for i = 1, 2 be monotone maps. Then

η

(
x
y

)
.

(
f1(x, y)
f2(x, y)

)
=

(
ηx.f1(x, ηy.f2(x, y))
ηy.f2(ηx.f1(x, y), y)

)
where η uniformly denotes either µ or ν.

Proof.

I To be supplied

qed

Using induction on the dimension, Proposition A.10 allows us to compute the least
and greatest fixpoints of any monotone map f on a complete finite product lattice.
The correctness of this elimination method, which is reminiscent of Gauss elimination
in linear algebra, is a direct consequence of Proposition A.10.

To see how it works, suppose that we are dealing with lattices C1, . . . ,Cn+1,C and
maps f1, . . . , fn+1, f , just as described above, and that we want to compute η~x.f , that
is, find the elements a1, . . . , an+1 such that

a1

a2
...

an+1

 = η


x1

x2
...

xn+1

 .


f1(x1, . . . , xn, xn+1)
f2(x1, . . . , xn, xn+1)

...
fn+1(x1, . . . , xn, xn+1)


Using Proposition A.10, with D1 = C1×· · ·×Cn, and D2 = Cn+1, we may first compute

gn+1(x1, . . . , xn) := ηxn+1.fn+1(x1, . . . , xn).

We then insert this in the remaining equations, and recursively obtain a solution
a1

a2
...
an

 = η


x1

x2
...
xn

 .


f1(x1, . . . , xn, gn+1(x1, . . . , xn))
f2(x1, . . . , xn, gn+1(x1, . . . , xn))

...
fn(x1, . . . , xn, gn+1(x1, . . . , xn))


Finally, we may compute an+1 := gn+1(a1, . . . , an).

Observe that in case Ci = Cj for all i, j and the operations fi are all term definable
in some formal algebraic fixpoint language, then each the components ai of the extremal
fixpoints of f can also be expressed in this language.
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Boolean algebras

In the case of monotone maps on complete Boolean algebras, least and greatest fixed
points become interdefinable, using the notion of (Boolean) duals of maps.

Definition A.11 A complete Boolean algebra is a structure B = 〈B,
∨
,
∧
,−〉 such

that 〈B,
∨
,
∧
〉 is a complete lattice, and − : B → B is an antitone map such that

x ∧ −x = ⊥ and x ∨ −x = > for all x ∈ B. �

It is not too hard to verify that in a complete Boolean algebra B = 〈B,
∨
,
∧
,−〉, it

holds that −
∨
X =

∧
{−x | x ∈ X} and −

∧
X =

∨
{−x | x ∈ X}.

Definition A.12 Let B = 〈B,
∨
,
∧
,−〉 be a complete Boolean algebra, and let f :

B → B be some map. Then the (Boolean) dual map of f is defined as the map
f̃ : B → B given by

f̃(b) := −f(−x).

�

Proposition A.13 Let B = 〈B,
∨
,
∧
,−〉 be a complete Boolean algebra, and let f :

B → B be monotone. Then f̃ is monotone as well, ˜̃f = f , and

LFP.f̃ = −GFP.f,

GFP.f̃ = −LFP.f.

Proof. We only prove that LFP.f̃ = −GFP.f , leaving the other parts of the proof as
exercises to the reader.

First, note that by monotonicity of f̃ , the Knaster-Tarski theorem gives that

LFP.f̃ =
∧

PRE(f̃).

But as an easy consequence of the definitions, we have that

b ∈ PRE(f̃) ⇐⇒ −b ∈ POS(f).

From this it follows that

LFP.f̃ =
∧
{−b | b ∈ POS(f)}

= −
∨

POS(f)

= −GFP.f.

qed
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Sets, relations and functions We use standard notation for set-theoretic operations
such as union, intersection, product, etc. The power set of a set S is denoted as ℘(S)
or ℘S, and we sometimes denote the relative complement operation as ∼SX := S \X.

Given a relation R ⊆ A×B, we introduce the following notation. R−1 denotes the
converse of R. ForX ⊆ A, we put R[X] := {b ∈ B | (a, b) ∈ R for some a ∈ X}; in case
X = {s} is a singleton, we write R[s] instead of R[{s}]. For Y ⊆ B, we will write 〈R〉Y
rather than R−1[Y ], while [R]Y denotes the set {a ∈ A | b ∈ Y whenever (a, b) ∈ R}.
Note that [R]Y = A\exopR(B \Y ). For R ⊆ S×S, R∗ denotes the reflexive-transitive
closure of R, and R+ the transitive closure.

Let f : A → B be a function from A to B. Given a set X ⊆ A, we let f [X] :=
{f(a) ∈ B | a ∈ X} denote the image of X under f , and given Y ⊆ B, f−1[Y ] := {a ∈
A | f(a) ∈ Y } denotes the preimage of Y . In case f is a bijection, we let f−1 denote
its inverse. The composition of two functions f : A → B and g : B → A is denoted
as g ◦ f or gf , and the set of function from A to B will be denoted as either BA or
A→ B.

It is well-known that there is a bijective correspondence

(A×B) → C ∼= A→ (B → C).

With a function f : A × B → C, associate the map that, for each a ∈ A, yields the
function fa : B → C given by fa(b) := f(a, b).

Sequences, lists and streams Given a set Σ, we define Σ∗ and Σω as the set of
lists or finite sequences over Σ, and the set of streams or ω-length sequences over Σ,
respectively. We write Σ∞ := Σ∗ ∪ Σω for the set of all sequences over Σ.

We will write ε for the empty sequence, and use v for the initial segment relation
between sequences, and < for the proper (i.e., irreflexive) version of this relation. For
a nonempty sequence π, first(π) denotes the first element of π. In the case that π is
finite we write last(π) for the last element of π.
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[1] A. Arnold and D. Niwiński. Rudiments of µ-calculus. Number 146 in Studies in
Logic. North-Holland, Elsevier, 2001.

[2] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Number 53 in Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 2001.
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