STATIC AND PACKAGING: INTRODUCTORY COMMENTS

John Chubb John Chubb Instrumentation

Packaging:

- to provide physical/mechanical containment
- marketing image and information
- electrostatically neutral and shielded conditions for microelectronics

Static relevance:

- attraction of airborne dust and debris:
 - o reduced quality of printing
 - o poor appearance affects sales prospects
 - dirty hands at unpacking goods
- charged material surfaces
 - o handling problems in web processing
 - clamping (useful for label holding, bad for destacking sheet stacks)
 - o risks of shocks (e.g. at rewinding webs)
 - o risks of ignition (e.g. flammable solvents)
 - risk of damage to microelectronic devices and assemblies

Relevant features for materials:

 static problems (and opportunities) relate to retained static charge.

Main influence is via surface voltage

- o charge decay time vs time of generation
- o speed and pressure of tribocharging
- shielding against electric field transients (re microelectronics)
- ability to support incendive electrostatic discharges (e.g. re FIBCs)

Within processing plant can try to control static by charge neutralising or adding charge.

Important, but will NOT help post-processing performance.

In general:

- best to ensure materials are suitable
 - charge decay
 - o capacitance loading
 - o shielding
 - o electrostatic discharge character
- where materials performance <u>not</u> optimum use additional control methods in processing