
Extending Oracle Enterprise Manager 10g

Alexander Gorbachev

This article was first published
in the “SELECT Journal”
Quarter 2 2006, Volume 13, No. 2

Page 2

Table of Content

INTRODUCTION 3

EXTENDING EXISTING ORACLE TARGETS 3

SQL-based User Defined Metrics 4

OS command-based Metrics 6

UDMs Pros and Cons 9

CREATING NEW TARGET TYPES 9

Target type metadata file 10
Display element 13
InstanceProperties element 13
Metric element 14
QueryDescriptor element 16
Fetchlets 17

Validating Target Type Metadata 20
Validation with ILint 20
Validation with Metric Browser 22

Default Collections 22
Putting It All Together 24

WHERE TO GO NEXT? 26

CONCLUSION 26

Page 3

Extending Oracle Enterprise Manager 10g

Are you missing your favorite scripts and indicators in Oracle Enterprise Manager Grid Control?
Find out how easy it is to incorporate your own metrics into the Grid Control framework. Do you
manage a multiple vendors’ environment and need to monitor many different components?
Learn how to create your own completely new target types in Grid Control with rich set of
availability and performance metrics.

Introduction
Many of you have probably used Oracle Enterprise Manager (OEM) to monitor and control your
Oracle environment. Now with Oracle Grid Control 10g you may even consider it a tool of
choice for enterprise monitoring and management. Thanks to the exciting new feature
Extensibility framework in OEM 10g you can now use it to monitor virtually any component of an
enterprise including systems from vendors other than Oracle.

There are two ways to add new functionality to OEM – adding user-defined metrics (UDMs) to
standard targets provided by Oracle and adding new targets such as network components,
application servers, third-party and home grown applications, non-Oracle databases, etc. UDMs
have limited functionality but they are much easier to set up. We will cover both ways, starting
with simpler UDMs.

This article is organized as a series of examples and provides a good deal of information to get
you started with extending OEM. It is assumed that the reader has some knowledge of OEM
and its principles in order to follow the practical examples. The material is based on 10g Grid
Control Release 1 and Release 2. There are few handy enhancements in the second release in
the area of extensibility. Examples are valid for any platform excluding shell scripts that are
written for a UNIX environment. Readers can easily adapt them to be used in Windows using
Perl, for example. Note that all samples of SQL and scripts are just for demonstration purposes.

Extending Existing Oracle Targets
Only Oracle Database and Host targets can be extended through the UDM mechanism. Metrics
based on SQL queries are used for database targets and those based on OS scripts are for
host targets.

UDMs are accessible from the bottom of the target’s home page in the Related Links section.
From this list you can manage existing and create new metrics. Figure 1 shows a sample UDM
screen.

Page 4

Figure 1 User-Defined Metrics screen

OEM provides basically the same functionality for UDM as for standard metrics. You can set
warning and critical thresholds, receive notifications, and view metric history. UDMs are fully
integrated into 10g Grid Control framework.

SQL-based User Defined Metrics
OEM 10g Release 1 supports only metrics returning a single value so SQL queries should
return a single row with one column.

Let’s create a sample metric that will show actual number of open cursors per session as a
percent of the max open cursors (defined by open_cursors init.ora parameter). We only need to
consider the session with top number of opened cursors. This metric will show how close we
are to the open_cursors limit. Note that this is sampling data and reflects the state at the
moment of metric collection so it might be possible that in between collections the value is
higher or lower.

SELECT ROUND (c.open_cursors / p.value * 100) open_cursors
 FROM (SELECT sid, COUNT (*) open_cursors
 FROM v$open_cursor
 GROUP BY sid
 ORDER BY 2 DESC) c,
 v$parameter p
 WHERE p.name = 'open_cursors' AND ROWNUM = 1

Listing 1 SQL query to retrieve maximum percent of open cursors

Enter “Max Open Cursors %” as metric name. In the SQL Query field enter the select statement
from Listing 1. Select metric type NUMBER and, if you use OEM 10gR2, chose a Single Value
option for SQL Query Output (OEM 10gR1 has no such option). In the credentials section, enter
the Oracle username and password – these can be the same as your target configuration, for
example, DBSNMP user. Now chose the greater than sign (>) as a comparison operator and
define warning and critical thresholds. I took values 70 and 90 for warning and critical
thresholds respectively, with the number of consecutive occurrences preceding notification set
to 1. We define that collection should start immediately and repeat every five minutes. That’s it
– our first user-defined metric is ready. In 10gR2 we can test metric collection using the “Test”
button before actually creating it. In the second release it’s also possible to define a custom
alert message but we will cover it in the next example.

OEM will collect this new UDM as if it’s a normal metric and store the results in the repository.
You can view metrics history by clicking on its name in the User-Defined Metrics screen. See
the output produced by this metric in my sample environment on Figure 2.

Page 5

Figure 2 UDM History screen

Note that you can have metrics that return string values and notification conditions can be set
using either CONTAINS or MATCH operators. One example of such metric is the standard
metric database state (Mounted, Open, etc). We will use this type later when we create an OS-
based metric.

In OEM 10g Release 2 you can define UDMs with two columns – key and value. In this case
OEM will consider the key-value pairs separately. A good example of a standard metric is
“Tablespace Usage” which returns the percent used for each tablespace. An excellent choice
for a two-column SQL-based UDM is queue monitoring. Oracle Queues are part of Oracle’s
Advanced Queuing feature – see [4] for more information on AQ.

SELECT q.owner || '.' || q.NAME queue_name, s.waiting
 FROM v$aq s, dba_queues q
 WHERE s.qid = q.qid
 ORDER BY 2 DESC

Listing 2 SELECT statement for AQ monitoring

This time we choose the “Two columns” option in the “SQL Query Output” field with “Metric
Type” once again “NUMBER”. We will fill the SQL Query field with a statement from Listing 2.
You may choose to filter queue owners and names so that it takes into account only the queues
that you are interested in so modify the WHERE clause to suite your requirements. Use the
same credentials as in the previous example. Alert thresholds can be defined as generic and
valid for all keys and/or as key specific in format “<key1>:<threshold1>;<key2>:<threshold2>”.
I will enter just generic thresholds: 10 and 100 for warning and critical alerts, respectively.

Page 6

Another nice feature of the second release is that a custom message is displayed whenever
threshold conditions are met. A custom notification message should include the placeholders
%Value% and %Key%. We define it as “Queue %Key% contains %Value% messages”. Use
the “Test” button to verify your statement.

When the first metric values are collected they can be seen in the UDM screen (Figure 3) and
historical values for each key are available as a graph similar to the one on Figure 2.

Figure 3 UDM screen for two columns metric

Alerts for UDM will be generated and shown on the home page along with others using the
message template provided in the metric definition. In our example, a critical alert can be
“Queue SCOTT.MY_QUEUE contains 110 messages”.

One small piece of advice about SQL based metrics – avoid returning a NULL from the query
and use the NVL function to substitute a value for NULL. I saw OEM behaving strangely when
my UDM returned a NULL value in the key column.

OS command-based Metrics
UDM based on an OS script/command can be used for a target of type Host. This can be either
a script or a binary program returning collected data to its standard output. Oracle standard
targets use Perl because it exists on all platforms and there are no big issues with the portability
between Windows and UNIX platforms unless the principles of metric collection vary
significantly.

We will create an UDM to monitor a MySQL engine running on the machine. Let’s call our
metric MySQL Engine Status and it will return a string either “Up” or “Down”. Defining a numeric
metric is practically the same and you can follow the same path. OS command based UDMs
with two columns are not supported even in OEM Release 2 so we are limited to one value only.

The screen to create a new OS-based UDM is similar to the one for a SQL-based metric.
Instead of a SQL query we should enter an OS command to run the required program. There is
an optional field for a space-separated list of environment variables that should be set before
calling the specified script. Note on the right side, the area with the list of predefined OEM
variables which can be used by the command line in the format of %variable%. These will be
substituted by OEM with corresponding values. For example, %perlbin% is the path to the Perl
binary directory. Perl is the Oracle standard scripting language, and one of its definite
advantages is portability between different platforms. For our example we will use just a simple

Page 7

UNIX shell script. If you need to use it for Windows, you should use either Perl or DOS-style
scripting.

#!/usr/bin/sh
Called from Oracle Grid Control to check MySQL engine status. Returns "Up"
or "Down"
Author: Alexander Gorbachev, 2005

status=`/usr/bin/mysqladmin1 ping 2>&1`

if ["$status" = "mysqld is alive"] ; then
 echo "em_result=Up"
else
 # Count mysqld processes
 mysqld=`ps -e | grep mysqld | grep -v grep | wc -l`
 if ["$mysqld" = "0"] ; then
 # No processes - MySQL is down
 echo "em_result=Down"
 else
 # Process is up so that's a metric collection error
 echo "em_error=$status"
 exit 1
 fi
fi

Listing 3 Shell script to monitor MySQL engine status

For the purpose of this exercise previous knowledge of MySQL is not really required – it’s
enough to understand that our program should perform the required checks to find out the
status and produce the output line in the form of “em_result=<value>”. In our case it will be
“em_result=Up” or "em_result=Down”. You can find more about MySQL in [Error! Reference
source not found.]. In case of problems encountered during metric evaluation, the script
should print the string in format “em_error=<error message>” and return a non-zero exit
code. This is demonstrated in Listing 3.

Let’s create our OS-based UDM. We’ll name it MySQL Engine Status and it should be of type
STRING. Enter the full path to the script from Listing 3, which is
/opt/oracle/monitor/mysql/mysql_db_status_udm.sh. In this case, Field
“Environment” should be empty. If you need to make your UDM collection script more flexible
you might want set here some variables as parameters. The Credentials section should include
OS user name and password, for example, mysql. Since our metric is of type STRING we
choose the condition operator CONTAINS and the critical threshold value “Down”. Let’s set it to
be collected every five minutes starting immediately.

Page 8

Figure 4 MySQL Status metric history

OEM will show changes in the metric value on its history screen as shown in Figure 4. When
values match the notification condition, OEM generates alerts that are shown on the target’s
home page along with other notifications (Figure 5).

Figure 5 MySQL Engine Status critical alert on home page

Collection errors are displayed in the same way as for standard metrics. I intentionally put a
typo in the script, and it produced an error like one shown in the Figure 6.

Page 9

Figure 6 Collection error for MySQL Engine Status

UDMs Pros and Cons
The main advantage of UDM is that it is a straightforward method which does not require any
additional knowledge of the framework and complex manipulations. However, there are number
of disadvantages:

 No direct support for user-defined monitoring targets
 Very limited number of collection types (SQL-based and OS script-based)
 No support for collection based on cumulative counters (like V$SYSSTAT) when the

metric’s value is calculated based on the difference between previous and current
measurements.

 UDM should be defined for each instance of target type, i.e. having 100 database
instances will require user to add 100 UDM metrics.

 Credentials are defined separately and different from those provided in target setup. If
they are changed for one target than every UDM of that target has to be updated
manually.

 Thresholds are defined in a separate screen from other metrics and have no real time
status.

All of the above are addressed with user-defined target types.

Creating New Target Types
OEM provides XML-based framework for describing the targets it monitors and manages. XML
files are used to store information about target types – what attributes should be defined for
every target instance, what metrics are collected, how metrics are calculated, how often, etc.

So how do you create a new target type? Well, the same way in which developers in Oracle
Corp. create their targets! All standard targets, such as Oracle database, Listener and Host, are
defined using the very same framework. XML files contain target type metadata, which is often
called data about data. Recall what you need to define new Oracle database target in OEM –
machine name, Oracle home, login credentials, port, and SID. These are attributes required for
each instance of an Oracle database target. OEM is also collecting database metrics like
performance statistics, tablespace space usage and etc. Information about the structure of
these attributes and collected statistics is called target type metadata.

Page 10

Where and how does OEM use target type metadata? OEM 10g Grid Control has a three-tier
architecture and includes the following functions:

 One Oracle Agent per host collecting information about monitored targets
 One or more Oracle Management Servers (OMS) receiving information from agents and

serving as central access point for end users via browser-based GUI
 An Oracle database hosting a central OEM Repository

Since target monitoring and interactions are done by the Oracle Agent, all target type metadata
files are placed on the agent’s side. The agent will transfer to OMS all metadata about new
targets as well as properties and collected metrics of defined target instances.

Directory $AGENT_HOME/sysman/admin/dtds contains XML Data Type Definition (DTD) files
describing the grammar of XML files used by Grid Control to store metadata – These are :
TargetMetadata.dtd, TargetCollection.dtd, Schedule.dtd, TargetInstance.dtd. These files should
also serve as reference on possible tags usage in the target type definition. Additional
information about XML and DTD can be found in [5].

As an example we will create a new user-defined target type with unique parameters and
metrics. It will also show that custom target types are much more flexible and a have a wealth
of features in comparison to the UDMs we created earlier.
We will take MySQL as example of a new target as it becomes more and more popular even
within Oracle shops for performing various less demanding tasks. In addition, it’s easy to
understand so you can follow examples even if you’ve never used it.

There are several main steps to create a new target type:
1. Create target type metadata
2. Validate new target type and metric collection
3. Define metrics default collection parameters
4. Distribute metadata and required support files to all hosts
5. Add instances of new target type

Target type metadata file
Target type metadata files are located in $AGENT_HOME/sysman/admin/metadata. All
standard predefined metadata files are located in this directory. You can start a new metadata
file from scratch or use one of predefined target types as a starting point and modify it as
required. The aforementioned directory is a good place for further education if you need more
complex target type examples.

We will call our metadata file “mysql.xml” and it should be placed in
$AGENT_HOME/sysman/admin/metadata. The file content is presented in Listing 4. As any
standard XML file, the first line should be the version of XML standard. The second line
referencing DOCTYPE is needed to specify the path to DTD so that XML file can be validated for
conformance to the rules defined in that DTD. This is a requirement for ILint tool (covered
later).

The top level element is named TargetMetadata and it includes unique target type id “mysql”
and metadata version “1.0”. You will need to change version number if you change the file.
When OMS detects that target type version changed, it will reload new metadata. The next level
normally includes three elements – Display, Metric and InstanceProperties.

<?xml version="1.0" ?>

Page 11

<!DOCTYPE TargetMetadata SYSTEM "../dtds/TargetMetadata.dtd">
<TargetMetadata META_VER="1.1" TYPE="mysql">
 <Display>
 <Label NLSID="mysql_name">MySQL</Label>
 </Display>
 <AltSkipCondition METRIC="Response" COLUMN="State"/>
 <Metric NAME="Response" TYPE="TABLE">
 <Display>
 <Label NLSID="resp">Response</Label>
 </Display>
 <TableDescriptor>
 <ColumnDescriptor NAME="Status" TYPE="STRING">

 <Display FOR_SUMMARY_UI="TRUE">
 <Label NLSID="resp_status">Status</Label>
 </Display>
 </ColumnDescriptor>

 <ColumnDescriptor NAME="response_time" TYPE="NUMBER">
 <Display FOR_SUMMARY_UI="TRUE">
 <Label NLSID="resp_time">Response time (ms)</Label>
 <ShortName NLSID="resp_time_short">Response</ShortName>
 </Display>
 </ColumnDescriptor>

 </TableDescriptor>
 <QueryDescriptor FETCHLET_ID="OSLineToken">
 <Property NAME="myhost" SCOPE="INSTANCE">host</Property>
 <Property NAME="myport" SCOPE="INSTANCE">port</Property>
 <Property NAME="myuser" SCOPE="INSTANCE"
OPTIONAL="TRUE">user</Property>
 <Property NAME="mypwd" SCOPE="INSTANCE"
OPTIONAL="TRUE">password</Property>
 <Property NAME="scriptDir"
SCOPE="GLOBAL">/opt/oracle/monitor/mysql</Property>
 <Property NAME="startsWith" SCOPE="GLOBAL">em_result=</Property>
 <Property NAME="errStartsWith" SCOPE="GLOBAL">em_error=</Property>
 <Property NAME="delimiter" SCOPE="GLOBAL">|</Property>
 <Property NAME="command"
SCOPE="GLOBAL">%scriptDir%/mysql_response.sh %myhost% %myport% %myuser%
%mypwd%</Property>
 </QueryDescriptor>
 </Metric>
 <Metric NAME="Load" TYPE="TABLE">
 <Display>
 <Label NLSID="mysql_load">Workload</Label>
 </Display>
 <TableDescriptor>
 <ColumnDescriptor NAME="threads_connected" TYPE="NUMBER">

 <Display FOR_SUMMARY_UI="TRUE">
 <Label NLSID="mysql_load_threads_connected">Threads

Connected</Label>
 </Display>
 </ColumnDescriptor>

 <ColumnDescriptor NAME="threads_running" TYPE="NUMBER">
 <Display FOR_SUMMARY_UI="TRUE">
 <Label NLSID="mysql_load_threads_running">Threads

Running</Label>
 </Display>
 </ColumnDescriptor>

 <ColumnDescriptor NAME="connections" TYPE="NUMBER"
TRANSIENT="TRUE" />
 <ColumnDescriptor NAME="connections_ps" TYPE="NUMBER"
COMPUTE_EXPR="(connections - _connections) / __interval">

Page 12

 <Display FOR_SUMMARY_UI="TRUE">
 <Label NLSID="mysql_load_connections_ps">Connections per

second</Label>
 </Display>
 </ColumnDescriptor>

 </TableDescriptor>
 <QueryDescriptor FETCHLET_ID="OSLineToken">
 <Property NAME="myhost" SCOPE="INSTANCE">host</Property>
 <Property NAME="myport" SCOPE="INSTANCE">port</Property>
 <Property NAME="myuser" SCOPE="INSTANCE"
OPTIONAL="TRUE">user</Property>
 <Property NAME="mypwd" SCOPE="INSTANCE"
OPTIONAL="TRUE">password</Property>
 <Property NAME="scriptDir"
SCOPE="GLOBAL">/opt/oracle/monitor/mysql</Property>
 <Property NAME="startsWith" SCOPE="GLOBAL">em_result=</Property>
 <Property NAME="errStartsWith" SCOPE="GLOBAL">em_error=</Property>
 <Property NAME="delimiter" SCOPE="GLOBAL">|</Property>
 <Property NAME="command" SCOPE="GLOBAL">%scriptDir%/mysql_load.sh
%myhost% %myport% %myuser% %mypwd%</Property>
 </QueryDescriptor>
 </Metric>
 <Metric NAME="procact" TYPE="TABLE">
 <Display>
 <Label NLSID="mysql_procact">Current Processes by Action</Label>
 </Display>
 <TableDescriptor>
 <ColumnDescriptor NAME="action" TYPE="STRING" IS_KEY="TRUE">

 <Display>
 <Label NLSID="mysql_procact_action">Action</Label>
 </Display>
 </ColumnDescriptor>

 <ColumnDescriptor NAME="proccount" TYPE="NUMBER">
 <Display>
 <Label NLSID="mysql_procact_proccount">Number of processes in

action</Label>
 </Display>
 </ColumnDescriptor>

 </TableDescriptor>
 <QueryDescriptor FETCHLET_ID="OSLineToken">
 <Property NAME="myhost" SCOPE="INSTANCE">host</Property>
 <Property NAME="myport" SCOPE="INSTANCE">port</Property>
 <Property NAME="myuser" SCOPE="INSTANCE"
OPTIONAL="TRUE">user</Property>
 <Property NAME="mypwd" SCOPE="INSTANCE"
OPTIONAL="TRUE">password</Property>
 <Property NAME="scriptDir"
SCOPE="GLOBAL">/opt/oracle/monitor/mysql</Property>
 <Property NAME="startsWith" SCOPE="GLOBAL">em_result=</Property>
 <Property NAME="errStartsWith" SCOPE="GLOBAL">em_error=</Property>
 <Property NAME="delimiter" SCOPE="GLOBAL">|</Property>
 <Property NAME="command"
SCOPE="GLOBAL">%scriptDir%/mysql_procact.sh %myhost% %myport% %myuser%
%mypwd%</Property>
 </QueryDescriptor>
 </Metric>
 <InstanceProperties>
 <InstanceProperty NAME="host">
 <Display>
 <Label NLSID="mysql_host">Hostname</Label>
 </Display>

Page 13

 </InstanceProperty>
 <InstanceProperty NAME="port">
 <Display>
 <Label NLSID="mysql_port">Port</Label>
 </Display>
 </InstanceProperty>
 <InstanceProperty NAME="user" OPTIONAL="TRUE">
 <Display>
 <Label NLSID="mysql_user">MySQL Username</Label>
 </Display>
 </InstanceProperty>
 <InstanceProperty NAME="password" CREDENTIAL="TRUE" OPTIONAL="TRUE"
HIDE_ENTRY="TRUE" NEED_REENTER="TRUE">
 <Display>
 <Label NLSID="mysql_password">Password</Label>
 </Display>
 </InstanceProperty>
 </InstanceProperties>
</TargetMetadata>

Listing 4 MySQL target type metadata

Display element
This element is used solely for storing a label that should be displayed by the Grid Control
console. It also includes NLSID which is used for multiple language support. This element is
used on different levels and defines a label that is used by Grid Control for the parent element
of Display. In this case, it tells OEM that it should use the “MySQL” label for targets of this
new type. You can see TargetMetadata.dtd file for more information regarding this element, for
example, how to assign it a longer description, short name, and even an icon.

InstanceProperties element
InstanceProperties is a required element that has to be placed after all Metric elements.
However, we discuss it now to better understand the Metric section later on. There must be
exactly one InstanceProperties descriptor in the root element TargetMetadata and it
consists of several InstanceProperty elements and optionally DynamicProperties
elements. Each InstanceProperty entry specifies an attribute of the target that should be
defined by a user in the Grid Console when adding a new target instances. A
DynamicProperty tag defines attributes that are calculated automatically by the Agent
instead. We will not cover them in detail, but just mention that they are calculated using the
same method as for the metrics – child QueryDescriptor element, covered later in details,
defines the collection method. As usual, more reference information is available in the
TargetMetadata.dtd file.

The following attributes should be specified for each InstanceProperty element. You can
see them in Listing 4 at the end of the InstanceProperties section.

 NAME – unique string identifying an attribute within a target type, for example, “host” for
machine hostname where MySQL is running.

 CREDENTIAL can be either FALSE or TRUE. Specifying it as true will encode the value of
an attribute so that clear text cannot be easily retrieved by unauthorized user.
Usernames and passwords are good candidates for that. Default value is FALSE when
value is stored in clear text. We use if for password property.

 OPTIONAL can be either FALSE or TRUE. When defined as TRUE instance property is
not required and can be left empty when defining new target instances. We set it to

Page 14

TRUE for user and password properties as it’s possible to configure MySQL to connect
without username and password. Default is FALSE.

There are few other handy attributes of the InstanceProperty tag but we are not going to cover
them all in this article. By now you know already where to look for more information about those
– in the TargetMetadata.dtd file.

Finally each instance property can and should include a child Dispaly tag defining a label
used by Grid Control for display purposes. It is the same Display element that we discussed
previously.

Metric element
This is the most important and complex element of the target type metadata file. Metric
element includes type and name unique within a target type. It also has to include a
TableDescriptor element if the metric type is defined as TABLE. TableDescriptor
defines columns with names, types and labels. Finally, there is a QueryDescriptor tag that
describes the Fetchlet used to collect the values of the metric. Note that all Metric tags have
to be placed before InstanceProperties element in the XML file.

Fetchlet is a term for metric collection components in OEM 10g including SQL, OS scripts,
SNMP, HTTP and others. Various fetchlets also exhibit different behavior in parsing output –
they can treat all output lines as a single value, or divide it by lines and even columns. We will
discuss this later when it comes to describing it in an XML file.

It’s possible to define multiple statistics to be collected for a metric using type TABLE which is
useful to reduce the number of calls to collectors and also reduces resource consumption.
Using TABLE type it’s also possible to define metrics collecting statistics grouped by a key value
(“procact” metric in our example returns one row per action that processes perform in the
database). Other common metric types are NUMBER and STRING. With simple types like
STRING and NUMBER, the fetchlet needs to return a single value. Metric of type TABLE
requires a fetchlet returning several columns and/or multiple rows.

TableDescriptor is a simple container for a set of ColumnDescriptor tags. Obviously,
each ColumnDescriptor element corresponds to a column returned by a collection Fetchlet
in the same order as defined in XML file. Attributes of ColumnDescriptor are NAME (unique
within target type) and TYPE that is either NUMBER or STRING. There is also a Display
element for each column. We have already discussed this generic tag.

It’s important to define a special metric with the name “Response”, of type TABLE and a column
named “Status”. The OEM availability framework will use this column for the target up and down
status and historical availability statistics. You will also need to define a critical condition for this
metric later. You can see in Figure 7 the availability history for the MySQL target – OEM knows
that the Target is down if Response=>Status generates critical alert. On a MySQL target home
page (Figure 12) you can see arrow up reflecting current status – it originates as well from the
Status column of the Response metric.

Page 15

Figure 7 MySQL availability history screen in Grid Control console

We define three metrics – Response, Load and Processes by Action. These are shown later in
Figure 8. The metric Response provides “Status” (Up/Down string reflecting state of MySQL
engine) and “Response Time” (response to an action for connecting and running simple
SELECT). When we are ready with a new target, the Response Time metric will look like one in
Figure 10.

Load metric includes “Threads Connected” (kind of analogue for current processes in Oracle),
“Threads Running” (i.e. active processes) and “Connections per Second”. Note that the first two
reflect the state at the time of collection while the last one represents a value calculated for the
period of time since the previous collection. For the latter we used a cumulative statistic
provided by MySQL which tracks the number of logons since startup. To implement this
functionality, OEM provides transient metrics that are collected but not uploaded to a central
OMS. These columns are marked with attribute TRANSIENT=”TRUE” just like the
“connections” columns in Listing 4. Based on current and previous values of this column we
can calculate number of user connections for the last collection interval and then divide it by the
interval to get number of connections per second. The column “connections_ps” uses
attribute COMPUTE_EXPR="(connections - _connections) / __interval" to
define the formula used to calculate column value. In this formula
“connections” identifies the current value of the transient column with the same name. The
previous value is referenced by prefixing column name with “_” underscore symbol. The time
passed since last collection is referenced via “__interval” (note double underscore in the
beginning) and it is returned in seconds.

Finally, there is a metric with NAME=“procact” to illustrate how OEM can collect multiple rows
when some of the columns are defined as key columns. Actions can be considered as one of
the work types that the process can do. Using Oracle as an analogy, it looks like a wait event
but on a much higher level – more like a step of command execution. The metric returns the
number of processes performing each action in the database at the moment of collection. For
example, processes can be in “Sleep” state – Idle processes, “Copying to tmp table”, “Locked”,
“Sorting for order” and etc. The first column containing action string is marked with the attribute
IS_KEY="TRUE" so that the values in another column are stored per key value.

Page 16

Figure 8 MySQL metrics screen in Grid Control console

QueryDescriptor element
The QueryDescriptor has a single attribute FETCHLET_ID that identifies uniquely the
fetchlet type used to collect the required information. The various fetchlets are discussed later
in this document. Each fetchlet is customized using a set of Property tags.

Each property tag has a NAME attribute. Each fetchlet has its own set of required properties
with predefined names. The SCOPE attribute defines the resolution context. Below are the
most important SCOPE options:

 GLOBAL – the value is resolved in the target type metadata file (i.e. the file that we are
building now). In our example, it is a “command” property with value
“%scriptDir%/mysql_response.sh %myhost% %myport% %myuser%
%mypwd%”. Strings within %% are substituted with the property values of the current
QueryDescriptor element. It is also often used for constant definitions like property
delimiter.

 SYSTEMGLOBAL – this value is resolved in the context of the emd.properties
configuration file in directory $AGENT_HOME/sysman/config. For example,
emd.properties contains “perlBin” the path to the Perl executable. This is useful if
Perl scripts are used to gather metric values. You can see examples in metadata files of
standard targets such as host.xml.

 INSTANCE – this value is resolved in the context of the target instance, i.e. values
defined in the targets.xml file (targets.xml file is covered later). This value is different for
each target instance. For example, the instance property SID is different for each
instance of the Oracle database target. For the MySQL target, we defined the properties
myhost, myport, myuser, and mypwd which are calculated for each target instance –
remember InstanceProperty elements with NAME host, port, user, and password?

 ENV – the value taken from environment variable.
Other possible options are described in TargetMetadata.dtd file.

Page 17

Fetchlets
The available types of fetchlets in OEM 10g Release 1 are described in [1] chapter 7 in detail.
They are listed here to give the reader an overview of how powerful they are.

 OS Command fetchlets are used to run OS scripts or commands and parse the output
for the results. There are three types.

o “OS” fetchlet – the whole output is treated as single value (normally useful for
NUMBER or STRING metric types.

o “OsLines” fetchlet – parses output so that each line is a separate row with one
column. Useful for TABLE type metrics with one column and for RAW metrics.

o “OsLineToken” fetchlet – parses output for lines and columns within a line
separated with predefined delimiter (“|” by default).

In our example we use the “OsLineToken” fetchlet and define the following properties:
 “command” – the OS command or script to run
 “delimiter” – separator symbol to parse each line for columns
 startWith – string that a line should begin with, to be included in the result

set. The string itself is not included in the metric value. We define it
“em_result=” so that all lines without this prefix are ignored.

 errStartWith – string that is similar to “startWith” but used to get an error
from the output when it returns non zero exit code.

Other properties are not required for the fetchlet itself but are used to form the value of
the global property “command”.

 The SQL fetchlet is used to return the result set from the SQL query (similar to what we
did with the SQL based UDM).

 SNMP fetchlet is a very powerful tool that allows monitoring devices that provide a
SNMP interface. For example, most of modern network components.

 URL Timing fetchlet is a very powerful tool used for the performance monitoring of Web
applications. It can return many statistics regarding accessing a web page – status,
connect time, avg./max/min response time, etc.

 DMS fetchlet is used to monitor components of Oracle Application Server through
Dynamic Monitoring Service.

 HTTP Data set of fetchlets is similar to OS fetchlets but retrieve output from an http://
URL. There are three distinct fetchlet types similar to OS fetchlets.

 URLXML fetchlet retrieves values from XML content retrieved via http:// URL.
 WBEM fetchlet allows monitoring targets that support Web-Based Enterprise

Management developed by Distributed Management Task Force, Inc.

Each of OSLineToken fetchlets we use in Listing 4 references a separate shell script. The
scripts are included in Listings 5, 6 and 7.

#!/usr/bin/sh
Script to collect response metric for MySQL target. Used for Oracle
EM 10g
Positional parameters are machine, port, user, password. Last two
are optional
Author: Alexander Gorbachev, 2005

pHost=$1
pPort=$2
pUser=$3

Page 18

pPassword=$4

Verify required arguments host and port
if [-z "$pHost"] ; then
 echo "em_error=MySQL machine is not defined" >&2
 exit 1
fi
if [-z "$pPort"] ; then
 echo "em_error=MySQL port is not defined" >&2
 exit 2
fi

Create connection arguments
connection_arguments="--protocol=tcp --host=$pHost --port=$pPort"
if [! -z "$pUser"] ; then
 connection_arguments="$connection_arguments --user=$pUser"
 if [! -z "$pPassword"] ; then
 connection_arguments="$connection_arguments --password=$pPassword"
 fi
fi

status=`/usr/bin/mysqladmin $connection_arguments ping 2>&1`

if ["$status" = "mysqld is alive"] ; then
 time1=`date +%s%N`
 mysql $connection_arguments >/dev/null <<-!
 select * from information_schema.tables limit 1;
!
 if [$? -eq 0] ; then
 time2=`date +%s%N`
 response_ms=`expr \($time2 - $time1 \) / 1000000`
 else
 response_ms=""
 fi

 echo "em_result=Up|$response_ms"
else
 # No processes - MySQL is down
 echo "em_result=Down"
fi

Listing 5 Shell script for Response metric mysql_resp.sh

#!/usr/bin/sh
Script to collect load metrics for MySQL target. Used for Oracle EM
10g
Positional parameters are machine, port, user, password. Last two
are optional
Author: Alexander Gorbachev, 2005

pHost=$1
pPort=$2
pUser=$3
pPassword=$4

Page 19

Verify required arguments host and port
if [-z "$pHost"] ; then
 echo "em_error=MySQL machine is not defined" >&2
 exit 1
fi
if [-z "$pPort"] ; then
 echo "em_error=MySQL port is not defined" >&2
 exit 2
fi

Create connection arguments
connection_arguments="--protocol=tcp --host=$pHost --port=$pPort"
if [! -z "$pUser"] ; then
 connection_arguments="$connection_arguments --user=$pUser"
 if [! -z "$pPassword"] ; then
 connection_arguments="$connection_arguments --password=$pPassword"
 fi
fi

 output=`mysql $connection_arguments 2>&1 <<-!
 show global status;
!`
 if [$? -eq 0] ; then
 threads_connected=`echo "$output" | grep "^Threads_connected" |
awk '{print $2}'`
 threads_running=`echo "$output" | grep "^Threads_running" | awk
'{print $2}'`
 connections=`echo "$output" | grep "^Connections" | awk '{print
$2}'`
 echo "em_result=$threads_connected|$threads_running|$connections"
 else
 echo em_error=$output
 exit 10
 fi

Listing 6 Shell script for metric Load mysql_load.sh

#!/usr/bin/sh
Script to collect proccesses by action metric for MySQL target. Used
for Oracle EM 10g
Positional parameters are machine, port, user, password. Last two
are optional
Author: Alexander Gorbachev, 2005

pHost=$1
pPort=$2
pUser=$3
pPassword=$4

Verify required arguments host and port
if [-z "$pHost"] ; then
 echo "em_error=MySQL machine is not defined" >&2
 exit 1
fi
if [-z "$pPort"] ; then

Page 20

 echo "em_error=MySQL port is not defined" >&2
 exit 2
fi

Create connection arguments
connection_arguments="--protocol=tcp --host=$pHost --port=$pPort"
if [! -z "$pUser"] ; then
 connection_arguments="$connection_arguments --user=$pUser"
 if [! -z "$pPassword"] ; then
 connection_arguments="$connection_arguments --password=$pPassword"
 fi
fi

Get process list and take only 5th column - action; sort it
output=`mysql $connection_arguments 2>&1 <<-!
 show processlist;
!`

 if [$? -eq 0] ; then
 # Take 5th column and sort
 output2="`echo \"$output\" | grep -v '^Id' | awk '{print $5}' |
sort`"
 # For each unique action count number of processes
 for action in `echo "$output2" | uniq` ; do
 echo "em_result=$action|`echo \"$output2\" | grep \"^$action\$\"
| wc -l`"
 done
 else
 echo em_error=$output >&2
 exit 10
 fi

Listing 7 Shell script for metric Processes by Action mysql_procact.sh

Validating Target Type Metadata
There are two steps in the validation process – validate the structure of XML files and test the
metric collection. Oracle provides the ILint tool to assist in XML files validation – this can be run
while you are writing your metadata file (static validation) to perform continuous checks, as well
as ensuring that the collection process works as expected in the end. In addition, the Oracle
Agent provides the Metric Browser tool that helps to validate metric collection from your
browser.

Validation with ILint
ILint can validate general syntax of an XML file as well as conformance to its respective DTD.
For the latter, the XML file should include the DOCTYPE declaration to reference the DTD file
which it should be checked against. This is the second line in the Listing 4 and it should include
the root element name and relative path to the DTD file. ILINT does more than validation
against the DTD; it also validates metadata based on a set of internal rules specific for OEM
and reports any errors. For example, ILint makes sure that there is TableDescriptor
element defined if metric type is defined as TABLE.

Page 21

ILint is called via the emctl utility that is also used for other agent management operations
such as start, stop and status. A Short help option is available from the command line by typing
emctl ilint. You can also find more details in [1] chapter 3.

Let’s first validate our XML file using ”emctl ilint -m
$AGENT_HOME/sysman/admin/metadata/mysql.xml“. This command reports all violations
detected in the content of a target type metadata file. Using “-c” option we can also validate
the default metric collection definition created in the next step.

In order to verify the collection process we need to create a target instance definition XML file.
Normally, the agent keeps these definitions in $AGENT_HOME/sysman/emd/targets.xml but we
will create file /opt/oracle/monitor/mysql/test_target.xml (see Listing 8) only for one target. This
instance definition sets target name to MySQL-1.lcbdt201 and type to mysql. Note that it
provides values for instance properties which we defined earlier in target type metadata XML
file in the InstanceProperties section of Listing 4. You should define your own
hostname/port and perhaps username/password.

<Targets>
 <Target TYPE="mysql" NAME="MySQL-1.lcbdt201">
 <Property NAME="host" VALUE="lcbdt201"/>
 <Property NAME="port" VALUE="3306"/>
 <Property NAME="user" VALUE="root"/>
 </Target>
</Targets>

Listing 8 Target definition XML file test_target.xml

Now we can test metric collection with ILint. See Listing 9 for command line and output. Note
that we specified our custom instance definition file with the -t option and the metric to be
collected with the -r option. You can check the “Load” and “procact” metric in the same way.

$ emctl ilint –m $AGENT_HOME/sysman/admin/metadata/mysql.sql \
 -i /opt/oracle/monitor/mysql/test_targets.xml
 -t MySQL-1.lcbdt201 –r Response
.........(skipped lines here)..........
==
Target = "MySQL-1.lcbdt201" has the following 3 Properties
==
Property: host --> Value: lcbdt201 (INSTANCE)
Property: port --> Value: 3306 (INSTANCE)
Property: user --> Value: root (INSTANCE)

==
Executing Metric = "Response"
==
Number of Rows = 1

+=============+====================+
Status	response_time
	(Response time (ms))
type = STRING	type = NUMBER
+=============+====================+	
Up	17

Page 22

+-------------+--------------------+
METRIC=Response, TARGET=(mysql,MySQL-1.lcbdt201)
timestamp=2005-12-08 12:40:49
Target Metadata File
/opt/oracle/product/10g/agent10g/sysman/admin/metadata/mysql.xml
Validated Successfully

Listing 9 Using ILint to validate metric collection

Validation with Metric Browser
The Oracle agent has an internal component called Metric Browser that shows collected values
for all targets. In order to use the Metric Browser, it should be activated first – uncomment the
line enableMetricBrowser=true in the file $AGENT_HOME/sysman/config/emd.properties
and restart agent using “emctl stop agent“ followed by “emctl start agent”. In the
same emd.properties file you should find the variable EMD_URL with a value in the format of
http://<host>:<port>/emd/main/. You will use later <host> and <port> for Metric Browser URL
http://<host>:<port>/emd/browser/main.

Before we can view the metrics of our new target instance it should be registered with an agent.
We can do it using the file test_target.xml created earlier and add it with the command “emctl
config agent addtargets /opt/oracle/monitor/mysql/test_target.xml“.
MySQL-1.lcbdt201 target will be added to the standard targets.xml file. Now you can open
Metric Browser URL and select MySQL-1.lcbdt201 target to view its metrics. Figure 9
demonstrates the Web page with the “procact” metric.

Figure 9 Using Metric Browser for "procact" metric validation

Default Collections
Target type metadata is not enough for a fully functional target. We need to define the schedule
of metric collection and notification conditions. This is done using the default collection XML
files in $AGENT_HOME/sysman/admin/default_collection. These files have normally the same
name as the target type metadata file, i.e., mysql.xml in our example. Collection attributes can
be changed in the Grid Control console for each target instance. The content of the file is
shown in Listing 10. The root element must be TargetCollection and the TYPE attribute
should match the TYPE attribute of the TargetMetadata root element defined earlier in
another file. The file TargetCollection.dtd describes the structure of default collection XML file
and should serve as reference just like TargetMetadata.dtd.

<?xml version="1.0" ?>

Page 23

<!DOCTYPE TargetCollection SYSTEM "../dtds/TargetCollection.dtd">
<TargetCollection TYPE="mysql">
 <CollectionItem NAME="Response" UPLOAD="YES" UPLOAD_ON_FETCH="TRUE">
 <Schedule>
 <IntervalSchedule INTERVAL="5" TIME_UNIT="Min"/>
 </Schedule>
 <Condition COLUMN_NAME="Status" CRITICAL="Down" OPERATOR="CONTAINS"/>
 <Condition COLUMN_NAME="response_time" WARNING="100" CRITICAL="300"
OPERATOR="GT" OCCURRENCES="2"/>
 </CollectionItem>
 <CollectionItem NAME="Load" UPLOAD="YES">
 <Schedule>
 <IntervalSchedule INTERVAL="5" TIME_UNIT="Min"/>
 </Schedule>
 <Condition COLUMN_NAME="threads_connected" WARNING="1000"
OPERATOR="GT"/>
 <Condition COLUMN_NAME="threads_running" WARNING="50" CRITICAL="100"
OPERATOR="GT" OCCURRENCES="2"/>
 </CollectionItem>
 <CollectionItem NAME="procact" UPLOAD="YES">
 <Schedule>
 <IntervalSchedule INTERVAL="5" TIME_UNIT="Min"/>
 </Schedule>
 </CollectionItem>
</TargetCollection>

Listing 10 Default collections XML file

Figure 10 MySQL Response Time metric

The structure is very simple – a root element has one or more CollectionItem elements.
Each CollectionItem corresponds to one metric defined in the target type metadata. The

Page 24

NAME attribute of CollectionItem should match that of the Metric element so that OEM
knows collection of which metric is described. Inside CollectionItem is defined a Schedule
tag. The most useful component of the Schedule is IntervalSchedule which defines the
frequency of metric collection.

Another child element of CollectionItem is Condition that optionally can be defined for
each column of the metrics. Condition includes an OPERATOR that defines logical operation,
WARNING and CRITICAL thresholds as well as the number of occurrences that should happen
before notification is generated. We use the operator CONTAINS to check if the Status column
contains the string “Down” which triggers a critical alert. The Operator GT equates to “greater
than“ and is a default operator. GT triggers a notification when the column value is greater than
the defined warning or critical thresholds. When we finish, the Response Time metric history
can look like one shown in Figure 10. Note warning and critical thresholds’ colored areas above
100 and 300 ms respectively. Since we set two occurrences required for the alert, short single
spikes above 300 didn’t produce any critical alerts.

As mentioned already it is important to define a critical condition for the Status column of the
Response metric as this is used by the OEM framework for target availability (see Figure 7).

Putting It All Together
Target type metadata and default collection XML files should be distributed to each host in
respective directories $AGENT_HOME/sysman/admin/metadata and
$AGENT_HOME/sysman/admin/default_collection. Agents should be reset using emctl
reload agent command on every host. Note that all the required shell scripts should be
distributed as well. For our MySQL target type we have three shell scripts mysql_resp.sh,
mysql_load.sh and mysql_procact.sh located in /opt/oracle/monitor/mysql.

Page 25

Figure 11 New MySQL target definition from Grid Control Web console

When distribution is done we can add new targets from the OEM. An example of a new MySQL
target screen is in Figure 11. Basically it’s the same information we provided in the
“test_targets.xml” file earlier during ILint validation. Behind the scenes OMS will create an XML
file with the target instance properties we provide on this screen and send it to the agent for
registration. The Agent will add this target instance to its standard targets.xml file in
$AGENT_HOME/sysman/emd. It’s still possible to use the command emctl config agent
addtargets. This is a preferred method when adding many similar targets as it can be easily
scripted.

Figure 12 MySQL target home page

Page 26

We are finally done and can enjoy our new target – Figure 12.

Where To Go Next?
You should reference DTD files for additional information on metadata structure. Oracle
documentation [1] also covers many details and describes a sample target – a custom web
application. The source code for this application is available from [3] so you can download and
install it in your own environment. The new extensibility guide for OEM Release 2 is under
development at the time of writing.

OEM 10g Release 2 comes with many new features and they are also reflected in the
Extensibility area. Besides the few handy enhancements mentioned already, there are many
improvements in metadata structure. There are also new fetchlets. An excellent example is the
SGA Fetchlet for SGA direct access – isn’t that a tool all DBAs have been dreaming about?

Release 2 brings a new important concept of Extensibility Plug-ins. This feature allows third-
party vendors to provide easy-to-install plug-ins for their software packages or hardware
devices. The Plug-in package is uploaded only once using web GUI of central OMS and than
OEM takes care of the deployment to required agents without any manual actions on remote
hosts. Plug-in package can also include customized Web pages for the target type – custom
home page, custom reports and graphs. You can find more details on the plug-ins concept in
[2].

Conclusion
We have traversed the complete route from creating simple User-Defined Metric to adding a
fairly sophisticated, completely new target type for MySQL database. Even though we covered
only the tip of the iceberg, it’s an important step towards to getting you started in enterprise
monitoring solutions based on Oracle Enterprise Manager 10g Grid Control.

Page 27

References

1. “Extending Enterprise Manager, 10g Release 1 (10.1) for UNIX and Windows”, Part No.
B12014-01,
www.oracle.com/technology/products/oem/extensions/extensibility_guide.pdf

2. Extending Enterprise Manager 10g Grid Control for Complete Data Center
Management,
www.oracle.com/technology/products/oem/extensions/EM_Extensibility_Whitepaper.pdf

3. Enterprise Manager Extensibility Kit,
www.oracle.com/technology/products/oem/extensions/emx_10.1.0.jar

4. Oracle Streams Advanced Queuing User's Guide and Reference, Part Number B14257-
01

5. W3Schools Online Web Tutorials at http://www.w3schools.com/xml/ and
http://www.w3schools.com/dtd/

6. MySQL online documentation at http://dev.mysql.com/doc/

Author’s homepage is www.oracloid.com.
He can be contacted by email – gorbyx [at] gmail [dot] com.

