
� August 2010

Making the Most of
Oracle Exadata

by Marc Fielding

A
t Oracle’s third-quarter earnings call, Larry Ellison
announced that Oracle Exadata is “well on its way
to being the most successful product launch in
Oracle’s 30-year history,” with a sales pipeline

approaching $1 billion for 2011. He attributed these sales to
the game-changing performance of the Oracle Exadata plat-
form. But what is the “secret sauce” behind these performance
numbers? Read on to learn about the major performance fea-
tures of Oracle Exadata, and discover tips on how to maximize
performance from those features based on the author’s own
experience implementing Exadata.

Key Features

Smart scans: Smart scans are Exadata’s headline feature.
They provide three main benefits: reduced data transfer vol-
umes from storage servers to databases, CPU savings on data-
base servers as workload is transferred to storage servers, and
improved buffer cache efficiency thanks to column projection.
Smart scans use helper processes that function much like par-
allel query processes but run directly on the storage servers.
Operations off-loadable through smart scans include the fol-
lowing:

 Predicate filtering—processing WHERE clause com-
parisons to literals, including logical operators and most
SQL functions.

 Column projection—by looking at a query’s SELECT
clause, storage servers return only the columns request-
ed, which is a big win for wide tables.

 Joins—storage servers can improve join performance by
using Bloom filters to recognize rows matching join
criteria during the table scan phase, avoiding most of
the I/O and temporary space overhead involved in the
join processing.

 Data mining model scoring—for users of Oracle Data
Mining, scoring functions like PREDICT() can be eval-
uated on storage servers.

Storage indexes: Storage indexes reduce disk I/O volumes
by tracking high and low values in memory for each 1-mega-
byte storage region. They can be used to give partition pruning

benefits without requiring the partition key in the WHERE
clause, as long as one of these columns is correlated with the
partition key. For example, if a table has order_date and pro-
cessed_date columns, is partitioned on order_date, and if or-
ders are processed within 5 days of receipt, the storage server
can track which processed_date values are included in each
order partition, giving partition pruning for queries referring
to either order_date or processed_date. Other data sets that
are physically ordered on disk, such as incrementing keys, can
also benefit.

Columnar compression: Hybrid columnar compression
(HCC) introduces a new physical storage concept, the compres-
sion unit. By grouping many rows together in a compression
unit, and by storing only unique values within each column,
HCC provides storage savings in the range of 80–90% based on

the compression level selected. Since data from full table scans
remains compressed through I/O and buffer cache layers, disk
savings translate to reduced I/O and buffer cache work as well.
HCC does, however, introduce CPU and data modification
overhead that will be discussed in the next section.

Flash cache: Exadata’s flash cache supplements the data-
base servers’ buffer caches by providing a large cache of 384
GB per storage server and up to 5 TB in a full Oracle Exadata
Database Machine, considerably larger than the capacity of
memory caches. Unlike generic caches in traditional SAN stor-
age, the flash cache understands database-level operations,
preventing large non-repeated operations such as backups and
large table scans from polluting the cache. Since flash storage
is nonvolatile, it can cache synchronous writes, providing per-
formance benefits to commit-intensive applications.

S P E C I A L
F E At U R E

Marc Fielding

“By grouping many rows together
in a compression unit, and by

storing only unique values within
each column, HCC provides

storage savings in the range of
80–90% based on the compression

level selected.”

�The NoCOUG Journal

Hot/cold storage: The inherent geometry of rotating disks
means that data is stored more densely in the outer portion of
disk platters, giving higher throughput for disk operations on
outer tracks and reducing the amount of time spent on head
movement. Some Oracle systems currently leave inner tracks
completely unused for this reason. Exadata allows the creation
of separate “hot” ASM diskgroups for performance-critical
data in outer disk regions and “cold” diskgroups for fast recov-
ery area use in the inner regions.

I/O resource manager: Exadata’s I/O Resource Manager
(IORM) permits disk I/O operations to be prioritized on the
storage cell in the same fashion as CPU time, and parallel query
processes are currently managed by the Database Resource
Manager (DBRM) on the database server. IORM is particu-
larly useful when consolidating multiple database workloads
together, by allowing I/O capacity to be allocated between dif-
ferent workloads according to their importance and config-
ured limits.

Balanced hardware: The Exadata-powered Oracle Database
Machine includes a fixed ratio of database nodes, storage serv-
ers, and associated networking equipment designed to avoid
performance bottlenecks in any single part of the infrastruc-
ture.

Optimizing Performance

Exadata’s performance features have been designed to work
out of the box and require no manual configuration to use.
That being said, a few small optimizations can greatly improve
their effectiveness, and below are some battle-tested perfor-
mance tips based on real-world Exadata deployments.

Use parallel query: Each Exadata storage cell contains 12
disks, which adds up to 168 disks in a full rack configuration. A
key to efficient use of disk resources is to spread workload over
these disks and particularly to avoid sequential operations that
must wait until one disk operation completes before starting
another. The ASM storage layer uses striping to distribute data
evenly across physical disks, but it is up to the database instanc-
es to send I/O requests in such a way that the disks stay busy,
which is where parallel query comes in. By splitting database
operations into small chunks, parallel query can keep multiple
physical drives busy, thus improving query response time.

The challenge in using parallel query is that the same opti-
mizations that improve response time at slow periods can actu-
ally reduce scalability during periods of high demand, due to
contention for the hard drives’ fixed I/O capacity. Additionally,
too many parallel processes can overwhelm system resources on
database servers, causing additional performance degradation.
To combat this problem, the Oracle database sets a limit on
parallel query processes, PARALLEL_MAX_SERVERS. Once
the system reaches PARALLEL_MAX_SERVERS, new requests
run without parallelism at all, creating high variability in re-
sponse time. The best way to avoid this situation is to avoid
having it happen in the first place, using the Database Resource
Manager to control maximum parallelism. Based on an analysis
of expected concurrency and parallel query capacity (which is
typically 128 and 256 processes on Exadata database nodes,
depending on the mix of full-scan and more-CPU-intensive
index operations), a resource manager plan can be constructed

involving limits on both the number of parallel query processes
per session and the total number of concurrent sessions.

While adding concurrency is of great benefit to large table
scans, the overhead of managing parallel query processes can
actually slow down scans of small tables. As a rule of thumb, if
table operations take less than half a second to complete, par-
allel query delivers diminishing benefits, although this thresh-
old can vary based on workload patterns. It is relatively simple
to benchmark by testing common queries with varying de-
grees of parallelism, taking into account the system’s total
process capacity.

Learn to love the full scan: Index-based access paths work
by generating a list of unique row identifiers from an index
and then looking up the rows one by one from the source
table. While very efficient for small lookups, the overhead of
such sequential, random disk accesses increases nearly linearly
as data size increases, making full scans more efficient for the
large retrievals common in data warehouse workloads.

Since index access paths perform filtering at the database
server rather than the storage server, Exadata’s smart scan row
filtering and join filters offer little benefit. Index-based table
lookup performance further degrades with columnar com-
pression, since even a single-row lookup requires reading an
entire compression unit.

Good full-scan performance hinges on a good partition
layout. Careful thought needs to be given to permit full parti-
tions to closely match the data that users typically request.

Oracle provides several tools to help:

 A wide variety of partition types, including range, hash,
list, interval, reference, or even virtual columns

 Composite subpartitioning with different partition and
subpartition key columns, providing further benefits for
queries involving multiple columns

“The challenge in using
parallel query is that the same

optimizations that improve
response time at slow periods can
actually reduce scalability during

periods of high demand, due to
contention for the hard drives’

fixed I/O capacity. Additionally,
too many parallel processes can
overwhelm system resources on

database servers, causing
additional performance

degradation.”

10 August 2010

	 Storage	indexes,	giving	the	same	benefits	as	partition	
pruning	when	data	is	clustered	on	disk	

Although	matching	partition	layout	with	query	data	sets	
provides	maximum	benefit	of	Exadata’s	features,	it’s	rarely	
possible	to	match	a	partition	layout	to	every	possible	query.	In	
such	cases,	indexes	are	still	required.	Referential	integrity	con-
tinues	to	require	indexes	as	well,	although	primary	key	indexes	
can	be	set	to	INVISIBLE	(and	therefore	not	be	considered	by	
the	optimizer)	if	they	prevent	legitimate	full	partition	scans.	

Don’t	stop	tuning	applications:	The	advent	of	Exadata	does	
not	replace	the	need	for	application-level	tuning.	Poorly	scal-

ing	application	code	will	not	suddenly	become	scalable	when	
run	on	Exadata.	The	same	tuning	methods	used	in	regular	
Oracle	RAC	databases	will	continue	to	work,	so	take	advantage	
of	the	volumes	of	application-level	tuning	resources	already	
available	for	Oracle	RAC	platforms.	

Spread disk groups across all available cell disks:	Exadata’s	
storage	architecture	makes	it	easy	to	implement	SAME	(Stripe	
and	Mirror	Everything)	striping	across	all	available	drives.	
Thanks	to	the	I/O	Resource	Manager,	the	performance	guar-
antees	previously	only	available	by	dedicating	disks	to	specific	
applications	can	be	obtained	on	a	SAME	layout.	A	SAME	disk	
layout	not	only	allows	more	efficient	use	of	space,	but	it	also	
gives	better	utilization	of	I/O	capacity	as	well.	For	example,	
production	applications	can	be	guaranteed	a	certain	per-
centage	of	I/O	capacity—or	even	absolute	priority	when	
they	require	it—leaving	otherwise	available	capacity	for	
non-production	applications.	

Manage allocation units and extents carefully:	Exadata	
storage	cells	are	divided	up	into	individual	allocation	units	
managed	by	ASM,	analogous	to	stripes	in	a	RAID	configura-
tion.	Increasing	ASM	allocation	unit	size	from	the	default	1	
MB	to	4	MB	or	even	8	MB	improves	performance	of	large	
reads	by	reducing	the	amount	of	seeking	that	drives	need	to	
do,	along	with	reducing	the	overhead	for	managing	allocation	
units	themselves.	The	table-scanning	benefits	of	larger	alloca-
tion	units	only	happen	when	they	can	be	filled	with	a	single	
table	or	index	extent.	To	ensure	that	allocation	units	are	not	
shared	between	multiple	extents,	set	initial	extents	in	large	ta-

bles	to	be	at	least	as	large	as	the	ASM	allocation	unit	size.	This	
process	can	be	automated	by	using	the	CELL_PARTITION_
LARGE_EXTENTS	initialization	parameter,	which	sets	initial	
extents	to	8	MB	automatically	for	table	partitions.	Large	8	MB	
initial	extents	can	be	wasteful	when	storing	very	small	objects,	
however.	So	for	objects	not	expected	to	grow,	smaller	initial	
extents	are	still	appropriate.	

Reserve the flash cache for caching:	Objects	can	be	stored	
on	flash	disks	permanently	by	creating	flash-based	grid	disks.	
However,	this	type	of	storage	layout	usually	hurts	perfor-
mance,	since	the	built-in	caching	logic	can	do	a	better	job	of	
identifying	which	exact	data	blocks	are	the	most	frequently	
used	and	make	intelligent	caching	decisions	based	on	this	in-
formation.	Additionally,	since	true	cache	data	does	not	need	
normal	redundancy,	a	cache	can	store	twice	as	much	data	in	
the	same	amount	of	storage	as	a	grid	disk.	

Consider Oracle Secure Backup:	Oracle	Secure	Backup	
(OSB)	runs	on	media	servers	directly	connected	to	the	
Exadata	Inf iniBand	fabric.	 In	its	current	form,	however,	
OSB	 has	 an	 important	 limitation:	 it	 can	 only	 back	 up	 to	
dedicated	tape	devices	directly	attached	to	OSB	media	serv-
ers.	 Neither	 disk-based	 backups	 nor	 third-party	 backup	
servers	are	supported.	In	environments	that	can	accommo-
date	this	restriction,	however,	OSB	eliminates	network	traf-
fic	on	the	database	servers’	Ethernet	interfaces.

Use columnar compression judiciously:	Hybrid	columnar	
compression	(HCC)	in	Exadata	has	the	dual	advantages	of	
reducing	storage	usage	and	reducing	I/O	for	large	reads	by	
storing	data	more	densely.	However,	HCC	works	only	when	
data	is	inserted	using	bulk	operations.	If	non-compatible	op-
erations	like	single-row	inserts	or	updates	are	attempted,	
Exadata	reverts	transparently	to	the	less	restrictive	OLTP	com-
pression	method,	losing	the	compression	benefits	of	HCC.	
When	performing	data	modifications	such	as	updates	or	de-
letes,	the	entire	compression	unit	must	be	uncompressed	and	
written	in	OLTP-compressed	form,	involving	an	additional	
disk	I/O	penalty	as	well.	To	avoid	such	overhead,	consider	
compressing	only	data	that	infrequently	changes,	such	as	his-
torical	data.	If	partitioning	data	by	date	and	data	modification	
happens	occasionally,	a	scripted	automated	process	could	pe-
riodically	re-compress	older	partitions.	

Conclusion

Businesses	today	are	faced	with	ever-increasing	user	demands	
and	data	volumes.	The	combination	of	Exadata’s	feature	set	with	
a	well-focused	performance	tuning	effort	can	help	address	these	
challenges	while	benefiting	from	the	results	of	20	years	of	Oracle	
product	development.	s

Marc Fielding is a senior consultant with Pythian, a leading data-
base infrastructure and application services company, where
he specializes in high availability, scalability, and performance.
Having worked with Oracle database products over the past nine
years, his experience across the entire enterprise application stack
allows him to provide reliable, scalable, fast, creative, and cost-
effective solutions to Pythian’s diverse client base. Read his blog
posts at www.pythian.com/news/tag/exadata or contact him
at fielding@pythian.com. Copyright	©	2010,	Marc	Fielding

“Businesses today are faced with
ever-increasing user demands and
data volumes. The combination of
Exadata’s feature set with a well-
focused performance tuning effort
can help address these challenges

while benefiting from the results of
20 years of Oracle product

development.”

