
� August 2010

Making the Most of
Oracle Exadata

by Marc Fielding

A
t Oracle’s third-quarter earnings call, Larry Ellison
announced that Oracle Exadata is “well on its way
to being the most successful product launch in
Oracle’s 30-year history,” with a sales pipeline

approaching $1 billion for 2011. He attributed these sales to
the game-changing performance of the Oracle Exadata plat-
form. But what is the “secret sauce” behind these performance
numbers? Read on to learn about the major performance fea-
tures of Oracle Exadata, and discover tips on how to maximize
performance from those features based on the author’s own
experience implementing Exadata.

Key Features

Smart scans: Smart scans are Exadata’s headline feature.
They provide three main benefits: reduced data transfer vol-
umes from storage servers to databases, CPU savings on data-
base servers as workload is transferred to storage servers, and
improved buffer cache efficiency thanks to column projection.
Smart scans use helper processes that function much like par-
allel query processes but run directly on the storage servers.
Operations off-loadable through smart scans include the fol-
lowing:

	 Predicate filtering—processing WHERE clause com-
parisons to literals, including logical operators and most
SQL functions.

	 Column projection—by looking at a query’s SELECT
clause, storage servers return only the columns request-
ed, which is a big win for wide tables.

	 Joins—storage servers can improve join performance by
using Bloom filters to recognize rows matching join
criteria during the table scan phase, avoiding most of
the I/O and temporary space overhead involved in the
join processing.

	 Data mining model scoring—for users of Oracle Data
Mining, scoring functions like PREDICT() can be eval-
uated on storage servers.

Storage indexes: Storage indexes reduce disk I/O volumes
by tracking high and low values in memory for each 1-mega-
byte storage region. They can be used to give partition pruning

benefits without requiring the partition key in the WHERE
clause, as long as one of these columns is correlated with the
partition key. For example, if a table has order_date and pro-
cessed_date columns, is partitioned on order_date, and if or-
ders are processed within 5 days of receipt, the storage server
can track which processed_date values are included in each
order partition, giving partition pruning for queries referring
to either order_date or processed_date. Other data sets that
are physically ordered on disk, such as incrementing keys, can
also benefit.

Columnar compression: Hybrid columnar compression
(HCC) introduces a new physical storage concept, the compres-
sion unit. By grouping many rows together in a compression
unit, and by storing only unique values within each column,
HCC provides storage savings in the range of 80–90% based on

the compression level selected. Since data from full table scans
remains compressed through I/O and buffer cache layers, disk
savings translate to reduced I/O and buffer cache work as well.
HCC does, however, introduce CPU and data modification
overhead that will be discussed in the next section.

Flash cache: Exadata’s flash cache supplements the data-
base servers’ buffer caches by providing a large cache of 384
GB per storage server and up to 5 TB in a full Oracle Exadata
Database Machine, considerably larger than the capacity of
memory caches. Unlike generic caches in traditional SAN stor-
age, the flash cache understands database-level operations,
preventing large non-repeated operations such as backups and
large table scans from polluting the cache. Since flash storage
is nonvolatile, it can cache synchronous writes, providing per-
formance benefits to commit-intensive applications.

S P E C I A L
F E AT U R E

Marc Fielding

“By grouping many rows together
in a compression unit, and by

storing only unique values within
each column, HCC provides

storage savings in the range of
80–90% based on the compression

level selected.”

�The NoCOUG Journal

Hot/cold storage: The inherent geometry of rotating disks
means that data is stored more densely in the outer portion of
disk platters, giving higher throughput for disk operations on
outer tracks and reducing the amount of time spent on head
movement. Some Oracle systems currently leave inner tracks
completely unused for this reason. Exadata allows the creation
of separate “hot” ASM diskgroups for performance-critical
data in outer disk regions and “cold” diskgroups for fast recov-
ery area use in the inner regions.

I/O resource manager: Exadata’s I/O Resource Manager
(IORM) permits disk I/O operations to be prioritized on the
storage cell in the same fashion as CPU time, and parallel query
processes are currently managed by the Database Resource
Manager (DBRM) on the database server. IORM is particu-
larly useful when consolidating multiple database workloads
together, by allowing I/O capacity to be allocated between dif-
ferent workloads according to their importance and config-
ured limits.

Balanced hardware: The Exadata-powered Oracle Database
Machine includes a fixed ratio of database nodes, storage serv-
ers, and associated networking equipment designed to avoid
performance bottlenecks in any single part of the infrastruc-
ture.

Optimizing Performance

Exadata’s performance features have been designed to work
out of the box and require no manual configuration to use.
That being said, a few small optimizations can greatly improve
their effectiveness, and below are some battle-tested perfor-
mance tips based on real-world Exadata deployments.

Use parallel query: Each Exadata storage cell contains 12
disks, which adds up to 168 disks in a full rack configuration. A
key to efficient use of disk resources is to spread workload over
these disks and particularly to avoid sequential operations that
must wait until one disk operation completes before starting
another. The ASM storage layer uses striping to distribute data
evenly across physical disks, but it is up to the database instanc-
es to send I/O requests in such a way that the disks stay busy,
which is where parallel query comes in. By splitting database
operations into small chunks, parallel query can keep multiple
physical drives busy, thus improving query response time.

The challenge in using parallel query is that the same opti-
mizations that improve response time at slow periods can actu-
ally reduce scalability during periods of high demand, due to
contention for the hard drives’ fixed I/O capacity. Additionally,
too many parallel processes can overwhelm system resources on
database servers, causing additional performance degradation.
To combat this problem, the Oracle database sets a limit on
parallel query processes, PARALLEL_MAX_SERVERS. Once
the system reaches PARALLEL_MAX_SERVERS, new requests
run without parallelism at all, creating high variability in re-
sponse time. The best way to avoid this situation is to avoid
having it happen in the first place, using the Database Resource
Manager to control maximum parallelism. Based on an analysis
of expected concurrency and parallel query capacity (which is
typically 128 and 256 processes on Exadata database nodes,
depending on the mix of full-scan and more-CPU-intensive
index operations), a resource manager plan can be constructed

involving limits on both the number of parallel query processes
per session and the total number of concurrent sessions.

While adding concurrency is of great benefit to large table
scans, the overhead of managing parallel query processes can
actually slow down scans of small tables. As a rule of thumb, if
table operations take less than half a second to complete, par-
allel query delivers diminishing benefits, although this thresh-
old can vary based on workload patterns. It is relatively simple
to benchmark by testing common queries with varying de-
grees of parallelism, taking into account the system’s total
process capacity.

Learn to love the full scan: Index-based access paths work
by generating a list of unique row identifiers from an index
and then looking up the rows one by one from the source
table. While very efficient for small lookups, the overhead of
such sequential, random disk accesses increases nearly linearly
as data size increases, making full scans more efficient for the
large retrievals common in data warehouse workloads.

Since index access paths perform filtering at the database
server rather than the storage server, Exadata’s smart scan row
filtering and join filters offer little benefit. Index-based table
lookup performance further degrades with columnar com-
pression, since even a single-row lookup requires reading an
entire compression unit.

Good full-scan performance hinges on a good partition
layout. Careful thought needs to be given to permit full parti-
tions to closely match the data that users typically request.

Oracle provides several tools to help:

	 A wide variety of partition types, including range, hash,
list, interval, reference, or even virtual columns

	 Composite subpartitioning with different partition and
subpartition key columns, providing further benefits for
queries involving multiple columns

“The challenge in using
parallel query is that the same

optimizations that improve
response time at slow periods can
actually reduce scalability during

periods of high demand, due to
contention for the hard drives’

fixed I/O capacity. Additionally,
too many parallel processes can
overwhelm system resources on

database servers, causing
additional performance

degradation.”

10 August 2010

	 Storage indexes, giving the same benefits as partition
pruning when data is clustered on disk

Although matching partition layout with query data sets
provides maximum benefit of Exadata’s features, it’s rarely
possible to match a partition layout to every possible query. In
such cases, indexes are still required. Referential integrity con-
tinues to require indexes as well, although primary key indexes
can be set to INVISIBLE (and therefore not be considered by
the optimizer) if they prevent legitimate full partition scans.

Don’t stop tuning applications: The advent of Exadata does
not replace the need for application-level tuning. Poorly scal-

ing application code will not suddenly become scalable when
run on Exadata. The same tuning methods used in regular
Oracle RAC databases will continue to work, so take advantage
of the volumes of application-level tuning resources already
available for Oracle RAC platforms.

Spread disk groups across all available cell disks: Exadata’s
storage architecture makes it easy to implement SAME (Stripe
and Mirror Everything) striping across all available drives.
Thanks to the I/O Resource Manager, the performance guar-
antees previously only available by dedicating disks to specific
applications can be obtained on a SAME layout. A SAME disk
layout not only allows more efficient use of space, but it also
gives better utilization of I/O capacity as well. For example,
production applications can be guaranteed a certain per-
centage of I/O capacity—or even absolute priority when
they require it—leaving otherwise available capacity for
non-production applications.

Manage allocation units and extents carefully: Exadata
storage cells are divided up into individual allocation units
managed by ASM, analogous to stripes in a RAID configura-
tion. Increasing ASM allocation unit size from the default 1
MB to 4 MB or even 8 MB improves performance of large
reads by reducing the amount of seeking that drives need to
do, along with reducing the overhead for managing allocation
units themselves. The table-scanning benefits of larger alloca-
tion units only happen when they can be filled with a single
table or index extent. To ensure that allocation units are not
shared between multiple extents, set initial extents in large ta-

bles to be at least as large as the ASM allocation unit size. This
process can be automated by using the CELL_PARTITION_
LARGE_EXTENTS initialization parameter, which sets initial
extents to 8 MB automatically for table partitions. Large 8 MB
initial extents can be wasteful when storing very small objects,
however. So for objects not expected to grow, smaller initial
extents are still appropriate.

Reserve the flash cache for caching: Objects can be stored
on flash disks permanently by creating flash-based grid disks.
However, this type of storage layout usually hurts perfor-
mance, since the built-in caching logic can do a better job of
identifying which exact data blocks are the most frequently
used and make intelligent caching decisions based on this in-
formation. Additionally, since true cache data does not need
normal redundancy, a cache can store twice as much data in
the same amount of storage as a grid disk.

Consider Oracle Secure Backup: Oracle Secure Backup
(OSB) runs on media servers directly connected to the
Exadata Inf iniBand fabric. In its current form, however,
OSB has an important limitation: it can only back up to
dedicated tape devices directly attached to OSB media serv-
ers. Neither disk-based backups nor third-party backup
servers are supported. In environments that can accommo-
date this restriction, however, OSB eliminates network traf-
fic on the database servers’ Ethernet interfaces.

Use columnar compression judiciously: Hybrid columnar
compression (HCC) in Exadata has the dual advantages of
reducing storage usage and reducing I/O for large reads by
storing data more densely. However, HCC works only when
data is inserted using bulk operations. If non-compatible op-
erations like single-row inserts or updates are attempted,
Exadata reverts transparently to the less restrictive OLTP com-
pression method, losing the compression benefits of HCC.
When performing data modifications such as updates or de-
letes, the entire compression unit must be uncompressed and
written in OLTP-compressed form, involving an additional
disk I/O penalty as well. To avoid such overhead, consider
compressing only data that infrequently changes, such as his-
torical data. If partitioning data by date and data modification
happens occasionally, a scripted automated process could pe-
riodically re-compress older partitions.

Conclusion

Businesses today are faced with ever-increasing user demands
and data volumes. The combination of Exadata’s feature set with
a well-focused performance tuning effort can help address these
challenges while benefiting from the results of 20 years of Oracle
product development. s

Marc Fielding is a senior consultant with Pythian, a leading data-
base infrastructure and application services company, where
he specializes in high availability, scalability, and performance.
Having worked with Oracle database products over the past nine
years, his experience across the entire enterprise application stack
allows him to provide reliable, scalable, fast, creative, and cost-
effective solutions to Pythian’s diverse client base. Read his blog
posts at www.pythian.com/news/tag/exadata or contact him
at fielding@pythian.com.	 Copyright © 2010, Marc Fielding

“Businesses today are faced with
ever-increasing user demands and
data volumes. The combination of
Exadata’s feature set with a well-
focused performance tuning effort
can help address these challenges

while benefiting from the results of
20 years of Oracle product

development.”

