Rückwärtsbetrieb

Im Rückwärtsbetrieb (Bild 1.10, III. Quadrant) ist der kollektorseitige pn-Übergang des IGBT in Sperrichtung gepolt und unterbindet die beim MOSFET vorhandene Inversleitfähigkeit.

Obwohl - bedingt durch die breite n⁻-Driftzone - zumindest bei NPT-IGBTs strukturell hier eine hochsperrende pin-Diode vorliegt, beträgt die Rückwärtssperrspannung heutiger IGBTs nur einige 10 V. Die Ursache hierfür liegt im einseitig auf hohe Vorwärtssperrspannung und gute kollektorseitige Wärmeabführung ausgerichteten Chipdesign, sowie der Ausführung der Randbereiche.

IGBT-Schalter, die für Einsatzfälle mit Rückwärtsbeanspruchung vorgesehen sind, werden deshalb bisher ausschließlich mit angepaßten, schnellen Reihendioden in hybrider Bauform versehen.

Die Durchlaßeigenschaften von IGBT-Modulen im stationären Rückwärtsbetrieb resultieren damit ausschließlich aus den Eigenschaften der externen oder hybriden Beschaltungsdioden, vgl. Kap. 1.3.

1.2.3 Qualitatives Schaltverhalten von MOSFET und IGBT beim harten Schalten

Der überwiegende Anteil der Schaltaufgaben für Transistorschalter erfordert "hartes" Ein- und Ausschalten ohmsch-induktiver Lasten mit nichtlückendem Laststrom, d.h. die Lastzeitkonstante L/R ist viel größer als die Periodendauer 1/f der Schaltfrequenz.

Die hieraus resultierenden, grundsätzlichen Verläufe von Drain- bzw. Kollektorstrom und Drain-Source- bzw. Kollektor-Emitter-Spannung zeigt Bild 1.11a.

Bild 1.11 Typisches Schaltverhalten von Leistungs-MOSFET und IGBT beim "harten Schalten" (ohmschinduktive Last mit Freilaufkreis) a) Strom- und Spannungsverläufe b) Arbeitspunktverläufe und Meßschaltung

Wie bereits in Kap. 0 anhand Bild 0.4 dargestellt, ist charakteristisch für "hartes Schalten", daß während des Ein- und Ausschaltens kurzzeitig sowohl Transistorstrom als auch Transistorspannung hoch sind.

Im Gegensatz zu allen Thyristoren sind Transistoren dieser Betriebsweise prinzipiell auch ohne Beschaltung mit passiven Kommutierungsnetzwerken gewachsen, da während des Schaltens in der Driftzone eine "dynamische" Sperrschicht aufgebaut werden kann.

Im Transistor werden jedoch beträchtliche Schaltverlustenergien

$$\mathbf{E}_{on}, \mathbf{E}_{off} = \int_{\mathbf{t}_{on}, \mathbf{t}_{off}} \mathbf{u} \cdot \mathbf{i} dt$$

umgesetzt, wie auch die Darstellung der Arbeitspunktverläufe während des Schaltens in Form eines Graphen $i_c = f(v_{CE})$ (bzw. $i_D = f(v_{DS})$) in Bild 1.11b verdeutlicht.

Durch Beschaltung mit passiven (Schaltentlastungs-) Netzwerken kann der Arbeitspunktverlauf dichter an die Achsen angeschmiegt werden. Schaltverluste werden aus dem Transistor in die Beschaltung "verlagert", der Gesamtwirkungsgrad sinkt zumeist ab (Kap. 3.8).

Da - neben Strom-/Spannungseckwerten und Schaltzeit - noch andere (nichtideale) Effekte in den Transistoren die Form des "weitestmöglichen" Arbeitspunktverlaufes bestimmen, wird dieser für unterschiedliche Betriebsfälle in den Datenblättern als SOA (Safe Operating Area) angegeben, vgl. Kap. 2.1.2, 2.2.3 und 2.3.3.

Außer den nachfolgend behandelten, nichtidealen Eigenschaften der Transistoren und den in Kap. 1.3 beschriebenen Diodeneigenschaften beeinflussen auch passive Stromkreiselemente die Schaltverluste und Arbeitspunktverläufe in hohem Maße. Deren Auswirkungen, die in Bild 1.11a und b ebenfalls angedeutet sind, werden in Kap. 3.4.1 noch näher beschrieben.

Physikalische Ursache der typischen Strom-Spannungsverläufe in Bild 1.11a ist die Wirkung der Freilaufdiode, die ein Abreißen des Stromes durch die Lastinduktivität verhindern muß:

- Beim Einschalten des Transistors kann die Freilaufdiode erst Sperrspannung aufnehmen (ausschalten), wenn der volle Laststrom auf den Transistor kommutiert ist. Der Kollektorbzw. Drainstrom muß deshalb die Höhe des Laststromes erreichen, bevor die Kollektor-Emitter- (bzw. Drain-Source-) Spannung auf den Durchlaßwert absinken kann.
- Beim Ausschalten des Transistors kann die Freilaufdiode den Laststrom erst dann übernehmen (einschalten), wenn sie in Durchlaßrichtung gepolt ist. Hierzu muß die Kollektor-Emitter- (bzw. Drain-Source-) Spannung über das Niveau der Kommutierungsspannung angestiegen sein, bevor der Kollektor- bzw. Drainstrom auf den Wert des Reststromes sinken kann.

Wie Bild 1.11a qualitativ zeigt, sinken beim *Einschalten* des MOSFET oder IGBT die Drain-Source- bzw. Kollektor-Emitter-Spannung vergleichbarer Bauelemente zunächst im gleichen Maße innerhalb einiger zehn Nanosekunden bis auf einen Wert ab, der dem Spannungsabfall über dem n⁻-Bahngebiet entspricht. Während dies beim MOSFET bereits die Durchlaßspannung $V_{DS(on)} = I_D \cdot R_{DS(on)}$ repräsentiert, setzt beim IGBT nunmehr die Überflutung des n⁻-Gebietes mit positiven Ladungsträgern aus der p-Kollektorzone ein. Nach Abschluß dieses Vorganges (ca. 100 ns bis einige μ s) ist die - bei hochsperrenden Elementen - vergleichsweise niedrigere Durchlaßspannung V_{CE(sat)} als statischer Endwert erreicht (Leitwertmodulation).

Beim *Ausschalten* müssen beim MOSFET lediglich die internen Kapazitäten soweit umgeladen werden, daß die Ladungsträgerinfluenz im Kanalgebiet unterbleibt. Nachfolgend kommt es zu einem sehr schnellen Abbau der Neutralitätsstörung in diesem Bereich, und der Drainstrom sinkt steil ab.

Im IGBT findet zunächst der gleiche Vorgang statt. Nach dem Erlöschen des Emitterstromes sind im n-Bahngebiet jedoch noch ein großer Teil der durch die Injektion aus dem IGBT-Kollektorgebiet erzeugten p-Ladungsträger vorhanden. Diese müssen nun rekombinieren oder durch Rückinjektion abgebaut werden, was einen sogenannten Kollektorstromschweif (Tailstrom I_t) hervorruft (Bild 1.11a).

Da dieser Stromschweif innerhalb von μ s erst bei bereits angestiegener Kollektor-Emitter-Spannung abklingt, werden beim harten Schalten die IGBT-Ausschaltverluste wesentlich durch den Schweifstromverlauf bestimmt (vgl. Kap. 2.3.2, 3.1.3) und übersteigen die vergleichbarer MOSFETs beträchtlich.

Abgesehen von den erläuterten Unterschieden ähnelt sich das Schaltverhalten von MOSFETs und IGBTs aufgrund des gleichartigen Gatezonenaufbaues weitgehend.

Wie im Kap. 1.2.1 beschrieben, beeinflussen die *internen Bipolartransistorstrukturen* und *internen, lateralen Widerstände* das Durchlaß- und Vorwärtssperrvermögen, die Eigenschaften in Rückwärtsrichtung sowie die Grenzen der transienten Strom- und Spannungsbelastbarkeit beim Schalten.

Das Schaltverhalten (Schaltgeschwindigkeit, Schaltverluste) der MOSFET- und IGBT-Leistungsmodule wird durch deren strukturbedingte, *interne Kapazitäten (Ladungen)* und die *internen und Anschlußwiderstände* bestimmt.

Entgegen der Idealvorstellung einer leistungslosen Spannungssteuerung über das MOSFETbzw. IGBT-Gate resultiert aus den beim Schalten notwendigen *Umladeströmen* der internen Kapazitäten ein schaltfrequenzabhängiger *Bedarf an Ansteuerleistung*, vgl. Kap. 3.5.

Weiterhin beeinflussen die bei der Zusammenschaltung von Transistorchips in Leistungsmodulen entstehenden und in deren Zuleitungen vorhandenen *parasitären Verbindungsinduktivitäten* die Kommutierungsvorgänge, induzieren transiente Überspannungen und können mit den stromkreis- und transistorinternen Kapazitäten Schwingungen anregen, vgl. Kap. 3.4.

Im folgenden soll das Schaltverhalten von MOSFET und IGBT in Abhängigkeit von den transistorinternen Kapazitäten und Widerständen analysiert werden.

Bei ausgeschaltetem MOSFET (IGBT) ist C_{GD} (C_{GC}) klein und entspricht etwa C_{DS} (C_{CE}).

Im Durchlaßzustand wächst C_{GD} (C_{GC}) infolge Inversion der Anreicherungsschicht unter den Gatezonen sprunghaft an, sobald die Gate-Source(Emitter)-Spannung größer als die Drain-Source(Kollektor-Emitter)-Spannung wird.

Während des Schaltens wird C_{GD} (G_{GC}) zusätzlich aufgrund des Miller-Effektes dynamisch vergrößert:

$$\begin{split} C_{GDdyn} &= C_{GD} \; (\; 1\text{-} \; dv_{DS}/dv_{GS}) \quad (MOSFET) \\ C_{GC \; dyn} &= C_{GE} \; (\; 1\text{-} \; dv_{CE}/dv_{GE}) \quad (IGBT) \end{split}$$

In den Datenblättern sind meist die folgenden Kleinsignal-Kapazitäten des ausgeschalteten Transistors mit ihrer Spannungsabhängigkeit dargestellt, vgl. Kap. 2.2.2, 2.2.3.

Leistungs-MOSFET	IGBT	
$C_{iss} = C_{GS} + C_{GD}$	$C_{iss} = C_{GE} + C_{GC}$	Eingangskapazität
$C_{rss} = C_{GD}$	$C_{rss} = C_{GC}$	Rückwirkungskapazität
$C_{oss} = C_{GD} + C_{DS}$	$C_{oss} = C_{GC} + C_{CE}$	Ausgangskapazität

Zur Berechnung des Schaltverhaltens sind diese Angaben nur sehr eingeschränkt nutzbar, da z.B. C_{iss} und C_{rss} im durchgesteuerten Transistor ($V_{DS} < V_{GS}$ bzw. $V_{CE} < V_{GE}$) nochmals stark ansteigen, was in den meisten Datenblättern nicht erfaßt ist (Bild 1.12 und Bild 1.13) [277].

Als Hilfsmittel für die Bestimmung der Schaltzeiten in Abhängigkeit von Gatestrom, Drain-Source-Spannung und Drainstrom wird deshalb in den Datenblättern das "Gateladungsdiagramm" des MOSFET angegeben, in dem für den "Nennstrom" und 20 % bzw. 80 % der höchstzulässigen Drain-Source-Spannung der Verlauf der Gate-Source-Spannung über der dem Gate zugeführten Ladungsmenge Q_G aufgetragen ist (Bild 1.12).

Lastbedingungen und Meßschaltung entsprechen Bild 1.11. Vereinfachend wird jedoch Konstantstromeinspeisung in das Gate angenommen.

Über die Beziehung

 $i_{G}=dQ_{G}/dt$

können dann recht einfach die Schaltzeitintervalle bestimmt werden, vgl. Kap. 3.5.1.

 $\begin{array}{lll} \mbox{Bild 1.12} & \mbox{a) Verlauf der Gate-Source-Spannung V_{GS} eines Leistungs-MOSFET-Modules in Abhängigkeit von der Gateladung Q_G (Gateladungsdiagramm) } \end{array}$

b) Kleinsignal-Kapazitäten eines Leistungs-MOSFET

Einschalten: Schaltzeitintervall 0...t1 (gesperrter Transistor)

Mit Zuschalten der Steuerspannung beginnt der Gatestrom zu fließen.

Bis zur Ladungsmenge Q_{G1} lädt i_G zunächst ausschließlich die Gatekapazität C_{GS} auf; die Gatespannung V_{GS} steigt an. Da V_{GS} noch kleiner als die Schwellenspannung $V_{GS(th)}$ ist, kann in diesem Zeitintervall noch kein Drainstrom fließen.

Einschalten: Schaltzeitintervall t1...t2 (Drainstromanstieg)

Ist V_{GS} zum Zeitpunkt t₁ bis auf $V_{GS(th)}$ angestiegen, schaltet der Transistor ein und durchläuft dabei zunächst den *aktiven Arbeitsbereich* (s. Kap. 1.2.2.1).

Der Drainstrom steigt bis auf I_L (ideale Freilaufdiode) bzw. - wie im Bild 1.11a für eine reale Freilaufdiode angedeutet - über I_L hinaus an. In gleicher Weise wächst V_{GS} , die im aktiven Be-

reich über die Steilheit g_{fs} mit $I_D = g_{fs} * V_{GS}$ mit dem Drainstrom verkoppelt ist, bis auf den Wert $V_{GS1} = I_D/g_{fs}$ (Zeitpunkt t_2).

Da die Freilaufdiode erst zu t_2 sperren kann, fällt V_{DS} vor t_2 nicht nennenswert ab. Zu $t = t_2$ ist die Ladungsmenge O_{CR} in das Gate geflossen

Zu $t = t_2$ ist die Ladungsmenge Q_{G2} in das Gate geflossen.

Einschalten: Schaltzeitintervall t2...t3 (durchschaltender Transistor)

Mit dem Ausschalten der Freilaufdiode sinkt V_{DS} bis zum Zeitpunkt t_3 soweit ab, daß ihr Durchlaßwert $V_{DS(on)}$ nahezu erreicht ist. Zwischen t_2 und t_3 sind Drainstrom und Gate-Source-Spannung weiterhin über die Steilheit verkoppelt; V_{GS} bleibt deshalb konstant. Während des Abfallens von V_{DS} lädt der Gatestrom i_G mit der Ladungsmenge (Q_{G3} - Q_{G2}) die Millerkapazität C_{GD} um. Bis $t = t_3$ ist die Ladungsmenge Q_{G3} in das Gate geflossen.

Einschalten: Schaltzeitintervall t₃...t₄ (ohmscher Kennlinienbereich)

Zum Zeitpunkt t_3 ist der Transistor eingeschaltet, und sein Arbeitspunkt ist vom Abschnürbereich in den ohmschen Arbeitsbereich eingetreten. V_{GS} und I_D sind nicht mehr über g_{fs} verkoppelt.

Die nunmehr dem Gate zugeführte Ladungsmenge (Q_{Gtot} - Q_{G3}) bewirkt das weitere Ansteigen von V_{GS} bis zur Höhe der Gate-Steuerspannung V_{GG} . Da der reale Einschaltwiderstand $R_{DS(on)}$ von I_D und V_{GS} abhängig ist, kann über die insgesamt dem Gate zugeführte Ladungsmenge Q_{Gtot} die Durchlaßspannung $V_{DS(on)} = I_D * R_{DS(on)}$ in Grenzen bis zum physikalischen Minimum eingestellt werden.

Die zum Erreichen einer bestimmten Gate-Source-Spannung notwendige Ladungsmenge Q_{Gtot} ist um so größer, je höher die Drainspannung V_{DD} (bzw. Kommutierungsspannung) ist, vgl. Bild 1.12.

Ausschalten

Während des Ausschaltvorganges verlaufen die beschriebenen Vorgänge in umgekehrter Richtung; die Ladung Q_{Gtot} muß mittels Steuerstrom wieder aus dem Gate abgeführt werden.

Näherungsweise kann deshalb das Gateladungsdiagramm nach Bild 1.12 auch zur quantitativen Bestimmung des Ausschaltvorganges herangezogen werden.

Je weiter der Einsatzfall des Transistormodules vom hier betrachteten Fall "Hartschalter" abweicht, um so mehr "verwischt" sich die Treppenform der Gate-Source-Spannung. Die beim harten Schalten durch das Verhalten der Freilaufdiode "entkoppelten" Intervalle gehen dann mehr oder weniger ineinander über und die genaue Beschreibung des Schaltverhaltens wird komplexer [278].

Für IGBT-Leistungsmodule treffen die dargestellten Betrachtungen sinngemäß in gleicher Weise zu. Die Bestimmung des Schaltverhaltens kann analog am ebenfalls in den Datenblättern vorhandenen Gateladungsdiagramm erfolgen.

Da das Gate eines IGBT meist zwischen einer positiven und einer negativen Steuerspannung umgeschaltet wird, wird hier auch ein Ladungsanteil zur Umladung der Gatekapazität zwischen 0 V und V_{GG-} benötigt. Zur Ermittlung der Gesamt-Gateladungen muß deshalb das Gateladungsdiagramm in der in Bild 1.13 dargestellten Weise erweitert werden.