Noise-canceling microphone

From Wikipedia, the free encyclopedia

Jump to: navigation, search

A noise-canceling microphone is a microphone designed to filter out ambient noise from the desired sound, especially useful in noisy environments. It is a special case of the differential microphone topology most commonly used to achieve directionality. All such microphones have at least two ports through which sound enters; a front port normally oriented toward the desired sound and another port that's more distant. The microphone's diaphragm is placed between the two ports; sound arriving from an ambient sound field reaches both ports more or less equally. Sound that's much closer to the front port than to the rear will make more of a pressure gradient between the front and back of the diaphragm, causing it to move more. The microphone's proximity effect is adjusted so that flat frequency response is achieved for sound sources very close to the front of the mic -- typically 1 to 3 cm. Sounds arriving from other angles are subject to steep midrange and bass rolloff. Commercially and militarily useful noise-canceling microphones have been made since the 1940's by Roanwell, [1] Electro-Voice and others.

Recently, this technique has been expanded to use two or more microphones and active circuitry (either analog or digital signal processing to reduce the noise. The primary microphone is closer to the desired source (like a person's mouth). A second mic pointed in another direction receives ambient noise. In a noisy environment, both microphones receive noise, but only the primary mic receives the desired sounds. Other techniques may be used as well, such as using a directional primary mic, to maximize the difference between the two signals and make the cancellation easier to do.

The internal electronic circuitry of an active noise-canceling mic attempts to subtract noise signal from the signal from the primary microphone. The circuit may employ passive or active noise canceling techniques to filter out the noise, producing an output signal that has a lower noise floor and a higher signal-to-noise ratio.

[edit] Applications

[edit] See also

[edit] References

  1. ^ http://www.roanwellheadsets.com/mics.html
Personal tools