Programming Languages — Ruby
IPA Ruby Standardization WG Draft

December 1, 2009

(©Information-technology Promotion Agency, Japan 2009

ii

Contents Page

I DA . e 1
[Normafive referenced L e 1
B Conformancd L e e e e e 1
21 Terms and definifiond Lo e 2
5) Nofafionalconvenfiond e 3
...)
b.I General description]. o e e e e e e 5)
62 Boalean valued e e 7

[Execufion confextl L e e 7
ram| Confexfualaffribufed o 7
= The mifial stafd e 8

R Lexical structurd e 8
2 Source Texfl ... L. L L L L e e e e e 8
RZ [ine fermimaford 9
B3 Whitespacd L e e 10
B4 Commenfd 0L e e e 10
RA Tokend e e e e 11
o Reserved wordd e 11

Rh72 [denfifierd 12

K53 Puncfuaford 13

B.5.4 Operaford e e e 13

| 285%5) Liferald 14

RA AT Numeric iferald e 14

B.5.5.2 otring Titerald 17

B.5.5.2.1 oingle quoted sfringd oL 17

B.5.5.2.2 Double quoted stringd 18

B.5.5.2.3 Quoted non-expanded Niteral stringd 21

B.5.5.2.4 Quoted expanded Tiferal stringd 22

Rhh25 Here documentd 23

RE5 76 Fxternal command execafion 26

B.5.5.3 Array Iiferald 26

B.5.5.4 Regular expression literald 29

B.5.5.5 Symbol fiterald 30

b ocope of variabled L. 31
BT Tocalwvariabled 0 e e e e e e e 31
B.I.1 Scopes of Tocal variabledo 31

BT Referencesfolocalwvariabled. 32

o2 Globalvariabled e e e e 33

[0 Program structurd e 33
[O.T Program]. e e e e e e e e e 33
[0.2 Compound statemenf 34
[IEXPressiond« o v v i vt e e e e e e e 35

iii

iv

[LI.T Logical eXpressiond v v v v v i e e e e e e e e e e e e 35
LI.2 Method Invocation eXpresSSIONg v v v v v v v v e e e e e e e e e e 37
[I.2.T Method argumentd 42
22 blockd e e e e 44
M1.2.3 The super exXpression v v v v v e e e e e e e e e e 47
[1.2.4 The yield expression v v v it e e e e e e e e e 50
1.3 Operafor expressiond o i vt e e e 51
[I.3.1 Assignmenfdo L 51
[I.3.1.1 Single assignmentd L. Lo 52
LI.3.T.1.1 Single variable assignmentd00 00000 52
[T3T.T.2 Single Indexing assignments e .. 55
L1I.3.1.1T.3 Single method assignmentd 59
[1.3.1.2 Abbreviated assignmentd 56
II.3.1T.2.1 Abbreviated variable assignmentd 56
[1.3.1.2.2 Abbreviated indexing assignmentd 57
Ll.0.1.2.5 Abbreviated method assignmenty 58
I1.3.1.3 Mulfiple assienmentd 59
[I.3.1.4 Assignments with rescue modifierd 62
[I.3.2 Unary operatord e e e e e e 63
[1.3.2.1 The defined? expression v v v v v v v e 64
[I.3.3 Binary operaford o o i i e e e e e e 65
[T.4 Primary eXpreSsiong . . . v v v v v v v v e e e e e e e e e e e e e 67
[1TZ471 Confrol sfructured 68
[T.4.T.T Condifional eXpressiong v v v v v e e e e 68
[I.4.T.1.1T The if expression] o ot e 68
[T.4.1.1.2 The unless expression v v v v v v v v v e 69
[TZT.T.3 The case exXpression v v v v v v e e e e e e e 70
[1.4.1.1.4 Conditional operatod 71
[T4.T2 Iferafion expressiond 71
L1.4.1.2.1 1he while expressiono 72
[TZT1.22 The until exXpression v v v v v v v 72
[1.4.1.2.3 'The for expressionl 73
[T.4.1T.3 JUMP eXPresSSiONg . .« « v v v v e e e e e e e e e e e e e e e 74
[1.4.1T.3.1 'The return expression v v v v v v v v v 74
[T.4.1.3.2 The break expression] 76
[1.4.1.3.3 The next expression] v v v i i 76
[1.4.1.34 The redoexpression] 77
M[T.2.1T.3.5 The retry expression v v v v v v e e e 78

[T 42T.4 Exceptiond 78
[TZT4ZT The rescue exXpression v v v v v v v e e e 78

[I.4.2 Grouping exXpression]o oh . e e e e e e e e e e e e e e e 80
TZ3 Variablereferenced 80
231 Consfanfd s 81
[T1.4.3.2 ocoped constantg Lo 82
Ll4doo Global vamabled 0 0 0 0000 s s 82
[T431 Classvariabled oo 82

[T 435 Tnsfancewvariabled 83
[TZ436 Localvariabled 83
Ll4ds7 Pseudovarabled 0 000000 s s e 83
2377 T 84
T23772 trueand falsd 84

1 s S = I i 84

[1.4.4 Object constructord oo 85

[TZ4Z4T Array constructonl Lo 85

Ul 44? Hash consfructon 0. 85
[TZ2Z3 Range constructol] 86

L 4s Laterald L e e e e e e 87
[2—_Stafementd e e e 87
[2.1 The expression statementl 87
22 Theif modifiersfafementl 88
23 TheunTess modifier sfafemenfl 88
224 _ThewhiTe modifier stafementl 89
25 TheuntiT modifier sfafemenfl, 89
120 1he rescne modifier statementl s, &9
M3 Classes and moduled e 90
Lol Madules 0 e e e e e e e e 90
L3.1.1 General descriptionl e e 90
ET2 Module defimifiod 91
313 Module inclusionl e e 92
M32CIassed 92
L3.2.1 General descriptiond Lo 92
B2 Classdefinifion e e e 93
33 Inherifancd e e 94
32z Instance creafionl 95
Lo o Methodd o e e e e e e e e e e e 95
IRIRE Method defimifion e 95
[3.3.2 Method parameferd e 96
3233 Method invocafion 98
Lo.0.4 Method lookup Lo 100
L3.3.5 Method visibility]o 101
33T Publicmethodd. 101
335772 Private mefthodd 101
33573 Profectedmethodd 101
[3.3.5.4 Visibility changd 0., 102

0336 Thealiassfafemenfl 102
Uloo /T heundef statementl ... 103
[34 Eigenclasd s 104
341 General descriptionl e 104
ML3.4.2 Figenclass definifion oo 104
[3.4.3 Singleton method definifion 105

[4 "Exceptiond e e e e e 106
[4.1 Cause of exceptiond o 106
[4. 2 Excepfion handling 107
A Buli-in classes and maoduledo 108
I5.1 General description. e e e 108
A2 Bulfom classed o e e 109
[5.2.1 Objecll. e 109
I5.2.1.1 Direct superclasd 109
LT ncluded moduledo 109
213 Constanfd 109
T2 [nsfancemethodd 110

[5.2.1T.4.1 Object#initializd 110
Moduld 110
[5.2.2.1 Direct superclasdo e 110
[5.2.2.2 Singlefon methodd 110
o222 | Module constantd00 00 e e e 110
M05.2.2.2.2 Modulenesting o 111
2723 Insfancemethodd 111
Lo.2.2.5.1 Module#< s 111
Lo.2.2.0.2 Moduleze<<—Ho oo 111
Lo.2.2.0.0 Modulef#<<=>o 112
Lo.2.2.0.4 Modulezg==o Lo 112
ILo.2.2.0.0 Module#r===o 112
1L5.2.2.5.0 Module#=> o oo 112
Lo.2.2.0.7 Moduleze>=o oL 113
[5.2.2.38 Module#aliasmethod 113
[5.2.2.3.9 Module#ancestord 113
[5.2.2.3.10 Module#append_featured 114
Lo.2.2.0.11 Modulezattyo 114
[5.2.2.3.12 Module#Fattr_accessol 115
[5.2.2.3.13 ModuleZFattrreaded 115
[5.2.2.3.14 Module#Fattr_writel 116
[5.2.2.3.15 Module#classeval 116
[5.2.2.3. 16 Module#class_variable_defined] 117
[5.2.2.3.17 Module#class variable gef] 118
[5.2.2.3.18 Module#class_variablesef] 118
[5.2.2.3.19 Module#class_variabled 118
Lo.2.2.0.20 Module#const_dennedq] 119
M[5.2.2.3.21 Module#const_getl, 119
[5.2.2.3.22 ModuleFconst_missing 119
[5.2.2.3.23 Module#Fconst sefl 120
[5.2.2.3.24 Module#constanty 120
[5.2.2.3.25 Module#Fextend object] 120
[5.2.2.3.26 Module#Fextended 121
Lo.2.2.0.27 Module#includg00 00000 121
[5.2.2.3.28 Module#include] 121
Lo.2.2.0.2Y9 Module#included00 000000, 122
[5.2.2.3.30 Module#included_moduled 122
[5.2.2.3.31T ModuleZinitializd 122
[5.2.2.3.32 Module#initialize_copy] 123
[5.2.2.3.33 ModuleZinstance_methody 123
[5.2.2.3.34 Module#method_defined?q 124
[5.2.2.3.35 ModuleZmoduleeval 125
[5.2.2.3.36 Module#privatd 125
[5.2.2.3.37 Module#protected, 125
Lo.2.2.0.08 Module##publid 00000 125
[5.2.2.3.39 Module#remove_class variabld 126
[5.2.2.3.40 Module#remove_consf]. 126
[5.2.2.3.41 Module#remove_method 127
Lo.2.2.0.42 Modulezzundet_method 127
M2 3 Tlasd o e 128
[5.2.3.1 Direct superclasd 128

Un 2372

Instance methodd

[5.2.3.2.1 Class#initializd oo 128

[5.2.3.2.2 Class#initialize copy| 129
[5.2.3.2.3 Class#Enewl o o e e e 129
[[5.2.3.2.4 Class#superclasd e 129
h24 NUCTasd o . . . e e e e e e e e e e 130
[5.2.4.T Direct superclasdo 130
277 Insfancemethodd 130
[5.242T NUCIESSFER - - o o o oo e e e e e e 130
52422 NilCTass#E] o o e e e 130
[5.2.4.2.3 NilClassZnil] o e e 130
Lo.2.4.2.4 NilClass# 1] o o o o oo 130
a2a JrueClasd . . 0 L L L L e e e e e e e e 131
[5.2.5.1 Direct superclasd 131
[7572 Insfance mefhodd 131
[5.2.5.2.1 TrueClass#&8 e 131
ILo.2.0.2.2 drueClassz | o o o o o Lo Lo 131
[5.2.5.2.3 TrueClass#tod 132
Lo.2.0.2.4 drueClasszell o o o o o Lo 132
A28 FalseClasd o e e e e 132
[5.2.6.1 Direct superclasdo 132
2672 Instance mefhodd o 132
[5.2.6.2.1 FalseClass#&® o . o e 132
[5.2.6.2.2 FalseClassZE] o o o o 132
[5.2.6.2.3 FalseClass#fod o o o v i i 133
[5.2.6.2.4 FalseClassFET . . - - .« o o o v v i it e 133
27 NImMErid e e e e e e e e e e e e 133
[5.2.7.1 Direct superclasd 133
72 [ncluded maduledo 133
5273 Insfancemethodd 133
Lo.2.7.0.1 Numeric#+Qo Lo 133
[5.2.7.3.2 NumericZ—4 e 134
[5.2.7.3.3 NumericFabg. e 134
[5.2.7.3.4 NumericFcoercd v v vt e e e e e 134
(528 Infeger] o e e e e e e e 135
[5.2.8.1 Direct superclasd 136
[2 RY Insfance mefhodd 136
[52.8.2.1 IntegerFHo 136
Lo.2.8.2.2 Integers#— e e e e e e e e e e e e 136
[5.2.8.2.3 TNCegerFET . . . o o 137
[15.2.8.2.4 Integer# /1. 138
[5.2.8.2.5 IntegerZE7] 138
[5.2.8.2.6 InfegerZE<=> 139
[5.2.8.2.7 InfegerZ#== 139
[5.2.8.2.8 InfegerZE 140
[5.2.8.2.9 Integer#& 140
(5282710 InfegerZE.« « o v o e e e e e e e e e e e 140
Lo.2.8.2. 11 Integer# |. o 141
[5.2.8.2.12 Infeger#F<d« . e 141
Lo.2.8.2. 15 Integer#>> e e e e e e e e e e e e e 141
[5.2.8.2.14 1IntegerFcell 142
Lo.2.8.2. 10 Integer#downta v v v it b e e e e e e e e 142
Lo.2.8.2.106 Integer#eqly] oo 142

vii

viii

Lo.2.8.2.17 Integer7FHo0Yo e e e e 143

[5.2.8.2.18 InftegerFhasH oL 143
Lo.2.8.2.1Y Integer#next] v e e e e e e e e e e e e e 143
(528220 IntegerFround 143
[5.2.8.22T InfegerFsucd v v v v v i e e e e e e e e 143
[5.2.8.2.22 InftegerFtimed e 144
[5.2.8.2.23 IntegerFtod 144
[5.2.8.2.24 IntegerFTod e 144
[5.2.8.2.25 IntegerFiruncatd 144
[5.2.8.2.26 IntegerFuptd 145
20 Floall e e e 145
[5.2.9.1 Direct superclasd 145
0523972 [nsfance methodd L 146
Lo.2.9.2.1 FloatzeH« o o e e e e e e 146
115.2.9.2.2 Float#— e e e e 146
[15.2.9.2.3 FloatZEd e 147
[5.2.9.2.4 Float#/]. e 147
[15.2.9.2.5 Float#7d e 148
1Lo.2.9.2.0 Floatz<=> s 149
Lo.2.9.2.7 Float#r== e 149
[5.2.9.2.8 Float#cell 150
[5.2.9.2.9 FloatZfnited]o 150
Lo.2.9.2. 10 Floatzoon e e e e e e e e e e 150
5.2.9.2.11T Float#infinite?lo 151
Lo.2.9.2. 12 Floatzrroundo e e e e 151
Lo.2.9.2. 16 Float#to] e 151
Lo.2.9.2. 14 Floatz£tod L e e e e e e e e e 151
[5.2.9.2.15 Float#fruncatd 152
[5.2.T0 String o o o o e 152
[5.2.10.T Direct superclasd 152
2107 Tnchided moduled e 152
[2103 Tnstancemethodd 152
[52T0.3.1 StrimgFFq o o e e 152
Lo.2.10.0.2 OUrINGFHFH« « o o o e e e e e e e e e e e e e e e e 153
1L5.2.10.9.0 DUrngz<=2>o e e e e 153
Lo0.2.10.0.4 OUIINGFHF== « « © o i i e e e e e e e e e e e e e e e 154
L5.2.10.0.0 DUringzr= 1| e e 154
[5.2.10.3.6 String#[| 155
[5.2.10.3.7 String#capitalizd 156
[5.2.10.3.8 String#capitalize] 156
[5.2.10.3.9 StringZchomy 157
[5.2.10.3.T0 StringZFchomp] 157
Lo.2.10.0.11 String#chop oo 157
[5.2.10.3. T2 StringFchop]o 158
[5.2.10.3.13 StringZdowncasd 158
[5.2.10.3. 174 StringFdowncase] 158
L5.2.10.3.15 String#Heach ind 159
[5.2.10.3.16 StringHFempty?q. 159
Lo.2.10.0.17 Stringzeql] oo Lo 159
[5.2.70.3. I8 String#Hesull 160
Lo.2.10.0.19 String#gsub) o000 161
Lo.2.10.0.20 String#hasho 161

[5.2.10.3.2T StringZinclude?] 162
[5.2.10.3.22 String#initializd 162
[5.2.10.3.23 String#initialize copy 162
[5.2.10.3.24 StringHFinfern 163
Lo.2.10.0.20 otringzlengthnlo Lo e e 163
[5.2.10.3.26 StringZmatch 163
[5.2.70.3.27 StringHreplacd 164
[5.2.10.3.28 StringHreversd e e e 164
[5.2.10.3.29 StringHreverse] 164
[5.2.10.3.30 String#scan e e e e 164
[5.2.T0.3.3T String#sizd o e e e e 165
Lo.2.10.0.02 String#shicdo 165
[5.2.10.3.33 StringFspliflo 166
Lo0.2.10.0.04 OUIrING#Sul« « v v v e e e e e e e e e e e e e e e 167
[5.2.10.3.35 String#sub]o 168
[5.2.70.3.36 StringZupcasd v v v v i e e e e e 168
[5.2.10.3.37 String#upcasel] 168
L0.2.10.5.08 OUrIN@#TO_]« « v v v v e e e e e e e e e e e e e e e e 168
Lo0.2.10.0.09 OUrIN@TO_l o v v i e s e e e e e e e e e e e e e 169
1L0.2.10.5.40 OUIrIN@#H#TO_S+« « v v v vt e e e e e e e e e e e e e e e e 170
[5.2.10.3.4T StringZto_syml e 170
[52.TT Symbol e e 170
[5.2.TT.T Direct superclasy e 170
[52TT2 Tnsfancemefhodd, 170
Lo.2.11.2.1 dSyvmbol#F=== 170
Lo.2.11.2.2 Symbol#idZnamedg 171
Lo.2.11.2.0 dSymbolzEto_go 171
Lo.2.11.2.4 Symbol#tosym| s 171
[52T2 ATTal] o o o o o e e e e e e e e e e e e e e e 171
[5.2.12.T Direct superclasy 172
2177 Tncludedmoduled e 172
[5.2.12.3 Singleton methodd 172
[5.2.12.3.1 Array.]| 172
o2 124 Instance methodd 0 0 0 e e e e e e e e e e e 172
M5.212.4T ArravET - - o o o oo e e 172
Lo.2.12.4.2 ATTAVIEH . - - « v v o i e e e e e e e e e e e e e e e e e e e 173
[5.2T12.4.3 ArrayFH << o v o o e e e e 173
[15.2.12.4.4 Array#|] 173
(521245 ArrayZ[[5 174
Lo.2.12.4.6 Array#eclean L Lo oo e e e e e e 175
M5.2.12.4.7 ArrayFcollect] 175
[5.2.12.4.8 ArrayFconcall 175
[5.2.12.4.9 Array#each, 176
[5.2.12.4.T0 Array#eachindex 176
[5.2.12.4.11T ArrayFemptv] 176
(52124712 ArrayFhOrsf 177
[5.2.12.4.13 ArrayFinitializd 177
[5.2.12.4.14 Array#initialize_.copyl 178
5. 2.T2.4.T5 ArrayZFjoin o o v i e e e e e e 178
[5.2.12.4.76 Arrayv#lastlo 179
Lo.2.12.4.17 Array#lengthf o000 179
I5.2.12.4.18 Array#Fmap]o 180

ix

[5.2.12.4.T9 ArrayFDPopD - . - « v v v v v e e e e e e e e e e e e e e 180
[5.2.12.4.20 ArrayZpusho 180
[5.2.12.4.2T ArrayFreplacd o . e 180
[5.2.12.4.22 Array#Freversdo 180
[5.2.12.4.23 ArrayFreversel 181
Lo.2.12.4.24 Array#shiit] 181
[5.2.T2.4.25 Array#sizd e 181
[5.2.12.4.26 Array#Fslicd e 181
[5.2.12.4.27 ArrayZunshifff, 182
M2 T3 HasH e 182
[5.2.13.T Direct superclasy i 183
I 2 137 Tncludedmaoduled 183
[52T33 Tmsfancemefhodd oL 183
(52133 T Hash#F== 183
[5.2.13.3.2 Hash#[]. 183
15.2.13.3.3 Hash#[[5. 184
M[5.2.13.3. 4 HashFcleal v e 184
[5.2.13.3.5 Hash#Fdefaulf 184
[5.2.13.3.6 Hash#Fdefault5 185
[5.2.13.3.7 Hash#Fdefault prod 185
[5.2.13.3.8 Hash#deletd 186
[5.2.13.3.9 Hash#each, 186
Lo.2.15.0.10 Hash#each_keyl 186
(5213311 HashFeach valud 187
Lo.2.15.0.12 Hash#empty] o 187
Lo.2.15.0.16 Hash#has keyq, 187
[5.2.13.3.14 Hash#hasvalue] 187
[5.2.13.3.15 Hash#includeq 188
[5.2.13.3.16 Hash#initializd 188
[5.2.13.3.17 Hash#initialize_copy] 188
Lo.2.15.5.18 Hash#key?]o 189
[5.2.13.3.19 Hash#Fkeyd oo 189
[5.2.13.3.20 HashFlength 189
Lo.2.15.0.21 Hash#memberd] 190
[5.2.13.3.22 Hash#Fmergdo 190
Lo.2.15.0.20 Hash#replacd o oo 190
Lo.2.15.0.24 Hash#shirt] 190
Lo.2.15.0.20 Hash#sizgd e 191
Lo.2.15.0.206 Hash#stordo 191
Lo.2.15.0.27 Hash#valuel 0oL 191
[5.2.13.3.28 Hash#valued 192
Lo.2.14 Rangqd e e e e e e e e e e e e e e e 192
[5.2.14.T Direct superclasdo 192
2147 Tnclhadedmoduled e 192
I 2T43 Imstancemethodd 192
I15.2.14.5.1 Ranged==.o 192
Lo.2.14.0.2 RangerF===. e e e e e e 193
(521433 Range#Hbeginl. e 193
[5.2.74.3.4 Range#each 194
[5.2.14.3.5 RangeFHend e 194
[5.2.174.3.6 Range#excludeend?] 194
[5.2.14.3.7 Rangehrs] 195

[5.2.14.3.8 Rangeinclude?] 195
(521439 RangeZinitializd« v v v v v e e e 195
[5.2.743.10 Range#last Lo 195
[5.2.14.3.11T RangeHFmember] 196
[5. 215 Regexp . . . - o o o o o i e e 196
[5.2.15.1 Direct superclasdo 196
Uo2 152 Constantd L . oo e e e e e e e e e e e e e e e e 196
UaoZ 153 Fatternd. o L o e e e e e e e e e e e e e e e 197
0.2.15.4 Matching procesd. e 200
[5.2.15.5 Singlefon methodd, 201
[5.2.155.T Regexp.compild v v .. 201
[5.2.15.5.2 Regexp.escapd . . . « v v v v v v v v e e e e e e e e 202
[5.2.15.5.3 Regexp.last match 202
[5.2.15.5.4 Regexp.quotd e 203
M2 156 TInsfancemethodd 203
[5.2.75.6.1 Regexp#initializd 203
[5.2.15.6.2 Regexp#initialize.copyl 204
L0.2.15.0.0 RegeXPFHF==0 « « o e e e e e e e e e e e e e e 204
[5.2.15.6.4 RegexpHE=== . - . « « « « « v v v i it 205
Lo0.2.15.0.0 Regexp#F=| e e e e e 205
[5.2.15.6.6 Regexp#casefoldq] 206
[5.2.15.6.7 RegexpFmatch. 206
[5.2.15.6.8 RegexpFSourcd v v v v v v v vt e e e e e 206
U2 1o MatehDatal 0 o 0 . e e e e e e 206
[5.2.16.T Direct superclasy e 207
[2162 TInsfancemethodd 207
[15.2.16.2.1 MatchData#[| 207
[5.2.16.2.2 MatchData#begin 207
[5.2.16.2.3 MatchData#captured 207
[5.2.16.2.4 MatchData#end 208
[5.2.76.2.5 MatchData#initialize copy - . . . « . . o o o v o o . .. 208
Lo.2.10.2.6 MatchDatazlength 209
[5.2.16.2.7 MatchData#ofsef 209
Lo.2.16.2.6 MatchData#post_match 209
[5.2.16.2.9 MatchData#pre_match 210
lLo.2.10.2.10 MatchDatazsizdo ..., 210
[5.2.16.2.1T MatchData#string 210
Lo.2.10.2.12 MatchDataztoa« 210
lLo.2.10.2.16 MatchDataz#to_d 210
MEZT7Prad oo e e e 211
I5.2.T7. 1 Direct superclasd 211
[5.2.177.2 Singlefon methodg 211
MhZT77T " Procmesm v v v o v e e e e e e e e e e e e e e 211
2T73 Tnsfancemefhoddo 211
(521731 Proc#[] 211
(521732 Proc#arity] 212
Lo.2.1/7.0.0 FProcgcallo oo 212
[5.2.17.3. 4 ProcHclond e 213
Lo.2.17.0.0 Procgdup e e e e e e e 213
MAZTRSTruch e e 214
[5.2.I8. T Direct superclasy i vt 214
[5.2.18.2 Singleton methodd, 214

xi

2187 T Structnew 214

M5 27183 Tmsfancemefhodd 216
E5.2.I8 3.1 Struct#==H. 216
[5.2.18.3.2 Struct#[| 216
[5.2.18.3.3 Struct#|[H 217
[5.2.18.3.4 Struct#eacH 218
[5.2.18.3.5 StructFeachpail 218
[5.2.18.3.6 Struct#memberd oo, 218
[5.2.18.3.7 StructFselec]o 219
[5.2.18.3.8 Struct#initializd 219
[5.2.18.3.9 Struct#Finitialize copy . . . - . . . « .« 219

AT TIME . . . o o o o e 220

[5:219.1 Direct superclasy o o o v v i e e 220

[5.2.19.2 Time computafion 220
Uo.2.19.2. 1 Dayl e e e e e 220
Lo 2 192 2 Yeall e e e e e e e e e e e e e e e e e e 221
Uo2 1925 Month s 221
[5.2.19.24 Daysofmonth 222
[5.2.19.2.5 Hours, Minufes, and Secondd 222

2793 Timezoneand Localfimd 223

[5.2.19.4 Daylight saving timd 223

[5.2.79.5 Singlefon methodg 223
Ua 2 19 5 | dimeall . . . L L L e s e e e e 223
Lo.2.19.0.2 Time.gmlo e e e e e e 224
527953 Timelacal 226
[A2T95 4 Timemkiimd 226
ME2TI8505 TImMenaW . . . v v v v v v e e e e e e e e e e e e e e e e 226
Un 2 1956 Timentd . . . L. L L L s e e e 226

[b2T96 Tnsfancemefhodd, 227
Lo.2.19.0.1 Time##H e e e 227
Lo0.2.19.0.2 T1mesF— e e e e e e e 227
Lo0.2.19.0.0 TImexF<<=>] e e e e e e e 228
[5.2.79.6.4 Time#asctimdg, 228
[5.2.19.6.5 TimeZFctimd 229
1L5.2.19.6.0 Timezrday]o 229
Lo.2.19.0.7 Time#dst!] e e e e e e e 229
1Lo0.2.19.0.5 Time#getgm|o e e e e 230
[5.2.79.6.9 Time#getlocal 230
[5.2.19.6.10 Time#getutd, 230
Lo.2.19.0.11 "TimesFgmt!]o e 230
[5.2.19.6.12 Time#Fgmi offsefl 230
[5.2.79.6.13 TimeFgmtimd 230
Lo.2.19.0.14 "Time##gmtolllo e e e e e e e e e e e 231
Lo.2.19.0.1o0 Time#houro 231
[5.2.19.6.16 _Time#localtimd 231
1L5.2.19.6.17 "Timezrmday]o 231
Lo.2.19.0.18 Timesmano 232
1Lo0.2.19.0.19 Time#mon| 232
1Lo0.2.19.0.20 'Timezmontho e e e e e e e 232
Lo.2.19.0.21 ITime#sed. e e e 233
1Lo0.2.19.0.22 "T1me#to_ll e e e e e e e e 233

L0.2.19.0.256 limezfto]o 233

Lo0.2.19.0.24 "I1me#used e e e e e e e e e e e e e 233
1L5.2.19.6.20 "ITimezrutd oL 234
1Lo0.2.19.0.20 T1me#utcy e e e e e e e e 234
[5.2.19.6.27 Time#Futcoffsef 234
1Lo0.2.19.0.28 TimesFwdayl e e e e e e e e e e e e 234
1Lo0.2.19.0.29 'Time#vday e e e e e e e e e 235
1Lo0.2.19.0.00 TimezFveal Lo e e e e e e e e e 235
[5.2.19.6.31 TimeZFzond e 235
[5.2.79.6.32 Time#initializd 236
[5.2.19.6.33 TimeZinifialize_copy] 236

1o 2200 TN 0 0 0 e e e e e e e e e e 236
[5.2.20.T Direct superclasy 237
0529202 Tnclhidedmoduled 237
ILo.2.20.0 Singleton methody Lo 237
1o.2.20.50.1 10.0pen Lo e e e e 237
o2 204 Instance methodd 0L e e e e e e e e e e e 238
Lo0.2.20.4.1 1OZ#closd e e e e 238
[5.2.20.4.2 TOFclosedq] e 238
Lo.2.20.4.0 1O#each oo 238
Lo.2.20.4.4 10#each_bytq 000 oL 239
[5.2.20.45 TO0#eachlind oo 239
1L0.2.20.4.0 TOFEOL] e e e e e e e e e 239
Lo.2.20.4.7 1O=Z0usho s 240
115.2.20.4.5 TO#Fgetd e e e e e e 240
Lo.2.20.4.9 TOZEgety« . e e e e e e e e e e e e e 240
[5.2.20.4.T70 TO#initialize_copyl 241
Lo.2.20.4. 11 1TOZprint o e e e e e e e e 241
1L0.2.20.4.12 1O#Hputd o e e e e e e e e 241
Lo0.2.20.4. 16 1OZDPULY« . e e e e e e e 242
Lo.2.20.4.14 1O#read e e e e e e e 243
[5.2.20.4.T5 TO#readchay 243
[5.2.20.4.16_IO#readlind, 243
[5.2.20.4.77 TO#readlined v v vt 244
Lo0.2.20.4.18 TOZSYNA« . e e e e e e e e e e e e e e 244
(5220479 TOZFESYNCT . . .« v v v o v e e e e e e e e e e e e 245
1L0.2.20.4.20 TOZFEWTITE« « o v e s e e e e e e e e e e e e e 245
D207 EGTd o e e e e 245
[5.2.2T.T Direct superclasy v i e 246
M[5.2.21.2 Singleton methodd, 246
22T 7T Fleexistd 246
[h22T 3 Tnsfancemethodd 246
[5.2.2T.3.T FileFinitializd 246
Lo.2.21.0.2 Filegpath oo 247
[5.2.272 Exception e e 247
[5.2.22. T Direct superclasy e 247
[5.2.22.2 Built-in excepfion classed 247
ILo.2.22.0 Singleton methodyo Lo 247
[5.2.22.3.T Exception.excepfion 247

Uo 2224 Instance methodd 0 0L e e e e e e e e e e e 247
[5.2.22.4.T ExceptionFexceptiond 247
[5.2.22.47 Exceplion#Fmessagdo o 249
[5.2.22.4.3 Exception#fod, 249

[5.2.22.4.4 Exception#initializd 249

052923 StandardBErrod 249
[5.2.23. T Direct superclasy 249
(5222 ArgumentErron e e e 250
[5.2.24.T Direct superclasy e 250
M[5.2.25 LocalJumpErrod 250
[5.2.25.T Direct superclasy e 250

M5 2257 Tnstancemethodd 250
[5.2.25.2.T TLocalJumpError#Fexit valud 250
[5.2.25.2.2 LocalJumpError#reason 250
[5.2.26 RangeErron e e 250
[5.2.26.1 Direct superclasd o 250
(5227 RegexXpEITOI o v o i e e e e e e e e e e e e 250
[5.2.27. 1 Direct superclasd s 250
228 RunfimeFrrad e 251
[5.2.28. T Direct superclasy e 251
I5.229 TypeErronl e e e 251
[5.2.29.T Direct superclasy e 251
230 ZeroINvasionFErrad o v o e e e e e e e e e e e 251
[5.2.30.T Direct superclasy e 251
23T " NameFrron e e e e e e 251
[5.2.3T.T Direct superclasy i v 251
I523T2 Imstancemethodd 251
[523T.2.T NameError#namd 251
[5.2.31.2.2 NameErrorZinitializd 252

Lo 2 52 NolMethodbrrod L e e e e 252
[5.2.32.T Direct superclasy e 252

M5 2327 Tnstancemethodd, 252
Lo.2.02.2.1 NoMethodError#argyd 252
[5.2.32.2.2 NoMethodError#initializd 252
233 TndexErrad 0 0 e e e e e e 253
[5.2.33.1T Direct superclasd 253
[5.2.34 Stoplteration e 253
[5.2.34.T Direct superclasdo 253
Lo 2 50 TOEYron . . . 0 0 0 0 o L s e e e e e e e e e e e e e e 253
[5.2.35.T Direct superclasy e 253
Ua2Z2 a6 BHOBEEYrod o e e e e e e e e 253
[5.2.36.T Direct superclasy e 253
[5.2.37 SystemCallErron e 253
[5.2.37. T Direct superclasy e 253
[5. 238 ScriptErron e e e e e e 253
[5.2.38.T Direct superclasy e 254
(5239 SvntaxErron e e e e e e e e e e 254
[5.2.39.T Direct superclasy e 254

U 240 lLoadHrrad L L L e e e e e e e e e e e e e e 254
[5.2.40.T Direct superclasy e 254
Lh o bwlt-in modules o0 L L L 0L L s e e e e e e e e e e e e e e 254
31 Kernel e e 254
[5.3.1.1 oingleton methodd 254
[R3TTT Kerneld 254
[5.3.1.1T.2 Kernel.block given? 255

3113 Kernel eval 255

[5.3.1.1.4 Kernel.global_variabled 255

R3TT5H Kernel[iferaford 255
ool 16 Kernel lambdal0 0000 o 256
L3117 Kernel Tocal variabled v v v v v i o 257
[5.3.1T.1T.8 Kernel.loog 257
I[5.3.1.1.9 Kernel.method_missing 257
E5.3.T.T.T0 Kernel.p e 258
I5.3.1T.T.1T Kernelprinff 258
[5.3.T.T.12 Kernellpufd 258
Oh3TTT3 Kernelraisd. et e et 259
[5.3.T.T.T4 Kernelrequird o v v .. 259
312 [Insfance mefhodd 260
[53.1.2.T Kernel#== e 260
[5.3.1.2.2 KernelAF=== 260
15.3.1.2.3 Kernel#_id__ s 261
[5.3.1.2.4 Kernel£F_send__ 261
015.3.1.2.5 Kernel#] s 261
[5.3.1.2.6 KernelZblock givenq] 261
I5.3.1.2.7 Kernel#clasd oo 262
[5.3.1.2.8 Kernelclond 262
[5.3.1.2.9 KernelZEdug oo 262
[5.3.T.2.T0 KernelFeql] o o 263
I5.3.T.2.1T Kernel#Fequal] 263
[5.3.1.2.12 KernelFeval 263
Lo.o.1.2.16 Kernel#Fextend 0oL 263
[5.3.1.2.14 Kernel#Fglobal variabled 264
Lo.o.1.2.10 Kernel#hash 000000, 264
[5.3.1.2.16 Kernel#initialize_.copyl o v v v v v o 264
[5.3.1T.2.T7 Kernel#Finspec] 265
[5.3.1.2.18 Kernel#instanceeval 265
[5.3.1T.2.T9 Kernel#Finstance of] 265
[5.3.1.2.20 Kernel#instance_variable_defined?q 266
[5.3.T.2.2T Kernel#Finstance variable gefl 266
[5.3.1.2.22 Kernel#instance_variablesef] 267
[5.3.1.2.23 Kernel#instance_variabled 267
Lo.o0.1.2.24 Kernel#Fis_al oL oo e e 267
[53.1.2.25 KernelFiterator]. 268
Lo.0.1.2.20 Kernel#Fkind. oty 0oL 268
05.3.1.2.27 KernelFlambdd 268
[5.3.1.2.28 Kernel#Flocal variabled 268
[5.3.1.2.29 Kernel#loog e 268
[53.1.2.30 Kernel[#method missing 269
[5.3.1.2.31 Kernel#methodd 269
[5.3.1.2.32 Kernel#Fnil] e 269
[5.3.1.2.33 Kernel#objectid 269
L5.0.1.2.04 Kernel#p oL 270
[5.3.1.2.35 Kernel#Fprinfl 270
[5.3.1.2.36 Kernel#private_methodd 270
[5.3.1.2.37 Kernel#protected methodd 271
[5.3.1.2.38 Kernel#publiccmethody 271
Lo.o0.1.2.0Y Kernel#Fputyo 271
[5.3.1.2.40 KernelFraisd o v i e e 271

XV

[5.3.1.2.41 Kernel#remove_instance_variabld 272

[53.1.2.42 Kernel#requird. 272
[5.3.1.2.43 Kernel#respond o] 272
[53.1.2.44 KernelFHsend e 273
[5.3.1.2.45 Kernel#singleton . methodd 273
[53.1.2.46 KernelHtod 274
ho? Enumerabld 0 0L 274
301 [nsfance mefhodd 274
[5.3.2.1T.1 Enumerable#Fall] 274
[5.3.2.1.2 EnumerableFanvy] e 275
[5.3.2.1T.3 Enumerable#collec 275
[5.3.2.1.4 Enumerabledetec]o 00000 275
[53.2.1.5 Enumerable#each with_index. 276
[5.3.2.1T.6 Enumerable#enfried 276
M[5.3.2.1.7 EnumerableZfind 277
Lo.0.2.1.8 Enumerableznond_all 0000000000 277
[5.3.2.1.9 EnumerableFgrego o 277
[5.3.2.T.T0 EnumerableZinclude? 278
[5.3.2.T.1T EnumerableZinjecll 278
[5.3.2.T.T12 EnumerableZEmapg« v o v v v vt i 279
[5.3.2.1.13 EnumerableZmax 279
[5.3.2Z.T.T4 EnumerableZFmin 280
[5.3.2.T.15 EmumerableZFmember?] 280
[5.3.2.1T.16__Enumerable#Fparfition 280
[5.3.2.T.T7 Enumerable#rejecl 281
[532.T.I8 Enumerable#selec] 281
[5.3.2.T.T9 Enumerable#sorfl 282
[5.3.2.1.20 Emumerable#tod 282
Lo.9.0 Comparabld e e e 283
=373 Instance mefhodd oo 283
[5.3.3.1T.1T ComparableZE] e 283
[5.3.3.1.2 ComparableZ<= e 283
[5.3.3.1T.3 ComparableZF == 283
[5.3.3.1.4 ComparableZE>] 284
[5.3.3.1.5 Comparable#E>= 284
[5.3.3.1.6 ComparableZbetween?d 284
Annex A (informative) Grammar SUmmary]l« « v v v v v e e e e e 286

xvi

10

11

12

13

14

15

16

17

18

19

20

21

22

Information technology —
Programming Languages — Ruby

1 Scope

This document specifies the syntax and semantics of the computer programming language Ruby
by specifying requirements for a conforming processor and for a conforming program.

This document does not specify:

e the size or complexity of a program text that exceeds the capacity of any specific data
processing system or the capacity of a particular processor;

e the minimal requirements of a data processing system that is capable of supporting a
conforming processor;

e the method for activating the execution of programs on a data processing system;

e the method for reporting syntactic and runtime errors.

2 Normative references
The following referenced documents are indispensable for the application of this document. For
dated references, only the edition cited applies. For undated references, the latest edition of the

referenced document (including any amendments) applies.

ISO/IEC 646:1991 Information technology — ISO 7-bit coded character set for information in-
terchange.

TEC 60559:1989 Binary floating-point arithmetic for microprocessor systems.

3 Conformance
A conforming Ruby program shall:

e use only those features of the language specified in this document;

e 1ot rely on implementation dependent features;

A conforming Ruby processor shall:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

e accept any conforming programs and behave as specified in this document;
e reject any program which does not conform to the syntax described in this document;

e report any unhandled exceptions raised during execution of the conforming program:;

A conforming Ruby processor may use an internal model for the Ruby language other than the
one specified in this document, if it does not change the meaning of a conforming program.

4 Terms and definitions

For the purposes of this document, the following terms and definitions apply. Other terms are
defined where they appear in bold slant face or on the left side of a syntax rule.

4.1
block
sequence of statements which is passed to a method invocation

4.2
class
object which defines the behavior of a set of other objects called its instances

NOTE The behavior is a set of methods which can be invoked on an instance.

4.3
class variable
variable whose value is shared by all the instances of a class

4.4
constant
variable which is defined in a class or a module and is accessible outside the class or module

NOTE The value of a constant is regularly expected to remain constant during the execution of a
program, but Ruby does not force it. In some implementations, an assignment to a constant which
already exists causes a warning, but this document does not specifity it.

4.5
eigenclass
special class which defines a behavior for only a single object

4.6
exception
object which represents an unexpected event

4.7
global variable
variable which is accessible everywhere in a Ruby program

4.8
implementation defined
possibly differing between implementations, but defined for every implementation

2

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

4.9

implementation dependent

possibly differing between implementations, and not necessarily defined for any particular im-
plementation

4.10
instance method
method which can be invoked on all the instances of a class

4.11
instance variable
variable which belongs to a single object

4.12

local variable

variable which is accessible only in a certain scope introduced by a program construct such as
a method definition, a block, a class definition, a module definition, an eigenclass definition, or
the toplevel of a program

4.13
method
procedure which, when invoked on an object, performs a set of computations on the object

4.14
method visibility
attribute of a method which determines the conditions on which a method invocation is allowed

4.15
module
object which provides features to be included into a class or another module

4.16
object
computational entity which has a state and a behavior

4.17
singleton method
instance method of the eigenclass of an object

4.18
variable
computational entity which stores a reference to an object

5 Notational conventions
5.1 Syntax

The syntax of the language is presented as a series of productions. Each production consists

of the name of the nonterminal symbol being defined followed by “::”, followed by one or more
alternatives separated by “|”.

10

11

12

13

14

15

16
17

18
19

20

21

22
23

24
25

26

27

28

29

30
31

Terminal symbols are shown in typewriter face, and represent sequences of characters as they
appear in a program text. Non-terminal symbols are shown in italic face.

Each alternative in a production consists of a sequence of terminal and/or nonterminal symbols
separated by whitespace.

If the same nonterminal symbol occurs on the right side of a production more than once, each
occurrence is subscripted with a number to distinguish it from the other occurrences of the same
name.

An optional symbol is denoted by postfixing the symbol with “?”.

A sequence of zero or more repetitions of a symbol is denoted by postfixing the symbol with
Wk

A sequence of one or more repetitions of a symbol is denoted by postfixing the symbol with “+”.
Parentheses are used to treat a sequence of symbols as a single symbol.

A symbol followed by the phrase but not and another symbol represents all sequences of charac-
ters represented by the first symbol except for sequences of characters represented by the second
symbol.

EXAMPLE 1 The following example means that non-escaped-character is any member of source-
character except escape-character:

non-escaped-character ::
source-character but not escape-character

Text enclosed by “[” and “|” is used to describe a sequence of characters or a location in a
program text.

EXAMPLE 2 The following example means that source-character is any character specified in ISO/IEC
646:

source-character ::
[any character in ISO/IEC 646]

In particular, the notation “[lookahead ¢ set]” indicates that the token immediately following
the notation shall not begin with a sequence of characters represented by one of the members
of set. The set is represented as a list of one or more terminal symbols separated by commas,
and the list is enclosed by “{” and “}”.

EXAMPLE 3 The following example means that the argument following the method-modifier shall not
begin with “{”:

command ::

10

11

12

13

14
15

16
17
18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

method-identifier [lookahead ¢ { { }] argument

In this document, use of the words of and in, when expressing a relationship between nonter-
minal symbols, has the following meanings:

X of Y: refers to the X occurring directly in a production defining Y.

X in Y: refers to any X occurring in a sequence which is derived directly or indirectly
from Y.

5.2 Conceptual name

A conceptual name is a common name given to a set of semantically related nonterminal
symbols in the grammar in order to refer to this set in a semantic description. A conceptual
name is defined by a conceptual name definition. A conceptual name definition consists
of the conceptual name to be defined followed by “::=", followed by one or more nonterminal
symbols or conceptual names, separated by “|”.

EXAMPLE The following example defines the conceptual name assignment, which can be used to refer
either assignment-expression or assignment-statement.

assignment 1=
assignment-expression
| assignment-statement

6 Objects
6.1 General description

Ruby is a pure object-oriented language. It is pure in the sense that every value manipulated
in a Ruby program is an object including primitive values such as integers.

An object is a computational entity which has a state and a behavior.

A variable is a computational entity which stores a reference to an object. A variable has a
name. A variable is said to be bound to an object if the variable stores a reference to the
object. This association of a variable with an object is called a variable binding. When a
variable with name N is bound to an object O, N is called the name of the binding, and O is
called the value of the binding.

An object has a set of variable bindings. A variable whose binding is in this set is an instance
variable of that object. This set of bindings of instance variables represents the state of that
object and is encapsulated in that object.

A method is a procedure which, when invoked, performs a set of computations. The behavior
of an object is defined by a set of methods which can be invoked on that object. A method
has one or more (when aliased) names associated with it. An association between a name and

5

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

a method is called a method binding. When a name N is bound to a method M, N is called
the name of the binding, and M is called the value of the binding. A name to which a method
is bound is called the method name. A method can be invoked on an object by specifying one
of its names. The object on which the method is invoked is called the receiver of the method
invocation.

There are three constructs which define the behavior of objects: classes, eigenclasses, and mod-
ules. A class defines methods shared by objects of the same class. An eigenclass is a special class
which defines methods for only a single object. A module defines, and provides methods to be
included into a class or another module. All these three constructs are represented as objects,
which are dynamically created and modified at run-time.

A class creates objects, and the created objects are called direct instances of the class. A
class defines a set of methods which can be invoked on all the instances of the class. These
methods are instance methods of the class. A class is itself an object, and created by a class
definition (see §L3ZA). A class has two sets of variable bindings besides a set of bindings of
instance variables. The one is a set of bindings of constants. The other is a set of bindings of
class variables, which represents the state shared by all the instances of the class.

Every object, including classes, can be associated with at most one special class to the object.
This special class is called the eigenclass of the object. The eigenclass defines methods which can
be invoked on that object. Those methods are singleton methods of the object. If the object is
not a class, the singleton methods of the object can be invoked on only that object. If the object
is a class, the singleton methods of the class are similar to so-called class methods because they
can be invoked on only that class and its subclasses. An eigenclass is created, and associated
with an object by an eigenclass definition (see §I3Z2) or a singleton method definition (see
§I323).

A class has a single class or nil as its direct superclass. If a class A has a class B as its direct
superclass, A is called a direct subclass of B. Classes form a tree-like hierarchy defined by the
direct superclass-subclass relation. There is only one class which has nil as its direct superclass.
It is the root of the tree. All the ancestors of a class in the tree are called superclasses of the
class. All the descendants of a class in the tree are called subclasses of the class. A class inherits
constants, class variables, singleton methods, and instance methods from its superclasses, if any
(see §323). If an object C is a direct instance of a class D, C' is called an instance of D and
all its superclasses.

Ruby does not support multiple inheritance; that is, a class can have only one direct superclass.
However, Ruby supports module inclusion, which is a mechanism to append features into a class
from multiple sources.

A module is an object which has the same structure as a class except that it cannot create an
instance of itself and cannot be inherited. As with classes, a module has a set of class variables
and instance methods. Instance methods and class variables defined in a module can be used
by other classes, modules and eigenclasses by including the module into them. While a class
can have only one direct superclass, a class or a module can include multiple modules. Instance
methods defined in a module can be invoked on an instance of a class which includes the module.
A module is created by a module definition (see §IL3T2).

Objects are created at some time during program execution. The lifetime of an object begins
when the object is created and ends when all references to it are no longer possible.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

6.2 Boolean values
An object is classified into either a true value or a false value.

Only false and nil are false values. The pseudo variable false is the only instance of the class
FalseClass, and is represented by the keyword false. The pseudo variable nil is the only
instance of the class NilClass, and represented by the keyword nil.

Objects other than false and nil are classified into true values. The pseudo variable true is
the only instance of the class TrueClass, and represented by the keyword true.

7 Execution context
7.1 Contextual attributes
An execution context is a set of attributes which affects an evaluation of a program.

An execution context is not a part of the language. It is defined in this document only for the
description of the semantics of a program. A conforming processor shall evaluate a program as
if it acted upon an execution context in the manner described in this document.

An execution context consists of a set of attributes as described below. Each attribute of an ex-
ecution context except [global-variable-bindings] forms a logical stack. The names of attributes
are enclosed in double square brackets “[” and “]”. Attributes of an execution context are
changed when a program construct is evaluated.

The following are the attributes of an execution context:

[self] : A logical stack of objects, the top of which is the object to which the pseudo variable
self is bound (see §ITZ3773). The object at the top of the stack is called the current
self .

[class-module-list] : A logical stack of lists of classes or modules. The class or module at
the head of the list which is on the top of the stack is called the current class or module.

[default-method-visibility]] : A logical stack of visibilities of methods, each of which is one
of the public, private, and protected visibility. The top of the stack is called the current
visibility .

[local-variable-bindings] : A logical stack of sets of bindings of local variables. The element
at the top of the stack is called the current set of local variable bindings. A set of
bindings is pushed onto the stack on every entry into a local variable scope (see §811),
and the top element is removed from the stack on every exit from the scope. The scope
with which an element in the stack is associated is called the scope of the set of local
variable bindings.

[invoked-method-name] : A logical stack of names by which methods are invoked.

[defined-method-name] : A logical stack of names with which the invoked methods are
defined.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

[block] : A logical stack of blocks passed to method invocations. An element of the stack
may be block-not-given, which indicates that no block is passed to a method invocation.

[global-variable-bindings] : A set of bindings of global variables.
The term unset is used to describe the state of an attribute which is set to nothing.

7.2 The initial state

Immediately prior to an execution of a program, the attributes of the execution context is
initialized as follows:

a) Create an empty set of variable bindings, and set [global-variable-bindings] to the set of
variable bindings.

b) Create built-in classes and modules as described in §IA.

c) Create an empty stack for each attribute of the execution context except [global-variable-
bindings] .

d) Create a direct instance of the class Object and push it onto [self] .
e) Create a list containing only the class Object and push the list onto [class-module-list] .
f) Push the private visibility onto [default-visibility] .

g) Push block-not-given onto [block] .

8 Lexical structure

When several prefixes of the input under parsing process have matching productions, the pro-
duction that matches the longest prefix is selected.

8.1 Source text

Syntax

source-character ::
[any character in ISO/IEC 646]

A program is represented as a sequence of characters. A conforming processor shall accept
any conforming program which consists of characters in ISO/IEC 646, encoded with the octet
values as specified in ISO/IEC 646. The support for any other character sets and encodings is
implementation dependent.

Terminal symbols are sequences of those characters in ISO/IEC 646. Control characters in
ISO/IEC 646 are represented by hexadecimal notation.

EXAMPLE “0x0a” represents a line feed character.

8

1

2

3

5

10

11

12
13

14
15
16

17

18
19

20

21

22
23

24

25
26

27
28
29
30

8.2 Line terminators

Syntax

line-terminator ::
0x0d? 0x0a

A line-terminator is ignored when it is used to separate tokens. For this reason, except in §§4
and §&A, line-terminators are omitted from productions. However, in some cases, the presence
or absence of a line-terminator changes the meaning of a program.

A location of program text where a line-terminator shall occur is indicated by the notation “[
line-terminator here |”. A location of program text where a line-terminator shall not occur is
indicated by the notation “[no line-terminator here |”; however, a conforming processor may
ignore the notation where the ignorance does not introduce ambiguity.

EXAMPLE statements are separated by separators (see §I02). The syntax of the separators is as
follows:

separator ::
5

| [line-terminator here]

The source

x=1+2
puts x

is therefore separated to two statements x = 1 + 2 and puts x by a line-terminator.

The source

is parsed as a single statement x = 1 + 2 because x = is not a valid statement. However, the source

is not a valid Ruby program because a line-terminator shall not occur before = in a single-variable-
assignment-expression, and = 1 + 2 is not a valid statement. The fact that a line-terminator shall not
occur before = is indicated in the syntax of the single-variable-assignment-expression as follows (see
ST T1):

=
o

17

18

19

20

21

22

23

24

25

26

27

28

29

single-variable-assignment-expression ::
variable [no line-terminator here| = operator-expression

8.3 Whitespace

Syntax

whitespace ::
0x09 | 0xOb | O0xOc | 0x0d | 0x20 |\ 0x0d? 0xOa

whitespace is ignored when it is used to separate tokens. For this reason, except in §84 and
8B4, whitespace is omitted from productions. However, in some cases, the presence or absence
of whitespace changes the meaning of a program.

A location of program text where whitespace shall occur is indicated by the notation “[whitespace
here |”. A location of program text where whitespace shall not occur is indicated by the notation
“[no whitespace here |”. A line-terminator shall not occur in the location where whitespace shall
not occur. Therefore, this notation also indicates that a line-terminator shall not occur.

8.4 Comments

Syntax

comment ::
single-line-comment
| multi-line-comment

single-line-comment ::
comment-content?

comment-content ::
line-content

line-content ::
source-character+

multi-line-comment ::
multi-line-comment-begin-line multi-line-comment-line?
multi-line-comment-end-line

multi-line-comment-begin-line ::
[beginning of a line | =begin rest-of-begin-end-line? line-terminator

10

10

11

12

13

14

15

16

17

18

19

20

21

22

23

29

31

32

multi-line-comment-end-line ::
[beginning of a line | =end rest-of-begin-end-line?
(line-terminator | [end of a program |)

rest-of-begin-end-line ::
whitespace + comment-content

line ::
comment-content line-terminator

multi-line-comment-line ::
line but not multi-line-comment-end-line

”

The notation “[beginning of a line |” indicates the beginning of a program or the position

immediately after a line-terminator.
Any characters that are considered as line-terminators are not allowed within a line-content.

A comment is either a single-line-comment or a multi-line-comment. A comment is considered
to be whitespace.

A single-line-comment begins with “#” and continues to the end of the line. A line-terminator
at the end of the line is not considered to be a part of the comment. A single-line-comment can
contain any characters except line-terminators.

A multi-line-comment begins with a line beginning with =begin, and continues until and in-
cluding a line that begins with =end. Unlike single-line-comments, a line-terminator on a
multi-line-comment-end-line, if any, is considered to be part of the comment.

8.5 Tokens
Syntax
token ::
reserved-word
| identifier
| punctuator
| operator
| literal

8.5.1 Reserved words

Syntax

reserved-word ::

__LINE ENCODING FILE__ | BEGIN | END | alias | and | begin

11

6

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

break | case | class | def | defined?

| do | else | elsif

| end

ensure | for | false | if | in | module | next | nil | not | or | redo

|
|
rescue retr return self super then true undef unless
y P
!

until | when | while | yield

Reserved words are case-sensitive.

8.5.2 Identifiers

Syntax

12

identifier ::
local-variable-identifier
| global-variable-identifier
| class-variable-identifier
| instance-variable-identifier
| constant-identifier
| method-identifier

local-variable-identifier ::
(lowercase-character | _') identifier-character™®

global-variable-identifier ::
$ identifier-start-character identifier-character™®

class-variable-identifier ::

Q@ identifier-start-character identifier-character*

instance-variable-identifier ::
Q identifier-start-character identifier-character™

constant-identifier ::
uppercase-character identifier-character®

method-identifier ::
method-only-identifier
| assignment-like-method-identifier
| constant-identifier
| local-variable-identifier

method-only-identifier ::
(constant-identifier | local-variable-identifier)

assignment-like-method-identifier ::
(constant-identifier | local-variable-identifier)

(1]7)

10

11

12

13

14

15

16

18

19

20

21

22

23

24

25

26

27

28

29

30

32

identifier-character ::
lowercase-character
| uppercase-character
| decimal-digit

identifier-start-character ::
lowercase-character
| uppercase-character

uppercase-character ::
A|B|C|D|E|[F|G[H|I[J|K[L|M[N|O[P|Q]R
[SIT]U[V]W[X]Y]Z

=

lowercase-character ::
a|lblc|dlelf|lg|[h|[i|jlk|[l|m|[n|]o|p|[qlTr
st lulv|w|x]|[y]z

®

decimal-digit ::
o|1|2|3|4|5|6|7]|8]|29

An identifier is a sequence of identifier-characters optionally prefixed by one of “$”, “@@”, or
“@”, and optionally postfixed by one of “?”, “1” or “=”.

A global-variable-identifier begins with “$”. A class-variable-identifier starts with “@@”. An
instance-variable-identifier begins with “@”. A constant-identifier begins with an uppercase-
character.

A local-variable-identifier begins with a lowercase-character or “”. A method-identifier is a
constant-identifier or a local-variable-identifier optionally followed by one of “?”, “1”

="

, OT
8.5.3 Punctuators

Syntax

punctuator ::

8.5.4 Operators

Syntax

operator ::
operator-method-name

13

o

9

10

16

18

19

20

21

22

23

24

25

26

27

28

29

30

| assignment-operator

operator-method-name ::
SR AR e A N SN IR
|

"+ |-e| 0| O=]"

assignment-operator ::
assignment-operator-name =

assignment-operator-name ::
okl [/ R << > &] & | Il

| << | >> | +

8.5.5 Literals

literal ::
numeric-literal
| string-literal
| array-literal
| regular-expression-literal
| symbol

8.5.5.1 Numeric literals

Syntax

14

numeric-literal ::
signed-number
| unsigned-number

unsigned-number ::
integer-literal
| float-literal

integer-literal ::
decimal-integer-literal
| binary-integer-literal
| octal-integer-literal
| hezadecimal-integer-literal

decimal-integer-literal ::
digit-decimal-integer-literal
| prefived-decimal-integer-literal

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

digit-decimal-integer-literal ::
0
| decimal-digit-without-zero (_? decimal-digit)*

prefized-decimal-integer-literal ::
0 (d | D) digit-decimal-part

digit-decimal-part
decimal-digit (_7 decimal-digit)*

binary-integer-literal ::
0 (b | B) binary-digit (_?7 binary-digit)*

octal-integer-literal ::
0(_]o|0)?octal-digit (_? octal-digit)*

hexadecimal-integer-literal ::
0 (x| X) hexadecimal-digit (_7 hexadecimal-digit)*

float-literal ::
decimal-float-literal
| exponent-float-literal

decimal-float-literal ::
digit-decimal-integer-literal . digit-decimal-part

exponent-float-literal ::
base-part exponent-part

base-part ::
decimal-float-literal
| digit-decimal-integer-literal

exponent-part ::
(e|E) (+]|-)? digit-decimal-part

signed-number ::
(+ | =) unsigned-number

decimal-digit-without-zero ::
1123|456 7]|8]09

octal-digit ::
ol1]|2|3|4|5]6]|T7

15

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

binary-digit ::
01

hexadecimal-digit ::
decimal-digit | a | b | ¢ | d| e | £f|A|B|C|D|E]|F

Semantics

A numeric-literal evaluates to either an instance of the class Integer or a direct instance of the
class Float.

An unsigned-number of the form integer-literal evaluates to an instance of the class Integer
whose value is the value of one of the alternatives on the right-hand side.

An unsigned-number of the form float-literal evaluates to a direct instance of the class Float
whose value is the value of one of the alternatives on the right-hand side.

A signed-number which begins with “+” evaluates to an instance represented by the unsigned-
number. A signed-number which begins with “~” evaluates to an instance of the class Integer or
a direct instance of the class Float whose value is the negated value of the instance represented
by the unsigned-number.

The value of an integer-literal, a decimal-integer-literal, a float-literal, or a base-part is the value
of one of the alternatives on the right-hand side.

The value of a digit-decimal-integer-literal is either 0 or the value of a sequence of characters,
which consist of a decimal-digit-without-zero followed by sequence of decimal-digits, ignoring

W

interleaving “_”s, computed using base 10.
The value of a prefixed-decimal-integer-literal is the value of the digit-decimal-part.

The value of a digit-decimal-part is the value of the sequence of decimal-digits, ignoring inter-

leaving “_”s, computed using base 10.

The value of a binary-integer-literal is the value of the sequence of binary-digits, ignoring inter-

won

leaving “_”s, computed using base 2.

The value of an octal-integer-literal is the value of the sequence of octal-digits, ignoring inter-

w

leaving “_”s, computed using base 8.

The value of a hexadecimal-integer-literal is the value of the sequence of hexadecimal-digits,
ignoring interleaving “_”s, computed using base 16.

The value of a decimal-float-literal is the value of the digit-decimal-integer-literal plus the value
of the digit-decimal-part times 10" where n is the number of decimal-digits of the digit-decimal-
part.

The value of an exponent-float-literal is the value of the base-part times 10" where n is the value
of the exponent-part.

The value of an exponent-part is the negative value of the digit-decimal-part if “-” occurs,

16

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

otherwise, it is the value of the digit-decimal-part.

There is no limitation on the maximum magnitude for the value of an integer-literal. The
precision of the value of a float-literal is implementation defined; however, if the underlying
platform of a conforming processor supports IEC 60559:1989, the representation of an instance
of the class Float should be the 64-bit double format as specified in §3.2.2 of IEC 60559:1989.
The value of a float-literal is rounded to fit in the representation of an instance of the class Float
in an implementation defined way.

8.5.5.2 String literals

Syntax

string-literal ::
single-quoted-string
| double-quoted-string
| quoted-non-expanded-literal-string
| quoted-expanded-literal-string
| here-document
| external-command-execution

Semantics

A string-literal evaluates to a direct instance of the class String.
8.5.5.2.1 Single quoted strings

Syntax

single-quoted-string ::

> single-quoted-string-character™

single-quoted-string-character ::
non-escaped-single-quoted-string-character
| single-quoted-escape-sequence

single-quoted-escape-sequence ::
single-escape-character-sequence
| non-escaped-single-quoted-string-character-sequence

single-escape-character-sequence ::
\ single-escaped-character

non-escaped-single-quoted-string-character-sequence ::
\ non-escaped-single-quoted-string-character

17

3

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

single-escaped-character ::

7’\

non-escaped-single-quoted-string-character ::

source-character but not single-escaped-character

Semantics

A single-quoted-string consists of zero or more characters enclosed by single quotes. The sequence
of single-quoted-string-characters within the pair of single quotes represents the content of a
string as it occurs in program text literally, except for single-escape-character-sequences. The
sequence “\\” represents “\”. The sequence “\’” represents

8.5.5.2.2 Double quoted strings

Syntax

Wy

18

double-quoted-string ::
" double-quoted-string-character® "

double-quoted-string-character ::
source-character but not (" |\)
| double-escape-sequence
| interpolated-character-sequence

double-escape-sequence ::
simple-escape-sequence
| non-escaped-sequence
| line-terminator-escape-sequence
| octal-escape-sequence
| hez-escape-sequence
| control-escape-sequence

simple-escape-sequence ::
\ double-escaped-character

non-escaped-sequence ::
\ non-escaped-double-quoted-string-character

line-terminator-escape-sequence ::
\ line-terminator

non-escaped-double-quoted-string-character ::

source-character but not (double-escaped-character

| line-terminator)

10

11

12

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

double-escaped-character ::
\|n|t]|]r|f|v]a|e]|b]|s

octal-escape-sequence ::
\ octal-digit (octal-digit octal-digit?)?

hex-escape-sequence ::
\ x hexadecimal-digit hexadecimal-digit?

control-escape-sequence ::
\ (C - | ¢) control-escaped-character

control-escaped-character ::
double-escape-sequence
| ?

| source-character butnot (\ | 7)

interpolated-character-sequence ::
global-variable-identifier
| # class-variable-identifier
| # instance-variable-identifier
| # { compound-statement }

Semantics

A double-quoted-string consists of zero or more characters enclosed by double quotes. The se-
quence of double-quoted-string-characters within the pair of double quotes represents the content
of a string.

Except for a double-escape-sequence and an interpolated-character-sequence, a double-quoted-
string-character represents a character as it occurs in program text.

A simple-escape-sequence represents a character as shown in Table [.

An octal-escape-sequence represents a character the code of which is the value of the sequence
of octal-digits computed using base 8.

A hex-escape-sequence represents a character the code of which is the value of the sequence of
hezadecimal-digits computed using base 16.

A non-escaped-sequence represents a non-escaped-double-quoted-string-character.
A line-terminator-escape-sequence is used to break the content of a string into separate lines
in program text without inserting a line-terminator into the string. A line-terminator-escape-

sequence does not count as a character of the string.

A control-escape-sequence represents a character the code of which is computed by performing a
bitwise AND operation between 0x9f and the code of the character represented by the control-

19

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Table 1 — Simple escape sequences

Escape sequence | Character code
\\ 0x5c
\n 0x0a
\t 0x09
\r 0x0d
\f 0x0c
\v 0x0b
\a 0x07
\e 0x1b
\b 0x08
\s 0x20

escaped-character, except when the control-escaped-character is 7, in which case, the control-
escape-sequence represents a character the code of which is 127.

An interpolated-character-sequence is a part of a string-literal which is dynamically evalu-
ated when the string-literal in which it is embedded is evaluated. The interpolated-character-
sequences within a string-literal are evaluated in the order in which they occur in program
text.

The value of a string-literal which contains interpolated-character-sequences is a direct instance
of the class String the content of which is made from the string-literal where each occurrence
of interpolated-character-sequence is replaced by the content of an instance of the class String

which is the dynamically evaluated value of the interpolated-character-sequence.

An interpolated-character-sequence is evaluated as follows:

a) If it is of the form # global-variable-identifier, evaluate the global-variable-identifier (see
§IT233). Let V be the resulting value.

b) If it is of the form # class-variable-identifier, evaluate the class-variable-identifier (see
§I1T2=34). Let V be the resulting value.

c) If it is of the form # instance-variable-identifier, evaluate the instance-variable-identifier

(see §ITA37). Let V be the resulting value.

d) Ifit is of the form # { compound-statement }, evaluate the compound-statement (see §I2).
Let V be the resulting value.

e) If V is an instance of the class String, V is the value of interpolated-character-sequence.

f) Otherwise, invoke the method to_s on V with an empty list of arguments. Let S be the
resulting value.

g) If S is an instance of the class String, S is the value of interpolated-character-sequence.

20

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

h) Otherwise, the value of interpolated-character-sequence is an instance of the class String,

the content of which is implementation defined.

8.5.5.2.3 Quoted non-expanded literal strings

Syntax

quoted-non-expanded-literal-string ::
%hq literal-beginning-delimiter non-expanded-literal-string™ literal-ending-delimiter

non-expanded-literal-string ::
non-expanded-literal-character
| non-expanded-delimited-string

non-expanded-delimited-string ::
literal-beginning-delimiter non-ezxpanded-literal-string™ literal-ending-delimiter

non-expanded-literal-character ::
non-escaped-literal-character
| non-expanded-literal-escape-sequence

non-escaped-literal-character ::
source-character but not quoted-literal-escape-character

non-expanded-literal-escape-sequence ::
non-expanded-literal-escape-character-sequence
| non-escaped-non-expanded-literal-character-sequence

non-expanded-literal-escape-character-sequence ::
\ non-expanded-literal-escaped-character

non-expanded-literal-escaped-character ::
literal-beginning-delimiter
| literal-ending-delimiter

|\

quoted-literal-escape-character ::
non-expanded-literal-escaped-character

non-escaped-non-expanded-literal-character-sequence ::
\ non-escaped-non-expanded-literal-character

non-escaped-non-expanded-literal-character ::
source-character but not non-erpanded-literal-escaped-character

21

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

The literal-beginning-delimiter of a non-expanded-delimited-string shall be the same character
as the literal-beginning-delimiter of the quoted-non-erpanded-literal-string.

A literal-ending-delimiter shall be the same character as the corresponding literal-beginning-
delimiter, except when the literal-beginning-delimiter is one of the characters on the left in
Table B. In that case, the literal-ending-delimiter is the corresponding character on the right in
Table B.

Table 2 — Matching literal-beginning-delimiter literal-ending-delimiter

literal-beginning-delimiter | literal-ending-delimiter
{ }
()
[]
< >

The production non-expanded-delimited-string applies only when the literal-beginning-delimiter
is one of the characters of matching-literal-beginning-delimiter.

Semantics

A non-expanded-literal-string represents the content of a string as it occurs in program text
literally, except for non-expanded-literal-escape-character-sequences.

A non-expanded-literal-escape-character-sequence represents a character as follows. The se-
quence “\\” represents “\”; the sequence \literal-beginning-delimiter, a literal-beginning-delimiter,
the sequence \literal-ending-delimiter, a literal-ending-delimiter.

8.5.5.2.4 Quoted expanded literal strings

Syntax

quoted-expanded-literal-string ::
% Q? literal-beginning-delimiter expanded-literal-string* literal-ending-delimiter

expanded-literal-string ::
expanded-literal-character
| expanded-delimited-string

expanded-literal-character ::
non-escaped-literal-character
| double-escape-sequence
| interpolated-character-sequence

expanded-delimited-string ::
literal-beginning-delimiter expanded-literal-string™® literal-ending-delimiter

literal-beginning-delimiter ::
source-character but not alpha-numeric-character-or-separator

22

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

alpha-numeric-character-or-separator ::
whitespace
| line-terminator
| uppercase-character
| lowercase-character
| decimal-digit

literal-ending-delimiter ::
[depending on the literal-beginning-delimiter |

matching-literal-beginning-delimiter ::

Cltf<]I

The literal-beginning-delimiter of an expanded-delimited-string shall be the same character as
the literal-beginning-delimiter of the quoted-expanded-literal-string.

The literal-ending-delimiter shall match the literal-beginning-delimiter as described in §8H 573,

The production expanded-delimited-string applies only when the literal-beginning-delimiter is
one of the characters of matching-literal-beginning-delimiter.

Semantics

A expanded-literal-string represents the content of a string.

A character in an expanded-literal-string other than a double-escape-sequence or an interpolated-
character-sequence represents a character as it occurs in program text. A double-escape-sequence
and an interpolated-character-sequence represent characters as described in §855H 2.

8.5.5.2.5 Here documents

Syntax

here-document ::
heredoc-start-line heredoc-body heredoc-end-line

heredoc-start-line ::
heredoc-signifier rest-of-line

heredoc-signifier ::
<< heredoc-delimiter-specifier

rest-of-line ::
line-content? line-terminator

heredoc-body ::
heredoc-body-line*

23

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

heredoc-body-line ::
line but not heredoc-end-line

Semantics

A here-document is represented by several lines of program text, and evaluates to a direct
instance of the class String or the value of the invocation of the method °.

The heredoc-signifier, the heredoc-body, and the heredoc-end-line in a here-document are treated
as a unit and considered to be a single token occurring at the place where the heredoc-signifier
occurs. The first character of the rest-of-line becomes the head of the input after the here-
document has been processed.

The object to which here-document evaluates is either a direct instance S of the class String
whose content is represented by the heredoc-body or the value of the invocation of the method

¢ with S as the only argument.

The form of the heredoc-delimiter-specifier determines both the form of the heredoc-end-line and
the way in which the here-document is processed, as described below.

Syntax

heredoc-delimiter-specifier ::
-7 heredoc-delimiter

heredoc-delimiter ::
non-quoted-delimiter
| single-quoted-delimiter
| double-quoted-delimiter
| command-quoted-delimiter

non-quoted-delimiter ::
non-quoted-delimiter-identifier

non-quoted-delimiter-identifier ::
identifier-character™®

single-quoted-delimiter ::
? single-quoted-delimiter-identifier *

single-quoted-delimiter-identifier ::
source-character but not °

double-quoted-delimiter ::
" double-quoted-delimiter-identifier* "

24

10

11

12

13

14

15

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

double-quoted-delimiter-identifier ::
source-character but not "

command-quoted-delimiter ::

¢ command-quoted-delimiter-identifier* *

command-quoted-delimiter-identifier ::
source-character but not ¢

heredoc-end-line ::
indented-heredoc-end-line
| non-indented-heredoc-end-line

indented-heredoc-end-line ::
[beginning of a line | whitespace® heredoc-delimiter-identifier line-terminator

non-indented-heredoc-end-line ::
[beginning of a line | heredoc-delimiter-identifier line-terminator

heredoc-delimiter-identifier ::
non-quoted-delimiter-identifier
| single-quoted-delimiter-identifier
| double-quoted-delimiter-identifier
| command-quoted-delimiter-identifier

Semantics

The form of a heredoc-end-line depends on the presence or absence of the beginning “~” of the
heredoc-delimiter-specifier.

If the heredoc-delimiter-specifier begins with “~”, a line of the form indented-heredoc-end-line
is treated as the heredoc-end-line, otherwise, a line of the form non-indented-heredoc-end-line
is treated as the heredoc-end-line. In both forms, the heredoc-delimiter-identifier shall be the
same sequence of characters as it occurs in the corresponding part of heredoc-delimiter.

If the heredoc-delimiter is of the form non-quoted-delimiter, the heredoc-delimiter-identifier shall
be the same sequence of characters as the non-quoted-delimiter-identifier; if it is of the form
single-quoted-delimiter, the single-quoted-delimiter-identifier; if it is of the form of double-quoted-
delimiter, the double-quoted-delimiter-identifier; if it is of the form of command-quoted-delimiter,
the command-quoted-delimiter-identifier.

The object to which a here-document evaluates is created as follows:

a) Create a direct instance of the class String from the heredoc-body, the treatment of which
depends on the form of the heredoc-delimiter as follows:

e If heredoc-delimiter is of the form single-quoted-delimiter, the heredoc-body is treated
as a sequence of source-characters as it occurs in program text literally.

25

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

e If heredoc-delimiter is in any of the forms non-quoted-delimiter, double-quoted-delimiter,
or command-quoted-delimiter, the heredoc-body is treated as a sequence of double-
quoted-string-characters as described in §8HH 7.

Let S be that instance of the class String.

b) If the heredoc-delimiter is not of the form command-quoted-delimiter, let V be S.

c) Otherwise, invoke the method ¢ on the current self with the list of arguments whose only
element is S. Let V be the resulting value of the method invocation.

d) V is the object to which the here-document evaluates.
8.5.5.2.6 External command execution

Syntax

external-command-execution ::
backquoted-external-command-execution
| quoted-external-command-execution

backquoted-external-command-execution ::
¢ double-quoted-string-character™

quoted-external-command-execution ::
%x literal-beginning-delimiter expanded-literal-string™ literal-ending-delimiter

The literal-ending-delimiter shall match the literal-beginning-delimiter as described in §8H55H2.

Semantics

An external-command-execution is a form to invoke the method “‘”.

An external-command-execution is evaluated as follows:

a) If the external-command-execution is of the form backquoted-external-command-execution,
construct a direct instance of the class String S by replacing the two “¢” with “"” and
evaluating the resulting double-quoted-string as described in §8H 7.

b) If the external-command-execution is of the form quoted-external-command-execution, con-
struct a direct instance of the class String S by replacing “%x” with “%Q” and evaluating
the resulting quoted-expanded-literal-string as described in §855H 24,

c) Invoke the method “” on the current self with a list of arguments whose only element is S.

d) The resulting value is the value of the external-command-ezxecution.

8.5.5.3 Array literals

Syntax

26

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

array-literal ::
quoted-non-expanded-array-constructor
| quoted-expanded-array-constructor

quoted-non-expanded-array-constructor ::
% literal-beginning-delimiter non-expanded-array-content literal-ending-delimiter

non-expanded-array-content ::
quoted-array-item-separator-list? non-expanded-array-item-list?
quoted-array-item-separator-list?

non-expanded-array-item-list ::

non-expanded-array-item (quoted-array-item-separator-list non-expanded-array-item)*

quoted-array-item-separator-list ::
quoted-array-item-separator +

quoted-array-item-separator ::
whitespace
| line-terminator

non-expanded-array-item ::
non-expanded-array-item-character +

non-expanded-array-item-character ::
non-escaped-array-item-character
| non-expanded-array-escape-sequence

non-escaped-array-item-character ::
non-escaped-array-character
| matching-literal-delimiter

non-escaped-array-character ::
non-escaped-literal-character but not quoted-array-item-separator

matching-literal-delimiter ::

ClLl<|0LlY Y >]1

non-expanded-array-escape-sequence ::
non-expanded-literal-escape-sequence but not escaped-quoted-array-item-separator
| escaped-quoted-array-item-separator

escaped-quoted-array-item-separator ::
\ quoted-array-item-separator

27

10

11

12

13

14

15

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

quoted-expanded-array-constructor ::
MW literal-beginning-delimiter expanded-array-content literal-ending-delimiter

expanded-array-content ::
quoted-array-item-separator-list? expanded-array-item-list?
quoted-array-item-separator-list?

expanded-array-item-list ::
expanded-array-item (quoted-array-item-separator-list exrpanded-array-item)*

expanded-array-item ::
expanded-array-item-character +

expanded-array-item-character ::
non-escaped-array-item-character
| expanded-array-escape-sequence
| interpolated-character-sequence

expanded-array-escape-sequence ::
double-escape-sequence but not escaped-quoted-array-item-separator
| escaped-quoted-array-item-separator

The literal-ending-delimiter shall match the literal-beginning-delimiter as described in §855H2.
When the literal-beginning-delimiter is one of the matching-literal-beginning-delimiter, the quoted-
non-expanded-array-constructor and the quoted-expanded-array-constructor is determined as fol-

lows.

Let N be 0. For each character C which appears after “%w” or “%W”, take the following steps.

a) If C is a literal-beginning-delimiter which is not prefixed by a “\”, increment N by 1.
b) If C is a literal-ending-delimiter which is not prefixed by a “\”, decrement N by 1.

c) If Nis0and C is the literal-ending-delimiter, terminate these steps.

The literal-ending-delimiter in Step o is the literal-ending-delimiter of the quoted-non-expanded-
array-constructor or the quoted-expanded-array-constructor.

Semantics

An array-literal evaluates to a direct instance of the class Array.
A quoted-non-expanded-array-constructor is evaluated as follows:
a) Create an empty direct instance of the class Array. Let A be the instance.

b) If non-expanded-array-item-list occurs, for each non-expanded-array-item of the non-expanded-

28

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

)

A

a)

b)

c)

array-item-list, take the following steps:

1) Create a direct instance of the class String S, the content of which is represented by
the sequence of non-expanded-array-item-characters.

A non-expanded-array-item-character represents itself, except in the case of a non-
expanded-array-escape-sequence. A non-expanded-array-escape-sequence represents a
character as described in §8H5 5273, except in the case of an escaped-quoted-array-item-
separator. An escaped-quoted-array-item-separator represents a quoted-array-item-separator.

2) Append S to A.
The value of the quoted-non-expanded-array-constructor is A.
quoted-expanded-array-constructor is evaluated as follows:

Create an empty direct instance of the class Array. Let A be the instance.

If expanded-array-item-list occurs, process each expanded-array-item of the expanded-array-
item-list as follows:

1) Create a direct instance of the class String S, the content of which is represented by
the sequence of expanded-array-item-characters.

An expanded-array-item-character represents itself, except in the case of an expanded-
array-escape-sequence and an interpolated-character-sequence. An expanded-array-escape-
sequence represents a character as described in §8H D22, except in the case of an
escaped-quoted-array-item-separator. An escaped-quoted-array-item-separator represents
a quoted-array-item-separator. An interpolated-character-sequence represents a sequence
of characters as described in §85 527

2) Append S to A.

The value of the quoted-expanded-array-constructor is A.

8.5.5.4 Regular expression literals

Syntax

regular-expression-literal ::
/ reqular-expression-body / regular-expression-option™
| %r literal-beginning-delimiter expanded-literal-string*
literal-ending-delimiter reqular-expression-option ™

reqular-expression-body ::
reqular-expression-character*

regular-expression-character ::
source-character but not (/|\)

I \\

29

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

| line-terminator-escape-sequence
| interpolated-character-sequence

regular-expression-option ::
i m

Within an expanded-literal-string, a literal-beginning-delimiter shall be the same character as
the literal-beginning-delimiter of a reqular-expression-literal.

The literal-ending-delimiter shall match the literal-beginning-delimiter as described in §8HH23.

If a reqular-expression-literal of the form / reqular-expression-body / reqular-expression-option™
is the first argument (see §ICI2), the first character of the reqular-expression-body shall not be
whitespace.

Semantics

A regular-expression-literal evaluates to a direct instance of the class Regexp.

The pattern of an instance of the class Regexp resulting from a regular-expression-literal is the
string which regular-expression-characters or expanded-literal-strings represent. If the string
cannot be derived from the pattern (see §IA2ZT1573), the evaluation of the program shall be
terminated and a syntax error shall be reported.

A reqular-expression-character other than the sequence \ \, a line-terminator-escape-sequence,
or interpolated-character-sequence represents themselves. A expanded-literal-string other than a
line-terminator-escape-sequence or interpolated-character-sequence represents themselves.

The sequence \ \ of regular-expression-character represents a single character \.

A line-terminator-escape-sequence in a reqular-expression-character and an erpanded-literal-
string is ignored in the resulting pattern of an instance of the class Regexp.

An interpolated-character-sequence in a reqular-expression-literal and an expanded-literal-string
is evaluated as described in §85 577, and represents a string which is the content of the resulting
an instance of the class String.

A reqular-expression-option specifies the ignorecase and the multiline properties of an instance
of the class Regexp resulting from a reqular-expression-literal. If 1 occurs in a regular-expression-
option, the ignorecase property of the resulting instance of the class Regexp is set to true. If
m occurs in a regular-expression-option, the multiline property of the resulting instance of the
class Regexp is set to true.

The grammar for a pattern of an instance of the class Regexp created from a regular-expression-
literal is described in §IA2TH.

8.5.5.5 Symbol literals

Syntax

30

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

symbol ::
symbol-literal
| dynamic-symbol

symbol-literal ::
1 symbol-name

dynamic-symbol ::
: single-quoted-string
| : double-quoted-string
| %s literal-beginning-delimiter non-expanded-literal-string™® literal-ending-delimiter

symbol-name ::
method-identifier
| operator-method-name
| reserved-word
| instance-variable-identifier
| global-variable-identifier
| class-variable-identifier

single-quoted-strings, double-quoted-strings, and non-expanded-literal-strings shall not contain
any sequences which represent the character 0x00.

Within a non-expanded-literal-string, literal-beginning-delimiter shall be the same character as
the literal-beginning-delimiter of the dynamic-symbol.

The literal-ending-delimiter shall match the literal-beginning-delimiter as described in §8H 3.

Semantics

A symbol evaluates to a direct instance of the class Symbol. A symbol-literal evaluates to a direct
instance of the class Symbol whose name is the symbol-name. A dynamic-symbol evaluates to a
direct instance of the class Symbol whose name is the content of an instance of the class String
which is the value of the single-quoted-string(see §§5521), double-quoted-string(see §8HH27),
or non-ezpanded-literal-string(see §8H23).

9 Scope of variables

A scope is a region of a program text with which a set of bindings of variables is associated.
9.1 Local variables

A local variable is referred to by a local-variable-identifier.

9.1.1 Scopes of local variables

Scopes for local variables are introduced by the following program constructs:

31

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

e program (see §MO)

e class-body (see §I322)

e module-body (see §I3T2)

e cigenclass-body (see §IE3AA)

e method-definition (see §C331) and singleton-method-definition (see §L34=3), for both of
which the scope starts with the method-parameter-part and continues up to and including

the method-body.

e block (see §IIZ2)

Let P be any of the above program constructs. Let S be the region of P excluding all the regions
of any of the above program constructs (except block) nested within P. Then, S is the local
variable scope which corresponds to the program construct P.

The scope of a local variable is the local variable scope whose set of local variable bindings
contains the binding of the local variable, which is resolved as described below.

When a local-variable-identifier which is a reference to a local variable occurs (see §814), the
binding of the local variable is resolved as follows:

a) Let N be the local-variable-identifier. Let B be the current set of local variable bindings.
b) Let S be the scope of B.
c) If a binding with name N exists in B, that binding is the resolved binding.

d) If a binding with name N does not exist in B:
e If S is a local variable scope which corresponds to a block:

1) If the local-variable-identifier occurs as a left-hand-side of a block-formal-argument-
list, whether to proceed to the next step or not is implementation defined.

2) Replace B with the element immediately below the current B on [local-variable-
bindings] , and continue searching for a binding with name N from Step B.

e Otherwise, a binding is considered not resolved.
9.1.2 References to local variables
An occurrence of a local-variable-identifier can be a reference to a local variable or a method
invocation. In order to determine whether the occurrence of a local-variable-identifier is a
reference to a local variable or a method invocation, before the evaluation of a local variable

scope, the scope is scanned sequentially for local-variable-identifiers.

For each occurrence of a local-variable-identifier I, take the following steps:

a) If I occurs in one of the forms below, I is a reference to a local variable.

32

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

26

o mandatory-parameter

e optional-parameter-name

e array-parameter-name

e block-parameter-name

e wariable of left-hand-side

e wariable of single-variable-assignment-expression

e wariable of single-variable-assignment-statement

e wariable of abbreviated-variable-assignment-expression

e wariable of abbreviated-variable-assignment-statement
b) If I occurs in one of the forms below:

e wariable of singleton

e wariable of primary-expression

and the following condition holds, I is a reference to a local variable.

e Let P be the point where I occurs and let S be the innermost local variable scope

which encloses P and which does not correspond to a block. Let R be the region of a
program between the beginning of S and P.

The same identifier as I occurs as a reference to a local variable in R.
c¢) Otherwise, I is a method invocation.
9.2 Global variables

The scope of global variables is global in the sense that they are accesible everywhere in a Ruby
program. Global variable bindings are created in [global-variable-bindings] .

10 Program structure
10.1 Program

Syntax

program ::
compound-statement

33

10

11

12

13

14

15

16

17

19

20

21

22

23

24

25

26

27

28

Semantics

A

program is evaluated as follows:

Push an empty set of bindings onto [local-variable-bindings] .
Evaluate the compound-statement.
The resulting value is the value of the program.

Restore the execution context by removing the element from the top of [local-variable-
bindings] , even when an exception is raised and not handled during Step B.

10.2 Compound statement

Syntax

compound-statement ::
statement-list? separator-list?

statement-list ::
statement (separator-list statement)*

separator-list ::

separator ;*

separator ::
5

| [line-terminator here|

Semantics

A

a)

b)

34

compound-statement is evaluated as follows:

If the statement-list does not occur, the value of the compound-statement is nil.

If the statement-list occurs, evaluate each statement of the statement-list in the order it
appears in the program text.

If one of the statements of the statement-list is terminated by a jump-expression, terminate
the evaluation of the statement-list immediately. None of the following statements of the
statement-list is evaluated. In this case, the value of the compound-statement is undefined.

If none of the statements of the statement-list is terminated by a jump-expression, the value
of the compound-statement is the value of the last statement of the statement-list.

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

11 Expressions

Syntax

expression ::
keyword-logical-expression

Semantics

See §ITT for keyword-logical-expression.
11.1 Logical expressions

Syntax

keyword-logical-expression ::
keyword-NOT-expression
| keyword-AND-expression

| keyword-OR-expression

keyword-NOT-expression ::
method-invocation-without-parentheses
| operator-expression
| logical-NOT-with-method-invocation-without-parentheses
| not keyword-NOT-expression

logical-NOT-expression ::=
logical-NO T-with-method-invocation-without-parentheses
| logical-NOT-with-unary-expression

logical-NO T-with-method-invocation-without-parentheses ::
I method-invocation-without-parentheses

logical-NOT-with-unary-expression ::
I unary-expression

keyword-AND-expression ::
expression and keyword-NOT-expression

keyword-OR-expression ::
expression or keyword-NOT-expression

logical-OR-expression ::
logical-AND-expression
| logical-OR-expression || logical-AND-expression

35

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

logical-AND-expression ::
equality-expression
| logical-AND-expression && equality-expression

Semantics

A logical-NOT-expression or a keyword-NOT-expression of the form not keyword-NOT-expression
is evaluated as follows:

a) Ifit is of the form not keyword-NOT-expression, evaluate the keyword-NOT-expression. Let
X be the resulting value.

b) 1If it is a logical-NOT-expression, evaluate its method-invocation-without-parentheses or
unary-expression. Let X be the resulting value.

c) If X is a true value, the value of the keyword-NOT-expression or the logical-NOT-expression
is false.

d) Otherwise, the value of the keyword-NOT-expression or the logical-NOT-expression is true.

Instead of the above process, a conforming processor may evaluate a logical-NOT-expression as
follows:

a) Evaluate the unary-expression or the method-invocation-without-parentheses. Let V be the
resulting value.

b) Create an empty list of arguments L. Invoke the method '@ on V with L as the list of
arguments. The resulting value is the value of the logical-NOT-expression.

In this case, the processor shall:

e include the operator !@ in operator-method-name.
e define an instance method !@ in the class Object or one of its superclasses, if any. The

method !@ shall not take any arguments. The method !@ shall return true if the receiver
is false or nil, and shall return false otherwise.

A logical-AND-expression of the form logical-AND-expression && equality-expression or a keyword-
AND-expression is evaluated as follows:

a) Evaluate the expression or the logical-AND-expression. Let X be the resulting value.
b) If X is a true value, evaluate the keyword-NOT-expression or equality-expression. Let
Y be the resulting value. The value of the keyword-AND-expression or the logical-AND-

expression is Y.

c) Otherwise, the value of the keyword-AND-expression or the logical-AND-expression is X.

A keyword-OR-expression or a logical-OR-expression of the form logical-OR-expression | | logical-
AND-expression is evaluated as follows:

36

10

11

12

13

14

15

16

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

a) Evaluate the expression or the logical-OR-expression. Let X be the resulting value.
b) If X is a false value, evaluate the keyword-NOT-expression or the logical-AND-expression.
Let Y be the resulting value. The value of the keyword-OR-expression or logical-OR-

expression is Y.

c) Otherwise, the value of the keyword-OR-expression or logical-OR-expression is X.

11.2 Method invocation expressions

Syntax

primary-method-invocation ::
super-with-optional-argument
| indezing-method-invocation
| method-only-identifier
| method-identifier ([no whitespace here| argument-with-parentheses)? block?
| primary-expression [no line-terminator here]
. method-name ([no whitespace here| argument-with-parentheses)? block?
| primary-expression [no line-terminator here]
:: method-name [no whitespace here| argument-with-parentheses block?
| primary-expression [no line-terminator here| :: method-name-without-constant
block?

indexing-method-invocation ::
primary-expression [no line-terminator here| optional-whitespace?
[indexing-argument-list?]

optional-whitespace ::
[whitespace here |

method-name-without-constant ::
method-name but not constant-identifier

method-invocation-without-parentheses ::
command
| chained-command-with-do-block
| chained-command-with-do-block (. | ::) method-name argument
| return-with-argument
| break-with-arqument
| next-with-argument

command ::
super-with-argument
| yield-with-argument
| method-identifier argument
| primary-expression [no line-terminator here] (. | ::) method-name argument

37

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

chained-command-with-do-block ::

command-with-do-block chained-method-invocation™
chained-method-invocation ::
(.]::) method-name
| (.| ::) method-name [no whitespace here |
[lookahead ¢ { { }| argument-with-parentheses
command-with-do-block ::
super-with-argument-and-do-block
| method-identifier argument do-block
| primary-expression [no line-terminator here] (. | ::) method-name argument

do-block

The primary-expression of a primary-method-invocation, command, and indezxing-method-invocation
shall not be a jump-expression.

If the argument-with-parentheses of a primary-method-invocation occurs, and the block-argument
of the argument of the argument-with-parentheses occurs, the block of the primary-method-
tnvocation shall not occur.

If the argument of a command-with-do-block occurs, and the block-argument of the argument-
in-parentheses of the argument (see §TI2Z) occurs, the do-block of the command-with-do-block

shall not occur.

The optional-whitespace of an indexing-method-invocation shall not occur if its primary-expression
is any of the following construct:

e A primary-method-invocation of the form method-only-identifier, method-identifier, primary-
expression . method-name, or primary-expression :: method-name-without-constant

e A method-invocation-without-parentheses of the form chained-command-with-do-block which
satisfies all of the following conditions:

a) Let M be the chained-command-with-do-block. One or more chained-method-invocation
of M occurs.

b) Let I be the last chained-method-invocation of M, in the order they appear in program
text. I is of the form (.|::) method-name.

Semantics

A primary-method-invocation is evaluated as follows:

a) If the primary-method-invocation is a super-with-optional-argument or an indexing-method-
invocation, evaluate it. The resulting value is the value of the primary-method-invocation.

b) e If the primary-method-invocation is a method-only-identifier, let O be the current self
and let M be the method-only-identifier. Create an empty list of arguments L.

38

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

32

e If the method-identifier of the primary-method-invocation occurs:

1) Let O be the current self and let M be the method-identifier.

2) 1If the argument-with-parentheses occurs, construct a list of arguments and a block
from the argument-with-parentheses as described in §TT—271. Let L be the resulting
list. Let B be the resulting block, if any.

If the argument-with-parentheses does not occur, create an empty list of arguments

L.

3) If the block occurs, let B be the block.
e If the . of the primary-method-invocation occurs:

1) Evaluate the primary-expression and let O be the resulting value. Let M be the
method-name.

2) If the argument-with-parentheses occurs, construct a list of arguments and a block
from the argument-with-parentheses as described in §TT21. Let L be the resulting
list. Let B be the resulting block, if any.

If the argument-with-parentheses does not occur, create an empty list of arguments

L.

3) If the block occurs, let B be the block.
e If the :: and method-name of the primary-method-invocation occur:

1) Evaluate the primary-expression and let O be the resulting value. Let M be the
method-name.

2) Construct a list of arguments and a block from the argument-with-parentheses as
described in §TTX0. Let L be the resulting list. Let B be the resulting block, if
any.

3) If the block occurs, let B be the block.

e If the :: and method-name-without-constant of the primary-method-invocation occur:

1) Evaluate the primary-expression and let O be the resulting value. Let M be the
method-name-without-constant.

2) Create an empty list of arguments L.

3) If the block occurs, let B be the block.

c) Invoke the method M on O with L as the list of arguments and B, if any, as the block. (see
§3733). The resulting value is the value of the primary-method-invocation.

An indexing-method-invocation is evaluated as follows:

39

7

10

11

12

13

14

15

16

17

18

19

20

21

22

24

25

26

28

29

30

31

32

Evaluate the primary-expression. Let O be the resulting value.

If the indexing-argument-list occurs, construct a list of arguments from the indexing-
argument-list as described in §TI—21. Let L be the resulting list.

If the indexing-argument-list does not occur, Create an empty list of arguments L.

Invoke the method [] on O with L as the list of arguments. The resulting value is the value
of the indexing-method-invocation.

A method-invocation-without-parentheses is evaluated as follows:

If the method-invocation-without-parentheses is a command, evaluate it. The resulting value
is the value of the method-invocation-without-parentheses.

If the method-invocation-without-parentheses is a return-with-argument, break-with-argument
or next-with-argument, evaluate it (see §ITA13).

If the chained-command-with-do-block of the method-invocation-without-parentheses occurs:
a) Evaluate the chained-command-with-do-block. Let V be the resulting value.

b) If the method-name and the argument of the method-invocation-without-parentheses
occur:

1) Let M be the method-name.
2) Construct a list of arguments from the argument as described in §I121 and let L
be the resulting list. If the block-argument of the argument-in-parentheses of the

argument occurs, let B be the block to which the block-argument corresponds.

3) Invoke the method M on V with L as the list of arguments and B, if any, as the
block.

4) Replace V with the resulting value.

¢) The value of the method-invocation-without-parentheses is V.

A command is evaluated as follows:

a)

b)

40

If the command is a super-with-argument or a yield-with-argument, evaluate it.
Otherwise:
1) If the method-identifier of the command occurs:

i) Let O be the current self and let M be the method-identifier.

ii) Construct a list of arguments from the argument as described in §TT271 and let L
be the resulting list.

If the block-argument of the argument-in-parentheses of the argument occurs, let
B be the block to which the block-argument corresponds.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

3)

If the primary-expression, method-name, and the argument of the command occurs:

i) Evaluate the primary-expression. Let O be the resulting value. Let M be the
method-name.

ii) Construct a list of arguments from the argument as described in §I1T21 and let L
be the resulting list.

If the block-argument of the argument-in-parentheses of the argument occurs, let
B be the block to which the block-argument corresponds.

Invoke the method M on O with L as the list of arguments and B, if any, as the block.
The resulting value is the value of the command.

A chained-command-with-do-block is evaluated as follows:

a) Evaluate the command-with-do-block and let V be the resulting value.

b) For each chained-method-invocation, in the order they appears in the program text, take
the following steps:

1)

2)

3)

4)

Let M be the method-name of the chained-method-invocation.

If the argument-with-parentheses occurs, construct a list of arguments and a block from
the argument-with-parentheses as described in §IT2T and let L be the resulting list.
Let B be the resulting block, if any.

If the argument-with-parentheses does not occur, create an empty list of arguments L.

Invoke the method M on V with L as the list of arguments and B, if any, as the block.

Replace V with the resulting value.

c) The value of the chained-command-with-do-block is V.

A command-with-do-block is evaluated as follows:

e If the command-with-do-block is a super-with-argument-and-do-block, evaluate it. The re-
sulting value is the value of the command-with-do-block.

e Otherwise:

a)

If the method-identifier of the command occurs, let O be the current self and let M be
the method-name.

If the method-identifier of the command does not occur, evaluate the primary-expression,
let O be the resulting value and let M be the method-name.

Construct a list of arguments from the arguments of the command-with-do-block and
let L be the resulting list.

Invoke the method M on O with L as the list of arguments and the do-block as the
block. The resulting value is the value of the command-with-do-block.

41

1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

11.2.1 Method arguments

Syntax

indexing-argument-list ::
command
| operator-expression-list ,7
| operator-expression-list , splatting-argument
| association-list ,?
| splatting-argument

splatting-argument ::
* operator-erpression

operator-expression-list ::

operator-expression (, operator-erpression)*

arqgument-with-parentheses ::
@)
| ¢ argument-in-parentheses)
| C operator-expression-list , chained-command-with-do-block)
| (chained-command-with-do-block)

argument ::
[no line-terminator here] [lookahead ¢ { { }] optional-whitespace?
argument-in-parentheses

argument-in-parentheses ::
command
| (operator-expression-list | association-list)
(, splatting-argument)? (, block-argument)?
| operator-expression-list , association-list
(, splatting-argument)? (, block-argument)?
| splatting-argument (, block-argument)?
| block-argument

block-argument ::
& operator-expression

The operator-expression of a splatting-argument, operator-expression-list, and block-argument
shall not be a jump-expression.

If the operator-expression-list of an argument-in-parentheses occurs, the first operator-expression
of the operator-expression-list is called the first argument.

If a splatting-argument is the first argument, whitespaces shall not occur between its * and

42

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

operator-expression. If a block-argument is the first argument, whitespaces shall not occur be-
tween its & and operator-expression.

If the first argument of an arqument is other than the following constructs, the optional-
whitespace shall occur.

e A wariable-reference of the form global-variable-identifier, class-variable-identifier or instance-
variable-identifier (see §ITZA3).

e A single-quoted-string or double-quoted-string (see §8557).

e A symbol-literal, or a dynamic-symbol of the form : [no whitespace here| single-quoted-string
or : [no whitespace here| double-quoted-string (see §8H1HA).

e An external-command-ezecution of the form backquoted-external-command-ezecution (see

§8B570).

e A scoped-constant-reference whose primary-expression occurs and the primary-expression
is any of these constructs.

e A primary-method-invocation whose primary-expression occurs and the primary-expression
is any of these constructs.

Semantics

The list of arguments used for method invocation is constructed from indexing-argument-list,
splatting-argument, argument-with-parentheses, or argument.

An indexing-argument-list is processed as follows:
a) Create an empty list of arguments L.

b) Evaluate the command, operator-expressions of operator-expression-lists, and the association-
list and append their values to L in the order they appear in the program text.

c) If the splatting-argument occurs, construct a list of arguments from it and concatenate the
resulting list to L.

A splatting-argument is processed as follows:

a) Create an empty list of arguments L.
b) Evaluate the operator-expression. Let V be the resulting value.
c¢) If V is not an instance of the class Array, the behavior is implementation dependent.

d) Append each element of V, in the indexing order, to L.
An argument-with-parentheses is processed as follows:

a) Create an empty list of arguments L.

43

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

b) If the argument-in-parentheses occurs, construct a list of arguments from it and concatenate
the resulting list to L. If block-argument of argument-in-parentheses occurs, the block to
which the block-argument corresponds is the block which is passed to the method invocation
with L.

c) If the operator-expression-list occurs, for each operator-expression of the operator-expression-
list, in the order they appears in the program text, take the following steps:

1) Evaluate the operator-expression. Let V be the resulting value.
2) Append V to L.
d) If the chained-command-with-do-block occurs, evaluate it. Append the resulting value to L.
An argument is processed as follows:
a) Evaluate the argument-in-parentheses.
b) Let L be the resulting list.
An argument-in-parentheses is processed as follows:
a) Create an empty list of arguments L.
b) If the command occurs, evaluate it. Append the resulting value to L.

c) If the operator-expression-list occurs, for each operator-expression of the operator-expression-
list, in the order they appears in the program text, take the following steps:

1) Evaluate the operator-expression. Let V be the resulting value.
2) Append V to L.
d) If the association-list occurs, evaluate it. Append the resulting value to L.

e) If the splatting-argument occurs, construct a list of arguments from it and concatenate the
resulting list to L.

f) If the block-argument occurs, construct a block which is passed to a method invocation as
described below.

A Dblock which is passed to a method invocation is constructed from the block-argument as
follows:

a) Evaluate the operator-expression. Let P be the resulting value.

b) If P is not an instance of the class Proc, the behavior is implementation dependent.
¢) Otherwise, the resulting block is the block which P represents.

11.2.2 Blocks

Syntax

44

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

block ::
brace-block

| do-block

brace-block ::
{ block-formal-argument? block-body }

do-block ::
do block-formal-argument? block-body end

block-formal-argument ::
(I
| 11

| | block-formal-argument-list |

block-formal-argument-list ::
left-hand-side
| multiple-left-hand-side

block-body ::
compound-statement

Whether the left-hand-side (see §II=313) in the block-formal-argument-list is allowed to be of
the following forms is implementation defined.

e constant-identifier

e global-variable-identifier

e instance-variable-identifier

e class-variable-identifier

e primary-expression [indexing-argument-list?]

e primary-expression (. | ::) (local-variable-identifier | constant-identifier)
e :: constant-identifier

Whether the grouped-left-hand-side in the block-formal-argument-list is allowed to be the follow-
ing form is implementation defined.

e ((multiple-left-hand-side-item ,)+);

Semantics

A block is a sequence of statements or expressions passed to a method invocation.

45

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

A block can be called either by a yield-expression (see §II24) or by invoking the method call
on an instance of the class Proc which is created by an invocation of the method Proc.new to
which the block is passed (see §TAZT733).

A block can be called with arguments. If a block is called by a yield-expression, the arguments
to the yield-expression are used as the arguments to the block call. If a block is called by an
invocation of the method call, the arguments to the method invocation is used as the arguments
to the block call.

A block is evaluated under the execution context as it exists just before the method invocation to
which the block is passed. However, the changes of variable bindings in [local-variable-bindings]
after the block is passed to the method invocation affect the execution context. Let FEj be the

affected execution context.

Both the do-block and the brace-block of the block are evaluated as follows:

a) Let E, be the current execution context. Let L be the list of arguments passed to the block.
b) Set the execution context to Ej.
c) Push an empty set of local variable bindings onto [local-variable-bindings] .

d) If the block-formal-argument-list in the do-block or the brace-block occurs:
e If the block-formal-argument-list is of the form left-hand-side or grouped-left-hand-side:

— If the length of L is 0, let X be nil.
— If the length of L is 1, let X be the only element of L.

— If the length of L is larger than 1, the result of this step is implementation depen-
dent.

— If the block-formal-argument-list is of the form left-hand-side, evaluate a single-
variable-assignment-expression E (see §IT3T 1), where the variable of E is the
left-hand-side and the value of the operator-expression of E is X.

— If the block-formal-argument-list is of the form grouped-left-hand-side, evaluate
a many-to-many-assignment-expression E (see §II313), where the multiple-left-
hand-side of E is the grouped-left-hand-side and the value of the method-invocation-
without-parentheses or operator-expression of E is X.

e If the block-formal-argument-list is of the form multiple-left-hand-side and the multiple-
left-hand-side is not a grouped-left-hand-side:

1) If the length of L is 1:

i) If the only element of L is not an instance of the class Array, the result of
this step is implementation dependent.

ii) Create a list of arguments Y which contains the elements of L, preserving
their order.

46

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

2) If the length of L is 0 or larger than 1, let Y be L.
3) Evaluate the many-to-many-assignment-statement E as described in §II-3T3,

where the multiple-left-hand-side of E is the block-formal-argument-list and the
list of arguments constructed from the multiple-right-hand-side of E is Y.

e) Evaluate the block-body. If the evaluation of the block-body:
e is terminated by a break-expression:

— If the method invocation with which block is passed has already terminated when
the block is called:

1) Let S be an instance of the class Symbol with name break.

2) If the jump-arqgument of the break-expression occurs, let V be the value of
the jump-argument. Otherwise, let V' be nil.

3) Raise a direct instance of the class LocalJumpError which has two instance

variable bindings, one named @reason with the value S and the other named
@exit_value with the value V.

— Otherwise, restore the execution context to E, and terminate Step i and take Step
fi of the current method invocation (see §C3=33).

If the jump-argument of the break-expression occurs, the value of the current

method invocation is the value of the jump-argument. Otherwise, the value of the
current method invocation is nil.

e is terminated by a redo-expression, repeat Step g.

e is terminated by a next-expression:

— If the jump-argument of the next-expression occurs, let V be the value of the
Jump-argument.

— Otherwise, let V be nil.

e isterminated by a return-ezpression, remove the element from the top of [local-variable-
bindings] .

e terminates otherwise, let V be the resulting value of the evaluation of the block-body.

f) Unless Step & is terminated by a return-expression, restore the execution context to E,,
even when an exception is raised and not handled in Step @ or e.

g) The value of calling the do-block or the brace-block is V.
11.2.3 The super expression
Syntax

47

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

super-expression =
super-with-optional-argument
| super-with-argument
| super-with-argument-and-do-block

super-with-optional-argument ::
super ([no whitespace here| argument-with-parentheses)? block?

super-with-argument ::
super argument

super-with-argument-and-do-block ::
super argument do-block

The block-argument of the argument-in-parentheses of the argument (see §II21) of a super-
with-argument-and-do-block shall not occur.

Semantics

A super-expression is evaluated as follows:

a) If the current self is pushed by an eigenclass-definition (see §I3232), or an invocation of
one of the following methods, the behavior is implementation dependent:

e the method class_eval of the class Module (see §TH223TH)
e the method module_eval of the class Module (see §IH22-337)

e the method instance eval of the class Kernel (see §IH-3 T2 1R)
b) Let A be an empty list. Let B be the top of [block].

e If the super-expression is a super-with-optional-argument, and neither the argument-
with-parentheses nor the block occurs, construct a list of arguments as follows:

1) Let M be the method which correspond to the current method invocation. Let L
be the parameter-list of the method-parameter-part of M. Let S be the set of local
variable bindings in [local-variable-bindings] which corresponds to the current
method invocation.

2) If the mandatory-parameter-list occurs in L, for each mandatory-parameter p, take
the following steps:

i) Let v be the value of the binding with name p in S.

ii) Append v to A.

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

3) If the optional-parameter-list occurs in L, for each optional-parameter p, take the
following steps:

i) Let n be the optional-parameter-name of p.
ii) Let v be the value of the binding with name n in S.
iii) Append v to A.

4) If the array-parameter occurs in L:

i) Let n be the array-parameter-name of the array-parameter.

ii) Let v be the value of the binding with name n in S. Append each element of
v, in the indexing order, to A.

If the super-expression is a super-with-optional-argument with either or both of the
argument-with-parentheses and the block:

— If the argument-with-parentheses occurs, construct a list of arguments and a block
as described in §T0—21. Let A be the resulting list. Let B be the resulting block,
if any.

— If the block occurs, Let B be the block.

If the super-expression is a super-with-argument, construct the list of arguments from
the argument as described in §IT21. Let A be the resulting list. If block-argument of
the argument-in-parentheses of argument occurs, let B be the block constructed from
the block-argument.

If the super-expression is a super-with-argument-and-do-block, construct a list of argu-
ments from the argument as described in §IT21. Let A be the resulting list. Let B
be the do-block.

Determine the method to be invoked as follows:

Let C be the current class or module. Let N be the top of [defined-method-name].

Search for a method binding with name N from Step B in §L3734, assuming that C in
§C334 to be C.

If a binding is found and its value is not undef (see §I31T), let V be the value of the
binding.

Otherwise, add a direct instance of the class Symbol with name N to the head of A,
and invoke the method method missing on the current self with A as arguments and
B as the block. Then, terminate the evaluation of the super-expression. The value of
the super-expression is the resulting value of the method invocation.

Take Step g, B, i, and [of §L33373, assuming that A, B, M, R, and V in §I333 to be A, B,
N, the current self, and V in this subclause respectively. The value of the super-expression
is the resulting value.

49

1

2

3

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

11.2.4 The yield expression

Syntax

yield-expression =
yield-with-optional-argument
| yield-with-argument

yield-with-optional-argument ::
yield-with-parentheses-and-argument
| yield-with-parentheses-without-argument
| yield

yield-with-parentheses-and-argument ::
yield [no whitespace here] (argument-in-parentheses)

yield-with-parentheses-without-argument ::
yield [no whitespace here] ()

yield-with-argument ::
yield argument

The block-argument of the argument-in-parentheses (see §II21) of a yield-with-parentheses-and-
argument shall not occur.

The block-argument of the argument-in-parentheses of the argument (see §TI21) of a yield-with-
argument shall not occur.

Semantics

A yield-expression calls the block at the top of [block] .

A yield-with-optional-argument is evaluated as follows:
a) Let B be the top of [block]. If B is block-not-given:

1) Let S be a direct instance of the class Symbol with name noreason.
2) Let V be an implementation defined value.
3) Raise a direct instance of the class LocalJumpError which has two instance variable

bindings, one named @reason with the value S and the other named @exit_value with
the value V.

b) If the yield-with-optional-argument is of the form yield-with-parentheses-and-argument, cre-
ate a list of arguments from the argument as described in §IIZ1. Let L be the list.

50

10

11

12

13

14

15

16

23

24

25

26

27

28

29

30

31

c) If the yield-with-optional-argument is of the form yield-with-parentheses-without-argument
or yield, create an empty list of argument L.

d) Call B with L as described in §IT22.
e) The value of yield-with-optional-argument is the value of the block call.
A yield-with-argument is evaluated as follows:
a) Let B be the top of [block]. If B is block-not-given:
1) Let S be a direct instance of the class Symbol with name noreason.
2) Let V be an implementation defined value.
3) Raise a direct instance of the class LocalJumpError which has two instance variable
bindings, one named @reason with the value § and the other named @exit_value with
the value V.
b) Create a list of arguments from the argument as described in §TT271. Let L be the list.
c) Call B with L as described in §IT—22.
d) The value of the yield-with-argument is the value of the block call.

11.3 Operator expressions

Syntax

operator-erpression ::
assignment-expression
| defined ?-without-parentheses
| conditional-operator-expression

11.3.1 Assignments

Syntax

assignment ::=
assignment-expression
| assignment-statement

assignment-exrpression ::
single-assignment-expression
| abbreviated-assignment-expression
| assignment-with-rescue-modifier

assignment-statement ::
single-assignment-statement

o1

1 | abbreviated-assignment-statement
2 | multiple-assignment-statement

3 Semantics

4 Assignments create or update variable bindings, or invoke a method whose name ends with =.
5 Evaluation of each construct is described below.

¢ 11.3.1.1 Single assignments

7 Syntax

8 single-assignment ::=

9 single-assignment-expression

10 | single-assignment-statement

11 single-assignment-expression ::

12 single-variable-assignment-expression
13 | scoped-constant-assignment-expression
14 | single-indezing-assignment-expression
15 | single-method-assignment-expression
16 single-assignment-statement ::

17 single-variable-assignment-statement
18 | scoped-constant-assignment-statement
19 | single-indexing-assignment-statement
20 | single-method-assignment-statement

2 11.3.1.1.1 Single variable assignments

2 Syntax

23 single-variable-assignment ::=

2% single-variable-assignment-expression

25 | single-variable-assignment-statement

26 single-variable-assignment-expression ::

27 variable [no line-terminator here| = operator-expression

28 single-variable-assignment-statement ::

29 variable [no line-terminator here| = method-invocation-without-parentheses
30 scoped-constant-assignment 1=

31 scoped-constant-assignment-expression

52

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

| scoped-constant-assignment-statement

scoped-constant-assignment-expression ::
primary-expression [no whitespace here| :: constant-identifier
[no line-terminator here| = operator-expression

constant-identifier [no line-terminator here| = operator-expression

scoped-constant-assignment-statement ::
primary-expression [no whitespace here] :: constant-identifier
[no line-terminator here| = method-invocation-without-parentheses

: 1 constant-identifier [no line-terminator here | = method-invocation-without-parentheses

Semantics

A single-variable-assignment is evaluated as follows:

a)

b)

Evaluate the operator-expression or the method-invocation-without-parentheses. Let V be
the resulting value.

If the variable is a constant-identifier:

)

2)

3)

Let N be the constant-identifier.

If a binding with name N exists in the set of bindings of constants of the current
class or module, replace the value of the binding with V.

Otherwise, create a variable binding with name N and value V in the set of
bindings of constants of the current class or module.

If the wvariable is a global-variable-identifier:

Let N be the global-variable-identifier.

If a binding with name N exists in [global-variable-bindings] , replace the value of
the binding with V.

Otherwise, create a variable binding with name N and value V in [global-variable-
bindings] .

If the variable is a class-variable-identifier:

1)

Let C be the first class or module in the list at the top of [class-module-list] which
is not an eigenclass.

Let CS be the set of classes which consists of C' and all the superclasses of C. Let
MS be the set of modules which consists of all the modules in the included module

lists of all classes in CS. Let CM be the union of CS and MS.

Let N be the class-variable-identifier.

53

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

c)

2)

If one of the classes or modules in CM has a binding with name N in the set of
bindings of class variables, let B be that binding.

If more than one class or module in CM has bindings with name N in the set
of bindings of class variables, let B be one of those bindings. Which binding is
selected is implementation defined.

Replace the value of B with V.
If none of the classes or modules in CM has a binding with name N in the set of

bindings of class variables, create a variable binding with name N and value V in
the set of bindings of class variables of C.

If the variable is an instance-variable-identifier:

Let N be the instance-variable-identifier.

If a binding with name N exists in the set of bindings of instance variables of the
current self, replace the value of the binding with V.

Otherwise, create a variable binding with name N and value V in the set of
bindings of instance variables of the current self.

If the variable is a local-variable-identifier:

)

Let N be the local-variable-identifier.
Search for a binding of a local variable with name N as described in §&T1.
If a binding is found, replace the value of the binding with V.

Otherwise, create a variable binding with name N and value V in the current set
of local variable bindings.

The value of the single-variable-assignment is V.

A scoped-constant-assignment is evaluated as follows:

2)

b)

54

If the primary-expression occurs, evaluate it and let M be the resulting value. Otherwise,
let M be the class Object.

If M is an instance of the class Module:

)

2)

Let N be the constant-identifier.

Evaluate the operator-expression or the method-invocation-without-parentheses. Let V
be the resulting value.

Create a variable binding with name N and value V in the set of bindings of constants

of M.

The value of the scoped-constant-assignment is V.

1

2

3

4

13

14

15

16

17

18

19

20

21

22

23

24

26

27

29

30

c) If M is not an instance of the class Module, raise a direct instance of the class TypeError.
11.3.1.1.2 Single indexing assignments

Syntax

single-indexing-assignment 1=
single-indering-assignment-expression
| single-indexing-assignment-statement

single-indexing-assignment-expression ::
primary-expression [no line-terminator here] [indering-argument-list?]
[no line-terminator here| = operator-expression

single-indexing-assignment-statement ::
primary-expression [no line-terminator here] [indering-argument-list?]
[no line-terminator here| = method-invocation-without-parentheses

Semantics

A single-indexing-assignment is evaluated as follows:

a) Evaluate the primary-expression. Let O be the resulting value.

b) Construct a list of arguments from the indexing-argument-list as described in §ITZ1. Let
L be the resulting list.

c) Evaluate the operator-expression or method-invocation-without-parentheses. Let V be the
resulting value.

d) Append V to L.

e) Invoke the method [1=on O with L as the list of arguments.
f) The value of the single-indexing-assignment is V.

11.3.1.1.3 Single method assignments

Syntax

single-method-assignment ::=
single-method-assignment-expression
| single-method-assignment-statement

single-method-assignment-expression ::
primary-expression [no line-terminator here] (. | ::) local-variable-identifier
[no line-terminator here| = operator-expression

95

1 | primary-expression [no line-terminator here] . constant-identifier

2 [no line-terminator here| = operator-expression

3 single-method-assignment-statement ::

4 primary-expression [no line-terminator here] (. | ::) local-variable-identifier
5 [no line-terminator here| = method-invocation-without-parentheses

6 | primary-expression [no line-terminator here] . constant-identifier

7 [no line-terminator here| = method-invocation-without-parentheses

s Semantics

o A single-method-assignment is evaluated as follows:

1 a) Evaluate the primary-ezpression. Let O be the resulting value.

u b) Evaluate the operator-ezpression or method-invocation-without-parentheses. Let V be the
12 resulting value.

13 ¢) Let M be the local-variable-identifier or constant-identifier. Let N be the concatenation of
14 M and =.

15 d) Invoke the method whose name is N on O with a list of arguments which contains only one
16 value V.

17 €e) The value of the single-method-assignment is V.

13 11.3.1.2 Abbreviated assignments

19 Syntax

20 abbreviated-assignment 1=

21 abbreviated-assignment-expression

2 | abbreviated-assignment-statement

23 abbreviated-assignment-expression ::

2% abbreviated-variable-assignment-expression
25 | abbreviated-indexing-assignment-expression
26 | abbreviated-method-assignment-expression

27 abbreviated-assignment-statement ::

28 abbreviated-variable-assignment-statement
20 | abbreviated-indezing-assignment-statement
30 | abbreviated-method-assignment-statement

a1 11.3.1.2.1 Abbreviated variable assignments

2 Syntax

56

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

abbreviated-variable-assignment :=
abbreviated-variable-assignment-expression
| abbreviated-variable-assignment-statement

abbreviated-variable-assignment-expression ::
variable [no line-terminator here| assignment-operator operator-expression

abbreviated-variable-assignment-statement ::
variable [no line-terminator here| assignment-operator
method-invocation-without-parentheses

Semantics

An abbreviated-variable-assignment is evaluated as follows:

a)

b)

g)

Evaluate the variable as a variable reference (see §T143). Let V be the resulting value.

Evaluate the operator-expression or the method-invocation-without-parentheses. Let W be
the resulting value.

Let OP be the assignment-operator-name of the assignment-operator.

Evaluate the operator-expression of the form L OP R, where the value of L is V and the
value of R is W. Let X be the resulting value.

Let I be the variable of the abbreviated-variable-assignment-expression or the abbreviated-
variable-assignment-statement.

Evaluate a single-variable-assignment-expression (see §TI-3T11) where its variable is I and
the value of the operator-expression is X.

The value of the abbreviated-variable-assignment is X.

11.3.1.2.2 Abbreviated indexing assignments

Syntax

abbreviated-indexing-assignment ::=
abbreviated-indexing-assignment-expression
| abbreviated-indexing-assignment-statement

abbreviated-indezring-assignment-expression ::
primary-expression [no line-terminator here] [indering-argument-list?]
[no line-terminator here] assignment-operator operator-expression

57

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

abbreviated-indezring-assignment-statement ::
primary-expression [no line-terminator here| [indexing-argument-list?]
[no line-terminator here | assignment-operator method-invocation-without-parentheses

Semantics

An abbreviated-indexing-assignment is evaluated as follows:

2)

b)

Evaluate the primary-expression. Let O be the resulting value.

Construct a list of arguments from the indezring-argument-list as described in §CI—21. Let
L be the resulting list.

Invoke the method [] on O with L as the list of arguments. Let V be the resulting value.

Evaluate the operator-expression or method-invocation-without-parentheses. Let W be the
resulting value.

Let OP be the assignment-operator-name of the assignment-operator.

Evaluate the operator-expression of the form V. OP W. Let X be the resulting value.
Append X to L.

Invoke the method []J= on O with L as the list of arguments.

The value of the abbreviated-indexing-assignment is X.

11.3.1.2.3 Abbreviated method assignments

Syntax

abbreviated-method-assignment ::=
abbreviated-method-assignment-expression
| abbreviated-method-assignment-statement

abbreviated-method-assignment-expression ::

primary-expression [no line-terminator here] (. | ::) local-variable-identifier
[no line-terminator here] assignment-operator operator-expression
| primary-expression [no line-terminator here] . constant-identifier

[no line-terminator here] assignment-operator operator-expression

abbreviated-method-assignment-statement ::
primary-expression [no line-terminator here] (. | ::) local-variable-identifier
[no line-terminator here | assignment-operator method-invocation-without-parentheses
| primary-expression [no line-terminator here] . constant-identifier
[no line-terminator here | assignment-operator method-invocation-without-parentheses

58

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Semantics

An abbreviated-method-assignment is evaluated as follows:

a)

b)

h)

Evaluate the primary-expression. Let O be the resulting value.

Create an empty list of arguments L. Invoke the method whose name is the local-variable-
identifier on O with L as the list of arguments. Let V be the resulting value.

Evaluate the operator-expression or method-invocation-without-parentheses. Let W be the
resulting value.

Let OP be the assignment-operator-name of the assignment-operator.
Evaluate the single-method-assignment of the form V' OP W. Let X be the resulting value.

Let M be the local-variable-identifier or the constant-identifier. Let N be the concatenation
of M and =.

Invoke the method whose name is N on O with X as the argument.

The value of the abbreviated-method-assignment is X.

11.3.1.3 Multiple assignments

Syntax

multiple-assignment-statement ::
many-to-one-assignment-statement
| one-to-packing-assignment-statement
| many-to-many-assignment-statement

many-to-one-assignment-statement ::
left-hand-side [no line-terminator here| = multiple-right-hand-side

one-to-packing-assignment-statement ::
packing-left-hand-side [no line-terminator here| =
(method-invocation-without-parentheses | operator-expression)

many-to-many-assignment-statement ::
multiple-left-hand-side [no line-terminator here| = multiple-right-hand-side
| (multiple-left-hand-side but not packing-left-hand-side)
[no line-terminator here] =
(method-invocation-without-parentheses | operator-expression)

left-hand-side ::
variable
| primary-expression [no line-terminator here] [indexring-argument-list?]
| primary-expression [no line-terminator here]

59

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

(.| ::) (local-variable-identifier | constant-identifier)
| :: constant-identifier

multiple-left-hand-side ::
(multiple-left-hand-side-item ,)+ multiple-left-hand-side-item?
| (multiple-left-hand-side-item ,)+ packing-left-hand-side?
| packing-left-hand-side
| grouped-left-hand-side

packing-left-hand-side ::
* left-hand-side?

grouped-left-hand-side ::
(multiple-left-hand-side)

multiple-left-hand-side-item ::
left-hand-side
| grouped-left-hand-side

multiple-right-hand-side ::
operator-expression-list (, splatting-right-hand-side)?
| splatting-right-hand-side

splatting-right-hand-side ::
splatting-argument

Any of the operator-expressions in a multiple-assignment-statement or splatting-right-hand-side
shall not be a jump-expression.

Semantics

A many-to-one-assignment-statement is evaluated as follows:

a) Construct a list of values from the multiple-right-hand-side (see below). Let L be the
resulting list.

b) If the length of L is 0 or 1, let A be an implementation defined value.

c) If the length of L is larger than 1, create a direct instance of the class Array and store the
elements of L in it, preserving their order. Let A be the instance of the class Array.

d) Evaluate a single-variable-assignment-expression (see §ITI3T 1) where its variable is the
left-hand-side and the value of its operator-expression is A.

e) The value of the many-to-one-assignment-statement is A.

A list of values is constructed from a multiple-right-hand-side as follows:

60

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

d)

)

If the operator-expression-list occurs, evaluate its operator-erpressions in the order they
appear in the program text. Let LI be a list which contains the resulting values, preserving
their order.

If the operator-expression-list does not occur, create an empty list of values L1.

If the splatting-right-hand-side occurs, construct a list of values from its splatting-argument
as described in §I—21 and let L2 be the resulting list.

If the splatting-right-hand-side does not occur, create an empty list of values L2.

The result is the concatenation of L1 and L2.

A one-to-packing-assignment-statement is evaluated as follows:

a)

e)

Evaluate the method-invocation-without-parentheses or the operator-expression. Let V be
the value.

If V is an instance of the class Array, let A be an implementation defined value.

If V is not an instance of the class Array, create an instance of the class Array A which
contains only one value V.

If the left-hand-side of the packing-left-hand-side occurs, evaluate a single-variable-assignment-
expression (see §CI-3T11) where its variable is the left-hand-side and the value of the

operator-expression is A.

The value of the one-to-packing-assignment-statement is A.

A many-to-many-assignment-statement is evaluated as follows:

a)

b)

If the multiple-right-hand-side occurs, construct a list of values from it (see above) and let
R be the resulting list.

If the multiple-right-hand-side does not occur:

1) Evaluate the method-invocation-without-parentheses or the operator-expression. Let V
be the resulting value.

2) If V is not an instance of the class Array, the behavior is implementation dependent.

3) Create a list of arguments R which contains all the elements of V| preserving their
order.

Create an empty list of variables L.

For each multiple-left-hand-side-item, in the order they appear in the program text, append
the left-hand-side or the grouped-left-hand-side of the multiple-left-hand-side-item to L.

If the packing-left-hand-side of the multiple-left-hand-side occurs, append it to L.

If the multiple-left-hand-side is a grouped-left-hand-side, append the grouped-left-hand-side
to L.

61

10

11

12

13

14

15

16

17

18

19

20

21

26

27

28

29

30

31

d)

For each element L; of L, in the same order in L, take the following steps:

Let ¢ be the index of L; within L. Let Nr be the number of elements of R.

If L; is a left-hand-side:

D
2)

3)

If 4 is larger than Npg, let V be nil.
Otherwise, let V be the ith element of R.

Evaluate the single-variable-assignment of the form L; = V.

If L; is a packing-left-hand-side and its left-hand-side occurs:

1)

2)

3)

If 4 is larger than Ng, create an empty direct instance of the class Array. Let A
be the instance.

Otherwise, create a direct instance of the class Array which contains elements in
R whose index is equal to, or larger than ¢, in the same order they are store in R.
let A be the instance.

Evaluate a single-variable-assignment-expression (see §TI-3T11) where its vari-
able is the left-hand-side and the value of the operator-expression is A.

If L; is a grouped-left-hand-side:

If 4 is larger than Npg, let V be nil.
Otherwise, let V' be the ith element of R.
Evaluate a many-to-many-assignment-statement where its multiple-left-hand-side

is the multiple-left-hand-side of the grouped-left-hand-side and its multiple-right-
hand-side is V.

11.3.1.4 Assignments with rescue modifiers

Syntax

assignment-with-rescue-modifier ::
left-hand-side [no line-terminator here] =

operator-erpression 1 rescue operator-expression o

Semantics

An assignment-with-rescue-modifier is evaluated as follows:

2)

62

Evaluate the operator-expression;. Let V be the resulting value.

If an exception is raised and not handled during the evaluation of the operator-expression,
and if the exception is an instance of the class StandardError, evaluate the operator-
expressions and let V be the resulting value.

2

3

4

5

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

b) Evaluate a single-variable-assignment-expression (see §II3 L1 1) where its variable is the
left-hand-side and the value of the operator-expression is V. The value of the assignment-
with-rescue-modifier is the resulting value of the evaluation.

11.3.2 Unary operators

Syntax

UNATY-MINUS-ETPTESSION ::
power-expression |
| = power-expression o

UNATY-eTPTESSIon ::
PTIMATY-ETPTession
| logical-NOT-with-unary-expression
| ~ unary-expression
| + unary-expression o

If a unary-minus-expression of the form - power-expressions is the first argument (see §I1—21),
whitespaces shall not occur between its - and power-expressions.

If a unary-ezpression of the form + unary-expressions is the first argument (see §II—2), whites-
paces shall not occur between its + and unary-expressions.

Semantics

See §II for logical-NOT-with-unary-expression.
An unary-expression of the form ~ unary-expression; is evaluated as follows:
a) Evaluate the unary-expressiony. Let X be the resulting value.

b) Create an empty list of arguments L. Invoke the method ~ on X with L as the list of
arguments. The value of the unary-expression is the resulting value of the invocation.

An unary-expression of the form + unary-expressions is evaluated as follows:

a) Evaluate the unary-expressiony. Let X be the resulting value.

b) Create an empty list of arguments L. Invoke the method +@ on X with L as the list of
arguments. The value of the unary-expression is the resulting value of the invocation.

c) If the unary-expressionsy is a numeric-literal (see §8551), instead of the above process, a
conforming processor may evaluate the unary-expression to the value of the numeric-literal.

An unary-expression of the form - power-expressions is evaluated as follows:

a) Evaluate the power-expressiony. Let X be the resulting value.

63

1 b) Create an empty list of arguments L. Invoke the method -@ on X with L as the list of
2 arguments. The value of the unary-expression is the resulting value of the invocation.

3 11.3.2.1 The defined? expression

4+ Syntax

5 defined?-expression 1=

6 defined ?-with-parentheses

7 | defined ?-without-parentheses

8 defined ?-with-parentheses ::

9 defined? (expression)
10 defined ?-without-parentheses ::
1 defined? operator-expression

12 Semantics

13 A defined?-expression is evaluated as follows:
wu a) If the defined?-expression is a defined?-with-parentheses, let E be the expression.

15 If the defined ?-expression is a defined ?-without-parentheses, let E be the operator-expression.

16 b) e If Fisa constant-identifier:

17 1) Search for a binding of a constant with name E with the same evaluation steps
18 for constant-identifier as described in §I12=31. However, a direct instance of the
19 class NameError shall not be raised when a binding is not found.

20 2) If a binding is found, the value of the defined?-expression is an implementation
21 defined value, which shall be a true value.

2 3) Otherwise, the value of the defined?-expression is nil.

23 e If F is a global-variable-identifier:

24 — If a binding with name E exists in [global-variable-bindings], the value of the
25 defined?-expression is an implementation defined value, which shall be a true value.
26 — Otherwise, the value of the defined?-expression is nil.

27 e If F is a class-variable-identifier:

28 1) Let C be the current class or module. Let CS be the set of classes which consists
29 of C' and all the superclasses of C. Let MS be the set of modules which consists
30 of all the modules in the included module lists of all classes in CS. Let CM be the
31 union of C'S and MS.

64

10

11

12

13

14

15

16

17

18

19

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

2) If any of the classes or modules in CM has a binding with name E in the set of
bindings of class variables, the value of the defined?-expression is an implementa-

tion defined value, which shall be a true value.

3) Otherwise, the value of the defined?-expression is nil.

e If F is an instance-variable-identifier:

— If a binding with name E exists in the set of bindings of instance variables of
the current self, the value of the defined?-expression is an implementation defined
value, which shall be a true value.

— Otherwise, the value of the defined?-expression is nil.

e If F is a local-variable-identifier:

1) If the local-variable-identifier is a reference (see §A12), the value of the defined?-

expression is an implementation defined value, which shall be a true value.

2) Otherwise, search for a method binding with name E, starting from the current
class or module as described in §C3=34.

— If the binding is found and its value is not undef, the value of the defined?-
expression is an implementation defined value, which shall be a true value.

— Otherwise, the value of the defined?-expression is nil.
e Otherwise, the value of the defined?-expression is implementation defined.

11.3.3 Binary operators

Syntax

equality-expression ::

relational-expression
| relational-expression
| relational-expression
| relational-expression
| relational-expression
| relational-expression
| relational-expression

relational-expression ::

<=> relational-expression
== relational-expression
=== relational-expression
'= relational-expression
=" relational-expression
1~ relational-expression

bitwise-OR-expression

| relational-expression
| relational-expression
| relational-expression
| relational-expression

bitwise-OR-expression ::

> bitwise-OR-expression
>= bitwise-OR-expression
< bitwise-OR-expression
<= bitwise-OR-expression

bitwise-AND-expression

65

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

| bitwise-OR-expression | bitwise-AND-expression
| bitwise-OR-expression ~ bitwise-AND-expression

bitwise-AND-expression ::
bitwise-shift-expression
| bitwise-AND-expression whitespace-before-operator? & bitwise-shift-expression

bitwise-shift-expression ::
additive-expression
| bitwise-shift-expression whitespace-before-operator? << additive-expression
| bitwise-shift-expression >> additive-expression

additive-expression ::
multiplicative-expression
| additive-expression whitespace-before-operator? + multiplicative-expression
| additive-expression whitespace-before-operator? - multiplicative-expression

multiplicative-expression ::
UNGTY-MINUS-ETPTESSION
| multiplicative-expression whitespace-before-operator? * unary-minus-expression
| multiplicative-expression whitespace-before-operator? / unary-minus-expression
| multiplicative-expression whitespace-before-operator? % unary-minus-expression

PoOwer-expression ::
Unary-expression
| = (numeric-literal) ** power-expression
| unary-expression ** power-expression

binary-operator ::=
<=> ‘ == ‘ === | =" | > ‘ >= | < ‘ <= ‘ | ‘ -
L& | << [> [+ [= x|/ | %] *

If a whitespace-before-operator occurs, whitespaces shall not occur between the operator after the
whitespace-before-operator (i.e. &, <<, +, =, *, /, or %) and the nonterminal after that operator.

Semantics

An operator-expression of the form z != y is evaluated as follows:

Evaluate z. Let X be the resulting value.

Evaluate y. Let Y be the resulting value.

Invoke the method == on X with a list of arguments which contains only one value Y. If
the resulting value is a true value, the value of the operator-expression is false. Otherwise,

the value of the operator-expression is true.

An operator-expression of the form z !~ y is evaluated as follows:

66

a) Evaluate z. Let X be the resulting value.

b) Evaluate y. Let Y be the resulting value.

¢) Invoke the method =~ on X with a list of arguments which contains only one value Y. If
the resulting value is a true value, the value of the operator-expression is false. Otherwise,

the value of the operator-expression is true.

A conforming processor may include the operators !'= and !~ in binary-operator. In this case,
operator-expressions of the form x !=y or x !~ y are evaluated as described below.

An operator-expression of the form z binary-operator y is evaluated as follows:

a) Evaluate z. Let X be the resulting value.

10

11

12

13

14

15

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Evaluate y. Let Y be the resulting value.

11.4 Primary expressions

Syntax

Invoke the method whose name is the binary-operator on X with a list of arguments which
contains only one value Y. The value of the operator-expression is the resulting value of the
invocation.

PTIMATY-ETPTESSION,

class-definition
| eigenclass-definition
| module-definition
| method-definition
| singleton-method-definition

| yield-with-optional-argument

| if-expression

| unless-expression

| case-expression

| while-expression

| until-expression

| for-expression

| return-without-argument
| break-without-argument

| next-without-argument

| redo-expression

| retry-expression

| rescue-expression

| grouping-expression

| variable-reference

| scoped-constant-reference
| array-constructor

| hash-constructor

| literal

| defined ?-with-parentheses
| primary-method-invocation

67

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Semantics

See §ICI2A for class-definition.

See §IXAA for eigenclass-definition.

See §IC3TA for module-definition.

See §IC33 for method-definition.

See §CIA3 for singleton-method-definition.

See §II2A for yield-with-optional-argument.

See §MI321 for defined ?-with-parentheses.

See §0T2 for primary-method-invocation.

11.4.1 Control structures

11.4.1.1 Conditional expressions

11.4.1.1.1 The if expression

Syntax

if-expression ::
if expression then-clause elsif-clause™ else-clause? end

then-clause ::
separator compound-statement
| separator? then compound-statement

else-clause ::
else compound-statement

elsif-clause ::
elsif expression then-clause

The expression of an if-expression or elsif-clause shall not be a jump-expression.

Semantics

The if-expression is evaluated as follows:

a)

68

Evaluate expression. Let V be the resulting value.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

If V is a true value, evaluate the compound-statement of the then-clause. The value of the
if-expression is the resulting value. In this case, elsif-clauses and the else-clause, if any, are
not evaluated.

If V is a false value, and if there is no elsif-clause and no else-clause, then the value of the
if-expression is nil.

If V is a false value, and if there is no elsif-clause but there is an else-clause, then evaluate
the compound-statement of the else-clause. The value of the if-expression is the resulting
value.

If V is a false value, and if there are one or more elsif-clauses, evaluate the sequence of
elsif-clauses as follows:

1) Evaluate the expression of each elsif-clause in the order they appear in the program
text, until there is an elsif-clause for which expression evaluates to a true value. Let
T be this elsif-clause.

2) If T exists, evaluate the compound-expression of its then-clause. The value of the if-
expression is the resulting value. Other elsif-clauses and an else-clause following T, if
any, are not evaluated.

3) If T does not exist, and if there is an else-clause, then evaluate the compound-statement
of the else-clause. The value of the if-expression is the resulting value.

4) If T does not exist, and if there is no else-clause, then the value of the if-expression is
nil.

11.4.1.1.2 The unless expression

Syntax

unless-expression ::

unless expression then-clause else-clause? end

The expression of an unless-expression shall not be a jump-expression.

Semantics

The unless-expression is evaluated as follows:

a)

b)

Evaluate the expression. Let V be the resulting value.

If V is a false value, evaluate the compound-statement of the then-clause. The value of the
unless-expression is the resulting value. In this case, the else-clause, if any, is not evaluated.

If V is a true value, and if there is no else-clause, then the value of the unless-expression is
nil.

If V is a true value, and if there is an else-clause, then evaluate the compound-statement
of the else-clause. The value of the unless-expression is the resulting value.

69

1

2

10

11

12

13

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

11.4.1.1.3 The case expression

Syntax

case-expression ::
case-expression-with-expression
| case-expression-without-expression

case-expression-with-expression ::
case expression separator-list? when-clause+ else-clause? end

case-expression-without-expression ::
case separator-list? when-clause+ else-clause? end

when-clause ::
when when-argument then-clause

when-argument ::
operator-expression-list (, splatting-argument)?
| splatting-argument

The expression of a case-expression-with-expression shall not be a jump-expression.

Semantics

A case-expression is evaluated as follows:

a) If the case-expression is a case-expression-with-expression, evaluate the expression. Let V
be the resulting value.

b) The meaning of the phrase “O is matching” in this step is defined as follows:

70

e If the case-expression is a case-expression-with-expression, invoke the method === on
O with a list of arguments which contains only one value V. O is matching if and only
if the resulting value is a true value.

e If the case-expression is a case-expression-without-expression, O is matching if and only
if O is a true value.

Search the when-clauses in the order they appear in the program text for a matching when-
clause as follows:

1) If the operator-expression-list of the when-argument occurs:

e For each of its operator-expressions, evaluate it and test if the resulting value is
matching.

e If a matching value is found, other operator-expressions, if any, are not evaluated.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

2) If no matching value is found, and the splatting-argument occurs:

e Construct a list of values from it as described in §IIT2T. For each element of the
resulting list, in the indexing order, test if it is matching.

e If a matching value is found, other values, if any, are not evaluated.

3) A when-clause is considered to be matching if and only if a matching value is found in
its when-argument. Later when-clauses, if any, are not tested in this case.

c) If one of the when-clauses is matching, evaluate the compound-statement of the then-clause
of this when-clause. The value of the case-expression is the resulting value.

d) If none of the when-clauses is matching, and if there is an else-clause, then evaluate the
compound-statement of the else-clause. The value of the case-expression is the resulting
value.

e) Otherwise, the value of the case-expression is nil.

11.4.1.1.4 Conditional operator

Syntax

conditional-operator-expression ::
range-constructor
| range-constructor 7 operator-expressiony : operator-erpression

Semantics

A conditional-operator-expression of the form range-constructor ? operator-expressiony : operator-
expressions is evaluated as follows:

a) Evaluate the range-constructor.

b) If the resulting value is a true value, evaluate the operator-expression;. The value of the
conditional-operator-expression is the resulting value of the evaluation.

c) Otherwise, evaluate the operator-expressiony. The value of the conditional-operator-expression
is the resulting value.

11.4.1.2 Iteration expressions

Syntax

iteration-expression ::=
while-expression
| until-expression
| for-expression
| while-modifier-statement
| until-modifier-statement

71

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Each iteration-expression has a body. The body of a while-expression or an until-expression is
its compound-statement. The body of a while-modifier-statement or an until-modifier-statement
is its statement.

See §IZA for while-modifier-statement.

See §IXF for until-modifier-statement.

11.4.1.2.1 The while expression

Syntax

while-expression ::
while expression do-clause end

do-clause ::
separator compound-statement
| do compound-statement

The expression of a while-expression shall not be a jump-expression.

Semantics

A while-expression is evaluated as follows:

a) Evaluate the expression. Let V be the resulting value.

b) If V is a false value, terminate the evaluation of the while-expression. The value of the
while-expression is nil.

c¢) Otherwise, evaluate the compound-statement of the do-clause. If this evaluation:
1) is terminated by a break-expression, terminate the evaluation of the while-expression.

If the jump-argument of the break-expression occurs, the value of the while-expression
is the value of the jump-argument. Otherwise, the value of the while-expression is nil.

2) is terminated by a next-ezpression, continue processing from Step a.

3) is terminated by a redo-expression, continue processing from Step o.

Otherwise, unless this evaluation is terminated by a return-expression, continue processing
from Step a.

11.4.1.2.2 The until expression

Syntax

72

-

10

11

12

13

14

15

16

-

7

24

25

26

27

until-expression ::
until expression do-clause end

The expression of an until-expression shall not be a jump-expression.

Semantics

An until-expression is evaluated as follows:

a) Evaluate the expression. Let V be the resulting value.

b) If V is a true value, terminate the evaluation of the wuntil-expression. The value of the
until-expression is nil.

c) Otherwise, evaluate the compound-statement of the do-clause. If this evaluation:

1) is terminated by a break-expression, terminate the evaluation of the until-expression.

If the jump-argument of the break-expression occurs, the value of the until-expression
is the value of the jump-argument. Otherwise, the value of the until-expression is nil.

2) is terminated by a next-expression, continue processing from Step a.

3) is terminated by a redo-expression, continue processing from Step o.

Otherwise, unless this evaluation is terminated by a return-expression, continue processing
from Step a.

11.4.1.2.3 The for expression

Syntax

for-expression ::
for for-variable in expression do-clause end

for-variable ::
left-hand-side
| multiple-left-hand-side

The expression of a for-expression shall not be a jump-expression.

Semantics

A for-expression is evaluated as follows:

a) Evaluate the expression. Let O be the resulting value.

73

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

b) Let E be the primary-method-invocation of the form primary-expression [no line-terminator
here] . each do | block-formal-argument-list | block-body end, where the value of the
primary-expression is O, the block-formal-argument-list is the for-variable, the block-body
is the compound-statement of the do-clause.

Evaluate FE, but skip Step o of §IT22.

c) The value of the for-ezpression is the resulting value of the invocation.

11.4.1.3 Jump expressions

Syntax

Jump-expression =
return-expression
| break-expression
| next-expression
| redo-expression
| retry-expression

Semantics

Jump expressions are used to terminate the evaluation of a method-body, a block-body, the body
of an iteration-expression, or the compound-statements of a rescue-clause.

In this document, the current block or the current iteration-expression refers to either of
the following:

e If the current method invocation exists, the current block or the current iteration-expression
is the block or the iteration-expression whose evaluation started most recently among the
blocks or iteration-expressions which are being evaluated on during the evaluation of the
current method invocation.

e Otherwise, the current block or the current iteration-expression is the block or the iteration-

expression whose evaluation started most recently among the blocks or iteration-expressions
which are under evaluation.

11.4.1.3.1 The return expression

Syntax

retuTrn-exrpression 1=
return-without-argument
| return-with-argument

return-without-argument ::
return

74

1

3

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

return-with-argument ::

return jump-argument

Jump-argument ::

arqument

The block-argument of the argument-in-parentheses of the argument (see §II2) of a jump-
argument shall not occur.

Semantics

A return-expression is evaluated as follows:

a)

)

Let M be the method-body which corresponds to the current method invocation. If such an
invocation does not exist, or has already terminated:

1)

2)

3)

Let S be a direct instance of the class Symbol with name return.

If the jump-argument of the return-expression occurs, let V be the value of the jump-
argument. Otherwise, let V' be nil.

Raise a direct instance of the class LocalJumpError which has two instance variable
bindings, one named @reason with the value § and the other named @exit_value with
the value V.

Evaluate the jump-argument, if any, as described below.

If there are block-bodys which include the return-expression and are included in M, terminate
the evaluations of such block-bodys, from innermost to outermost (see §IT237).

Terminate the evaluation of M (see §[3-33).

A jump-argument is evaluated as follows:

2)

If the jump-argument is a splatting-arqument:

1)

Construct a list of values from the splatting-argument as described in §IT271 and let
L be the resulting list.

2) If the length of Lis 0 or 1, the value of the jump-argument is an implementation defined
value.

3) If the length of L is larger than 1, create a direct instance of the class Array and store
the elements of L in it, preserving their order. The value of the jump-argument is the
instance of the class Array.

Otherwise:

1)

Construct a list of values from the argument as described in §II=2T and let L be the
resulting list.

75

11

-
N

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

2) If the length of L is 1, the value of the jump-argument is the only element of L.

3) If the length of L is larger than 1, create a direct instance of the class Array and store
the elements of L in it, preserving their order. The value of the jump-argument is the
instance of the class Array.

11.4.1.3.2 The break expression

Syntax

break-expression ::=
break-without-argument
| break-with-argument

break-without-argument ::
break

break-with-argument ::
break jump-argument

Semantics

A

a)

b)

)

d)

break-expression is evaluated as follows:
Evaluate the jump-argument, if any, as described in §IIZ4T-31I.

Let F be the current block or the current iteration-expression. If such a block or an iteration-
expression does not exist:

1) Let S be a direct instance of the class Symbol with name break.

2) If the jump-argument of the break-expression occurs, let V be the value of the jump-
argument. Otherwise, let V' be nil.

3) Raise a direct instance of the class LocalJumpError which has two instance variable
bindings, one named @reason with the value § and the other named @exit_value with

the value V.

If E is a block, terminate the evaluation of the block-body of E (see §IT22).

If E is an iteration-expression, terminate the evaluation of the body of E (see §I1T412).

11.4.1.3.3 The next expression

Syntax

76

next-erpression ::=
next-without-argument
| next-with-argument

3

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

26

27

28

29

next-without-argument ::
next

next-with-argument ::
next jump-argument

Semantics

A next-expression is evaluated as follows:

a) Evaluate the jump-argument, if any, as described in §CIZT-31.

b) Let E be the current block or the current iteration-expression. If such a block or an iteration-
expression does not exist:

1) Let S be a direct instance of the class Symbol with name next.

2) If the jump-argument of the next-expression occurs, let V' be the value of the jump-
argument. Otherwise, let V' be nil.

3) Raise a direct instance of the class LocalJumpError which has two instance variable
bindings, one named @reason with the value S and the other named @exit_value with
the value V.
c) If FE is a block, terminate the evaluation of the block-body of E (see §II24).
d) If F is an iteration-expression, terminate the evaluation of the body of E (see §I14137).

11.4.1.3.4 The redo expression

Syntax

redo-expression ::
redo

Semantics

A redo-expression is evaluated as follows:

a) Let E be the current block or the current iteration-expression. If such a block or an iteration-
expression does not exist,

1) Let S be a direct instance of the class Symbol with name redo.
2) Raise a direct instance of the class LocalJumpError which has two instance variable

bindings, one named @reason with the value § and the other named @exit_value with
the value nil.

77

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

b) If E is a block, terminate the evaluation of the block-body of E (see §IT22).

c) If E is an iteration-expression, terminate the evaluation of the body of E (see §II4137).

11.4.1.3.5 The retry expression

Syntax

retry-expression
retry

Semantics

A retry-expression is evaluated as follows:

a) If the current method invocation exists, let M be the method-body which corresponds to
the current method invocation. Otherwise, let M be the program.

b) Let E be the innermost rescue-clause in M which encloses the retry-expression. If such a
rescue-clause does not exist, the behavior is implementation dependent.

c) Terminate the evaluation of the compound-statementy of E (see §IIATAT).
11.4.1.4 Exceptions
11.4.1.4.1 The rescue expression

Syntax

rescue-erpression ::
begin body-statement end

body-statement ::
compound-statement rescue-clause™® else-clause? ensure-clause?

rescue-clause ::
rescue [no line-terminator here] exception-class-list?
exception-variable-assignment? then-clause

exception-class-list ::
operator-erpression
| multiple-right-hand-side

exception-variable-assignment ::
=> left-hand-side

78

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

ensure-clause ::

ensure compound-statement

The operator-expression of an exception-class-list shall not be a jump-expression.

Semantics

The value of a rescue-expression is the value of the body-statement.

A body-statement is evaluated as follows:

a)

b)

Evaluate the compound-statement of the body-statement.

If no exception is raised, or all the raised exceptions are handled during Step a:

1) If the else-clause occurs, evaluate the else-clause as described in §ITZAT 1.

2) If the ensure-clause occurs, evaluate its compound-statement. The value of this evalu-
ation is the value of the ensure-clause.

If both the else-clause and the ensure-clause occur, the value of the body-statement is the
value of the ensure-clause. If only one of these clauses occurs, the value of the body-statement
is the value of the occurring clause.

If neither the else-clause nor the ensure-clause occurs, the value of the body-statement is
the value of its compound-statement.

If an exception is raised and not handled during Step @, test each rescue-clause, if any, in

the order it occurs in the program text. The test determines whether the rescue-clause can
handle the exception as follows:

1) Let FE be the exception raised.

2) If the exception-class-list does not occur in the rescue-clause, and if E is an instance
of the class StandardError, the rescue-clause handles FE.

3) If the exception-class-list of the rescue-clause occurs:

e If the exception-class-list is of the form operator-expression, evaluate the operator-
expression. Create an empty list of values, and append the value of the operator-
expression to the list.

e If the exception-class-list is of the form multiple-right-hand-side, construct a list
of values from the multiple-right-hand-side (see §II313).

Let L be the list created by evaluating the exception-class-list as above. Compare each
element D of L with E as follows:

e If D is neither the class Exception nor a subclass of the class Exception, raise a
direct instance of the class TypeError.

79

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

)

e If F is an instance of D, the rescue-clause handles F. In this case, any remaining
rescue-clauses in the body-statement are not tested.

If a rescue-clause R which can handle E is found:

1)

)

If the exception-variable-assignment of R occurs, evaluate it in the same way as a
multiple-assignment-statement of the form left-hand-side = multiple-right-hand-side
where the value of multiple-right-hand-side is F.

Evaluate the compound-statement of the then-clause of R. If this evaluation is termi-
nated by a retry-expression, continue processing from Step m. Otherwise, let V' be the

value of this evaluation.

If the ensure-clause occurs, evaluate it. The value of the body-statement is the value
of the ensure-clause.

If the ensure-clause does not occur, the value of the body-statement is V.

If no rescue-clause occurs or if a rescue-clause which can handle E is not found, evaluate
the ensure-clause. In this case, the value of the body-statement is undefined.

The ensure-clause of a body-statement, if any, is always evaluated, even when the evaluation of
body-statement is terminated by a jump-expression.

11.4.2 Grouping expression

Syntax

grouping-exrpression
(expression)
| C compound-statement)

Semantics

A grouping-expression is evaluated as follows:

a) Evaluate the expression or the compound-statement.

b) The value of the grouping-expression is the resulting value.
11.4.3 Variable references

Syntax

variable-reference ::
variable
| pseudo-variable

80

10

11

12

13

14

15

16

17

18

19

20

21

22

23

25

26

27

28

29

30

31

32

33

variable ::

constant-identifier
global-variable-identifier

instance-variable-identifier

|
| class-variable-identifier
|
|

local-variable-identifier

scoped-constant-reference ::
primary-expression [no whitespace here] :: constant-identifier

constant-identifier

11.4.3.1 Constants

A constant-identifier is evaluated as follows:

a) Let N be the constant-identifier.

b) Search for a binding of a constant with name N as described below.

As soon as the binding is found in any of the following steps, the evaluation of the constant-
identifier is terminated and the value of the constant-identifier is the value of the binding

found.

c) Let L be the top of [class-module-list] . Search for a binding of a constant with name N in
each element of L from start to end, including the first element, which is the current class
or module, but except for the last element, which is the class Object.

d) If a binding is not found, let C be the current class or module.

Let L be the included module list of C. Search each element of L in the reverse order for a
binding of a constant with name N.

e) If the binding is not found:

e If C is a class:

)

2)

Let S be the direct superclass of C.

If S is nil, create a direct instance of the class Symbol with name N, and let R be
that instance. Invoke the method const_missing on the current class or module
with R as the only argument.

If S is not nil, search for a binding of a constant with name N in S.

If the binding is not found, let L be the included module list of S and search each
element of L in the reverse order for a binding of a constant with name N.

If the binding is not found, let § be the direct superclass of S. Continue processing
from Step E=2.

81

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

If C is a module:

Search for a binding of a constant with name N in the class Object.

If the binding is not found, let L be the included module list of the class Object
and search each element of L in the reverse order for a binding of a constant with
name N.

If the binding is not found, create a direct instance of the class Symbol with name
N, and let R be that instance. Invoke the method const missing on the current
class or module with R as the only argument.

11.4.3.2 Scoped constants

A scoped-constant-reference is evaluated as follows:

a)

If the primary-expression occurs, evaluate it and let C' be the resulting value. Otherwise,
let C' be the class Object.

If C is not an instance of the class Module, raise a direct instance of the class TypeError.

Otherwise:

1)

2)

Let N be the constant-identifier.

If a binding with name N exists in the set of bindings of constants of C, the value of
the scoped-constant-reference is the value of the binding.

Otherwise:

i)

i)

iii)

Let L be the included module list of C. Search each element of L in the reverse
order for a binding of a constant with name N.

If the binding is found, the value of the scoped-constant-reference is the value of
the binding.

Otherwise, search for a binding of a constant with name N from Step & of §ITZ231.

11.4.3.3 Global variables

A global-variable-identifier is evaluated as follows:

Let N be the global-variable-identifier.

If a binding with name N exists in [global-variable-bindings] , the value of global-variable-
identifier is the value of the binding.

Otherwise, the value of global-variable-identifier is nil.

11.4.3.4 Class variables

A class-variable-identifier is evaluated as follows:

82

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

32

f)

Let N be the class-variable-identifier. Let C' be the first class or module in the list at the
top of [class-module-list] which is not an eigenclass.

Let CS be the set of classes which consists of C and all the superclasses of C. Let MS be
the set of modules which consists of all the modules in the included module list of all classes
in CS. Let CM be the union of CS and MS.

If a binding with name N exists in the set of bindings of class variables of only one of the
classes or modules in CM, let V be the value of the binding.

If more than two classes or modules in CM have a binding with name N in the set of
bindings of class variables, let V' be the value of one of these bindings. Which binding is
selected is implementation dependent.

If none of the classes or modules in CM has a binding with name N in the set of bindings
of class variables, let S be a direct instance of the class Symbol with name N and raise a

direct instance of the class NameError which has S as its name property.

The value of the class-variable-identifier is V.

11.4.3.5 Instance variables

An instance-variable-identifier is evaluated as follows:

Let N be the instance-variable-identifier.

If a binding with name N exists in the set of bindings of instance variables of the current
self, the value of the instance-variable-identifier is the value of the binding.

Otherwise, the value of the instance-variable-identifier is nil.

11.4.3.6 Local variables

This subclause describes a local-variable-identifier which is a reference to a local variable (see
§a12).

A local-variable-identifier is evaluated as follows:

a)
b)
)

d)

Let N be the local-variable-identifier.
Search for a binding of a local variable with name N as described in §&T1.
If a binding is found, the value of local-variable-identifier is the value of the binding.

Otherwise, the value of local-variable-identifier is nil.

11.4.3.7 Pseudo variables

Syntax

pseudo-variable ::

nil

83

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

| true
| false
| self

11.4.3.7.1 nil

Syntax

nil
nil

Semantics

The pseudo variable nil evaluates to the only instance of the class NilClass (see §IH24).
11.4.3.7.2 true and false

Syntax

true ::
true

false ::
false

Semantics

The pseudo variable true is evaluates to the only instance of the class TrueClass (see §IH2H).
The pseudo variable false is evaluates to the only instance of the class FalseClass (see §I520).

11.4.3.7.3 self

Syntax

self ::
self

Semantics

The pseudo variable self is evaluates to the value of the current self.

84

1 11.4.4 Object constructors

> 11.4.4.1 Array constructor

3 Syntax
4 array-constructor ::
5 [indexing-argument-list?]

s Semantics

7 An array-constructor is evaluated as follows:

s a) If there is an indexing-argument-list, construct a list of arguments from the indexing-
9 argument-list as described in §I—2. Let L be the resulting list.

10 b) Otherwise, create an empty list of values L.

u c) Create a direct instance of the class Array which stores the values in L in the same order
12 they are stored in L. Let O be the instance.

13 d) The value of the array-constructor is O.

4 11.4.4.2 Hash constructor

15 Syntax

16 hash-constructor ::

17 { (association-list ,?7)? }

18 association-list ::

19 association (, association)*
20 association ::

21 association-key => association-value
2 association-key ::

23 operator-erpression

2% association-value ::

25 operator-erpression

%6 The operator-expression of an association-key or association-value shall not be a jump-expression.

85

10

11

12

13

14

15

16

17

18

19

21

22

24

25

26

27

28

29

30

31

Semantics

Both hash-constructors or association-lists evaluate to a direct instance of the class Hash (see
§Ih2T3).

A hash-constructor is evaluated as follows:

a) If there is an association-list, evaluate the association-list. The value of the hash-constructor
is the resulting value.

b) Otherwise, create an empty direct instance of the class Hash. The value of the hash-
constructor is the resulting instance.

An association-list is evaluated as follows:

a) Create a direct instance of the class Hash H.

b) For each association A;, in the order it appears in the program text, take the following
steps:

1) Evaluate the operator-expression of the association-key of A;. Let K; be the resulting
value.

2) Evaluate the operator-expression of the association-value. Let V; be the resulting value.

3) Store a pair of K; and V; in H, as if by invoking the method []1= on H with K; and V;
as the arguments.

c) The value of the association-list is H.
11.4.4.3 Range constructor

Syntax

range-constructor ::
logical-OR-expression
| logical-OR-expression range-operator logical-OR-expression o

range-operator ::

Semantics

A range-constructor of the form logical-OR-expressiony range-operator logical-OR-expressions
is evaluated as follows:

a) Evaluate the logical-OR-expression;. Let A be the resulting value.

b) Evaluate the logical-OR-expressions. Let B be the resulting value.

86

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

c) If the range-operator is the terminal . ., construct a list L which contains three arguments:

A, B, and false.

If the range-operator is the terminal . . ., construct a list L which contains three arguments:

A, B, and true.

d) Invoke the method new on the class Range with L as the list of arguments. The value of

the range-constructor is the resulting value.

11.4.5 Literals

See §85 1 for integer literals.
See §85 11 for float literals.
See §85 A2 for string literals.
See §85 A A for symbol literals.

See §8H 04 for regular expression literals.

12 Statements

Syntax

statement ::

expression-statement

| alias-statement

| undef-statement

| if-modifier-statement

| unless-modifier-statement

| while-modifier-statement

| until-modifier-statement

| rescue-modifier-statement

| assignment-statement

See §C33ZMA for alias-statement.
See §C37371 for undef-statement.
See §MI=371 for assignment-statement.

Semantics

See §II31 for assignment-statement.
12.1 The expression statement

Syntax

87

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

expression-statement ::
exTpression

Semantics

An expression-statement is evaluated as follows:

2)

b)

Evaluate the expression.

The resulting value is the value of the expression-statement.

12.2 The if modifier statement

Syntax

if-modifier-statement ::
statement [no line-terminator here] if expression

The expression of an if-modifier-statement shall not be a jump-expression.

Semantics

An if-modifier-statement of the form S if E, where S is the statement and F is the expression,

is evaluated as follows:

a)

b)

Evaluate the if-expression of the form if E then § end.

The resulting value is the value of the if-modifier-statement.

12.3 The unless modifier statement

Syntax

unless-modifier-statement ::
statement [no line-terminator here] unless expression

The expression of an unless-modifier-statement shall not be a jump-expression.

Semantics

An unless-modifier-statement of the form S unless FE, where S is the statement and F is the

expression, is evaluated as follows:

a)
b)

88

Evaluate the unless-expression of the form unless F then S end.

The resulting value is the value of the unless-modifier-statement.

10

11

12

13

14

15

16

17

18

19

20

21

22

24

25

27

12.4 The while modifier statement

Syntax

while-modifier-statement ::
statement [no line-terminator here] while expression

The expression of a while-modifier-statement shall not be a jump-expression.

Semantics

A while-modifier-statement of the form S while E, where S is the statement and F is the

expression, is evaluated as follows:

a) Evaluate the while-expression of the form while E do S end.
b) The resulting value is the value of the while-modifier-statement.
12.5 The until modifier statement

Syntax

until-modifier-statement ::
statement [no line-terminator here] until exzpression

The expression of an until-modifier-statement shall not be a jump-expression.

Semantics

An until-modifier-statement of the form § until E, where S is the statement and FE is the

expression, is evaluated as follows:

a) Evaluate the until-expression of the form until £ do S end.
b) The resulting value is the value of the until-modifier-statement.
12.6 The rescue modifier statement

Syntax

rescue-modifier-statement ::
main-statement-of-rescue-modifier-statement [no line-terminator here]
rescue fallback-statement-of-rescue-modifier-statement

main-statement-of-rescue-modifier-statement ::
statement

89

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

fallback-statement-of-rescue-modifier-statement ::

statement but not statement-not-allowed-in-fallback-statement

statements-not-allowed-in-fallback-statement ::

keyword-AND-expression
| keyword-OR-expression
| if-modifier-statement
| unless-modifier-statement
| while-modifier-statement
| until-modifier-statement
| rescue-modifier-statement

Semantics

A rescue-modifier-statement is evaluated as follows:

a)

b)

Evaluate the main-statement-of-rescue-modifier-statement. Let V be the resulting value.

If an instance of the class StandardError is raised and not handled in Step @, evalu-
ate fallback-statement-of-rescue-modifier-statement. The resulting value is the value of the
rescue-modifier-statement.

If no instances of the class Exception are raised in Step a, or all the instances of the class
Exception raised in Step m are handled in Step @, the value of the rescue-modifier-statement
is V.

13 Classes and modules

13.1 Modules

13.1.1 General description

Every module is an instance of the class Module (see §Th27). However, not every instance of
the class Module is a module because the class Module is a superclass of the class Class, an
instance of which is not a module, but a class.

Modules have the following attributes:

90

Included module list: An ordered list of modules included in the module. Module inclu-
sion is described in §C3T73.

Constants: A set of bindings of constants.

A binding of a constant is created by the following program constructs:

e Assignments (see §I1-31)

e Module definitions (see §C3T2)

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

e Class definitions (see §C322)

Class variables: A set of bindings of class variables. A binding of a class variable is
created by an assignment (see §IT31).

Instance methods: A set of method bindings. A method binding is created by a method
definition (see §I3=3M) or a singleton method definition (see §L32=3). The value of a method
binding may be undef, which is the flag indicating that a method cannot be invoked (see
§I37377).

13.1.2 Module definition

Syntax

module-definition ::
module module-path module-body end

module-path ::
top-module-path
| module-name
| nested-module-path

module-name ::
constant-identifier

top-module-path ::
11 module-name

nested-module-path ::
primary-expression [no line-terminator here| :: module-name

module-body ::
body-statement

Semantics

A

a)

module-definition is evaluated as follows:

Determine the class or module in which a binding with name module-name is to be created
or modified as follows:

e If the module-path is of the form top-module-path, let C' be the class Object.
e If the module-path is of the form module-name, let C' be the current class or module.
e If the module-path is of the form nested-module-path, evaluate the primary-expression.

If the resulting value is an instance of the class Module, let C' be the instace. Otherwise,
raise a direct instance of the class TypeError.

91

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

b) Let N be the module-name.

1) If a binding with name N exists in the set of bindings of constants of C, let B be this
binding. If the value of B is a module, let M be that module. Otherwise, raise a direct
instance of the class TypeError.

2) Otherwise, create a direct instance of the class Module and let M be that module.

Create a variable binding with name N and value M in the set of bindings of constants
of C.

¢) Modify the execution context as follows:

e Create a new list which has the same members as that of the list at the top of [class-
module-list] , and add M to the head of the newly created list. Push the list onto
[class-module-list] .

e Push M onto [self].

e Push the public visibility onto [default-visibility] .

e Push an empty set of bindings onto [local-variable-bindings] .

d) Evaluate the module-body. The value of the module-definition is the value of the module-
body.

e) Restore the execution context by removing the elements from the tops of [class-module-
list], [self], [default-visibility], and [local-variable-bindings] , even when an exception is
raised and not handled during Step .

13.1.3 Module inclusion
Modules and classes can be extended by including other modules into them. When a module is

included, the instance methods, the class variables, and the constants of the included module
are available to the including class or module (see §IT4-34, §[3-33, and §ITZ-3T).

Modules and classes can include other modules by invoking the method include (see §TAZ2-3777)
or the method extend (see §IA3T2T3).

A module M is included in another module N if and only if M is an element of the included
module list of N. A module M is included in a class C' if and only if M is an element of the
included module list of C, or M is included in one of the superclasses of C.

13.2 Classes

13.2.1 General description

Every class is an instance of the class Class (see §I523), which is a direct subclass of the class
Module.

Classes have the same set of attributes as modules. In addition, each class has a single direct
superclass.

92

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

13.2.2 Class definition

Syntax

class-definition ::
class class-path [no line-terminator here| superclass class-body end

class-path ::
top-class-path
| class-name
| nested-class-path

class-name ::
constant-identifier

top-class-path ::
11 class-name

nested-class-path ::
primary-expression [no line-terminator here| :: class-name

superclass ::
separator
| < expression separator

class-body ::
body-statement

Semantics

A class-definition is evaluated as follows:

a) Determine the class or module in which the binding with name class-name is to be created
or modified as follows:

e If the class-path is of the form top-class-path, let M be the class Object.

e If the class-path is of the form class-name, let M be the current class or module.

e If the class-path is of the form nested-class-path, evaluate the primary-expression. If
the resulting value is an instance of the class Module, let M be the instance. Otherwise,
raise a direct instance of the class TypeError.

b) Let N be the class-name.

1) If a binding with name N exists in the set of bindings of constants of M, let B be that
binding.

93

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

ii)

If the value of B is an instance of the class Class, let C be the instance. Otherwise,
raise a direct instance of the class TypeError.

If the superclass occurs, evaluate it. If the resulting value does not correspond to
the direct superclass of C, raise a direct instance of the class TypeError.

Otherwise, create a direct instance of the class Class. Let C be that class.

i)

ii)

iii)

iv)

If the superclass occurs, evaluate it. If the resulting value is not an instance
of the class Class, raise a direct instance of the class TypeError. If the value
of superclass is an eigenclass or the class Class, the behavior is implementation
dependent. Otherwise, let the direct superclass of C' be the value of the superclass.

If the superclass of the class-definition does not occur, let the direct superclass of
C be the class Object.

Create an eigenclass, and associate it with C. The eigenclass shall have the eigen-
class of the direct superclass of C' as one of its superclasses.

Create a variables binding with name N and value C in the set of bindings of
constants of M.

Modify the execution context as follows:

Create a new list which has the same members as that of the list at the top of [class-
module-list] , and add C to the head of the newly created list. Push the list onto
[class-module-list] .

Push C onto [self] .

Push the public visibility onto [default-visibility] .

Push an empty set of bindings onto [local-variable-bindings] .

Evaluate the class-body. The value of the class-definition is the value of the class-body.

Restore the execution context by removing the elements from the tops of [class-module-
list], [self], [default-visibility], and [local-variable-bindings] , even when an exception is
raised and not handled during Step d.

13.2.3 Inheritance

A class inherits attributes of its superclasses. Inheritance means that a class implicitly contains
all attributes of its superclasses, as described below:

94

Constants and class variables of superclasses can be referenced (see §I1T2-31 and §I1T234).

Singleton methods of superclasses can be invoked (see §34).

Instance methods defined in superclasses can be invoked on an instance of their subclasses
(see §I333).

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

13.2.4 Instance creation

A direct instance of a class can be created by invoking the method new on the class (see
§IHh23773).

13.3 Methods
13.3.1 Method definition

Syntax

method-definition ::
def method-name [no line-terminator here| method-parameter-part
method-body end

method-name ::
method-identifier
| operator-method-name
| reserved-word

method-body ::
body-statement

The following constructs shall not occur in the method-parameter-part or the method-body:
e A class-definition.

e A module-definition.

e A single-variable-assignment, where its variable is a constant-identifier.

e A scoped-constant-assignment.

e A multiple-assignment-statement, where the form of any of the left-hand-sides which occurs
in it is any of the following:

— constant-identifier

— primary-expression [no line-terminator here| (. | ::) (local-variable-identifier | constant-
identifier)

— :: constant-identifier.

However, those constructs may occur within an eigenclass-definition in the method-parameter-
part or the method-body.

Semantics

A method is defined by a method-definition and has the method-parameter-part and the method-
body of the method-definition. In addition, a method has the following attributes:

95

5

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

28

29

30

Class module list: The list of classes and modules which is the top element of [class-
module-list] when the method is defined.

Defined name: The name with which the method is defined.

Visibility: The visibility of the method (see §I333H).

A method-definition is evaluated as follows:

e)

Let N be the method-name.

Create a method U defined by the method-definition. Initialize the attributes of U as
follows:

e The class module list is the element at the top of [class-module-list] .

e The defined name is N.

e The visibility is:
— If the current class or module is an eigenclass, then the current visibility.
— Otherwise, if N is initialize or initialize_copy, then the private visibility.
— Otherwise, the current visibility.

If a method binding with name N exists in the set of bindings of instance methods of the
current class or module, let V' be the value of that binding.

1) If V is undef, the evaluation of the method-definition is implementation defined.
2) Replace the value of the binding with U.

Otherwise, create a method binding with name N and value U in the set of bindings of
instance methods of the current class or module.

The value of the method-definition is implementation defined.

13.3.2 Method parameters

Syntax

96

method-parameter-part ::

(parameter-list?)
| parameter-list? separator

parameter-list ::

mandatory-parameter-list , optional-parameter-list?
array-parameter? , block-parameter?
| optional-parameter-list , array-parameter? , block-parameter?

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

| array-parameter , block-parameter?
| block-parameter

mandatory-parameter-list ::
mandatory-parameter
| mandatory-parameter-list , mandatory-parameter

mandatory-parameter ::
local-variable-identifier

optional-parameter-list ::
optional-parameter
| optional-parameter-list , optional-parameter

optional-parameter ::
optional-parameter-name = default-parameter-expression

optional-parameter-name ::
local-variable-identifier

default-parameter-expression ::
operator-expression

array-parameter ::
* array-parameter-name
| *

array-parameter-name ::
local-variable-identifier

block-parameter ::
& block-parameter-name

block-parameter-name ::
local-variable-identifier

All the local-variable-identifiers of mandatory-parameters, optional-parameter-names, array-
parameter-name, and block-parameter-name of a parameter-list shall be pairwise different.

Semantics

There are four kinds of parameters as described below. How those parameters are bound to the
actual arguments is described in §I3-373.

Mandatory parameters: These parameters are represented by mandatory-parameters.

97

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

For each mandatory parameter, a corresponding actual argument shall be given when the
method is invoked.

Optional parameters: These parameters are represented by optional-parameters. Each
optional parameter consists of a parameter name represented by optional-parameter-name
and an expression represented by default-parameter-expression. For each optional parame-
ter, when there is no corresponding argument in the list of arguments given to the method
invocation, the value of the default-parameter-expression is used as the value of the argu-
ment.

An array parameter: This parameter is represented by array-parameter-name. Let N be
the number of arguments, excluding a block argument, given to a method invocation. If N
is more than the sum of the number of mandatory arguments and optional arguments, this
parameter is bound to a direct instance of the class Array containing the extra arguments
excluding a block argument. Otherwise, the parameter is bound to an empty direct instance
of the class Array. If an array-parameter is of the form “*”, those extra arguments are
ignored.

A block parameter: This parameter is represented by block-parameter-name. The pa-
rameter is bound to the block passed to the method invocation.

13.3.3 Method invocation

The way in which a list of arguments is created are described in §IT2.

Given the receiver R, the method name M, and the list of arguments A, take the following steps:

a)

98

If the method is invoked with a block, let B be the block. Otherwise, let B be block-not-
given.

Let C be the eigenclass of R if R has an eigenclass. Otherwise, let C be the class of R.
Search for a method binding with name M, starting from C' as described in §IC3=34.

If a binding is found and its value is not undef, let V be the value of the binding.
Otherwise, if M is method missing, the behavior is implementation dependent. If M is not
method missing, add a direct instance of the class Symbol with name M to the head of A,
and invoke the method method missing on R with A as arguments and B as the block.
Let O be the resulting value, and go to Step f.

If the method is not invoked internally by a Ruby processor, check the visibility of V to see
whether the method can be invoked (see §I3=3H). If the method cannot be invoked, add a
direct instance of the class Symbol with name M to the head of A, and invoke the method
method missing on R with A as arguments and B as the block. Let O be the resulting
value, and go to Step .

Modify the execution context as follows:

e Push the class module list of V onto [class-module-list] .

e Push R onto [self].

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Push M onto [invoked-method-name] .

Push the public visibility to [default-visibility] .

Push the defined name of V onto [defined-method-name] .
Push B onto [block] .

Push an empty set of local variable bindings onto [local-variable-bindings] .

Evaluate the method-parameter-part of V as follows:

Let L be the parameter-list of the method-parameter-part.

Let P, P,, and P, be the mandatory-parameters of the mandatory-parameter-list,
the optional-parameters of the optional-parameter-list, and the array-parameter of L,
respectively. Let Na, Np,,, and Np, be the number of elements of A, P,,, and P,
respectively. If there are no mandatory-parameters or optional-parameters, let Np,,
and Np, be 0. Let S, be the current set of local variable bindings.

If N4 is smaller than Np,,, raise a direct instance of the class ArgumentError.

If the method does not have P, and N, is larger than the sum of Np,, and Np,, raise
a direct instance of the class ArgumentError.

Otherwise, for each argument A; in A, in the same order in A, take the following steps:

i) Let P; be the mandatory-parameter or the optional-parameter whose position in
the L corresponds to the position of A; in A.

e If such P; exists, let n be the mandatory-parameter if P; is a mandatory
parameter, or optional-parameter-name if P; is an optional parameter. Create
a variable binding with name n and value 4; in Sj.

e If such P; does no exist, i.e. if N4 is larger than the sum of Np,, and Np,,
and P, exists:

I) Create a direct instance of the class Array X whose length is the number
of extra arguments.

IT) Store each extra arguments into X, preserving the order in which they
occur in the list of arguments.

IITI) Let n be the array-parameter-name of P,.

IV) Create a variable binding with name n and value X in Sp.
ii) If N4 is smaller than the sum of Np,, and Np,:

I) For each optional argument Pp; to which no argument corresponds, evaluate
the default-parameter-expression of Pp;, and let V be the resulting value.

99

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

IT) Let n be the optional-parameter-name of Po;.
III) Create a variable binding with name n and value V in Sj.
iii) If N4 is smaller than or equal to the sum of Np,, and Np,, and P, exists:
I) Create an empty direct instance of the class Array V.
IT) Let n be the array-parameter-name of P,.

IIT) Create a variable binding with name n and value V in Sj.
iv) If the block-parameter of L occurs, let D be the top of [block] .

I) If D is block-not-given, let V' be nil.

IT) Otherwise, invoke the method new on the class Proc with an empty list of
arguments and D as the block. Let V' be the resulting value of the method
invocation.

IIT) Let n be the block-parameter-name of block-parameter.

IV) Create a variable binding with name n and value V in S.
i) Evaluate the method-body of V.
e If the evaluation of the method-body is terminated by a return-expression:

— If the jump-argument of the return-erpression occurs, let O be the value of the
Jump-argument.

— Otherwise, let O be nil.
e Otherwise, let O be the resulting value of the evaluation.

j) Restore the execution context by removing the elements from the tops of [class-module-list] ,
[self], [invoked-method-name], [default-visibility], [defined-method-name], [block], and
[local-variable-bindings] , even when an exception is raised and not handled in Step §.

k) The value of the method invocation is O.

The method invocation or the super expression (see Step @ of §I1T2-3) which corresponds to the
set of items on the tops of all the attributes of the execution context modified in Step g, except
[local-variable-bindings] , is called the current method invocation.

13.3.4 Method lookup
Method lookup is the process by which a binding of an instance method is resolved.

Given a method name M and a class or a module C which is initially searched for the binding
of the method, the method binding is resolved as follows:

100

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

a) If a method binding with name M exists in the set of bindings of instance methods of C,
let B be that binding.

b) Otherwise, let L,, be the list of included modules of C. Search for a method binding with

name M in the set of bindings of instance methods of each module in L,,. Examine modules
in L,, in reverse order.

1) If a binding is found, let B be this binding.
2) Otherwise:
e If the direct superclass of C is nil, the binding is considered not resolved.

e Otherwise, replace C with the direct superclass of C, and continue processing from
Step a.

¢) B is the resolved method binding.

13.3.5 Method visibility

Methods are categorized into one of public, private, or protected methods according to the con-
ditions on which the method invocation is allowed. The attribute of a method which determines
these conditions is called the visibility of the method.

13.3.5.1 Public methods

A public method is a method whose visibility is the public visibility.

A public method can be invoked on an object anywhere within a program.

13.3.5.2 Private methods

A private method is a method whose visibility is the private visibility.

A private method can not be invoked with explicit receiver, i.e. method invocations of the
forms where primary-expression or chained-method-invocation occurs at the position which cor-

responds to the method receiver are not allowed, except for method invocations of the following
forms where the primary-expression is self.

e single-method-assignment

e abbreviated-method-assignment

e single-indexing-assignment

e abbreviated-indexing-assignment

13.3.5.3 Protected methods

A protected method is a method whose visibility is the protected visibility.

A protected method can be invoked if and only if the following condition holds:

101

10

11

12

13

14

15

16

18

19

20

21

22

23

24

25

26

27

28

29

Let M be an instance of the class Module in which the binding of the method exists.

M is included in the current self, or M is the class of the current self or one of its superclasses.

If M is an eigenclass, whether the method can be invoked or not may be determined in a
implementation defined way.

13.3.5.4 Visibility change

The visibility of methods can be changed with built-in methods public (§022-338), private
(§C522336), and protected (§CA22-3-31), which are defined in the class Module.

13.3.6 The alias statement

Syntax

alias-statement ::

alias new-name aliased-name

new-name ::

method-name
| symbol

aliased-name ::

method-name
| symbol

Semantics

An alias-statement is evaluated as follows:

a)

Evaluate the new-name as follows:

e If the new-name is of the form method-name, let N be the method-name.

e If the new-name is of the form symbol, evaluate it. Let N be the name of the resulting
instance of the class Symbol.

Evaluate the aliased-name as follows:

e If aliased-name is of the form method-name, let A be the method-name.

e If aliased-name is of the form symbol, evaluate it. Let A be the name of the resulting
instance of the class Symbol.

Let C be the current class or module.

Search for a method binding with name A, starting from C as described in §[3=34.

10

11

12

13

14

15

16

-
©

20

21

22

23

24

25

26

27

28

29

30

31

e) If a binding is found and its value is not undef, let V be the value of the binding.

f) Otherwise, let S be a direct instance of the class Symbol with name A and raise a direct
instance of the class NameError which has S as its name property.

g) If a method binding with name N exists in the set of bindings of instance methods of the
current class or module, replace the value of the binding with V.

h) Otherwise, create a method binding with name N and value V in the set of bindings of
instance methods of the current class or module.

i) The value of alias-statement is nil.
13.3.7 The undef statement

Syntax

undef-statement ::
undef undef-list

undef-list ::
method-name-or-symbol (, method-name-or-symbol)*

method-name-or-symbol ::
method-name
| symbol

Semantics

An undef-statement is evaluated as follows:
a) For each method-name-or-symbol of the undef-list, take the following steps:

1) Let C be the current class or module.

2) If the method-name-or-symbol is of the form method-name, let N be the method-name.
Otherwise, evaluate the symbol. Let N be the name of the resulting instance of the
class Symbol.

3) Search for a method binding with name N, starting from C as described in §I334.

4) If a binding is found and its value is not undef:

i) If the binding is found in C, replace the value of the binding with undef.

ii) Otherwise, create a method binding with name N and value undef in the set of
bindings of instance methods of C.

5) Otherwise, let S be a direct instance of the class Symbol with name N and raise a
direct instance of the class NameError which has S as its name property.

103

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

b) The value of undef-statement is nil.

13.4 Eigenclass

13.4.1 General description

An eigenclass is a class which is associated with a single object. An object, unless it is an
instances of the class Class, becomes associated with an eigenclass through a singleton-method-
definition or an eigenclass-definition. An instance of the class Class becomes associated with

an eigenclass when it is created.

The direct superclass of an eigenclass is implementation defined. However, an eigenclass shall
be a subclass of the class of the object with which it is associated.

NOTE 1 For example, the eigenclass of the class Object is a subclass of the class Class because the
class Object is a direct instance of the class Class. Therefore, the instance methods of the class Class

can be invoked on the class Object.

The eigenclass of a class whose direct superclass is not nil shall satisfy the following condition:

e Let E. be the eigenclass of a class C, and let S be the direct superclass of C, and let E; be
the eigenclass of S. Then, E, have E; as one of its superclasses.

NOTE 2 This requirement enables classes to inherit singleton methods from its superclasses. For
example, the eigenclass of the class File has the eigenclass of the class I0 as its superclass. Thereby, the
class File inherits the singleton method open of the class I0.

The eigenclass of an object is unique in the sense that no two objects become associated with
the same eigenclass.

Although eigenclasses are instances of the class Class, they cannot create an instance of them-
selves. When the method new is invoked on an eigenclass, a direct instance of the class TypeError

shall be raised (see Step m of §TA2373).

Whether an eigenclass can be a superclass of other classes is implementation dependent (see
Step b=251 of §C322 and Step o of §IHZ32T).

Whether an eigenclass can have class variables or not is implementation defined.
13.4.2 Eigenclass definition

Syntax

etgenclass-definition ::
class << expression separator eigenclass-body end

ergenclass-body ::
body-statement

104

10

11

12

13

14

15

16

17

18

19

20

21

22

23

N

4

25

26

27

28

31

w

2

Semantics

An eigenclass-definition is evaluated as follows:

a)

Evaluate the expression. Let O be the resulting value. A conforming processor may specify
the set of classes such that if O is an instance of one of the classes in the set, a direct
instance of the class TypeError is raised.

If O is one of nil, true, or false, let F be the class of O and go to Step e.

If O is not associated with an eigenclass, create a new eigenclass. Let E be the newly
created eigenclass.

If O is associated with an eigenclass, let E be that eigenclass.

Modify the execution context as follows:

e Create a new list which consists of the same elements as the list at the top of [class-
module-list] and add E to the head of the newly created list. Push the list onto
[class-module-list] .

e Push E onto [self] .
e Push the public visibility onto [default-visibility] .
e Push an empty set of bindings onto [local-variable-bindings] .

Evaluate the eigenclass-body. The value of the eigenclass-definition is the value of the
etgenclass-body.

Restore the execution context by removing the elements from the tops of [class-module-
list], [self], [default-visibility], and [local-variable-bindings] , even when an exception is
raised and not handled during Step .

13.4.3 Singleton method definition

Syntax

singleton-method-definition ::

def singleton (. | ::) method-name [no line-terminator here]
method-parameter-part method-body end

stngleton ::

variable
| pseudo-variable
| (expression)

Semantics

A singleton-method-definition is evaluated as follows:

105

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Evaluate the singleton. Let S be the resulting value.
If § is one of nil, true, or false, let E be the class of O and go to Step &.

If S is not associated with an eigenclass, create a new eigenclass. Let E be the newly
created eigenclass.

If S is associated with an eigenclass, Let E be that eigenclass.
Let N be the method-name.

Create a method U defined by the method-definition. Initialize the attributes of U as
follows:

e The class module list is the element at the top of [class-module-list] .
e The defined name is N.
e The visibility is the public visibility.

If a method binding with name N exists in the set of bindings of instance methods of F,
let V' be the value of that binding.

1) If V is undef, the evaluation of the singleton-method-definition is implementation de-
fined.

2) Replace the value of the binding with U.

Otherwise, create a method binding with name N and value U in the set of bindings of
instance methods of F.

The value of the singleton-method-definition is implementation defined.

14 Exceptions

If an instance of the class Exception is raised, the current evaluation process stops, and the
evaluation process is transfered to a program construct that can handle this exception.

14.1 Cause of exceptions

An exception is raised when:

the method raise (see §TA3T113) is invoked.

a certain exceptional condition occurs as described in various parts of this document.

Only instances of the class Exception shall be raised.

106

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

14.2 Exception handling

Exceptions are handled by a body-statement, an assignment-with-rescue-modifier, or a rescue-
modifier-statement. These program constructs are called exception handlers. When an ex-
ception handler is handling an exception, the exception being handled is called the current
exception.

When an exception is raised, it is handled by an exception handler. This exception handler is
determined as follows:

a)

Let § be the innermost local variable scope which lexically encloses the location where
the exception is raised, and which corresponds to one of a program, a method-definition, a
singleton-method-definition, or a block.

Test each exception handler in S which lexically encloses the location where the exception
is raised from the innermost to the outermost.

An assignment-with-rescue-modifier is considered to handle the exception if the ex-
ception is an instance of the class StandardError (see §IT-31T4), except when the
exception is raised in its operator-expressions. In this case, assignment-with-rescue-
modifier does not handle the exception.

A rescue-modifier-statement is considered to handle the exception if the exception
is an instance of the class StandardError (see §IZH), except when the exception
is raised in its fallback-statement-of-rescue-modifier-statement In this case, rescue-
modifier-statement does not handle the exception.

A body-statement is considered to handle the exception if one of its rescue-clauses is
considered to handle the exception (see §I1T21T4T), except when the exception is raised
in one of its rescue-clauses, else-clauses, or ensure-clauses. In this case, body-statement
does not handle the exception. If an ensure-clause of a body-statement occurs, it is
evaluated even if the handler does not handle the exception (see §IIZT2T).

If an exception handler which can handle the exception is found in S, terminate the search
for the exception handler. Continue evaluating the program as defined for the relevant
construct (see §CIZA T4, §IT3 T4, and §CZA).

If none of the exception handlers in S can handle the exception:

)

If S corresponds to a method-definition or a singleton-method-definition, terminate Step
B or Step i , and take Step [of the current method invocation. Continue the search
from Step a, under the assumption that the exception is raised at the location where
the method is invoked.

If S corresponds to a block, terminate the evaluation of the current block. Continue the
search from Step &, under the assumption that the exception is raised at the location

where the block is called.

Otherwise, terminate the evaluation of the program.

107

10

11

12

13

14

15

16

17

18

19

20
21

22

23

24

25

26

27

28

29

30

31

32

33

34

15 Built-in classes and modules

Built-in classes and modules are specified in this clause. Those classes and modules shall be
defined in the class Object as constants.

15.1 General description

Fach built-in class or module is specified by describing its attribute values, as described in §IC31
and §C32A.

When a clause specifying a built-in class or module contains a subclause titled “Included mod-
ules”, the built-in class or module shall include the modules listed in that subclause in the order
of that listing.

Each subclause in the subclause titled “Singleton methods” with the title of the form C.m
specifies the singleton method m of the class C.

Each subclause in the subclause titled “Instance methods” with the title of the form C#m
specifies the instance method m of the class C.

The parameter specification of a method is described in the form of method-parameter-part (see

§IC33T).

EXAMPLE 1 The following example defines the parameter specification of a method sample.

sample (argl, arg2, opt=expr, *ary, &blk)

For a singleton method, the method name is prefixed by the name of the class or the module,
and a dot (.).

EXAMPLE 2 The following example defines the parameter specification of a singleton method sample
of a class SampleClass:

SampleClass.sample(argl, arg2, opt=expr, *ary, &blk)

Next to the parameter specification, the visibility and the behavior of the method are specified.

The visibility, which is any one of public, protected or private, is specified after the label named
“Visibility:”.

The behavior, which is the steps which shall be taken while evaluating the method-body of the
method (see Step I of §I333), is specified after the label named “Behavior:”.

In these steps, a reference to the name of an argument in the parameter specification is considered
to be the object bound to the local variables of the same name. The phrase “call the block with
X as the argument” indicates that the block corresponding to the block parameter block shall
be called as described in §IT22 with X as the argument to the block call. The phrase “return
X7 indicates that the evaluation of the method-body shall be terminated at that point, and X
shall be the value of the method-body. The phrase “the name designated by N” means the result
of the following steps:

108

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

a) If N is an instance of the class Symbol, the name of N.

b) If N is an instance of the class String, the content of N.

c) Otherwise, the behavior of the method is implementation dependent.

The class module list of an instance method of a built-in class or module shall be a list which
consists of two elements: the first is the built-in class or module; the second is the class Object.
The class module list of a singleton method of a built-in class or module shall be a list which
consists of two elements: the first is the eigenclass of the built-in class or module; the second is
the class Object.

A conforming processor may provide additional attributes and/or values: a specific initial
value for a predefined attribute whose initial value is not specified in this document, con-
stants, singleton methods, instance methods, and additional inclusion of modules into built-in
classes/modules.

15.2 Built-in classes

15.2.1 Object

The class Object is an implicit direct superclass for other classes; that is, if the direct superclass
of a class is not specified explicitly in the class definition, the direct superclass of the class is
the class Object (see §I37272).

All built-in classes and modules can be referenced through constants of the class Object.
15.2.1.1 Direct superclass

The value nil.

A conforming processor may define a sequence of superclasses of the class Object. However, the
direct superclass of the class at the top of the class hierarchy shall always be nil.

15.2.1.2 Included modules
The following module is included in the class Object.
e Kernel

15.2.1.3 Constants

The following constants are defined in the class Object.
STDIN: An implementation defined instance of the class I0, which shall be readable.
STDOUT: An implementation defined instance of the class I0, which shall be writable.
STDERR: An implementation defined instance of the class I0, which shall be writable.

Besides, every built-in class or module, including the class Object itself, shall be defined in the

class Object as a constant, whose name is the name of the class or module, and whose value is
the class or module.

109

1

2

10

11

12

13

14

15

16

17

19

20

21

22

23

24

25

26

27

28

29

30

15.2.1.4 Instance methods

15.2.1.4.1 Object#initialize

initialize(*args)

Visibility: private

Behavior: The method initialize is the default object initialization method, which is
invoked when an instance is created (see §L3Z4). It returns an implementation defined
value.

15.2.2 Module

All modules are instances of the class Module. Therefore, behaviors defined in the class Module
are shared by all modules.

The binary relation on the instances of the class Module denoted A C B is defined as follows:
e Bisamodule and B is included in A (see §L313) or

e both A and B are classes and B is a superclass of A.

15.2.2.1 Direct superclass

The class Object

15.2.2.2 Singleton methods

15.2.2.2.1 Module.constants

Module.constants

Visibility: public
Behavior:

a) Create an empty direct instance of the class Array. Let A be the instance.

b) Let C be the current class or module. Let L be the list which consists of the same
elements as the list at the second element from the top of [class-module-list] , except
the last element, which is the class Object.

Let CS be the set of classes which consists of C' and all the superclasses of C except
the class Object, but when C is the class Object, it shall be included in CS. Let MS
be the set of modules which consists of all the modules in the included module list of
all classes in CS. Let CM be the union of L, CS and MS.

¢) For each class or module ¢ in CM, and for each name N of a constant defined in c,
take the following steps:

110

1 1) Let S be either a direct instance of the class String whose content is N or a

2 direct instance of the class Symbol whose name is N. Which of the these classes of
3 instance is chosen as the value of S is implementation defined.

4 2) Unless A contains the element of the same name as S, when S is an instance of the
5 class Symbol, or the same content as S, when S is an instance of the class String,
6 append S to A.

7 d) Return A.

s 15.2.2.2.2 Module.nesting

9 Module.nesting

10 Visibility: public

1 Behavior: The method returns a new direct instance of the class Array which contains all
12 but the last element of the list at the second element from the top of the [class-module-list]
13 in the same order.

u 15.2.2.3 Instance methods

15 15.2.2.3.1 Module#<

16 <(other)

17 Visibility: public

18 Behavior: Let A be the other. Let R be the receiver of the method.

19 a) If Aisnot an instance of the class Module, raise a direct instance of the class TypeError.
20 b) If A and R is the same object, return false.

21 ¢) If RC A, return true.

2 d) If AC R, return false.

2 e) Otherwise, return nil.

» 15.2.2.3.2 Module#<=

25 <=(other)
2 Visibility: public
27 Behavior:

111

10

11

12

14

15

16

-

7

18

19

20

21

23

a) If the other and the receiver are the same object, return true.

b) Otherwise, the behavior is the same as the method < (see §CHZZZ-3).

15.2.2.3.3 Module#<=>

<=>(other)

Visibility: public
Behavior: Let A be the other. Let R be the receiver of the method.
a) If A is not an instance of the class Module, return nil.

b) If A and R is the same object, return an instance of the class Integer whose value is

0.
c¢) If RC A, return an instance of the class Integer whose value is -1.
d) If AC R, return an instance of the class Integer whose value is 1.

e) Otherwise, return nil.

15.2.2.3.4 Module#==

==(other)

Visibility: public

Behavior: Same as the method == of the module Kernel (see §I53T21).

15.2.2.3.5 Module#===

===(object)

Visibility: public

Behavior: The method behaves as if the method kind_of? were invoked on the object
with the receiver as the only argument (see §IA3T278).

15.2.2.3.6 Module#>

>(other)

112

Visibility: public

1 Behavior: Let A be the other. Let R be the receiver of the method.

2 a) If Aisnot an instance of the class Module, raise a direct instance of the class TypeError.
3 b) If A and R is the same object, return false.

4 c¢) If RC A, return false.

5 d) If AC R, return true.

6 e) Otherwise, return nil.

7 15.2.2.3.7 Module#>=

8 >=(other)

9 Visibility: public

10 Behavior:

1 a) If the other and the receiver are the same object, return true.

12 b) Otherwise, the behavior is the same as the method > (see §IAZ23M).

13 15.2.2.3.8 Module#alias_ method

14 alias method(new_name, aliased_name)

15 Visibility: private

16 Behavior: Let C be the receiver of the method.

17 a) Let N be the name designated by the new_name. Let A be the name designated by
18 the aliased_name.

19 b) Take Step A through H of §I33@, assuming that A, C, and N in §I3338 to be A, C,
20 and N in the above steps.

21 c¢) Return C.

» 15.2.2.3.9 Module#ancestors

23 ancestors
2% Visibility: public
25 Behavior:

113

8

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Create an empty direct instance of the class Array A.

Let C be the receiver of the method.

If C is not an eigenclass, append C to A.

Append each element of the included module list of C, in the order in the list, to A.
If C' is a class, replace C with the direct superclass of the current C.

If C is not nil, repeat from Step o.

Return A.

15.2.2.3.10 Module#append_features

append_features(module)

Visibility: private

Behavior: Let L1 and L2 be the included modules list of the receiver and the module
respectively.

a)

If the module and the receiver is the same object, the behavior is implementation
dependent.

If the receiver is an element of L2, the behavior is implementation defined.

Otherwise, for each module M in L1, in the same order in L1, take the following steps:

1) If M and the module are the same object, the behavior is implementation depen-
dent.

2) If M is not in L2, append M to the end of L2.
Append the receiver to L2.

Return the receiver.

15.2.2.3.11 Module#tattr

attr(symbol, writable=false)

114

Visibility: private

Behavior: Let C be the method receiver.

a)

If the symbol is not an instance of the class Symbol, the behavior is implementation
dependent.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

f)

Let N be the name of the symbol.

If N is not of the form local-variable-identifier or constant-identifier, raise a direct
instance of the class NameError which has the symbol as its name property.

Define an instance method in C' as if by evaluating the following method definition at
the location of the invocation. In the following method definition, N is N, and @N is the
name which is N prefixed by “@”.

def N
@N
end

If the writable is true, define an instance method in C as if by evaluating the following
method definition at the location of the invocation. In the following method definition,
N= is the name N postfixed by =, and @N is the name which is N prefixed by “@”. The
choice of the parameter name is arbitrary, and val is chosen only for the expository
purpose.

def N=(val)
ON = val
end

Return nil.

15.2.2.3.12 Module#attr_accessor

attr_accessor (*symbol_list)

Visibility: private

Behavior:

a)

b)

For each element S of the symbol_list, invoke the method attr with § as the first
argument and true as the second argument (see §CAZ23T1).

Return nil.

15.2.2.3.13 Module#tattr_reader

attr_reader (*symbol_list)

Visibility: private

Behavior:

115

4

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

a)

b)

For each element S of the symbol_list, invoke the method attr with S as the first
argument and false as the second argument (see §IHZ2°31T).

Return nil.

15.2.2.3.14 Module#attr_writer

attr_writer (*xsymbol_list)

Visibility: private

Behavior:

a)

b)

For each element S of the symbol list, invoke the method attr with S as the first
argument and true as the second argument, but skip Step d (see §CAZZ3TT).

Return nil.

15.2.2.3.15 Module#class_eval

class_eval (string = nil, &block)

116

Visibility: public

Behavior:

a)

b)

Let M be the receiver.

If the block is given:

)

2)

If the string is given, raise a direct instance of the class ArgumentError.

Call the block with implementation defined arguments as described in §I1T—22, and
let V' be the resulting value. A conforming processor shall modify the execution
context just before Step O of §IT22 as follows:

e Create a new list which has the same members as those of the list at the top
of [class-module-list] , and add M to the head of the newly created list. Push
the list onto [class-module-list] .

e Push the receiver onto [self].

e Push the public visibility onto [default-visibility] .

In Step @ and e of §I—22A, a conforming processor may ignore M which is added
to the head of the top of [class-module-list] as described above, except when
referring to the current class or module in a method-definition (see §L33), an
alias-statement (see §IC3=3M), or an undef-statement (see §IC33710).

10

11

12

13

14

15

16

17

18

19

21

22

23

24

25

26

27

28

29

30

31

c)

3) Return V.
If the block is not given:

1) If the string is not an instance of the class String, the behavior is implementation
dependent.

2) Modify the execution context as follows:

e Create a new list which has the same members as those of the list at the top
of [class-module-list] , and add M to the head of the newly created list. Push
the list onto [class-module-list] .

e Push the receiver onto [self] .

e Push the public visibility onto [default-visibility] .

3) Parse the content of the string as a program (see §IIT). If it fails, raise a direct
instance of the class SyntaxError.

4) Evaluate the program. Let V be the resulting value of the evaluation.
5) Restore the execution context by removing the elements from the tops of [class-
module-list] , [self] , and [default-visibility] , even when an exception is raised and

not handled in Step =3 or &=4.

6) Return V.

In Step E=24, the string is evaluated under the new local variable scope in which references
to local-variable-identifiers are resolved in the same way as in scopes created by blocks (see
§a).

15.2.2.3.16 Module#class_variable_defined?

class_variable_defined? (symbol)

Visibility: public

Behavior: Let C be the receiver of the method.

a)

b)

Let N be the name designated by the symbol.

If N is not of the form class-variable-identifier, raise a direct instance of the class
NameError which has the symbol as its name property.

Search for a binding of the class variable with name N by taking Step B through @ of
§IT2734, assuming that C' and N in §IT2=34 to be C and N in the above steps.

If a binding is found, return true.
Otherwise, return false.

117

10

11

12

14

15

16

17

18

19

20

21

22

23

24

25

15.2.2.3.17 Module#class_variable_get

class_variable_get (symbol)

Visibility: private

Behavior: Let C be the receiver of the method.

a)

b)

Let N be the name designated by the symbol.

If N is not of the form class-variable-identifier, raise a direct instance of the class
NameError which has the symbol as its name property.

Search for a binding of the class variable with name N by taking Step B through @ of
§T234, assuming that C' and N in §IT4=34 to be C and N in the above steps.

If a binding is found, return the value of the binding.

Otherwise, raise a direct instance of the class NameError which has the symbol as its
name property.

15.2.2.3.18 Module#class_variable_set

class_variable_set (symbol, 0bj)

Visibility: private

Behavior: Let C be the receiver of the method.

a)

b)

Let N be the name designated by the symbol.

If N is not of the form class-variable-identifier, raise a direct instance of the class
NameError which has the symbol as its name property.

Search for a binding of the class variable with name N by taking Step B through d of
§434, assuming that C' and N in §IT4-34 to be C and N in the above steps.

If a binding is found, replace the value of the binding with the 0bj.

Otherwise, create a variable binding with name N and value obj in the set of bindings
of class variables of C.

15.2.2.3.19 Module#class_variables

class_variables

118

Visibility: public

1 Behavior: The methods returns a direct instance of the class Array which consists of names

2 of all class variables of the receiver. These names are represented by direct instances of either
3 the class String or the class Symbol. Which of those classes is chosen is implementation
4 defined.

5 15.2.2.3.20 Module#const_defined?

6 const_defined? (symbol)

7 Visibility: public

8 Behavior:

9 a) Let C be the receiver of the method.

10 b) Let N be the name designated by the symbol.

1 c) If N isnot of the form constant-identifier, raise a direct instance of the class NameError
12 which has the symbol as its name property.

13 d) If a binding with name N exists in the set of bindings of constants of C, return true.
14 e) Otherwise, return false.

15 15.2.2.3.21 Module#const_get

16 const_get (symbol)

17 Visibility: public

18 Behavior:

19 a) Let N be the name designated by the symbol.

20 b) If N is not of the form constant-identifier, raise a direct instance of the class NameError
21 which has the symbol as its name property.

2 ¢) Search for a binding of a constant with name N from Step & of §ITZ=31, assuming
23 that C in §ITZ4=3 to be the receiver of the method.

2 d) If a binding is found, return the value of the binding.

25 e) Otherwise, return the value of the invocation of the method const_missing (See Step
2 B=2 of §I12=37T).

7 15.2.2.3.22 Module#const_missing

119

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

const_missing(symbol)

Visibility: public

Behavior: The method const_missing is invoked when a binding of a constant does not
exist on a constant reference (see §II4-3T).

When the method is invoked, take the following steps:
a) Take Step m through o of §T227370.

b) Raise a direct instance of the class NameError which has the symbol as its name prop-
erty.

15.2.2.3.23 Module#const_set

const_set (symbol, obj)

Visibility: public
Behavior: Let C be the receiver of the method.
a) Let N be the name designated by the symbol.

b) If N is not of the form constant-identifier, raise a direct instance of the class NameError
which has the symbol as its name property.

¢) If a binding with name N exists in the set of bindings of constants of C) replace the
value of the binding with the 0bj.

d) Otherwise, create a variable binding with N and value o0bj in the set of bindings of
constants of C.

e) Return the obj.

15.2.2.3.24 Module#-constants

constants

Visibility: public

Behavior: The method returns a new direct instance of the class Array which consists
of names of all constants defined in the receiver. These names are represented by direct
instances of either the class String or the class Symbol. Which of those classes is chosen is
implementation defined.

15.2.2.3.25 Module#extend_object

120

10

11

12

13

14

15

16

17

18

19

20

22

extend_object (object)

Visibility: private

Behavior: Let S be the eigenclass of the object. The method behaves as if by invoking
the method append_features on the receiver with S as the only argument.

15.2.2.3.26 Module#extended

extended (object)

Visibility: private
Behavior: The method returns nil.

15.2.2.3.27 Module#include

include (*module_list)

Visibility: private
Behavior: Let C be the receiver of the method.

a) For each element A of the module_list, in the reverse order in the module_list, take the
following steps:

1) If A is not an instance of the class Module, raise a direct instance of the class
TypeError.

2) If Ais an instance of the class Class, raise a direct instance of the class TypeError.
3) Invoke the method append features on A with C as the only argument.

4) Invoke the method included on A with C as the only argument.
b) Return C.

15.2.2.3.28 Module#include?

include? (module)

Visibility: public

Behavior: Let C be the receiver of the method.

121

-

1

12

13

14

15

16

17

18

19

20

22

23

24

25

26

27

a) If the module is not an instance of the class Module, raise a direct instance of the class
TypeError.

b) If the module is an element of the included module list of C, return true.

¢) Otherwise, if C is an instance of the class Class, and if the module is an element of
the included module list of one of the superclasses of C, then return true.

d) Otherwise, return false.

15.2.2.3.29 Module#included

included (module)

Visibility: private

Behavior: The method returns nil.

15.2.2.3.30 Module#included_modules

included_modules

Visibility: public

Behavior: Let C be the receiver of the method.

a) Create an empty direct instance of the class Array A.

b) Append each element of the included module list of C, in the reverse order, to A.

c¢) If C is an instance of the class Class, replace C with the direct superclass of the
current C

d) If C is not nil, repeat from Step B.

e) Return A.

15.2.2.3.31 Module#initialize

initialize (&block)

122

Visibility: private
Behavior:

a) If the block is given, call the block as if invoking the method class_eval of the class
Module on the receiver with no arguments and the block as the block.

b) Return an implementation defined value.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

15.2.2.3.32 Module#initialize_copy

initialize_copy(original)

Visibility: private

Behavior:

a)

h)

Invoke the instance method initialize_copy defined in the module Kernel on the
receiver with the original as the argument.

If the receiver is associated with an eigenclass, let E, be the eigenclass, and take the
following steps:

1) Create an eigenclass whose direct superclass is the direct superclass of E,. Let E,
be the eigenclass.

2) For each binding B,; of the constants of E,, create a variable binding with the
same name and value as B, in the set of bindings of constants of E,.

3) For each binding By, of the class variables of F,, create a variable binding with
the same name and value as B2 in the set of bindings of class variables of E,.

4) For each binding B,, of the instance methods of E,, create a method binding with
the same name and value as B,, in the set of bindings of instance methods of E,,.

5) Associate the receiver with E,.

If the receiver is an instance of the class Class, set the direct superclass of the receiver
to the direct superclass of the original.

Append each element of the included module list of the original, in the same order, to
the receiver.

For each binding B,3 of the constants of the original, create a variable binding with
the same name and value as B,3 in the set of bindings of constants of the receiver.

For each binding B,4 of the class variables of the original, create a variable binding
with the same name and value as B4 in the set of bindings of class variables of the
receiver.

For each binding B,,2 of the instance methods of the original, create a method binding
with the same name and value as Bj,2 in the set of bindings of instance methods of the

receliver.

Return an implementation defined value.

15.2.2.3.33 Module#instance_methods

123

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

instance methods (include_super=true)

Visibility: public

Behavior: Let C be the receiver of the method.

a)

b)

d)

Create an an empty direct instance of the class Array. Let A be the instance.

Let I be the set of bindings of instance methods of C. For each binding B of I, let N
be the name of B, and let V' be the value of B, and take the following steps:

1) If V is undef, or the visibility of V is private, skip the next two steps.

2) Let S be either a direct instance of the class String whose content is N or a
direct instance of the class Symbol whose name is N. Which of the these classes of
instance is chosen as the value of S is implementation defined.

3) Unless A contains the element of the same name (if S is an instance of the class

Symbol) or the same content (if S is an instance of the class String) as S, append
S to A.

If the include_super is a true value:

1) For each module M in included module list of C, take Step B, assuming that C in
that step to be M.

2) Replace C with the direct superclass of C.

3) If C is not nil, repeat from Step B.

Return A.

15.2.2.3.34 Module#method_defined?

method defined? (symbol)

124

Visibility: public

Behavior: Let C be the receiver of the method.

a)

b)

Let N be the name designated by the symbol.

Search for a binding of an instance method named N starting from C as described in
§I3=34.

If a binding is found and its value is not undef, return true.

Otherwise, return false.

10

-
=

12

13

14

15

16

-

7

18

19

20

21

22

23

24

25

15.2.2.3.35 Module#module_eval

module_eval (string = nil, &block)

Visibility: public

Behavior: Same as the method class_eval (see §ToZZ3TH)

15.2.2.3.36 Module#private

private (*symbol-list)

Visibility: private

Behavior: Same as the method public (see §Th22338), except that the method changes
current visibility or visibilities of methods corresponding to each element of the symbol_list
to private.

15.2.2.3.37 Module#protected

protected (*symbol-list)

Visibility: private

Behavior: Same as the method public (see §Th22-33R), except that the method changes
current visibility or visibilities of methods corresponding to each element of the symbol_list
to protected.

15.2.2.3.38 Module#public

public (*symbol_list)

Visibility: private
Behavior: Let C be the receiver of the method.
a) If the length of symbol_list is 0, change the current visibility to public and return C'
b) Otherwise, for each element S of the symbol_list, take the following steps:
1) Let N be the name designated by S.
2) Search for a method binding with name N starting from C' as described in §C3=34.

3) If a binding is found and its value is not undef, let V' the value of the binding.

125

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

c)

4)

Otherwise, raise a direct instance of the class NameError which has S as its name
property.

If C is the class or module in which the binding is found, change the visibility of
V' to the public visibility.

Otherwise, define an instance method in C as if by evaluating the following method

definition. In the definition, N is N. The choice of the parameter name is arbitrary,
and args is chosen only for the expository purpose.

def N(*args)

super
end

The attributes of the method created by the above definition are initialized as
follows:
i) The class module list is the element at the top of [class-module-list] .

ii) The defined name is the defined name of V.

iii) The visibility is the public visibility.

Return C.

15.2.2.3.39 Module#remove_class_variable

remove_class_variable (symbol)

Visibility: private

Behavior: Let C be the receiver of the method.

a)

b)

d)

Let N be the name designated by the symbol.

If N is not of the form class-variable-identifier, raise a direct instance of the class
NameError which has the symbol as its name property.

If a binding with name N exists in the set of bindings of class variables of C, let V be
the value of the binding.

1)

2)

Remove the binding from the set of bindings of class variables of C.

Return V.

Otherwise, raise a direct instance of the class NameError which has the symbol as its
name property.

15.2.2.3.40 Module#remove_const

126

10

11

12

14

15

16

17

18

19

20

21

22

23

remove_const (symbol)

Visibility: private
Behavior: Let C be the receiver of the method.
a) Let N be the name designated by the symbol.

b) If N is not of the form constant-identifier, raise a direct instance of the class NameError
which has the symbol as its name property.

¢) If a binding with name N exists in the set of bindings of constants of C, let V be the
value of the binding.

1) Remove the binding from the set of bindings of constants of C.

2) Return V.

d) Otherwise, raise a direct instance of the class NameError which has the symbol as its
name property.

15.2.2.3.41 Module#remove_method

remove_method (*symbol_list)

Visibility: private
Behavior: Let C be the receiver of the method.
a) For each element S of the symbol_list, take the following steps:

1) Let N be the name designated by S.

2) If a binding with name N exists in the set of bindings of instance methods of C,
remove the binding from the set.

3) Otherwise, raise a direct instance of the class NameError which has S as its name
property. In this case, the remaining elements of the symbol_list are not processed.

b) Return C.

15.2.2.3.42 Module#undef_method

undef _method (*symbol_list)

Visibility: private

127

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Behavior: Let C be the receiver of the method.
a) For each element S of the symbol_list, take following steps:
1) Let N be the name designated by S.

2) Take Step B=3 and B=4 of §C3377, assuming that C in §C337 to be C' and N in
the above steps.

b) Return C.
15.2.3 Class

All classes are instances of the class Class. Therefore, behaviors defined in the class Class are
shared by all classes.

A conforming processor shall undefine the instance methods append_features and extend_object
of the class Class, as if by invoking the method undef method on the class Class with instances
of the class Symbol whoses names are “append_features” and “extend_object” as the arguments
(see §IHZZZ3AA).

15.2.3.1 Direct superclass

The class Module

15.2.3.2 Instance methods

15.2.3.2.1 Class#initialize

initialize(superclass=0bject, &block)

Visibility: private
Behavior:
a) If the receiver has its direct superclass, raise a direct instance of the class TypeError.

b) If the superclass is not an instance of the class Class, raise a direct instance of the
class TypeError.

c) If the superclass is an eigenclass or the class Class, the behavior is implementation
dependent.

d) Set the direct superclass of the receiver to the superclass.

e) Create an eigenclass, and associate it with the receiver. The eigenclass shall have the
eigenclass of the superclass as one of its superclasses.

f) If the block is given, call the block as if invoking the method class_eval of the class
Module on the receiver with no arguments and the block as the block.

g) Return an implementation defined value.

128

10

11

12

13

14

15

16

17

18

19

20

22

23

24

25

26

15.2.3.2.2 Class#initialize_copy

initialize_copy(original)

Visibility: private

Behavior:

a)

)

If the direct superclass of the reciver has already been set, raise a direct instance of
the class TypeError.

If the receiver is an eigenclass, raise a direct instance of the class TypeError.

Invoke the instance method initialize copy defined in the class Module on the re-
ceiver with the original as the argument.

Return an implementation defined value.

15.2.3.2.3 Class#new

new (*xargs, &block)

Visibility: public

Behavior:

a)

b)

c)

)

If the receiver is an eigenclass, raise a direct instance of the class TypeError.

Create a direct instance of the receiver which has no bindings of instance variables.
Let O be the newly created instance.

Invoke the method initialize on O with all the elements of the args as arguments
and the block as the block.

Return O.

15.2.3.2.4 Class#superclass

superclass

Visibility: public

Behavior: Let C be the receiver of the methods.

2)

b)

If C is an eigenclass, return an implementation defined value.
Otherwise, return the direct superclass of C.

129

10

11

15

16

17

18

19

24

15.2.4 NilClass

The class NilClass has only one instance, which is represented by the pseudo variable nil.
Instances of the class NilClass shall not be created by the method new of the class NilClass.
Therefore, a conforming processor shall undefine the singleton method new of the class NilClass,
as if by invoking the method undef _method on the eigenclass of the class NilClass with a direct
instance of the class Symbol whose name is “new” as the argument (see §Ch22-347).

15.2.4.1 Direct superclass

The class Object

15.2.4.2 Instance methods

15.2.4.2.1 NilClass#&

& other)

Visibility: public
Behavior: The method returns false.

15.2.4.2.2 NilClass#"~

~(other)

Visibility: public
Behavior:

a) If the other is a false value, return false.

b) Otherwise, return true.

15.2.4.2.3 NilClass#nil?

nil?

Visibility: public
Behavior: The method returns true.

15.2.4.2.4 NilClass#|

130

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

| Cother)

Visibility: public
Behavior:
a) If the other is a false value, return false.
b) Otherwise, return true.
15.2.5 TrueClass

The class TrueClass has only one instance, which is represented by the pseudo variable true.
true represents a logical true value.

Instances of the class TrueClass shall not be created by the method new of the class TrueClass.
Therefore, a conforming processor shall undefine the singleton method new of the class TrueClass,
as if by invoking the method undef _method on the eigenclass of the class TrueClass with a direct
instance of the class Symbol whose name is “new” as the argument (see §Th22-347).

15.2.5.1 Direct superclass

The class Object

15.2.5.2 Instance methods

15.2.5.2.1 TrueClass#&

& other)

Visibility: public
Behavior:

a) If the other is a false value, return false.
b) Otherwise, return true.

15.2.5.2.2 TrueClass#"~

~(other)

Visibility: public
Behavior:
a) If the other is a false value, return true.

b) Otherwise, return false.

131

1 15.2.5.2.3 TrueClass#to_s

2 to_s

3 Visibility: public

4 Behavior: The method returns an instance of the class String, the content of which is
5 “true”.

s 15.2.5.2.4 TrueClass#|

7 | C other)
8 Visibility: public
9 Behavior: The method returns true.

10 15.2.6 FalseClass

11 The class FalseClass has only one instance, which is represented by the pseudo variable false.
12 false represents a logical false value.

13 Instances of the class FalseClass shall not be created by the method new of the class FalseClass.
14 Therefore, a conforming processor shall undefine the singleton method new of the class FalseClass,
15 as if by invoking the method undef _method on the eigenclass of the class FalseClass with a
16 direct instance of the class Symbol whose name is “new” as the argument (see §IHZ22-347).

17 15.2.6.1 Direct superclass

18 The class Object

19 15.2.6.2 Instance methods

20 15.2.6.2.1 FalseClass#&

21 & (other)
2 Visibility: public
23 Behavior: The method returns false.

2 15.2.6.2.2 FalseClass#"

25 ~(other)

26 Visibility: public

132

4

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Behavior:

a) If the other is a false value, return false.

b) Otherwise, return true.

15.2.6.2.3 FalseClass#to_s

to_s

Visibility: public

Behavior: The method returns an instance of the class String, the content of which is

“false”.

15.2.6.2.4 FalseClass# |

| Cother)

Visibility: public
Behavior:

a) If the other is a false value, return false.

b) Otherwise, return true.

15.2.7 Numeric

Instances of the class Numeric represent numbers. The class Numeric is a superclass of all the

other built-in classes which represent numbers.

The notation “the value of the instance N of the class Numeric” means the number which N

represent.
15.2.7.1 Direct superclass
The class Object

15.2.7.2 Included modules

The following module is included in the class Numeric.

e Comparable
15.2.7.3 Instance methods

15.2.7.3.1 Numeric#+@Q

133

1 +@

2 Visibility: public
3 Behavior: The method returns the receiver.

4+ 15.2.7.3.2 Numeric#—-Q

5 -0

6 Visibility: public

7 Behavior:

8 a) Invoke the method coerce on the receiver with an instance of the class Integer whose
9 value is 0 as the only argument. Let V be the resulting value.

10 1) If V is an instance of the class Array which contains two elements, let F' and S
1 be the first and the second element of V respectively.

12 i) Invoke the method - on F with S as the only argument.

13 ii) Return the resulting value.

14 2) Otherwise, raise a direct instance of the class TypeError.

15 15.2.7.3.3 Numeric#abs

16 abs

17 Visibility: public

18 Behavior:

19 a) Invoke the method < on the receiver with an instance of the class Integer whose value
20 is 0.

21 b) If this invocation results in a true value, invoke the method -@ on the receiver and
2 return the resulting value.

23 Otherwise, return the receiver.

2 15.2.7.3.4 Numeric#coerce

134

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

coerce (other)

Visibility: public
Behavior:

a) If the class of the receiver and the class of the other are the same class, let X and Y
be the other and the receiver, respectively.

b) Otherwise, let X and Y be instances of the class Float which are converted from the
other and the receiver, respectively. the other and the receiver are converted as follows:

1) Let O be the other or the receiver.
2) If O is an instance of the class Float, let F' be O.

3) Otherwise:

i) If an invocation of the method respond to? on O with a direct instance of
the class Symbol whose name is to_f as the argument results in a false value,
raise a direct instance of the class TypeError.

ii) Invoke the method to_f on O with no arguments, and let F' be the resulting
value.

iii) If F is not an instance of the class Float, raise a direct instance of the class
TypeError.

4) If the value of F is NaN, the behavior is implementation dependent.

5) The converted value of O is F.

¢) Create a direct instance of the class Array which consists of two elements: the first is
X; the second is Y.

d) Return the instance of the class Array.

15.2.8 Integer
Instances of the class Integer represent integers. The ranges of these integers are unbounded.

Instances of the class Integer shall not be created by the method new of the class Integer.
Therefore, a conforming processor shall undefine the singleton method new of the class Integer,
as if by invoking the method undef _method on the eigenclass of the class Integer with a direct
instance of the class Symbol whose name is “new” as the argument (see §ICh22-347).

A conforming processor may define subclasses of the class Integer which differ only in the
ranges of the representing integer values. In this case, a conforming processor:

e shall define methods +, -, *, /, and % in all of these classes.

135

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

shall not create a direct instance of the class Integer, but shall create a direct instance of
one of these subclasses, instead of the class Integer.

If a conforming processor does not define any subclass of the class Integer, it shall define
methods +, -, *, / and % in the class Integer.

15.2.8.1 Direct superclass

The class Numeric

15.2.8.2 Instance methods

15.2.8.2.1 Integer#+

+(other)

Visibility: public
Behavior:

a) If the other is an instance of the class Integer, return an instance of the class Integer
whose value is the sum of the values of the receiver and the other.

b) If the other is an instance of the class Float, let R be the value of the receiver as a
floating point number.

Return a direct instance of the class Float whose value is the sum of R and the value
of the other.

¢) Otherwise, invoke the method coerce on the other with the receiver as the only argu-
ment. Let V be the resulting value.

1) If V is an instance of the class Array which contains two elements, let F' and S
be the first and the second element of V' respectively.

i) Invoke the method + on F' with S as the only argument.

ii) Return the resulting value.

2) Otherwise, raise a direct instance of the class TypeError.

15.2.8.2.2 Integer#—

-(other)

136

Visibility: public

Behavior:

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

If the other is an instance of the class Integer, return an instance of the class Integer
whose value is the result of subtracting the value of the other from the value of the
receiver.

If the other is an instance of the class Float, let R be the value of the receiver as a
floating point number.

Return a direct instance of the class Float whose value is the result of subtracting the
value of the other from R.

Otherwise, invoke the method coerce on the other with the receiver as the only argu-
ment. Let V be the resulting value.

1) If V is an instance of the class Array which contains two elements, let F' and S
be the first and the second element of V' respectively.

i) Invoke the method - on F with S as the only argument.

ii) Return the resulting value.

2) Otherwise, raise a direct instance of the class TypeError.

15.2.8.2.3 Integer#*

*(other)

Visibility: public

Behavior:

a)

If the other is an instance of the class Integer, return an instance of the class Integer
whose value is the result of multiplication of the values of the receiver and the other.

If the other is an instance of the class Float, let R be the value of the receiver as a
floating point number.

Return a direct instance of the class Float whose value is the result of multiplication
of R and the value of the other.

Otherwise, invoke the method coerce on the other with the receiver as the only argu-
ment. Let V' be the resulting value.

1) If V is an instance of the class Array which contains two elements, let F' and S
be the first and the second element of V respectively.

i) Invoke the method * on F' with S as the only argument.

ii) Return the resulting value.

2) Otherwise, raise a direct instance of the class TypeError.

137

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

15.2.8.2.4 Integer#/

/ Cother)

Visibility: public

Behavior:

a) If the other is an instance of the class Integer:

)

2)

If the value of the other is 0, raise a direct instance of the class ZeroDivisionError.

Otherwise, let n be the value of the receiver divided by the value of the other.
Return an instance of the class Integer whose value is the largest integer smaller
than or equal to n.

b) Otherwise, invoke the method coerce on the other with the receiver as the only argu-
ment. Let V be the resulting value.

1)

2)

15.2.8.2.5

If V is an instance of the class Array which contains two elements, let F' and S
be the first and the second element of V' respectively.

i) Invoke the method / on F with S as the only argument.

ii) Return the resulting value.
Otherwise, raise a direct instance of the class TypeError.

Integer# %

% Cother)

138

Visibility: public

Behavior:

a) If the other is an instance of the class Integer:

1)

2)

If the value of the other is 0, raise a direct instance of the class ZeroDivisionError.
Otherwise, let z and y be the values of the receiver and the other.

i) Let t be the largest integer smaller than or equal to x divided by .

ii) Let mbez-txuy.

iii) If m x y < 0, return an instance of the class Integer whose value is m + .

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

iv) Otherwise, return an instance of the class Integer whose value is m.

b) Otherwise, invoke the method coerce on the other with the receiver as the only argu-
ment. Let V be the resulting value.

)

If V is an instance of the class Array which contains two elements, let F' and S
be the first and the second element of V respectively.

i) Invoke the method % on F' with S as the only argument.

ii) Return the resulting value.

2) Otherwise, raise a direct instance of the class TypeError.
15.2.8.2.6 Integer#<=>
<=>(other)

Visibility: public

Behavior:

a) If the other is an instance of the class Integer:

1)

2)

3)

If the value of the receiver is larger than the value of the other, return an instance
of the class Integer whose value is 1.

If the values of the receiver and the other are the same integer, return an instance
of the class Integer whose value is 0.

If the value of the receiver is smaller than the value of the other, return an instance
of the class Integer whose value is -1.

b) Otherwise, invoke the method coerce on the other with the receiver as the only argu-
ment. Let V' be the resulting value.

D

2)

15.2.8.2.7

If V is an instance of the class Array which contains two elements, let F' and S
be the first and the second element of V' respectively.

i) Invoke the method <=> on F with S as the only argument.

ii) If this invocation does not result in an instance of the class Integer, the
behavior is implementation dependent.

iii) Otherwise, return the value of this invocation.
Otherwise, return nil.

Integer#—==

139

10

11

12

13

14

16

17

18

19

20

21

22

23

24

26

==(other)

Visibility: public
Behavior:
a) If the other is an instance of the class Integer:

1) If the values of the receiver and the other are the same integer, return true.

2) Otherwise, return false.

b) Otherwise, invoke the method == on the other with the receiver as the argument.
Return the resulting value of this invocation.

15.2.8.2.8 Integer#"

Visibility: public

Behavior: The method returns an instance of the class Integer whose two’s complement
representation is the one’s complement of the two’s complement representation of the re-
ceiver.

15.2.8.2.9 Integer#&

& other)

Visibility: public
Behavior:

a) If the other is not an instance of the class Integer, the behavior is implementation
dependent.

b) Otherwise, return an instance of the class Integer whose two’s complement represen-
tation is the bitwise AND of the two’s complement representations of the receiver and
the other.

15.2.8.2.10 Integer#|

| Cother)

140

Visibility: public

7

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Behavior:

2)

b)

If the other is not an instance of the class Integer, the behavior is implementation
dependent.

Otherwise, return an instance of the class Integer whose two’s complement repre-
sentation is the bitwise inclusive OR of the two’s complement representations of the
receiver and the other.

15.2.8.2.11 Integer#~

~(other)

Visibility: public

Behavior:

a)

b)

If the other is not an instance of the class Integer, the behavior is implementation
dependent.

Otherwise, return an instance of the class Integer whose two’s complement repre-
sentation is the bitwise exclusive OR of the two’s complement representations of the
receiver and the other.

15.2.8.2.12 Integer#<<

<<(other)

Visibility: public

Behavior:

a)

If the other is not an instance of the class Integer, the behavior is implementation
dependent.

Otherwise, let £ and y be the values of the receiver and the other.

Return an instance of the class Integer whose value is the largest integer smaller than
or equal to = x 2Y.

15.2.8.2.13 Integer#>>

>>(other)

Visibility: public

Behavior:

141

6

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

a) If the other is not an instance of the class Integer, the behavior is implementation
dependent.

b) Otherwise, let z and y be the values of the receiver and the other.

¢) Return an instance of the class Integer whose value is the largest integer smaller than
or equal to z x 27Y.

15.2.8.2.14 Integer#ceil

ceil

Visibility: public

Behavior: The method returns the receiver.

15.2.8.2.15 Integer#downto

downto (num, &block)

Visibility: public
Behavior:

a) If the num is not an instance of the class Integer, or the block is not given, the
behavior is implementation dependent.

b) Let i be the value of the receiver.
c) If i is smaller than the value of the num, return the receiver.
d) Call the block with an instance of the class Integer whose value is i.

e) Decrement i by 1 and continue processing from Step o.

15.2.8.2.16 Integer+#eql?

eql? (other)

142

Visibility: public

Behavior:

a) If the other is not an instance of the class Integer, return false.

b) Otherwise, invoke the method == on the other with the receiver as the argument.

¢) If this invocation results in a true value, return true. Otherwise, return false.

5

10

11

12

13

14

15

16

17

18

19

21

15.2.8.2.17 Integer#floor

floor

Visibility: public
Behavior: The method returns the receiver.

15.2.8.2.18 Integer#hash

hash

Visibility: public

Behavior: The method returns an implementation defined instance of the class Integer,

which satisfies the following condition:

a) Let I; and I be instances of the class Integer.

b) Let H; and Hs be the resulting values of invocations of the method hash on I} and I,

respectively.

c) The values of the H; and Hy shall be the same integer, if and only if the values of I;

and Iy are the same integer.

15.2.8.2.19 Integer#next

next

Visibility: public

Behavior: The method returns an instance of the class Integer, whose value is the value

of the receiver plus 1.

15.2.8.2.20 Integer#round

round

Visibility: public
Behavior: The method returns the receiver.

15.2.8.2.21 Integer#succ

143

1 sSucc

2 Visibility: public
3 Behavior: Same as the method next (see §IhZX2TY).

4+ 15.2.8.2.22 Integer#times

5 times (&block)

6 Visibility: public

7 Behavior:

8 a) If the block is not given, the behavior is implementation dependent.

9 b) Let i be 0.

10 c) If 7 is larger than or equal to the value of the receiver, return the receiver.
1 d) Call the block with an instance of the class Integer whose value is i.

12 e) Increment i by 1 and continue processing from Step o.

13 15.2.8.2.23 Integer#to_f

14 to_f

15 Visibility: public

16 Behavior: The method returns a direct instance of the class Float whose value is the
17 value of the receiver as a floating point number.

18 15.2.8.2.24 Integer#to_i

19 to_i
20 Visibility: public
21 Behavior: The method returns the receiver.

» 15.2.8.2.25 Integer#truncate

144

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

truncate

Visibility: public
Behavior: The method returns the receiver.

15.2.8.2.26 Integer#upto

upto (num, &block)

Visibility: public
Behavior:

a) If the num is not an instance of the class Integer, or the block is not given, the
behavior is implementation dependent.

b) Let i be the value of the receiver.
c) If 7 is larger than the value of the num, return the receiver.
d) Call the block with an instance of the class Integer whose value is i.
e) Increment i by 1 and continue processing from Step o.
15.2.9 Float

Instances of the class Float represent floating point numbers. A conforming processor should
use the native binary floating point representation of the underlying platform.

When an arithmetic operation involving floating point numbers results in a value which cannot
be represented exactly as an instance of the class Float, how the result is rounded to fit in the
representation of an instance of the class Float is implementation defined.

If the underlying platform of a conforming processor supports IEC 60559:1989:

e The representation of an instance of the class Float should be the 64-bit double format as
specified in §3.2.2 of IEC 60559:1989.

e If an arithmetic operation involving floating point numbers results in NaN while invoking
a method of the class Float, the behavior of the method is implementation dependent.

Instances of the class Float shall not be created by the method new of the class Float. Therefore,
a conforming processor shall undefine the singleton method new of the class Float, as if by
invoking the method undef method on the eigenclass of the class Float with a direct instance
of the class Symbol whose name is “new” as the argument (see §IHhZ23747).

15.2.9.1 Direct superclass

The class Numeric

145

2

10

11

12

13

14

15

16

17

18

20

21

22

23

24

25

26

27

28

29

15.2.9.2 Instance methods

15.2.9.2.1 Float#+

+(other)

Visibility: public

Behavior:

a)

If the other is an instance of the class Float, return a direct instance of the class Float
whose value is the sum of the values of the receiver and the other.

If the other is an instance of the class Integer, let R be the value of the other as a
floating point number.

Return a direct instance of the class Float whose value is the sum of R and the value
of the receiver.

Otherwise, invoke the method coerce on the other with the receiver as the only argu-
ment. Let V be the resulting value.

1) If V is an instance of the class Array which contains two elements, let F' and S
be the first and the second element of V respectively.

i) Invoke the method + on F' with S as the only argument.

ii) Return the resulting value.

2) Otherwise, raise a direct instance of the class TypeError.

15.2.9.2.2 Float#—

- (other)

146

Visibility: public

Behavior:

a)

If the other is an instance of the class Float, return a direct instance of the class Float
whose value is the result of subtracting the value of the other from the value of the
receiver.

If the other is an instance of the class Integer, let R be the value of the other as a
floating point number.

Return a direct instance of the class Float whose value is the result of subtracting R
from the value of the receiver.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

¢) Otherwise, invoke the method coerce on the other with the receiver as the only argu-
ment. Let V be the resulting value.

)

If V is an instance of the class Array which contains two elements, let F' and S
be the first and the second element of V' respectively.

i) Invoke the method - on F' with S as the only argument.

ii) Return the resulting value.

2) Otherwise, raise a direct instance of the class TypeError.
15.2.9.2.3 Float#*
* (other)

Visibility: public

Behavior:

a) If the other is an instance of the class Float, return a direct instance of the class Float
whose value is the result of multiplication of the values of the receiver and the other.

b) If the other is an instance of the class Integer, let R be the value of the other as a
floating point number.

Return a direct instance of the class Float whose value is the result of multiplication
of R and the value of the receiver.

¢) Otherwise, invoke the method coerce on the other with the receiver as the only argu-
ment. Let V be the resulting value.

D

If V is an instance of the class Array which contains two elements, let F' and S
be the first and the second element of V' respectively.

i) Invoke the method * on F with S as the only argument.

ii) Return the resulting value.

2) Otherwise, raise a direct instance of the class TypeError.
15.2.9.2.4 Float#/
/ Cother)

Visibility: public

Behavior:

147

10

11

12

13

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

a) If the other is an instance of the class Float, return a direct instance of the class Float
whose value is the value of the receiver divided by the value of the other.

b) If the other is an instance of the class Integer, let R be the value of the other as a
floating point number.

Return a direct instance of the class Float whose value is the value of the receiver
divided by R.

¢) Otherwise, invoke the method coerce on the other with the receiver as the only argu-
ment. Let V be the resulting value.

1)

2)

15.2.9.2.5

If V is an instance of the class Array which contains two elements, let F' and S
be the first and the second element of V respectively.

i) Invoke the method / on F' with S as the only argument.

ii) Return the resulting value.
Otherwise, raise a direct instance of the class TypeError.

Float# %

%Cother)

Visibility: public

Behavior: In the following steps, binary operators +, —, and * represent floating point
arithmetic operations addition, subtraction, and multiplication which are used in the in-
stance methods +, —, and * of the class Float, respectively. The operator * has a higher
precedence than the operators + and —.

a) If the other is an instance of the class Integer or the class Float:

Let z be the value of the receiver.

1)

If the other is an instance of the class Float, let y be the value of the other. If
the other is an instance of the class Integer, let y be the value of the other as a
floating point number.

i) Let t be the largest integer smaller than or equal to z divided by .
ii) Let mbexz —tx*y.

iii) If m x y < 0, return a direct instance of the class Float whose value is m +
Y.

iv) Otherwise, return a direct instance of the class Float whose value is m.

b) Otherwise, invoke the method coerce on the other with the receiver as the only argu-
ment. Let V' be the resulting value.

148

6

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

If V is an instance of the class Array which contains two elements, let F' and S
be the first and the second element of V respectively.

i) Invoke the method % on F with S as the only argument.

ii) Return the resulting value.

2) Otherwise, raise a direct instance of the class TypeError.
15.2.9.2.6 Float#<=>
<=>(other)

Visibility: public

Behavior:

a) If the other is an instance of the class Integer or the class Float:

1)

4

5)

Let a be the value of the receiver. If the other is an instance of the class Float,
let b be the value of the other. Otherwise, let b be the value of the other as a
floating point number.

If a conforming processor supports IEC 60559:1989, and if a or b is NaN, then
return an implementation defined value.

If a > b, return an instance of the class Integer whose value is 1.
If @ = b, return an instance of the class Integer whose value is 0.

If @ < b, return an instance of the class Integer whose value is -1.

b) Otherwise, invoke the method coerce on the other with the receiver as the only argu-
ment. Let V be the resulting value.

D

2)

15.2.9.2.7

If V is an instance of the class Array which contains two elements, let F' and S
be the first and the second element of V respectively.

i) Invoke the method <=> on F' with S as the only argument.

ii) If this invocation does not result in an instance of the class Integer, the
behavior is implementation dependent.

iii) Otherwise, return the value of this invocation.
Otherwise, return nil.

Float#==

149

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

==(other)

Visibility: public

Behavior:

a)

If the other is an instance of the class Float:

1) If a conforming processor supports IEC 60559:1989, and if the value of the receiver
is NaN, then return false.

2) If the values of the receiver and the other are the same number, return true.
3) Otherwise, return false.
If the other is an instance of the class Integer:

1) If the values of the receiver and the other are the mathematically the same, return
true.

2) Otherwise, return false.

Otherwise, invoke the method == on the other with the receiver as the argument and
return the resulting value of this invocation.

15.2.9.2.8 Float#ceil

ceil

Visibility: public

Behavior: The method returns an instance of the class Integer whose value is the smallest
integer larger than or equal to the value of the receiver.

15.2.9.2.9 Float#finite?

finite?

Visibility: public

Behavior:

2)

b)

If the value of the receiver is a finite number, return true.

Otherwise, return false.

15.2.9.2.10 Float#floor

150

1 floor

2 Visibility: public
3 Behavior: The method returns an instance of the class Integer whose value is the largest
4 integer smaller than or equal to the value of the receiver.

5 15.2.9.2.11 Float#infinite?

6 infinite?

7 Visibility: public

8 Behavior:

9 a) If the value of the receiver is the positive infinite, return an instance of the class Integer
10 whose value is 1.

11 b) If the value of the receiver is the negative infinite, return an instance of the class
12 Integer whose value is -1.

13 ¢) Otherwise, return nil.

1 15.2.9.2.12 Float#round

15 round

16 Visibility: public

17 Behavior: The method returns an instance of the class Integer whose value is the nearest
18 integer to the value of the receiver. If there are two integers equally distant from the value
19 of the receiver, the one which has the larger absolute value is chosen.

20 15.2.9.2.13 Float#to_f

21 to_f
2 Visibility: public
23 Behavior: The method returns the receiver.

2% 15.2.9.2.14 Float#to_i

151

5

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

to_i

Visibility: public

Behavior: The method returns an instance of the class Integer whose value is the integer
part of the receiver.

15.2.9.2.15 Float#truncate

truncate

Visibility: public
Behavior: Same as the method to_i (see §Th2Z U2 14).
15.2.10 String
Instances of the class String represent sequences of characters.
An instance of the class String which does not contain any character is said to be empty. An
instance of the class String shall be empty when it is created by Step B of the method new of

the class Class.

The notation “an instance of the class Object which represents the character C” means either
of the following;:

e An instance of the class Integer whose value is the character code of C.
e An instance of the class String whose content is the single character C.

A conforming processor shall choose one of the above representations and use the same repre-
sentation wherever this notation is used.

The notation “the nth character of a string” means the character whose index is n counted up
from 0.

15.2.10.1 Direct superclass

The class Object

15.2.10.2 Included modules

The following modules are included in the class String.
e Comparable

15.2.10.3 Instance methods

15.2.10.3.1 String#*

152

10

11

-

2

13

14

15

16

17

18

19

20

21

22

23

24

25

26

*(num)

Visibility: public

Behavior:

2)

f)

If the num is not an instance of the class Integer, the behavior is implementation
dependent.

Let n be the value of the num.
If n is smaller than 0, raise a direct instance of the class ArgumentError.
Otherwise, let C' be the content of the receiver.

Create a direct instance of the class String S the content of which is C repeated n
times.

Return S.

15.2.10.3.2 String#+

+(other)

Visibility: public

Behavior:

a)

If the other is not an instance of the class String, the behavior is implementation
dependent.

Let S and O be the contents of the receiver and the other respectively.

Return a newly created instance of the class String the content of which is the con-
catenation of S and O.

15.2.10.3.3 String#<=>

<=>(other)

Visibility: public

Behavior:

2)

If the other is not an instance of the class String, the behavior is implementation
dependent.

153

=

0

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

b) Let S1 and S2 be the contents of the receiver and the other respectively.
c¢) If both S1 and S2 are empty, return an instance of the class Integer whose value is 0.
d) If S7 is empty, return an instance of the class Integer whose value is -1.
e) If S2 is empty, return an instance of the class Integer whose value is 1.

f) Let a, b be the character codes of the first characters of S1 and S2 respectively.

1) If @ > b, return an instance of the class Integer whose value is 1.
2) If a < b, return an instance of the class Integer whose value is -1.

3) Otherwise, replace S1 and S2 with S1 and S2 excluding their first characters,
respectively. Continue processing from Step o.

15.2.10.3.4 String#==

==(other)

Visibility: public
Behavior:

a) If the other is not an instance of the class String, the behavior is implementation
dependent.

b) If the other is an instance of the class String:
1) If the content of the receiver and the other is the same, return true.

2) Otherwise, return false.

15.2.10.3.5 String#="

=" (regexp)

154

Visibility: public
Behavior:

a) If the regexp is not an instance of the class Regexp, the behavior is implementation
dependent.

b) Otherwise, behave as if the method match is invoked on the regezp with the receiver
as the argument (see §ChZ1H 6 1).

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

28

29

30

31

15.2.10.3.6 String#|]

[1 (*args)

Visibility: public

Behavior:

a) If the length of the args is 0 or larger than 2, raise a direct instance of the class
ArgumentError.

b) Let P be the first element of the args. Let n be the length of the receiver.

c) If P is an instance of the class Integer, let b be the value of P.

)

If the length of the args is 1:

i)

ii)

iii)

If b is smaller than 0, increment b by n. If b is still smaller than 0, return
nil.

If b > n, return nil.

Create an instance of the class Object which represents the bth character of
the receiver and return this instance.

If the length of the args is 2:

i)

ii)

iii)

iv)

vi)

If the last element of the args is an instance of the class Integer, let [be the
value of the instance. Otherwise, the behavior is implementation dependent.

If [is smaller than 0, or b is larger than n, return nil.

If b is smaller than 0, increment b by n. If b is still smaller than 0, return
nil.

If b + [is larger than n, let [be n - b.

If [is smaller than or equal to 0, create an empty direct instance of the class
String and return the instance.

Otherwise, create a direct instance of the class String whose content is the
(n-1) characters of the receiver, from the bth index, preserving their order.
Return the instance.

d) If P is an instance of the class Regexp:

1)

2)

If the length of the args is 1, let i be 0.

If the length of the args is 2, and the last element of args is an instance of the
class Integer, let i be the value of the instance. Otherwise, the behavior is
implementation dependent.

155

10

11

12

13

14

-

5

16

17

18

19

20

21

22

23

24

25

26

27

28

29

£)

3) Match the pattern of P against the content of the receiver. (see §IAZTh3 and
Step MThZ154). Let M be the result of the matching process.

4) If M is nil, return nil.
5) If ¢ is larger than the length of the match result of M, return nil.

6) If 4 is smaller than 0, increment 7 by the length of the match result of M. If 7 is
still smaller than or equal to 0, return nil.

7) Let m be the ith element of the match result of M. Create a direct instance of the
class String whose content is the first element of m and return the instance.

If P is an instance of the class String:

1) If the length of the args is 2, the behavior is implementation dependent.

2) If the receiver includes the content of P as a substring, create a direct instance of
the class String whose content is equal to the content P and return the instance.

3) Otherwise, return nil.

Otherwise, the behavior is implementation dependent.

15.2.10.3.7 String#-capitalize

capitalize

Visibility: public

Behavior: The method returns a newly created instance of the class String which contains
all the characters of the receiver, except:

If the first character of the receiver is a lower-case character, the first character of the
resulting instance is the corresponding upper-case character.

If the ith character of the receiver (where i > 0) is an upper case character, the ith
character of the resulting instance is the corresponding lower-case character.

15.2.10.3.8 String#capitalize!

capitalize!

156

Visibility: public

Behavior:

a)

Let s be the content of the instance of the class String returned when the method
capitalize is invoked on the receiver.

1 b) If the content of the receiver and s are the same, return nil. Otherwise, change the
2 content of the receiver to s, and return the receiver.

3 15.2.10.3.9 String#chomp

4 chomp(rs="\n")

5 Visibility: public

6 Behavior:

7 a) If the rs is nil, return a newly created instance of the class String whose content is
8 the same as the receiver.

9 b) If the receiver is empty, return a newly created empty instance of the class String.

10 ¢) If rs is not an instance of the class String, the behavior is implementation dependent.
1 d) Otherwise, return a newly created instance of the class String whose content is the
12 same as the receiver, except the following characters:

13 1) If the rs consists of only one character 0x0a, the line-terminator on the end, if
14 any, is excluded.

15 2) If the rs is empty, the sequence of line-terminators on the end, if any, is excluded.
16 3) Otherwise, if the receiver ends with the content of rs, this sequence of the charac-
17 ters at the end of the receiver is excluded.

18 15.2.10.3.10 String#chomp!

1 chomp! (rs="\n")

20 Visibility: public

21 Behavior:

2 a) Let s be the content of the instance of the class String returned when the method
23 chomp is invoked on the receiver with the rs as the argument.

% b) If the content of the receiver and s are the same, return nil. Otherwise, change the
25 content of the receiver to s, and return the receiver.

%6 15.2.10.3.11 String#-chop

157

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

chop

Visibility: public

Behavior:

a) If the receiver is empty, return a newly created empty instance of the class String.
b) Otherwise, return a newly created instance of the class String whose content is the

receiver without the last character. If the last character is 0x0a, and the character just
before the 0x0a is 0x0d, the 0x0d is also dropped.

15.2.10.3.12 String#chop!

chop!

Visibility: public
Behavior:

a) Let s be the content of the instance of the class String returned when the method
chop is invoked on the receiver.

b) If the content of the receiver and s are the same, return nil. Otherwise, change the
content of the receiver to s, and return the receiver.

15.2.10.3.13 String#downcase

downcase

Visibility: public

Behavior: The method returns a newly created instance of the class String which con-
tains all the characters of the receiver, with the upper-case characters replaced with the
corresponding lower-case characters.

15.2.10.3.14 String#downcase!

downcase!

158

Visibility: public
Behavior:

a) Let s be the content of the instance of the class String returned when the method
downcase is invoked on the receiver.

3

10

11

12

13

14

15

16

17

19

20

21

22

23

24

25

b)

If the content of the receiver and s are the same, return nil. Otherwise, change the
content of the receiver to s, and return the receiver.

15.2.10.3.15 String#each_line

each_line(&block)

Visibility: public

Behavior: Let s be the content of the receiver. Let ¢ be the first character of s.

a)

b)

d)

If the block is not given, the behavior is implementation dependent.

Find the first 0x0a in s from c¢. If there is such a 0x0a:

)

2)

3)

4)

Let d be that 0x0a.

Create a direct instance of the class String S whose content is the sequence of
the characters from ¢ to d.

Call the block with S as the argument.

If d is the last character of s, return the receiver. Otherwise, let new ¢ be the
character just after d and continue processing from Step O.

If there is not such a 0x0a, create a direct instance of the class String whose content
is the sequence of the characters from ¢ to the last character of s. Call the block with
this instance as the argument.

Return the receiver.

15.2.10.3.16 String#empty?

empty?

Visibility: public

Behavior:

a)

b)

If the receiver is empty, return true.

Otherwise, return false.

15.2.10.3.17 String#eql?

159

8

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

eql? (other)

Visibility: public

Behavior:

2)

b)

If the other is an instance of the class String:

1) If the contents of the receiver and the other are the same, return true.

2) Otherwise, return false.

If the other is not an instance of the class String, return false.

15.2.10.3.18 String#gsub

gsub (*args, &block)

160

Visibility: public

Behavior:

a)

If the length of the args is 0 or larger than 2, or the length of the args is 1 and the
block is not given, raise a direct instance of the class ArgumentError.

Let P be the first element of the args. If P is not an instance of the class Regexp, or
the length of the args is 2 and the last element of the args is not an instance of the
class String, the behavior is implementation dependent.

Let S be the content of the receiver, and let [be the length of S.

Let L be an empty list and let n be an integer 0.

Match the pattern of P against S at the offset n (see §IAiZT53 and Step [h2Thd).
Let M be the result of the matching process.

If M is nil, append to L the substring of S beginning at the nth character up to the
last character of S.

Otherwise:
1) If the length of the args is 1:

i) Call the block with a direct instance of the class String whose content is the
matched substring of M as the argument.

ii) Let V be the resulting value of this call. If V is not an instance of the class
String, the behavior is implementation dependent.

1 2) Let pre be the pre-match of M. Append to L the substring of pre beginning at the

2 nth character up to the last character of pre, unless n is larger than the offset of
3 the last character of pre.

4 3) If the length of the args is 1, append the content of V' to L. If the length of the
5 args is 2, append to L the content of the last element of the args.

6 4) Let post be the post-match of M. Let i be the offset of the first character of post
7 within S.

8 i) If 7 is equal to n, i.e. if P matched an empty string:

9 I) Append to L a string whose content is the ith character of S.

10 IT) Increment n by 1.

1 ii) Otherwise, replace n with .

12 5) If n <, continue processing from Step e.

13 h) Create a direct instance of the class String whose content is the concatenation of all
14 the elements of L, and return the instance.

15 15.2.10.3.19 String#gsub!

16 gsub! (*args, &block)

17 Visibility: public

18 Behavior:

10 a) Let s be the content of the instance of the class String returned when the method
20 gsub is invoked on the receiver with the same arguments.

21 b) If the content of the receiver and s are the same, return nil. Otherwise, change the
2 content of the receiver to s, and return the receiver.

23 15.2.10.3.20 String#hash

24 hash

25 Visibility: public

2 Behavior: The method returns an implementation defined instance of the class Integer
27 which satisfies the following condition:

28 a) Let S; and Sz be two distinct instances of the class String.

161

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Let H; and Hs be the resulting values of the invocations of the method hash on S; and
S respectively.

If and only if S; and So has the same content, the values of H; and H, shall be the
same integer.

15.2.10.3.21 String#include?

include?(0bj)

Visibility: public

Behavior:

a)

c)

If the obj is an instance of the class Integer:

If the receiver includes the character whose character code is the obj, return true.
Otherwise, return false.

If the obj is an instance of the class String:

If there exists a substring of the receiver whose sequence of characters is the same as
the obj, return true. Otherwise, return false.

Otherwise, the behavior is implementation dependent.

15.2.10.3.22 String#initialize

initialize(str="")

Visibility: private

Behavior:

2)

b)

c)

If the str is not an instance of the class String, the behavior is implementation de-
pendent.

Otherwise, initialize the content of the receiver to the same sequence of characters as
the content of the str.

Return an implementation defined value.

15.2.10.3.23 String#initialize_copy

initialize_copy(original)

162

Visibility: private

1 Behavior:

2 a) If the original is not an instance of the class String, the behavior is implementation
3 dependent.

4 b) Change the content of the receiver to the content of the original.

5 ¢) Return an implementation defined value.

¢ 15.2.10.3.24 String#intern

7 intern

8 Visibility: public

9 Behavior:

10 a) If the length of the receiver is 0, or the receiver contains 0x00, raise a direct instance
1 of the class ArgumentError.

12 b) Otherwise, return a direct instance of the class Symbol whose name is the content of
13 the receiver.

u 15.2.10.3.25 String#length

15 length
16 Visibility: public
17 Behavior: The method returns the number of characters of the content of the receiver.

18 15.2.10.3.26 String#match

19 match(regezp)

20 Visibility: public

21 Behavior:

2 a) If the regexp is an instance of the class Regexp, let R be the regezp.

23 b) If the regezp is an instance of the class String, create a direct instance of the class
2 Regexp as if the method new is invoked on the class Regexp with the regexp as the
25 argument. Let R be the instance of the class Regexp.

2 ¢) Otherwise, the behavior is implementation dependent.

163

3

7

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

d) Invoke the method match on R with the receiver as the argument.

e) Return the resulting value of the invocation.

15.2.10.3.27 String#replace

replace (other)

Visibility: public

Behavior: Same as the method initialize copy (see §IEZI0323).

15.2.10.3.28 String#reverse

reverse

Visibility: public

Behavior: The method returns a newly created instance of the class String which contains
all the characters of the content of the receiver in the reverse order.

15.2.10.3.29 String#reverse!

reverse!

Visibility: public
Behavior:

a) Change the content of the receiver to the content of the resulting instance of the class
String when the method reverse is invoked on the receiver.

b) Return the receiver.

15.2.10.3.30 String#scan

scan(reg, &block)

164

Visibility: public
Behavior:

a) If the reg is not an instance of the class Regexp, the behavior is implementation de-
pendent.

b) If the block is not given, create an empty direct instance of the class Array A.

10

11

12

13

14

15

16

17

18

19

20

21

22

24

c¢) Let S be the content of the receiver, and let [be the length of S.
d) Let n be an integer 0.

e) Match the pattern of the reg against S at the offset n (see §IiZT53 and Step [5h2154).
Let M be the result of the matching process.

f) If M is not nil:
1) Let L be the match result of M.

2) If the length of L is 1, create a direct instance of the class String V whose content
is the matched substring of M.

3) If the length of L is larger than 1:
i) Create an empty direct instance of the class Array V.
ii) Except for the first element, for each element e of L, in the same order in the

list, append to V a direct instance of the class String whose content is the
first element of e.

4) If the block is given, call the block with V as the argument. Otherwise, append V
to A.

5) Let post be the post-match of M. Let i be the offset of the first character of post
within S.

i) If ¢ and n are the same, i.e. if the reg matched the empty string, increment
n by 1.

ii) Otherwise, replace n with .
6) If n <, continue processing from Step .
g) If the block is given, return the receiver. Otherwise, return A.

15.2.10.3.31 String#size

size

Visibility: public
Behavior: Same as the method length (see §IAZTU37H).

15.2.10.3.32 String#slice

165

1

4

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

slice(*args)

Visibility: public

Behavior: Same as the method [1 (see §Th210-30).

15.2.10.3.33 String#split

split(sep)

166

Visibility: public

Behavior:

a)

If the sep is not an instance of the class Regexp, the behavior is implementation de-
pendent.

Create an empty direct instance of the class Array A.
Let S be the content of the receiver, and let [be the length of S.
Let both sp and bp be 0, and let was-empty be false.

Match the pattern of the sep against S at the offset sp (see §IAZIH3 and Step
5215 4). Let M be the result of the matching process.

If M is nil, append to A a direct instance of the class String whose content is the
substring of § beginning at the spth character up to the last character of S.

Otherwise:
1) If the matched substring of M is an empty string:

i) If was-empty is true, append to A a direct instance of the class String whose
content is the bpth character of S.

ii) Otherwise, increment sp by 1. If sp < [, replace was-empty with true and
continue processing from Step e.

2) Otherwise, replace was-empty with false. Let pre be the pre-match of M. Append
to A an instance of the class String whose content is the substring of pre beginning
at the bpth character up to the last character of pre, unless bp is larger than the
offset of the last character of pre.

3) Let L be the match result of M.

4) 1If the length of L is larger than 1, except for the first element, for each element e
of L, in the same order in the list, take the following steps:

-

0

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

i) Let ¢ be the first element of e.

ii) If ¢ is not nil, append to A a direct instance of the class String whose
content is c.

5) Let post be the post-match of M, and replace both sp and bp with the offset of
the first character of post.

6) If sp > [, continue processing from Step e.

h) If the last element of A is an instance of the class String whose content is empty,
remove the element. Repeat this step until the this condition does not hold.

i) return A.

15.2.10.3.34 String#sub

sub (*args, &block)

Visibility: public
Behavior:
a) If the length of the args is 1 and the block is given, or the length of the args is 2:

1) If the first element of the args is not an instance of the class Regexp, the behavior
is implementation dependent.

2) Match the pattern of the first element of the args against the content of the receiver
(see §CZTH3 and Step ThZI54). Let M be the result of the matching process.

3) If M isnil, create a direct instance of the class String whose content is the same
as the receiver and return the instance.

4) Otherwise:

i) If the length of the args is 1, call the block with a direct instance of the class
String whose content is the matched substring of M as the argument. Let §
be the resulting value of this call. If § is not an instance of the class String,
the behavior is implementation dependent.

ii) If the length of the args is 2, let S be the last element of the args. If S is not
an instance of the class String, the behavior is implementation dependent.

iii) Create a direct instance of the class String whose content is the concatenation
of pre-match of M, the content of S, and post-match of M, and return the

instance.

b) Otherwise, raise a direct instance of the class ArgumentError.

167

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

26

15.2.10.3.35 String#sub!

sub! (*args, &block)

Visibility: public
Behavior:

a) Let s be the content of the instance of the class String returned when the method sub
is invoked on the receiver with the same arguments.

b) If the content of the receiver and s are the same, return nil. Otherwise, change the
content of the receiver to s, and return the receiver.

15.2.10.3.36 String#upcase

upcase

Visibility: public

Behavior: The method returns a newly created instance of the class String which con-
tains all the characters of the receiver, with all the lower-case characters replaced with the
corresponding upper-case characters.

15.2.10.3.37 String#upcase!

upcase!

Visibility: public
Behavior:

a) Let s be the content of the instance of the class String returned when the method
upcase is invoked on the receiver.

b) If the content of the receiver and s are the same, return nil. Otherwise, change the
content of the receiver to s, and return the receiver.

15.2.10.3.38 String#to_i

to_i(base=10)

168

Visibility: public

Behavior:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

25

26

27

28

a) If the base is not an instance of the class Integer whose value is 2, 8, 10, nor 16, the
behavior is implementation dependent. Otherwise, let b be the value of the base.

b) If the receiver is empty, return an instance of the class Integer whose value is 0.
c) Let i be 0. Increment ¢ by 1 while the ith character of the receiver is a whitespace.
d) If the ith character of the receiver is “+” or “-”, increment ¢ by 1.

e) If the ith character of the receiver is “0”, and any of the following conditions holds,
increment ¢ by 2:

Let ¢ be the character of the receiver whose index is 4 plus 1.

e bis2,and cis “b” or “B”.

e bHis8& and cis “0” or “O”.

b is 10, and c is “d” or “D”.

b is 16, and ¢ is “x” or “X”.
f) Let s be a sequence of the following characters of the receiver from the ith index:
e If bis 2, binary-digit and “_”.
e If bis 8, octal-digit and “_”.
e If bis 10, decimal-digit and “_".
e If bis 16, hexadecimal-digit and “_”.

g) If the length of s is 0, return an instance of the class Integer whose value is 0.

S rts wi _ r s contains su ive “_ vior is implementation
h) If s starts with “”, o contains successive “_’s, the behavior is lementatio

dependent.
i) Let n be the value of s, computed in base b.

If the “-” occurrs in Step M, return an instance of the class Integer whose value is —n.
Otherwise, return an instance of the class Integer whose value is n.

15.2.10.3.39 String#to_f

to_f

Visibility: public
Behavior:

a) If the receiver is empty, return a direct instance of the class Float whose value is 0.0.

169

10

17

18

19

20

21

22

23

24

25

26

27

28

29

b) If the receiver starts with the sequence of the characters which is a float-literal, return
a direct instance of the class Float whose value is the value of the float-literal (see
§R5).

c) If the receiver starts with the sequence of the characters which is a digit-decimal-
integer-literal, return a direct instance of the class Float whose value is the value of

the digit-decimal-integer-literal as a floating point number (see §8551).

d) Otherwise, return a direct instance of the class Float whose value is implementation
defined.

15.2.10.3.40 String#to_s

to_s

Visibility: public
Behavior: The method returns the receiver.

15.2.10.3.41 String#to_sym

to_sym

Visibility: public
Behavior: Same as the method intern (see §IHZ 103 24).
15.2.11 Symbol

Instances of the class Symbol represent names (see 8855 1H). No two instances of the class
Symbol have the same name.

Instances of the class Symbol shall not be created by the method new of the class Symbol.
Therefore, a conforming processor shall undefine the singleton method new of the class Symbol,
as if by invoking the method undef method on the eigenclass of the class Symbol with a direct
instance of the class Symbol whose name is “new” as the argument (see §IHh223 7).
15.2.11.1 Direct superclass

The class Object

15.2.11.2 Instance methods

15.2.11.2.1 Symbol#===

===(other)

Visibility: public

170

24

Behavior: Same as the method == of the module Kernel (see §Ih3T21).

15.2.11.2.2 Symbol#id2name

id2name

Visibility: public

Behavior: The method returns an instance of the class String, the content of which
represents the name of the receiver.

15.2.11.2.3 Symbol#to_s

to_s

Visibility: public
Behavior: Same as the method id2name (see §THZTT23).

15.2.11.2.4 Symbol#to_sym

to_sym

Visibility: public

Behavior: The method returns the receiver.
15.2.12 Array
Instances of the class Array represent arrays, which are unbounded. An instance of the class
Array which has no element is said to be empty. The number of elements in an instance of the

class Array is called its length.

Instances of the class Array shall be empty when they are created by Step B of the method new
of the class Class.

Elements of an instance of the class Array has their indexes counted up from 0.

Given an array A, operations append, prepend, remove are defined as follows:

append: To append an object O to A is defined as follows:
Insert O after the last element of A.

Appending an object to A increases its length by 1.
prepend: To prepend an object O to A is defined as follows:

171

10

11

12

13

14

15

17

18

19

20

21

22

23

24

25

26

27

Insert O to the first index of A. Original elements of A are moved toward the end of A by
one position.

Prepending an object to A increases its length by 1.
remove: To remove an element X from A is defined as follows:
a) Remove X from A.

b) If X is not the last element of A, move the elements after X toward the head of A by
one position.

Removing an object to A decreases its length by 1.
15.2.12.1 Direct superclass
The class Object
15.2.12.2 Included modules
The following module is included in the class Array.
e Enumerable
15.2.12.3 Singleton methods

15.2.12.3.1 Array.|]

Array. [] (*items)

Visibility: public

Behavior: The method returns a newly created instance of the class Array which contains
the elements of the items, preserving their order.

15.2.12.4 Instance methods

15.2.12.4.1 Array#*

*(num)

Visibility: public
Behavior:

a) If the num is not an instance of the class Integer, the behavior is implementation
dependent.

b) If the value of the num is smaller than 0, raise a direct instance of the class ArgumentError.

172

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

e)

If the value of the num is 0, return an empty direct instance of the class Array.

Otherwise, create a direct instance of the class Array A and repeat the following for
the num times:

Append all the elements of the receiver to A, preserving their order.

Return A.

15.2.12.4.2 Array#+

+(other)

Visibility: public

Behavior:

a)

d)

If the other is an instance of the class Array, let A be the other. Otherwise, the
behavior is implementation dependent.

Create an empty direct instance of the class Array R.

For each element of the receiver, in the indexing order, append the element to R. Then,
for each element of A, in the indexing order, append the element to R.

Return R.

15.2.12.4.3 Array#<<

<<(obj)

Visibility: public

Behavior: The method appends the obj to the receiver and return the receiver.

15.2.12.4.4 Array#]]

[1(*args)

Visibility: public

Behavior:

a)

b)

Let n be the length of the receiver.

If the length of the args is 0, raise a direct instance of the class ArgumentError.

173

1 c) If the length of the args is 1:

2 1) If the only argument is an instance of the class Integer, let k£ be the value of the
3 only argument. Otherwise, the behavior is implementation dependent.

a 2) If k <0, increment k by n. If k is still smaller than 0, return nil.

5 3) If k > n, return nil.

6 4) Otherwise, return the kth element of the receiver.

7 d) If the length of the args is 2:

8 1) If the elements of the args are instances of the class Integer, let b and [be the
9 values of the first and the last element of the args, respectively. Otherwise, the
10 behavior is implementation dependent.

11 2) If b < 0, increment b by n. If b is still smaller than 0, return nil.

12 3) If b = n, create an empty direct instance of the class Array and return this instance.
13 4) Ifb > mnorl <0, return nil.

1 5) Ifl>n — b, let new [be n — b.

15 6) Create an empty direct instance of the class Array A. Append the [elements of
16 the receiver to A, from the bth index, preserving their order. Return A.

17 e) Ifthe length of the args is larger than 2, raise a direct instance of the class ArgumentError.

18 15.2.12.4.5 Array#[]:

19 [1 =(*args)

20 Visibility: public

21 Behavior:

2 a) Let n be the length of the receiver.

23 b) If the length of the args is smaller than 2, raise a direct instance of the class ArgumentError.
24 c) If the length of the args is 2:

2 1) If the first element of the args is an instance of the class Integer, let k be the
26 value of the element and let V be the last element of the args. Otherwise, the
27 behavior is implementation dependent.

28 2) If k < 0, increment k by n. If k is still smaller than 0, raise a direct instance of
29 the class IndexError.

174

-

1

12

13

14

15

16

17

18

20

21

22

23

24

25

3) If k < n, replace the kth element of the receiver with V.

4) Otherwise, expand the length of the receiver to k& + 1. The last element of the
receiver is V. If k¥ > n, the elements whose index is from n to k - 1 is nil.

5) Return V.
d) If the length of the args is 3, the behavior is implementation dependent.
e) Ifthelength of the args is larger than 3, raise a direct instance of the class ArgumentError.

15.2.12.4.6 Array#clear

clear

Visibility: public
Behavior: The method removes all the elements from the receiver and return the receiver.

15.2.12.4.7 Array#collect!

collect! (&block)

Visibility: public
Behavior:
a) If the block is given:

1) For each element of the receiver in the indexing order, call the block with the
element as the only argument and replace the element with the resulting value.

2) Return the receiver.
b) If the block is not given, the behavior is implementation dependent.

15.2.12.4.8 Array#concat

concat (other)

Visibility: public
Behavior:

a) If the other is not an instance of the class Array, the behavior is implementation
dependent.

175

1 b) Otherwise, append all the elements of the other to the receiver, preserving their order.

2 ¢) Return the receiver.

3 15.2.12.4.9 Array#each

4 each (&block)

5 Visibility: public

6 Behavior:

7 a) If the block is given:

8 1) For each element of the receiver in the indexing order, call the block with the
9 element as the only argument.

10 2) Return the receiver.

11 b) If the block is not given, the behavior is implementation dependent.

2 15.2.12.4.10 Array#each_index

13 each_index (&block)

14 Visibility: public

15 Behavior:

16 a) If the block is given:

17 1) For each element of the receiver in the indexing order, call the block with an
18 argument, which is an instance of the class Integer whose value is the index of
19 the element.

20 2) Return the receiver.

21 b) If the block is not given, the behavior is implementation dependent.

» 15.2.12.4.11 Array#empty?

23 empty?
2 Visibility: public
25 Behavior:

176

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

a) If the receiver is empty, return true.

b) Otherwise, return false.

15.2.12.4.12 Array#first

first(*args)

Visibility: public
Behavior:
a) If the length of the args is 0:
1) If the receiver is empty, return nil.
2) Otherwise, return the first element of the receiver.
b) If the length of the args is 1:

1) If the only argument is not an instance of the class Integer, the behavior is
implementation dependent. Otherwise, let n be the value of the only argument.

2) If n is smaller than 0, raise a direct instance of the class ArgumentError.
3) Otherwise, let N be the smaller of n and the length of the receiver.

4) Return a newly created instance of the class Array which contains the first N
elements of the receiver, preserving their order.

c) If the length of args is larger than 1, raise a direct instance of the class ArgumentError.

15.2.12.4.13 Array+#initialize

initialize(size=0, obj=nil, &block)

Visibility: private
Behavior:

a) If the size is not an instance of the class Integer, the behavior is implementation
dependent. Otherwise, let n be the value of the size.

b) If n is smaller than 0, raise a direct instance of the class ArgumentError.
c¢) If nis 0, return an implementation defined value.

d) If n is larger than 0:

177

9

10

11

12

13

14

15

16

17

18

20

21

22

23

24

25

26

27

1) If the block is given:

i) Let k be 0.

ii) Call the block with an argument, which is an instance of the class Integer
whose value is k. Append the resulting value of this call to the receiver.

iii) Increase k by 1. If k is equal to n, terminate this process. Otherwise, repeat
from Step H=T=.

2) Otherwise, append the obj to the receiver n times.

3) Return an implementation defined value.

15.2.12.4.14 Array+#initialize_copy

initialize_copy(original)

Visibility: private

Behavior:

2)

If the original is not an instance of the class Array, the behavior is implementation
dependent.

Remove all the elements from the receiver.
Append all the elements of the original to the receiver, preserving their order.

Return an implementation defined value.

15.2.12.4.15 Array#join

join(sep=nil)

178

Visibility: public

Behavior:

a)

If the sep is neither nil nor an instance of the class String, the behavior is implemen-
tation dependent.

Let S be an empty direct instance of the class String.

For each element X of the receiver, in the indexing order:

1) If the sep is not nil, and X is not the first element of the receiver, append the
content of the sep to S.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

26

27

d)

If X is an instance of the class String, append the content of X to S.

3) If X is an instance of the class Array:
i) If X is the receiver, i.e. if the receiver contains itself, append an implementa-
tion defined sequence of characters to S.
ii) Otherwise, append the content of the instance of the class String returned as
if by the invocation of the method join on X with the sep as the argument.
4) Otherwise, the behavior is implementation dependent.
Return S.

15.2.12.4.16 Array#last

last(*args)

Visibility: public

Behavior:

2)

c)

15.2.12.4.17

If the length of the args is 0:

1)

2)

If the receiver is empty, return nil.

Otherwise, return the last element of the receiver.

If the length of the args is 1:

D

If the only argument is not an instance of the class Integer, the behavior is
implementation dependent. Otherwise, let n be the value of the only argument.

If n is smaller than 0, raise a direct instance of the class ArgumentError.
Otherwise, let N be the smaller of n and the length of the receiver.

Return a newly created instance of the class Array which contains the last N
elements of the receiver, preserving their order.

If the length of args is larger than 1, raise a direct instance of the class ArgumentError.

Array#length

length

Visibility: public

Behavior: The method returns the number of elements of the receiver.

179

-

1

12

13

14

15

16

-

7

15.2.12.4.18 Array#map!

map! (&block)

Visibility: public
Behavior: Same as the method collect! (see §IoZTZZ7).

15.2.12.4.19 Array#pop

pop

Visibility: public
Behavior:

a) If the receiver is empty, return nil.

b) Otherwise, remove the last element from the receiver and return that element.

15.2.12.4.20 Array#push

push(*xitems)

Visibility: public
Behavior:

a) For each element of the items, in the indexing order, append it to the receiver.

b) Return the receiver.

15.2.12.4.21 Array#replace

replace(other)

Visibility: public
Behavior: Same as the method initialize copy (see §IEZI124T4).

15.2.12.4.22 Array#reverse

180

1 reverse

2 Visibility: public
3 Behavior: The method returns a newly created instance of the class Array which contains
4 all the elements of the receiver in the reverse order.

5 15.2.12.4.23 Array#reverse!

6 reverse!

7 Visibility: public

8 Behavior: The method reverses the order of the elements of the receiver and return the
9 recelver.

10 15.2.12.4.24 Array#shift

1 shift

12 Visibility: public

13 Behavior:

14 a) If the receiver is empty, return nil.

15 b) Otherwise, remove the first element from the receiver and return that element.

16 15.2.12.4.25 Array+#size

17 size
18 Visibility: public
19 Behavior: Same as the method length (see §TZ124T7).

20 15.2.12.4.26 Array#slice

21 slice(*args)
2 Visibility: public
23 Behavior: Same as the method [] (see §I5Z122412).

181

1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

15.2.12.4.27 Array#unshift

unshift (*items)

Visibility: public
Behavior:
a) For each element of the items, in the reverse indexing order, prepend it to the receiver.
b) Return the receiver.
15.2.13 Hash
Instances of the class Hash represent hashes, which are sets of key/value pairs.
An instance of the class Hash which has no key/value pair is said to be empty. Instances of
the class Hash shall be empty when they are created by Step B of the method new of the class
Class.
A hash cannot contain more than one key/value pair for each key.

An instance of the class Hash has the following property:

default value or proc: Either of the followings:

e A default value, which is returned by the method [] when the specified key is not
found in the hash.

e A default proc, which is called to generate the return value of the method [] when the
specified key is not found in the hash.

An instance of the class Hash shall not have both a default value and a default proc simul-
taneously.

Given two keys K; and Ks, the notation “K; = K>” means that all of the following conditions
hold:

e An invocation of the method eql? on Kj with Ks as the only argument evaluates to a true
value.

e Let Hy and Hs be the results of invocations of the method hash on Kj and K>, respectively.
H; and H> are the instances of the class Integer which represents the same integer.
A conforming processor may define a certain range of integers, and when the values of H; or
H, lies outside of this range, an implementation shall convert H; or Hs to another instance
of the class Integer whose value is within the range. Let I; and I be each of the resulting

instances respectively.

The values of I} and I, are the same integer.

182

1

2

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

If Hy or Hs is not an instance of the class Integer, whether K; and K> are considered to
be the same is implementation dependent.

Note that K1 = K> is not equivalent to Ky = K;.
15.2.13.1 Direct superclass

The class Object

15.2.13.2 Included modules

The following module is included in the class Hash.
e Enumerable

15.2.13.3 Instance methods

15.2.13.3.1 Hash#==

==(other)

Visibility: public
Behavior:

a) If the other is not an instance of the class Hash, the behavior is implementation de-
pendent.

b) If all of the following conditions hold, return true:
e The receiver and the other have the same number of key/value pairs.

e For each key/value pair P in the receiver, the other has a corresponding key /value
pair () which satisfies the following conditions:

— The key of P = the key of Q.

— An invocation of the method == on the value of P with the value of @) results
in a true value.

¢) Otherwise, return false.

15.2.13.3.2 Hash#|]

[1Ckey)

Visibility: public

183

1 Behavior:

2 a) If the receiver has a key/value pair P where the key = the key of P, return the value
3 of P.

4 b) Otherwise, invoke the method default on the receiver with the key as the argument
5 and return the resulting value.

s 15.2.13.3.3 Hash#[=

7 (1 =Ckey, value)

8 Visibility: public

9 Behavior:

10 a) If the receiver has a key/value pair P where the key = the key of P, replace the value
11 of P with the value.

12 b) Otherwise:

13 1) If the key is a direct instance of the class String, create a copy of the key, i.e.
14 create a direct instance of the class String K whose content is the same as the
15 key.

16 2) If the key is not an instance of the class String, let K be the key.

17 3) If the key is an instance of a subclass of the class String, whether to create a copy
18 or not is implementation defined.

19 4) Store a pair of K and the value into the receiver.

20 ¢) Return the value.

a1 15.2.13.3.4 Hash#clear

2 clear

23 Visibility: public

2 Behavior:

2 a) Remove all the key/value pairs from the receiver.
2 b) Return the receiver.

7 15.2.13.3.5 Hash#default

184

10

11

-

2

14

15

16

17

18

-

9

20

21

22

23

24

default (*args)

Visibility: public

Behavior:

2)

b)

c)

d)

If the length of the args is larger than 1, raise a direct instance of the class ArgumentError.
If the receiver has the default value, return the value.

If the receiver has the default proc:

1) If the length of the args is 0, return nil.

2) If the length of the args is 1, invoke the method call on the default proc of the
receiver with two arguments, the receiver and the only element of the args. Return

the resulting value of this invocation.

Otherwise, return nil.

15.2.13.3.6 Hash#default=

default =(value)

Visibility: public

Behavior:

a)

b)

)

If the receiver has the default proc, remove the default proc.
Set the default value of the receiver to the value.

Return the value.

15.2.13.3.7 Hash#default_proc

default_proc

Visibility: public

Behavior:

a)

b)

If the receiver has the default proc, return the default proc.

Otherwise, return nil.

185

10

11

12

13

14

15

16

17

18

20

21

22

23

24

25

26

27

15.2.13.3.8 Hash#delete

delete(key, &block)

Visibility: public

Behavior:

a)

If the receiver has a key/value pair P where the key = the key of P, remove P from
the receiver and return the value of P.

Otherwise:

1) If the block is given, call the block with the key as the argument. Return the
resulting value of this call.

2) Otherwise, return nil.

15.2.13.3.9 Hash#teach

each(&block)

Visibility: public

Behavior:

a)

b)

If the block is given, call the block for each key/value pair of the receiver with an
instance of the class Array as the argument, which contains two elements, the key
and the value of that pair. The order of key/value pairs are implementation defined.
Return the receiver.

If the block is not given, the behavior is implementation dependent.

15.2.13.3.10 Hash#each _key

each_key (&block)

186

Visibility: public

Behavior:

a)

If the block is given, for each key/value pair of the receiver, in an implementation
defined order, call the block with the key of the pair as the argument. Return the
receiver.

If the block is not given, the behavior is implementation dependent.

8

10

11

12

13

14

15

16

17

18

19

20

21

22

15.2.13.3.11 Hash#each_value

each_value (&block)

Visibility: public

Behavior:

a) If the block is given, call the block for each key/value pair of the receiver, with the

value as the argument, in an implementation defined order. Return the receiver.

b) If the block is not given, the behavior is implementation dependent.

15.2.13.3.12 Hash#empty?

empty?

Visibility: public
Behavior:

a) If the receiver is empty, return true.

b) Otherwise, return false.

15.2.13.3.13 Hash#has _ key?

has key?(key)

Visibility: public
Behavior:

a) If the receiver has a key/value pair P where the key = the key of P, return true.

b) Otherwise, return false.

15.2.13.3.14 Hash#has_value?

has_value? (value)

Visibility: public

Behavior:

187

6

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

b)

If the receiver has a key/value pair whose value holds the following condition, return
true.

e An invocation of the method == on the value with the value as the argument result
in a true value.

Otherwise, return false.

15.2.13.3.15 Hash#include?

include?(key)

Visibility: public

Behavior: Same as the method has key? (see §IHZT33T3).

15.2.13.3.16 Hash#tinitialize

initialize(*args, &block)

Visibility: private

Behavior:

a)

d)

If the block is given, and the length of the args is not 0, raise a direct instance of the
class ArgumentError.

If the block is given and the length of the args is 0, set the default proc of the receiver
to a direct instance of the class Proc which represents the block.

If the block is not given:
1) If the length of the args is 0, let D be nil.
2) If the length of the args is 1, let D be the only argument.

3) If the length of the args is larger than 1, raise a direct instance of the class
ArgumentError.

4) Set the default value of the receiver to D.

Return an implementation defined value.

15.2.13.3.17 Hash#initialize_copy

188

1 initialize_copy(original)

2 Visibility: private

3 Behavior:

4 a) If the original is not an instance of the class Hash, the behavior is implementation
5 dependent.

6 b) Remove all the key/value pairs from the receiver.

7 ¢) For each key/value pair P of the original, in an implementation defined order, store P
8 in the receiver.

9 d) Remove the default value and the default proc from the receiver.

10 e) If the orignal has a default value, set the default value of the receiver to that value.
11 f) If the orignal has a default proc, set the default proc of the receiver to that proc.

12 g) Return an implementation defined value.

3 15.2.13.3.18 Hash#key?

-

14 key? (key)
15 Visibility: public
16 Behavior: Same as the method has key? (see §IZT33T3).

17 15.2.13.3.19 Hash#keys

18 keys

19 Visibility: public

20 Behavior: The method returns a newly created instance of the class Array whose content
21 is the keys of the receiver. The order of the keys stored in somewhere are implementation
2 defined.

» 15.2.13.3.20 Hash#length

% length

25 Visibility: public

2 Behavior: The method returns an instance of the class Integer whose value is the number
27 of key/value pairs stored in the receiver.

189

1 15.2.13.3.21 Hash#member?

2 member? (key)
3 Visibility: public
4 Behavior: Same as the method has key? (see §IA2T3313).

5 15.2.13.3.22 Hash#merge

6 merge (other, &block)

7 Visibility: public

8 Behavior:

9 a) If the other is not an instance of the class Hash, the behavior is implementation de-
10 pendent.

11 b) Otherwise, create a direct instance of the class Hash H which has the same key/value
12 pairs as the receiver.

13 ¢) For each key/value pair P of the other, in an implementation defined order:

14 1) If the block is given:

15 i) If H has the key/value pair @) where the key of P = the key of @, call the
16 block with three arguments, the key of P, the value of (), and the value of P.
17 Store the key/value pair whose key is the key of P and whose value is the
18 resulting value of this call.

19 ii) Otherwise, store P in H.

20 2) If the block is not given, store P in H.

21 d) Return H.

2 15.2.13.3.23 Hash#replace

23 replace(other)
2% Visibility: public
25 Behavior: Same as the method initialize_copy (see §IHZT33147).

% 15.2.13.3.24 Hash#shift

190

10

11

12

-

3

14

shift

Visibility: public

Behavior:

a)

If the receiver has no key/value pairs:

1) If the receiver has the default proc, invoke the method call on the default proc
with two arguments, the receiver and nil. Return the resulting value of this call.

2) If the receiver has the default value, return the value.

3) Otherwise, return nil.

Otherwise, choose a key/value pair P and remove P from the receiver. Return a newly
created instance of the class Array which contains two elements, the key and the value
of P.

Which pair is chosen is implementation defined.

15.2.13.3.25 Hash#size

size

Visibility: public

Behavior: Same as the method length (see §Th2T3320).

15.2.13.3.26 Hash#store

store (key, value)

Visibility: public

Behavior: Same as the method []= (see §TAiZT333).

15.2.13.3.27 Hash#value?

value? (value)

Visibility: public

Behavior: Same as the method has_value? (see §ThZ13314).

191

6

7

8

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

15.2.13.3.28 Hash#values

values

Visibility: public

Behavior: The method returns a newly created instance of the class Array which contains
all the values of the receiver. The order of the values stored are implementation defined.

15.2.14 Range
Instances of the class Range represent ranges between two values, the start and end point.
An instance of the class Range has the following properties:

start point: The value at the start of the range.

end point: The value at the end of the range.

exclusive flag: If this is true, the end point is excluded from the range. Otherwise, the
end point is included in the range.

When the method clone (see §Th-3T2R) or the method dup (see §LA-3T29) of the class Kernel
is invoked on an instance of the class Range, those properties shall be copied from the receiver
to the resulting value.

15.2.14.1 Direct superclass

The class Object

15.2.14.2 Included modules

The following module is included in the class Range.

° Enumerable

15.2.14.3 Instance methods

15.2.14.3.1 Range#==

==(other)

Visibility: public
Behavior:
a) If all of the following conditions hold, return true:

e the other is an instance of the class Range.

192

8

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

30

b)

e Let S be the start point of the other. Invocation of the method == on the start
point of the receiver with S as the argument results in a true value.

e Let E be the end point of the other. Invocation of the method == on the end point
of the receiver with F as the argument results in a true value.

e The exclusive flag of the receiver and the one of the other are the same boolean
value.

Otherwise, return false.

15.2.14.3.2 Range#===

Visibility: public

Behavior:

2)

If neither the start point of the receiver nor the end point of the receiver is an instance
of the class Numeric, the behavior is implementation dependent.

Invoke the method <=> on the start point of the receiver with the obj as the argument.
Let S be the result of this invocation.

1) If S is not an instance of the class Integer, the behavior is implementation de-
pendent.

2) If the value of S is larger than 0, return false.

Invoke the method <=> on the 0bj with the end point of the receiver as the argument.
Let E be the result of this invocation.

e If F is not an instance of the class Integer, the behavior is implementation de-
pendent.

e If the exclusive flag of the receiver is true, and the value of E is smaller than 0,
return true.

e If the exclusive flag of the receiver is false, and the value of F is smaller than or
equal to 0, return true.

e Otherwise, return false.

15.2.14.3.3 Range#begin

begin

Visibility: public

193

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Behavior: The method returns the start point of the receiver.

15.2.14.3.4 Range#each

each(&block)

Visibility: public

Behavior:

a)

b)

If the block is not given, the behavior is implementation dependent.

If an invocation of the method respond_to? on the start point of the receiver with a
direct instance of the class Symbol whose name is succ as the argument results in a
false value, raise a direct instance of the class TypeError.

Let V be the start point of the receiver.

Invoke the method <=> on V with the end point of the receiver as the argument. Let
C' be the resulting value.

1) If C is not an instance of the class Integer, the behavior is implementation
dependent.

2) If the value of C is larger than 0, return the receiver.
3) If the value of C is 0:
i) If the exclusive flag of the receiver is true, return the receiver.

ii) If the exclusive flag of the receiver is false, call the block with V as the
argument, then, return the receiver.

Call the block with V as the argument.
Invoke the method succ on V with no argument, and let new V be the resulting value.

Continue processing from Step d.

15.2.14.3.5 Range#end

end

Visibility: public

Behavior: The method returns the end point of the receiver.

15.2.14.3.6 Range#exclude_end?

194

4

-

2

13

14

15

16

17

18

19

20

21

22

23

exclude_end?

Visibility: public
Behavior: The method returns the exclusive flag of the receiver.

15.2.14.3.7 Range#first

first

Visibility: public
Behavior: Same as the method begin (see §IH214-33).

15.2.14.3.8 Range#include?

include?(obj)

Visibility: public
Behavior: Same as the method === (see §IZT437).

15.2.14.3.9 Range#initialize

initialize(left, right, exclusive=false)

Visibility: public
Behavior:

a) Invoke the method <=> on the left with the right as the argument. If an exception
is raised and not handled during this invocation, raise a direct instance of the class
ArgumentError. If the result of this invocation is not an instance of the class Integer,
the behavior is implementation dependent.

b) If the exclusive is a true value, let F' be true. Otherwise, let F be false.

c) Set the start point, end point, and exclusive flag of the receiver to the left, the right,
and F, respectively.

d) Return an implementation defined value.

15.2.14.3.10 Range#last

195

4

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

last

Visibility: public
Behavior: Same as the method end (see §TAZT43H).

15.2.14.3.11 Range#member?

member? (obj)

Visibility: public
Behavior: Same as the method === (see §IhZT437).

15.2.15 Regexp

Instances of the class Regexp represent regular expressions, and have the following properties.

pattern: A pattern of the regular expression (see §IAZT53). The default value of this

property is empty.

If the value of this property is empty when a method is invoked on an instance of the class
Regexp, except for the invocation of the method initialize, the behavior of the invoked

method is implementation dependent.

ignorecase: A boolean value which denotes whether a match is performed in the case

insensitive manner. The default value of this property is false.

[13

multiline: A boolean value which denotes whether the pattern
terminator (see §IA2ZTh3). The default value of this property is false.

15.2.15.1 Direct superclass
The class Object
15.2.15.2 Constants

The following constants are defined in the class Regexp.

IGNORECASE: An instance of the class Integer whose value is 2", where the integer n
is an implementation defined value. The value of this constant shall be different from that

of MULTILINE described below.

MULTILINE: An instance of the class Integer whose value is 2™, where the integer m

is an implementation defined value.

The above constants are used to set the ignorecase and multiline properties of an instance of

the class Regexp (see §IHZTIH61).

196

matches a line-

2

3

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

15.2.15.3 Patterns

Syntax

pattern
alternative
| patterny | alternatives

alternative

[empty |
| alternatives term

term
anchor
| atom
| atoms quantifier

anchor ::

)

quantifier ::
x |+ |7

atom
pattern-character
| grouping

| atom-escape-sequence

pattern-character ::
source-character but not regexp-meta-character

regexp-meta-character ::
e I R I O O

| future-reserved-meta-character

future-reserved-meta-character ::

C11]{]3}
grouping ::
(pattern)

atom-escape-sequence ::
decimal-escape-sequence
| regexp-character-escape-sequence

197

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

decimal-escape-sequence ::
\ decimal-digit-without-zero

regexp-character-escape-sequence ::
regexrp-escape-sequence
| regexp-non-escaped-sequence
| hex-escape-sequence
| regexp-octal-escape-sequence
| regexp-control-escape-sequence
regexp-escape-sequence ::
\ regexp-escaped-character

regexp-escaped-character ::
n|t|r|f|v]alelb

regexp-non-escaped-sequence ::
\ regexp-non-escaped-character

regexp-non-escaped-character ::
source-character but not regexp-escaped-character

regexp-octal-escape-sequence ::
octal-escape-sequence but not decimal-escape-sequence

regexp-control-escape-sequence ::
\ (C - | ¢) regexp-control-escaped-character

regexp-control-escaped-character ::
regexp-character-escape-sequence
| ?

| source-character butnot (\ | 7)

future-reserved-meta-characters are reserved for the extension of the pattern of regular expres-
sions.

Semantics

A pattern matches the following string:

a) If the pattern is an alternative;, it matches the string which the alternative; matches.

b) If the pattern is a patterny | alternatives, it matches the string which either the pattern; or
the alternatives matches.

An alternative matches the following string:

198

10

11

12

13

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

a)

b)

If the alternative is [empty], it matches an empty string.

If the alternative is an alternatives term, it matches the concatenation of two strings, the
one which the alternatives matches and the other which the term matches, in this order.

A term matches the following string:

a)

b)

If the term is an atom;, it matches the string which the atom; matches.

If the term is an atomse quantifier, it matches a string as follows:

1) If the quantifier is *, it matches zero or more strings which the atomy matches.
2) If the quantifier is +, it matches one or more strings which the atomy matches.
3) If the quantifier is 7, it matches at most one string which the atomy matches.

If the term is an anchor, it matches the position within the string S which the pattern is
matched against, as follows:

1) If the anchor is ~, it matches the beginning of S or the position just after a line-
terminator which is followed by at least one character.

2) If the anchor is $, it matches the end of S or the position just before a line-terminator.

An atom matches the following string:

a)

)

If the atom is a pattern-character, it matches a single character C' represented by the
pattern-character. If the atom occurs in the pattern of an instance of the class Regexp
whose ignorecase property is true, it also matches a corresponding uppercase character of
C, if C is a lowercase character, or a corresponding lowercase character of C, if C is an
uppercase character.

If the atom is a grouping, it matches the string which the grouping matches.
If the atom is “.”, it matches any character except for a line-terminator. If the atom occurs
in the pattern of an instance of the class Regexp whose multiline property is true, it also

matches a line-terminator.

If the atom is an atom-escape-sequence, it matches the string which the atom-escape-
sequence matches.

A grouping matches the string which the pattern matches.

An atom-escape-sequence matches the following string:

a)

If the atom-escape-sequence is a decimal-escape-sequence, it matches the string which the
decimal-escape-sequence matches.

If the atom-escape-sequence is a regexp-character-escape-sequence, it matches a string of
length one, the content of which is the character which the regexp-character-escape-sequence
represents.

199

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

A decimal-escape-sequence matches the following string:

Let 7 be an integer represented by decimal-digit-without-zero.

Let G be the ith grouping in the pattern, counted from 1, in the order of the occurrence of
“(” of groupings from the left of the pattern.

If the decimal-escape-sequence occurs before G within the pattern, it does not match any
string.

If G matches any string, the decimal-escape-sequence matches the same string.

Otherwise, the decimal-escape-sequence does not match any string.

A regexp-character-escape-sequence represents a character as follows:

A regexp-escape-sequence represents a character as shown in Table 0 in §855H 9.
A regexp-non-escaped-sequence represents a regexp-non-escaped—character.
A hez-escape-sequence represents a character as described in §85H 22

A regexp-octal-escape-sequence is interpreted in the same way as an octal-escape-sequence
(see 8O H 7).

A regexp-control-escape-sequence represents a character, the code of which is computed by
taking bitwise AND of 0x9f and the code of the character represented by the regexp-control-
escaped-character, except when the regexp-control-escaped-character is 7, in which case, the
regexp-control-escape-sequence represents a character whose code is 127.

15.2.15.4 Matching process

A pattern P is considered to successfully match the given string S, if there exists a substring of
S (including S itself) which P matches, satisfying the following conditions.

a)

If P is of the form pattern; | alternatives, and if both the pattern; and the alternativey
matches some substrings, the matched substring is the one among the substrings matched
by the pattern; which meets conditions B and o as follows.

If P matches more than one substrings, the substring which begins earliest in S is the
matched substring. This condition takes precedence over the condition o.

If there are more than one substrings which satisfy the condition B, the longest one is the
matched substring.

These conditions are applied to any substring matched by any sub-pattern of P as much as
possible in the way that the resulting substring matched by P still satisfies the conditions a, B
and o.

When a numerical offset is specified, P is matched against the part of S which begins at the
offset. Note, however, that if the match succeeds, the string property of the resulting instance
of the class MatchData is S, not the part of S which begins at the offset, as described below.

200

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

A matching process returns either an instance of the class MatchData (see §I521Hd) if the match
succeeds or nil if the match failed.

An instance of the class MatchData is created as follows:

a) Let B be the substring of S which P matched.

b) Create a direct instance of the class MatchData, and let M be the instance.
c) Set the string of M to S.

d) Create a new empty list L.

e) Let O be an ordered pair whose first element is B and whose second element is the offset
of the first character of B within S, counted from 0. Append O to L.

f) For each grouping G in P, in the order of the occurrence of its “(” within P, take the
following steps:

1) If G contributed to the match of P, let B be the substring which G matched. Let O
be an ordered pair whose first element is B and whose second element is the offset of
the first character of B within S, counted from 0. Append O to L.

2) Otherwise, append to L an ordered pair whose elements are both nil.
g) Set the match result of M to L.
h) M is the instance of the class MatchData returned by the matching process.

[1%aM]

A matching process creates or updates a local variable binding with name
cally used by the method Regexp.last match (see §IHZIH5H3), as follows:

, which is specifi-

a) Let M be the value which the matching process returns.

b) If the binding for the name “”” can be resolved by the process described in §811 as if “7”
were a local-variable-identifier, replace the value of the binding with M.

c) Otherwise, create a local variable binding with name “~” and value M in the uppermost non-
block element of [local-variable-bindings] where the non-block element means the element
which does not correspond to a block.

A conforming processor may name the binding other than “7”; however, it shall not be of the

form local-variable-identifier.

15.2.15.5 Singleton methods

15.2.15.5.1 Regexp.compile

Regexp.compile(*args)

201

3

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Visibility: public

Behavior: Same as the method new (see §ThZ3723).

15.2.15.5.2 Regexp.escape

Regexp.escape(string)

Visibility: public
Behavior:

a) If the string is not an instance of the class String, the behavior is implementation
dependent.

b) Let S be the content of the string.
¢) Return a new instance of the class String whose content is same as S, except that every

occurrences of characters on the left of Table B are replaced with the corresponding
sequences of characters on the right of the Table B.

15.2.15.5.3 Regexp.last_match

Regexp.last match(*xinder)

202

Visibility: public
Behavior:

a) Search for a binding of a local variable with name “7” as described in §811 as if “7”
were a local-variable-identifier.

b) If the binding is found and its value is an instance of the class MatchData, let M be
the instance. Otherwise, return nil.

c) If the length of the index is 0, return M.
d) If the length of the index is larger than 1, raise a direct instance of the class ArgumentError.
e) If the length of the index is 1, let A be the only argument.

f) If A is not an instance of the class Integer, the behavior of the method is implemen-
tation dependent.

g) Let R be the result returned as if by invoking the method [] on M with A as the only
argument (see §CHZ1621).

h) Return R.

1

5

6

Table 3 — Regexp escaped characters

Characters replaced

Escaped sequence

0x0a
0x09
0x0d
0x0c
0x20
#

¥ N~ o~ &V

N

e

—— —

\n
\t
\r
\f
\0x20
\#
\$
\ (
\)
\ *
\+
\-
\.
\?
\[
\\
\]
\"
M
\
\}

15.2.15.5.4 Regexp.quote

Regexp.quote

Visibility: public

Behavior: Same as the method escape (see §ThiZThh 7).

15.2.15.6 Instance methods

15.2.15.6.1 Regexp#initialize

initialize(source, flag)

Visibility: private

Behavior:

203

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

e)

f)

If the source is an instance of the class Regexp, let S be the pattern of the source.
If the source is an instance of the class String, let S be the content of the source.
Otherwise, the behavior is implementation dependent.

If S cannot be derived from the pattern (§I2Th3), raise a direct instance of the class
RegexpError.

Set the pattern of the receiver to S.

If the flag is an instance of the class Integer, let n be its value.

1) If computing bitwise AND of the value of Regexp: : IGNORECASE and n results in
non-zero value, set the ignorecase property of the receiver to true.

2) If computing bitwise AND of the value of Regexp: :MULTILINE and n results in
non-zero value, set the multiline property of the receiver to true.

If the flag is true value other than an instance of the class Integer, set the ignorecase
property of the receiver to true.

Return an implementation defined value.

15.2.15.6.2 Regexp#initialize_copy

initialize_copy(original)

Visibility: private

Behavior:

a)

If the original is not an instance of the class of the receiver, raise a direct instance of
the class TypeError.

Set the pattern of the receiver to the patten of the original.
Set the ignorecase property of the receiver to the ignorecase property of the orginal.
Set the multiline property of the receiver to the multiline property of the orginal.

Return an implementation defined value.

15.2.15.6.3 Regexp#==

==(other)

204

Visibility: public

Behavior:

4

10

11

12

13

14

-

5

16

17

18

19

20

21

22

23

24

25

26

27

a)

b)

)

If the other is not an instance of the class Regexp, return false.
If the corresponding properties of the receiver and the other are the same, return true.

Otherwise, return false.

15.2.15.6.4 Regexp#===

=(string)

Visibility: public

Behavior:

a)

If the string is not an instance of the class String, the behavior is implementation
dependent.

Let S be the content of the string.

Match the pattern of the receiver against S (see §Th2 153 and Step [Thi-Z154). Let M
be the result of the matching process.

If M is an instance of the class MatchData, return true.

Otherwise, return false.

15.2.15.6.5 Regexp#="

=~ (string)

Visibility: public

Behavior:

2)

If the string is not an instance of the class String, the behavior is implementation
dependent.

Let S be the content of the string.

Match the pattern of the receiver against S (see §IoZTh3 and Step (21 4). Let M
be the result of the matching process.

If M is nil return nil.

If M is an instance of the class MatchData, let P be first element of the match result
property of M, and let 7 be the second element of P.

Return an instance of the class Integer whose value is .

205

5

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

15.2.15.6.6 Regexp#£casefold?

casefold?

Visibility: public
Behavior: The method returns the value of the ignorecase property of the receiver.

15.2.15.6.7 Regexp#match

match(string)

Visibility: public
Behavior:

a) If the string is not an instance of the class String, the behavior is implementation
dependent.

b) Let S be the content of the string.

¢) Match the pattern of the receiver against S (see §ToiZTh3 and Step IiZTo4). Let M
be the result of the matching process.

d) Return M.

15.2.15.6.8 Regexp#source

source

Visibility: public

Behavior: The method returns a direct instance of the class String whose content is the
pattern of the receiver.

15.2.16 MatchData

Instances of the class MatchData represent results of successful matches of instances of the class
Regexp against instances of the class String.

An instance of the class MatchData has the properties called string and match result, which
are initialized as described in §IAZTH4. Elements of the match result are indexed by integers

starting from 0.

Given an instance of the class MatchData M, the matched substring, pre-match and post-
match of M are defined as follows:

206

10

11

12

13

14

16

17

=

8

20

21

22

23

24

25

26

27

Let S be the string of M. Let F' be the first element of the match result of M. Let B and O be
the first portion (the substring matched) and the second portion (offset of that substring) of F.
Let ¢ be the sum of O and the length of B.

matched substring: The matched substring of M is B.

pre-match: The pre-match of M is a part of S, from the first up to, but not including the
Oth character of S.

post-match: The post-match of M is a part of S, from the ith up to the last character of
S.

15.2.16.1 Direct superclass
The class Object
15.2.16.2 Instance methods

15.2.16.2.1 MatchData#|]

[1 (*args)

Visibility: public
Behavior: The method behaves as if the method to_a were invoked on the receiver (see

§I 2162 17), and then, the method [] were invoked on the resulting instance of the class
Array with the same arguments passed to an invocation of this method (see §ITAZTZ44).

15.2.16.2.2 MatchData#begin

begin(index)

Visibility: public
Behavior:

a) If the index is not an instance of the class Integer, the behavior is implementation
dependent.

b) Let L be the match result of the receiver, and let i be the value of the index.

c) If 4 is smaller than 0 or equal to, or larger than the number of elements of L, raise a
direct instance of the class IndexError.

d) Otherwise, return the second portion of the ith element of L.

15.2.16.2.3 MatchData#captures

207

=

0

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

captures

Visibility: public

Behavior:

2)

b)

c)

d)

Let L be the match result of the receiver.

Create an empty direct instance of the class Array A.

Except for the first element, for each element e of L, in the same order in the list,
append to A a direct instance of the class String whose content is the first portion of

€.

Return A.

15.2.16.2.4 MatchData#end

end (index)

Visibility: public

Behavior:

a)

If the indez is not an instance of the class Integer, the behavior is implementation
dependent.

Let L be the match result of the receiver, and let ¢ be the value of the index.

If ¢ is smaller than 0 or equal to, or larger than the number of elements of L, raise a
direct instance of the class IndexError.

Let F and § be the first and the second portions of the ith element of L.
If Fis nil, return nil.

Otherwise, let f be the length of F. Return an instance of the class Integer whose
value is the sum of S and f.

15.2.16.2.5 MatchData#initialize_copy

initialize_copy(original)

208

Visibility: private

Behavior:

7

10

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

d)

If the original is not an instance of the class of the receiver, raise a direct instance of
the class TypeError.

Set the string property of the receiver to the string property of the original.

Set the match result property of the receiver to the match result property of the
original.

Return an implementation defined value.

15.2.16.2.6 MatchData#length

length

Visibility: public

Behavior: The method returns the number of elements of the match result of the receiver.

15.2.16.2.7 MatchData#offset

offset (index)

Visibility: public

Behavior:

a)

If the indez is not an instance of the class Integer, the behavior is implementation
dependent.

Let L be the match result of the receiver, and let ¢ be the value of the index.

If 7 is smaller than 0 or equal to, or larger than the number of elements of L, raise a
direct instance of the class IndexError.

Let S and b be the first and the second portions of the ith element of L. Let e be the
sum of b and the length of S.

Return a new instance of the class Array which contains two instances of the class
Integer, the one whose value is b and the other whose value is e, in this order.

15.2.16.2.8 MatchData#post_match

post_match

Visibility: public

Behavior: The method returns an instance of the class String the content of which is the
post-match of the receiver.

209

=

0

11

12

13

14

-

5

16

17

18

19

20

21

22

23

15.2.16.2.9 MatchData#pre_match

pre_match

Visibility: public

Behavior: The method returns an instance of the class String the content of which is the
pre-match of the receiver.

15.2.16.2.10 MatchData#size

size

Visibility: public

Behavior: Same as the method length (see §IhZT1620).

15.2.16.2.11 MatchData#string

string

Visibility: public

Behavior: The method returns an instance of the class String the content of which is the
string of the receiver.

15.2.16.2.12 MatchData#to_a

to.a

Visibility: public

Behavior:

a) Let L be the match result of the receiver.

b) Create an empty direct instance of the class Array A.

¢) For each element e of L, in the same order in the list, append to A an instance of the
class String whose content is the first portion of e.

d) Return A.

15.2.16.2.13 MatchData#to_s

210

2 Visibility: public
3 Behavior: The method returns an instance of the class String the content of which is the
4 matched substring of the receiver.

5 15.2.17 Proc

¢ Instances of the class Proc represent blocks.

7 An instance of the class Proc has the following property.
8 block: The block represented by the instance.

9 15.2.17.1 Direct superclass

10 The class Object

un 15.2.17.2 Singleton methods

12 15.2.17.2.1 Proc.new

13 Proc.new(&block)

14 Visibility: public

15 Behavior:

16 a) If the block is given, let B be the block.

17 b) Otherwise:

18 1) If the top of [block] is block-not-given, raise a direct instance of the class ArgumentError.
19 2) Otherwise, let B be the top of [block] .

20 ¢) Create a new instance of the class Proc which has B as its block.

21 d) Return the instance.

» 15.2.17.3 Instance methods

3 15.2.17.3.1 Proc#]]

2% [1 (*args)

211

1 Visibility: public
2 Behavior: Same as the method call (see §IAZT733).

3 15.2.17.3.2 Proc#arity

4 arity

5 Visibility: public

6 Behavior: Let B be the block represented by the receiver.

7 a) If a block-formal-argument does not occur in B, return an instance of the class Integer
8 whose value is implementation defined.

9 b) If a block-formal-argument occurs in B:

10 1) If a block-formal-argument-list does not occur in the block-formal-argument, return
11 an instance of the class Integer whose value is 0.

12 2) If a block-formal-argument-list occurs in the block-formal-argument:

13 i) If the block-formal-argument-list is of the form left-hand-side, return an in-
14 stance of the class Integer whose value is 1.

15 ii) If the block-formal-argument-list is of the form multiple-left-hand-side:

16 I) 1If the multiple-left-hand-side is of the form grouped-left-hand-side, return
17 an instance of the class Integer whose value is implementation defined.
18 IT) If the multiple-left-hand-side is of the form packing-left-hand-side, return
19 -1.

20 IIT) Otherwise, let n be the number of multiple-left-hand-side-items of the
21 multiple-left-hand-side.

2 IV) If the multiple-left-hand-side ends with a packing-left-hand-side, return
23 an instance of the class Integer whose value is -(n+1).

2 V) Otherwise, return an instance of the class Integer whose value is n.

s 15.2.17.3.3 Proc#call

2% call(*args)
27 Visibility: public
28 Behavior: Let B be the block of the receiver. Let L be an empty list.

212

4

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

a) Append each element of the args, in the indexing order, to L.

b) Call B with L as the arguments (see §T124). Let V be the result of the call.

¢) Return V.

15.2.17.3.4 Proc#clone

clone

Visibility: public

Behavior:

a) Create a direct instance of the class of the receiver which has no bindings of instance
variables. Let O be the newly created instance.

b) For each binding B of the instance variables of the receiver, create a variable binding
with the same name and value as B in the set of bindings of instance variables of O.

c) If the receiver is associated with an eigenclass, let E, be the eigenclass, and take the
following steps:

1)

5)

Create an eigenclass whose direct superclass is the direct superclass of E,. Let E,
be the eigenclass.

For each binding B,; of the constants of E,, create a variable binding with the
same name and value as B,; in the set of bindings of constants of E,.

For each binding B, of the class variables of E,, create a variable binding with
the same name and value as B,o in the set of bindings of class variables of FE,,.

For each binding B,, of the instance methods of E,, create a method binding with
the same name and value as B, in the set of bindings of instance methods of E,.

Associate O with E,,.

d) Set the block of O to the block of the receiver.

e) Return O.

15.2.17.3.5 Proc#dup

dup

Visibility: public

Behavior:

213

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

a) Create a direct instance of the class of the receiver which has no bindings of instance
variables. Let O be the newly created instance.

b) Set the block of O to the block of the receiver.

c¢) Return O.
15.2.18 Struct
The class Struct is a generator of a structure type which is a class defining a set of fields
and methods for accessing these fields. Fields are indexed by integers starting from 0 (see
§IH2TR2T). An instance of a generated class has values for the set of fields. Those values can
be referenced and updated with accessor methods for their fields.
15.2.18.1 Direct superclass
The class Object

15.2.18.2 Singleton methods

15.2.18.2.1 Struct.new

Struct.new(string, *symbol_list)

Visibility: public

Behavior: The method creates a class defining a set of fields and accessor methods for
these fields.

When the method is invoked, take the following steps:

a) Create a direct instance of the class Class which has the class Struct as its direct
superclass. Let C' be that class.

b) If the string is not an instance of the class String or the class Symbol, the behavior is
implementation dependent.

c) If the string is an instance of the class String, let N be the content of the instance.

1) If N is not of the form constant-identifier, raise a direct instance of the class
ArgumentError error.

2) Otherwise,

i) If the binding with name N exists in the set of bindings of constants in the
class Struct, replace the value of the binding with C.

ii) Otherwise, create a constant binding in the class Struct with name N and
value C.

d) If the string is an instance of the class Symbol, prepend the instance to the symbol_list.

214

10

11

12

13

14

15

16

18

19

20

21

22

23

24

25

26

e) Let i be 0.

f) For each element S of the symbol_list, take the following steps:
1) Let N be the name designated by S.
2) Define a field, which is named N and is indexed by 4, in C.

3) If N is of the form local-variable-identifier or constant-identifier:

i) Define a method named N in C which takes no arguments, and when invoked,
returns the value of the field named N.

ii) Define a method named N= (i.e. N postfixed by “=”) in C which takes one

argument, and when invoked, sets the value of the field named N to the given
argument and returns the argument.

4) Increment i by 1.
g) Return C.

Singleton methods of classes created by the Struct.new

Classes created by the method Struct.new are equipped with public singleton methods new,
[1, and members. The following describes those methods, assuming that the name of a class
created by the method Struct.new is C.

C .new(*args)

Visibility: public
Behavior:

a) Create a direct instance of the class with the set of fields the receiver defines. Let I be
the instance.

b) Invoke the method initialize on [with the args as the list of arguments.

¢) Return L

C.[1(*args)

Visibility: public

Behavior: Same as the method new described above.

215

1 C .members

2 Visibility: public

3 Behavior:

4 a) Create a direct instance of the class Array which contains instances of the class String,
5 each of which represents a field name of the receiver. Let A be the instance of the class
6 Array.

7 The elements in A are arranged in the indexing order of corresponding fields.

8 b) Return A.

o 15.2.18.3 Instance methods

o 15.2.18.3.1 Struct#==

-

1 ==(other)

12 Visibility: public

13 Behavior:

14 a) If the other and the receiver is the same object, return true.

15 b) If the class of the other and that of the receiver are different, return false.

16 ¢) Otherwise, for each field named f of the receiver, take the following steps:

17 1) Let R and O be the values of the fields named f of the receiver and the other
18 respectively.

19 2) If R and O are not the same object,

20 i) Invoke the method == on R with O as the only argument. Let V be the
21 resulting value of the invocation.

22 ii) If V is a false value, return false.

2 d) Return true.

2 15.2.18.3.2 Struct#]]

25 [1(name)

26 Visibility: public

216

10

11

12

[

4

15

16

17

18

19

20

21

22

23

24

25

26

27

Behavior:

a)

c)

If the name is an instance of the class Symbol or the class String:

1) Let N be the name designated by the name.
2) If the receiver has the field named N, return the value of the field.

3) Otherwise, let S be an instance of the class Symbol with name N and raise a direct
instance of the class NameError which has S as its name property.

If the name is an instance of the class Integer, let ¢ be the value of the name. Let n
be the number of the fields of the receiver.

1) If i is negative, replace i with n + i.

2) If ¢ is still negative or i equal or larger than n, raise a direct instance of the class
IndexError.

3) Otherwise, return the value of the field whose index is i.

Otherwise, the behavior of the method is implementation dependent.

15.2.18.3.3 Struct#[|=

(1 =(name, obj)

Visibility: public

Behavior:

a)

If the name is an instance of the class Symbol or an instance of the class String:

1) Let N be the name designated by the name.

2) If the receiver has the field named N,

i) Replace the value of the field with the obj,

ii) Return the obj.

3) Otherwise, let S be an instance of the class Symbol with name N and raise a direct
instance of the class NameError which has S as its name property.

If the string is an instance of the class Integer, let ¢ be the value of the name. Let n
be the number of the fields of the receiver.

1) If i is negative, replace i with n + i.

217

7

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

)

2) If ¢ is still negative or 7 equal or larger than n, raise a direct instance of the class
IndexError.

3) Otherwise,

i) Replace the value of the field whose index is ¢ with the obj

ii) Return the obj.

Otherwise, the behavior of the method is implementation dependent.

15.2.18.3.4 Struct#each

each(&block)

Visibility: public

Behavior:

2)

b)

c)

If the block is not given, the behavior is implementation dependent.

For each field of the receiver, in the indexing order, call the block with the value of the
field as the only argument.

Return the receiver.

15.2.18.3.5 Struct#each_pair

each _pair(&block)

Visibility: public

Behavior:

a)

b)

c)

If the block is not given, the behavior is implementation dependent.

For each field of the receiver, in the indexing order, take the following steps:

1) Let N and V be the name and the value of the field respectively. Let S be an
instance of the class Symbol with name N.

2) Call the block with the list of arguments which contains S and V in this order.

Return the receiver.

15.2.18.3.6 Struct#members

218

1 members

2 Visibility: public
3 Behavior: Same as the method members described in §IAZTRI.

4+ 15.2.18.3.7 Struct#select

5 select (&block)

6 Visibility: public

7 Behavior:

8 a) If the block is not given, the behavior is implementation dependent.

9 b) Create an empty instance the class Array. Let A be the instance.

10 c) For each field of the receiver, in the indexing order, take the following steps:
1 1) Let V be the value of the field.

12 2) Call the block with V as the only argument. Let R be the resulting value of the
13 call.

14 3) If R is a true value, append V to A.

15 d) Return A.

16 15.2.18.3.8 Struct#initialize

17 initialize(*args)

18 Visibility: private

10 Behavior: Let N, be the length of the args, and let Ny be the number of the fields of the
20 receiver.

21 a) If N, is larger than Ny, raise a direct instance of the class ArgumentError.

2 b) Otherwise, for each field f of the receiver, let ¢ be the index of f, and set the value of f
23 to the ith element of the args, or to nil when i is equal to or larger than N,.

2 ¢) Return an implementation defined value.

s 15.2.18.3.9 Struct#initialize_copy

219

1 initialize_copy(original)

2 Visibility: private

3 Behavior:

4 a) If the receiver and the original are the same object, return an implementation defined
5 value.

6 b) If the original is not an instance of the class of the receiver, raise a direct instance of
7 the class TypeError.

8 c) If the number of the fields of the receiver and the number of the fields of the original
9 are different, raise a direct instance of the class TypeError.

10 d) For each field f of the original, let i be the index of f, and set the value of the ith field
1 of the receiver to the value of f.

12 e) Return an implementation defined value.

13 15.2.19 Time
12 Instances of the class Time represent dates and times.

15 An instance of the class Time holds the following data.

16 Microseconds: Microseconds since January 1, 1970 00:00 UTC. Microseconds is an inte-
17 ger whose range is implementation defined. If an out of range value is given as microsec-
18 onds when creating an instance of the class Time, a direct instance of either of the class
19 ArgumentError or the class RangeError shall be raised.

20 Time zone: The time zone.

z2 15.2.19.1 Direct superclass

22 The class Object

» 15.2.19.2 Time computation

2« Mathematical functions introduced in this subclause are used throughout the descriptions in
25 §IOXTY. These functions are assumed to compute exact mathematical results using mathemat-
26 ical real numbers.

7 15.2.19.2.1 Day

The number of microseconds of a day is computed as follows:

MicroSecPerDay = 24 x 60 x 60 x 10°

220

6

7

8

The number of days since January 1, 1970 00:00 UTC which corresponds to microseconds t is
computed as follows:

t
Day(t) = fl
ay(t) = floor <MicroSecPerDay)
floor(t) = The integer x such that z <t <z +1

The weekday which corresponds to microseconds ¢ is computed as follows:

WeekDay(t) = (Day(t) +4) modulo 7

15.2.19.2.2 Year

A year has 365 days, except for leap years, which have 366 days. Leap years are those which
are either:

e divisible by 4 and not divisible by 100, or

e divisible by 400.

The number of days from January 1, 1970 00:00 UTC to the beginning of a year y is computed
as follows:

-1 — 1901 — 1601
DayFromY ear(y) = 365 (y—1970)+ floor <w> —floor (3/10090) + floor (ylm()>

Microseconds elapsed since January 1, 1970 00:00 UTC until the beginning of ¥ is computed as
follows:

MicroSecFromY ear(y) = DayFromY ear(y) X MicroSecPerDay

The year number y which corresponds to microseconds ¢ measured from January 1, 1970 00:00
UTC is computed as follows.

YearFromTime(t) = y such that, MicroSecFromYear(y —1) <t < MicroSecFromY ear(y)

The number of days from the beginning of the year for the given microseconds t is computed as
follows.

DayWithinY ear(t) = Day(t) — DayFromY ear(Y ear FromTime(t))

15.2.19.2.3 Month

Months have usual number of days. Leap years have the extra day in February. Each month is
identified by the number in the range 1 to 12, in the order from January to December.

221

1

2

The month number which corresponds to microseconds ¢ measured from January 1, 1970 00:00

UTC is computed as follows.

;

if 0 < DayWithinY ear(t) < 31
if 31 < DayWithinY ear(t) < 59

if 120 + LeapY ear(t
if 151 4+ LeapYear(t
if 181 + LeapY ear(t
if 212 + LeapY ear(t

(
MonthFromTime(t) = E
(

if 243 + LeapY ear(t
(
(
(

© 00 N O Ot ks W NN

—
o

if 273 4+ LeapYear(t
if 304 + LeapY ear(t
if 334 + LeapY ear(t

—_
—_

VAN VAN VAN VAN VAN VAN VAR VA

— — ' O~ — — ~— —

—_
[\

1 if Year FromTime(t) is a leap year

0 otherwise

LeapYear(t) = {

15.2.19.2.4 Days of month

if 59 + LeapY ear(t) < DayWithinY ear(t) < 90 + LeapY ear(t)

if 90 + LeapYear(t) < DayWithinY ear(t) < 120 + LeapY ear(t)
DayWithinY ear(t) < 151 + LeapY ear(t
DayWithinY ear(t) < 180 + LeapY ear(t
DayWithinY ear(t) < 212 4+ LeapY ear(t
DayWithinY ear(
DayWithinY ear(
Da (
D (
Da (

t
t

(t)
(t)
(t)
< 243 + LeapY ear(t)
< 273 + LeapY ear(t)
(t)
(t)
(t)

yWithinY ear(t) < 304 + LeapY ear(t
ayWithinY ear(t) < 334 + LeapY ear(t
yWithinY ear(t) < 365 + LeapY ear(t

~— — — — — — ~— ~—

The day of the month which corresponds to microseconds ¢ measured from January 1, 1970

00:00 UTC is computed as follows.

(Dasz'thinYear t)+1
DayWithinY ear(t) — 30
DayWithinY ear(t) — 58 — LeapY ear

DayWithinMonth(t) =

(
(
(
(
(
(
DayWithinY ear(t
(
(
(
(
(

15.2.19.2.5 Hours, Minutes, and Seconds

)

) =

) -

DayWithinY ear(t) — 89 — LeapY ear(t

DayWithinY ear(t) — 119 — LeapY ear(t

DayWithinY ear(t) — 150 — LeapY ear(t
) — 180 — LeapY ear(t

DayWithinY ear(t) — 211 — LeapY ear

DayWithinY ear(t) — 242 — LeapY ear

DayWithinY ear(t) — 272 — LeapY ear(t

DayWithinY ear(t) — 303 — LeapY ear(t

DayWithinY ear(t) — 333 — LeapY ear(t

if MonthFromTime(t
if MonthFromTime(t
if MonthFromTime(t
if MonthFromTime(t
if MonthFromTime(t
if MonthFromTime(t
(
(
(
(
(
(

if MonthFromTime(t
if MonthFromTime(t
if MonthFromTime(t
if MonthEFromTime(t
if MonthFromTime(t
if MonthFromTime(t

Il
H»—AHCOOO\]@CH»J;OJ[\DH

)
)
)
)
)
)
)
)
)
)
)
)

The number of microseconds in an hour, a minute, a second are as follows:

MicroSecPer Hour = 60 x 60 x 10°
MicroSecPer Minute = 60 x 10°
MicroSecPerSecond = 10°

222

10

11

12

13

14

15

16

17

18

19

20

The hour, the minute, and the second which correspond to microseconds ¢ measured from
January 1, 1970 00:00 UTC are computed as follows.

t
HourF T1 = lo 24
our FromTime(t) = floor <Mz'croSecPerHour> modulo
. . t
MinuteFromTime(t) = floor <MicroSecPerMinute> modulo 60
t
F JK = 1
SecondFromTime(t) = floor (MicroSecPerSecond) modulo 60

15.2.19.3 Time zone and Local time

The current time zone is determined from time zone information provided by the underlying
system. If the system does not provide information on the current time zone, the time zone of
an instance of the class Time is implementation defined.

The local time for an instance of the class Time is computed from its microseconds ¢ and time
zone z as follows.

LocalTime =t + ZoneOf fset(z)
ZoneOf fset(z) = UTC offset of z measured in microseconds
15.2.19.4 Daylight saving time
On system where it is possible to determine the daylight saving time for each time zone, a
conforming processor should adjust the microseconds of an instance of the class Time if that
microseconds falls within the daylight saving time of the time zone of the instance. An algorithm
used for the adjustment is implementation defined.

15.2.19.5 Singleton methods

15.2.19.5.1 Time.at

Time.at (*args)

Visibility: public
Behavior:

a) If the length of the args is 0 or larger than 2, raise a direct instance of the class
ArgumentError.

b) If the length of the args is 1, let A be the only argument.

1) If Ais an instance of the class Time, return a new instance of the class Time which
represents the same time and has the same time zone as A.

2) If A is an instance of the class Integer or an instance of the class Float:

223

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

3)

ii)

iii)

iv)

If A is an instance of the class Integer, let Ng be the value of A. Let Njys be
0.

If A is an instance of the class Float, let F' be the value of A. Let Ng be the
largest integer such that Ng < F'. Let Nj; be an integer which is the result
of computing (F — Ng) x 10°, rounded off the first decimal place.

Create a direct instance of the class Time which represents the time at Ng x
105 + Nj; microseconds since January 1, 1970 00:00 UTC, with the current

local time zone.

Return the resulting instance.

Otherwise, the behavior is implementation dependent.

If the length of the args is 2, let S and M be the first and second element of the args.

)

4)

i)
ii)

iii)

If S is an instance of the class Integer, let Ng be the value of A.

If S is an instance of the class Float, let F' be the value of A. If F' is positive,
let Np; be the largest integer such that N < F. Otherwise, let Nys be the
smallest integer such that N > F.

Otherwise, the behavior is implementation dependent.

Compute an integer which corresponds to M in the same way as S as described
in Step E=I=1 and £=I=11. Let Nj; be the integer.

Create a direct instance of the class Time which represents the time at Ng x 106 +
N microseconds since January 1, 1970 00:00 UTC, with the current local time
zone.

Return the resulting instance.

15.2.19.5.2 Time.gm

Time.gm(year, month=1, day=0, hour=0, min=0, sec=0, usec=0)

224

Visibility: public

Behavior:

a)

Compute an integer value for the year, day, hour, min, sec, and usec as described
below. Let Y, D, H, Min, S, and U be integers thus converted.

An integer [is determined from the given object O as follows:

1)

2)

If O is an instance of the class Integer, let I be the value of O.

If O is an instance of the class Float, let I be the integral part of the value of O.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

3)

4)

If O is an instance of the class String:

i) If the content of O is a sequence of decimal-digits, let I be the value of those
sequence of digits computed using base 10.

ii) Otherwise, the behavior is implementation dependent.

Otherwise, the behavior is implementation dependent.

Compute an integer value from the month as follows:

)

)

If the month is not an instance of the class String, the behavior is implementation
dependent.

If the content of the month is the same as one of the names of the months in
the upper row on Table B, ignoring the differences in case, let Mon be the integer

which corresponds to the month in the lower row on the same table.

If the first character of the month is decimal-digit, compute an integer value from
the month as in Step m. Let Mon be the resulting integer.

Otherwise, raise a direct instance of the class ArgumentError.

If Y is an integer such that 0 <Y < 38, replace Y with 2000 + Y.

If Y is an integer such that 69 <Y < 138, replace Y with 1900 4+ Y.

If each integer computed above is outside the range as listed below, raise a direct
instance of the class ArgumentError.

1< Mon <12
1<D<31
0<H<23
0 < Min <59

0<5<60

Whether any conditions are placed on Y is implementation defined.

Let t be an integer which satisfies all of the following equations.

YearFromTime(t) =Y
MonthFromTime(t) = Mon

DayWithinMonth(t) = 1

225

4

10

-

3

14

15

16

17

18

-

9

g) Compute microseconds T as follows.

T =t+ D x MicroSecPerDay + H x MicroSecPerHour+
Min x MicroSecPerMinute + S x 10° + U

h) Create a direct instance of the class Time which represents the time at 7 since January
1, 1970 00:00 UTC, with the UTC time zone.

i) Return the resulting instance.

Table 4 — The names of months and corresponding integer

1 2 3 4) 6 7 8 9 10 | 11 | 12
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec

15.2.19.5.3 Time.local

Time.local (year, month=1, day=0, hour=0, min=0, sec=0, usec=0)

Visibility: public

Behavior: Same as the method Time.gnm (see §I52ZTIH), except that the method returns
a direct instance of the class Time which has the current local time zone as its time zone.

15.2.19.5.4 Time.mktime

Time.mktime (year, month=1, day=0, hour=0, min=0, sec=0, usec=0)

Visibility: public

Behavior: Same as the method Time.local (see §IH2T9hH3).

15.2.19.5.5 Time.now

Time.now

Visibility: public

Behavior: This method returns a direct instance of the class Time which represents the
current time with the current time zone.

The behavior of this method is the same as the method new (see §IAZ323J).

15.2.19.5.6 Time.utc

226

4

5

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Time.utc(year, month=1, day=0, hour=0, min=0, sec=0, usec=0)

Visibility: public

Behavior: Same as the method Time.gnm (see §IEZTIH).

15.2.19.6 Instance methods

15.2.19.6.1 Time#+

+(offset)

Visibility: public

Behavior:

2)

f

If the offset is not an instance of the class Integer or the class Float, the behavior is
implementation dependent.

Let V be the value of the offset.

Let o be an integer which is the result of computing V x 109, rounded of the first
decimal place, if any.

Let ¢ and z be the microseconds and time zone of the receiver.

Create a direct instance of the class Time which represents the time at (t+ o) microsec-
onds since January 1, 1970 00:00 UTC, with z as its time zone.

Return the resulting instance.

15.2.19.6.2 Time#—

-Coffset)

Visibility: public

Behavior:

2)

If the offset is not an instance of the class Integer or the class Float, the behavior is
implementation dependent.

Let V be the value of the offset.

Let o be an integer which is the result of computing V x 109, rounded of the first
decimal place, if any.

227

5

10

11

12

13

14

15

16

17

18

19

20

21

22

f)

Let ¢ and z be the microseconds and time zone of the receiver.

Create a direct instance of the class Time which represents the time at t—o microseconds
since January 1, 1970 00:00 UTC, with z as its time zone.

Return the resulting instance.

15.2.19.6.3 Time#<=>

<=>(other)

Visibility: public

Behavior:

a)

b)

If the other is not an instance of the class Time, return nil.

Otherwise, let T;. and T, be microseconds of the receiver and the other, respectively.
1) If T, > T,, return an instance of the class Integer whose value is 1.

2) If T, = T,, return an instance of the class Integer whose value is 0.

3) If T, < T,, return an instance of the class Integer whose value is -1.

15.2.19.6.4 Time#asctime

asctime

228

Visibility: public

Behavior:

a)

b)

Compute the local time from the receiver (see §TaiZT93). Let ¢ be the result.

Let W be the name of the day of the week in the second row on Table B which
corresponds to WeekDay(t) in the upper row on the same table.

Let Mon be the name of the month in the second row on Table B which corresponds
to MonthFromTime(t) in the upper row on the same table.

Let D, Min, S, and Y be as follows:

D = DayWithinMonth(t)
H = HourFromTime(t)
M = Minute FromTime(t)
S = SecondFromTime(t)
Y = YearFromTime(t)

e) Create a direct instance of the class String, the content of which is the following
sequence of characters:

W Mon D H:M:S'Y <line-terminator>

1 f) Return the resulting instance.

Table 5 — The names of the days of the week corresponding integer

0 1 2 3 4 516
Sun | Mon | Tue | Wed | Thu | Fly | Sat

> 15.2.19.6.5 Time#ctime

3 ctime
4 Visibility: public
5 Behavior: Same as the method asctime (see §IH2T1U64).

6 15.2.19.6.6 Time#day

7 day

8 Visibility: public

9 Behavior:

10 a) Compute the local time from the receiver (see §InZT93). Let ¢ be the result.
1 b) Compute DayWithinMonth(t).

12 ¢) Return an instance of the class Integer whose value is the result of Step B.

13 15.2.19.6.7 Time#dst?

14 dst?

15 Visibility: public

16 Behavior: Let T and Z be the microseconds and time zone of the receiver.
17 a) If T falls within the daylight saving time of Z, return true.

18 b) Otherwise, return false.

229

1 15.2.19.6.8 Time#getgm

2 getgm
3 Visibility: public
4 Behavior: Same as the method getutc (see 2196 10).

5 15.2.19.6.9 Time#getlocal

6 getlocal

7 Visibility: public

8 Behavior: The method returns a new instance of the class Time which has the same
9 microseconds as the receiver, but has current local time zone as its time zone.

10 15.2.19.6.10 Time#getutc

11 getutc

12 Visibility: public

13 Behavior: The method returns a new instance of the class Time which has the same
14 microseconds as the receiver, but has UTC as its time zone.

15 15.2.19.6.11 Time#gmt?

16 gmt?
17 Visibility: public
18 Behavior: Same as the method utc? (see §IAZTIBZA).

19 15.2.19.6.12 Time#gmt_offset

20 gmt_offset
21 Visibility: public
2 Behavior: Same as the method utc_offset (see §IZ1IB6 27).

23 15.2.19.6.13 Time#gmtime

230

1 gmtime

2 Visibility: public
3 Behavior: Same as the method utc (see §ThiZTIB ZH).

+ 15.2.19.6.14 Time#gmtoff

5 gmtoff
6 Visibility: public
7 Behavior: Same as the method utc_offset (see §Ih21IB 27).

s 15.2.19.6.15 Time#hour

9 hour

10 Visibility: public

1 Behavior:

12 a) Compute the local time from the receiver (see §ILZTI3). Let ¢ be the result.
13 b) Compute HourFromTime(t).

1 ¢) Return an instance of the class Integer whose value is the result of Step B.

15 15.2.19.6.16 Time#localtime

16 localtime

17 Visibility: public

18 Behavior:

19 a) Change the time zone of the receiver to the current local time zone.
20 b) Return the receiver.

n 15.2.19.6.17 Time#mday

231

10

11

12

13

[

4

15

16

17

18

19

20

22

mday

Visibility: public

Behavior:

a) Compute the local time from the receiver (see §InZTI3). Let ¢ be the result.
b) Compute DayWithinMonth(t).

¢) Return an instance of the class Integer whose value is the result of Step B.

15.2.19.6.18 Time#min

min

Visibility: public

Behavior:

a) Compute the local time from the receiver (see §IAZT93). Let ¢t be the result.
b) Compute MinuteFromTime(t).

¢) Return an instance of the class Integer whose value is the result of Step B.

15.2.19.6.19 Time#mon

mon

Visibility: public

Behavior:

a) Compute the local time from the receiver (see §IAZT93). Let ¢t be the result.
b) Compute MonthFromTime(t).

¢) Return an instance of the class Integer whose value is the result of Step B.

15.2.19.6.20 Time#month

month

Visibility: public

Behavior: Same as the method mon (see §IH 2196 19).

1 15.2.19.6.21 Time#£sec

2 sec
3 Visibility: public

4 Behavior:

5 a) Compute the local time from the receiver (see §IAZT93). Let ¢t be the result.
6 b) Compute SecondFromTime(t).

7 ¢) Return an instance of the class Integer whose value is the result of Step B.

s 15.2.19.6.22 Time#to_f

9 to_f

10 Visibility: public

1 Behavior: Let ¢ the microseconds of the receiver.

12 a) Compute ¢/10°.

13 b) Create a direct instance of the class Float whose value is the result of Step a.
14 ¢) Return the resulting instance.

15 15.2.19.6.23 Time#to_i

16 to_1i

17 Visibility: public

18 Behavior: Let ¢ the microseconds of the receiver.

19 a) Compute floor(t/10°).

20 b) Return an instance of the class Integer whose value is the result of Step a.

a1 15.2.19.6.24 Time#tusec

22 usec

23 Visibility: public

233

1 Behavior:

2 a) Compute the local time from the receiver (see §IAZT93). Let ¢t be the result.
3 b) Compute ¢t modulo 10°.
4 ¢) Return the resulting instance.

5 15.2.19.6.25 Time#utc

6 utc

7 Visibility: public

8 Behavior:

9 a) Change the time zone of the receiver to UTC.
10 b) Return the receiver.

u 15.2.19.6.26 Time#utc?

12 utc?

13 Visibility: public

14 Behavior: Let Z be the time zone of the receiver.
15 a) If Zis UTC, return true.

16 b) Otherwise, return false.

17 15.2.19.6.27 Time#utc_offset

18 utc_offset

19 Visibility: public

20 Behavior: Let Z be the time zone of the receiver.

21 a) Compute floor(ZoneOf fset(Z)/10%).

22 b) Return an instance of the class Integer whose value is the result of Step a.

x 15.2.19.6.28 Time#wday

234

1 wday

2 Visibility: public

3 Behavior:

4 a) Compute the local time from the receiver (see §ThZT93). Let ¢t be the result.
5 b) Compute WeekDay(t).

6 ¢) Return an instance of the class Integer whose value is the result of Step B

; 15.2.19.6.29 Time#yday

8 yday

9 Visibility: public

10 Behavior:

1 a) Compute the local time from the receiver (see §TAZTI3). Let ¢ be the result.
12 b) Compute DayWithinY ear(t).

13 ¢) Return an instance of the class Integer whose value is the result of Step B.

12 15.2.19.6.30 Time#year

15 year
16 Visibility: public

17 Behavior:

18 a) Compute the local time from the receiver (see §InZTI3). Let ¢ be the result.
19 b) Compute YearFromTime(t).

20 ¢) Return an instance of the class Integer whose value is the result of Step B.

a1 15.2.19.6.31 Time#zone

22 zone

23 Visibility: public

235

10

11

12

-

3

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Behavior: Let Z be the time zone of the receiver.

a) Create a direct instance of the class String, the content of which represents Z. The
exact content of the instance is implementation dependent.

b) Return the resulting instance.

15.2.19.6.32 Time#initialize

initialize

Visibility: private
Behavior:

a) Set the microseconds of the receiver to microseconds elapsed since January 1, 1970
00:00 UTC.

b) Set the time zone of the receiver to the current time zone.

¢) Return an implementation defined value.

15.2.19.6.33 Time#initialize_copy

initialize_copy(original)

Visibility: private
Behavior:

a) If the original is not an instance of the class Time, raise a direct instance of the class
TypeError.

b) Set the microseconds of the receiver to the microseconds of the original.

c) Set the time zone of the receiver to the time zone of the original.

d) Return an implementation defined value.
15.2.20 IO
An instance of the class I0 represents a stream, which is a source and/or a sink of data.
An instance of the class I0 has the following properties:

readability flag: A boolean value which denotes whether the stream can handle input
operations.

An instance of the class 10 is said to be readable if and only if this flag is true.

236

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Reading from a stream which is not readable raises a direct instance of the class IOError.

writability flag: A boolean value which denotes whether the stream can handle output
operations.

An instance of the class 10 is said to be writable if and only if this flag is true.
Writing to a stream which is not writable raises a direct instance of the class I0Error.
openness flag: A boolean value which denotes whether the stream is open.

An instance of the class I0 is said to be open if and only if this flag is true. An instance of
the class I0 is said to be closed if and only if this flag is false.

A closed stream is neither readable nor writable. Reading from or writing to a stream which
is not open raises an instance of the class I0Error.

buffering flag: A boolean value which denotes whether the data to be written to the
stream is buffered.

When this flag is true, a conforming processor may delay the output to the receiver until
the instance methods flush or close is invoked.

A conforming processor may raise an instance of the class SystemCallError during the execution
of instance methods of the class IO0.

In the following description of the methods of the class I0, a byte means an integer from 0 to
255.

15.2.20.1 Direct superclass

The class Object

15.2.20.2 Included modules

The following module is included in the class I0.
e Enumerable

15.2.20.3 Singleton methods

15.2.20.3.1 IO.open

I0.open(*arygs, &block)

Visibility: public
Behavior:

a) Invoke the method new on the receiver with all the elements of the args as the argu-
ments. Let I be the resulting value.

237

6

7

10

11

12

13

14

15

16

17

18

19

20

21

22

24

b) If the block is not given, return I.
¢) Otherwise, call the block with I as the argument. Let V' be the resulting value.

d) Invoke the method close on I with no arguments, even when an exception is raised
and not handled in Step o.

e) Return V.
15.2.20.4 Instance methods

15.2.20.4.1 IO+#close

close

Visibility: public
Behavior:
a) If the receiver is closed, raise a direct instance of the class IOError.

b) If the buffering flag of the receiver is true, and the receiver is buffering any output,
immediately write all the buffered data to the stream which the receiver represents.

c) Set the openness flag of the receiver to false.

d) Return nil.

15.2.20.4.2 10O+#closed?

closed?

Visibility: public
Behavior:

a) If the receiver is closed, return true.

b) Otherwise, return false.

15.2.20.4.3 10+#each

each(&block)

Visibility: public
Behavior:

238

10

11

12

13

14

15

16

17

18

-

9

a) If the block is not given, the behavior is implementation dependent.
b) If the receiver is not readable, raise a direct instance of the class I0Error.
c) If the receiver has reached its end, return the receiver.

d) Otherwise, read characters from the receiver until 0x0a is read or the receiver reaches
its end.

e) Call the block with an argument, a direct instance of the class String whose content
is the sequence of characters read in Step d.

f) Continue processing from Step o.

15.2.20.4.4 10#-each_byte

each byte (&block)

Visibility: public

Behavior:

a) If the block is not given, the behavior is implementation dependent.

b) If the receiver is not readable, raise a direct instance of the class IOError.
c) If the receiver has reached its end, return the receiver.

d) Otherwise, read a single byte from the receiver. Call the block with an argument, an
instance of the class Integer whose value is the byte.

Continue processing from Step o.

15.2.20.4.5 IO+#each_line

each_line(&block)

Visibility: public
Behavior: Same as the method each (see §IHhZ20473).

15.2.20.4.6 IO#-eof?

eof?

Visibility: public
Behavior:

239

3

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

a) If the receiver is not readable, raise a direct instance of the class I0Error.

b) If the receiver has reached its end, return true. Otherwise, return false.

15.2.20.4.7 I0#flush

flush

Visibility: public
Behavior:
a) If the receiver is not writable, raise a direct instance of the class I0Error.

b) If the buffering flag of the receiver is true, and the receiver is buffering any output,
immediately write all the buffered data to the stream which the receiver represents.

¢) Return the receiver.

15.2.20.4.8 1O0#getc

getc

Visibility: public

Behavior:

a) If the receiver is not readable, raise a direct instance of the class I0Error.
b) If the receiver has reached its end, return nil.

¢) Otherwise, read a character from the receiver. Return an instance of the class Object
which represents the character.

15.2.20.4.9 IO+#gets

gets

240

Visibility: public

Behavior:

a) If the receiver is not readable, raise a direct instance of the class I0Error.
b) If the receiver has reached its end, return nil.

¢) Otherwise, read characters from the receiver until 0x0a is read or the receiver reaches
its end.

3

7

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

d)

Return a direct instance of the class String whose content is the sequence of characters
read in Step o.

15.2.20.4.10 IO+#initialize_copy

initialize_copy(original)

Visibility: private

Behavior: The behavior of the method is implementation dependent.

15.2.20.4.11 IO#print

print (*args)

Visibility: public

Behavior:

a)

b)

For each element of the args in the indexing order:

1) If the element is nil, let V be an instance of the class String whose content is
“niln .

A conforming processor may let V' be an empty instance of the class String.
2) If the element is not nil, let V' be the element.

3) Invoke the method write on the receiver with V' as the argument.

Return nil.

15.2.20.4.12 IO#putc

putc(obj)

Visibility: public

Behavior:

a)

If the obj is not an instance of the class Integer or an instance of the class String, the
behavior is implementation dependent. If the obj is an instance of the class Integer
whose value is smaller than 0 or larger than 255, the behavior is implementation de-
pendent.

If the obj is an instance of the class Integer, create a direct instance of the class String
S whose content is a single character, whose character code is the integer represented
by obj.

241

5

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

If the 0bj is an instance of the class String, create a direct instance of the class String
S whose content is the first character of the o0bj.

Invoke the method write on the receiver with S as the argument.

Return the obj.

15.2.20.4.13 IO#puts

puts(*args)

242

Visibility: public

Behavior:

2)

)

If the length of the args is 0, Invoke the method write on the receiver with an argument,
which is a direct instance of the class String whose content is a single character 0x0a.

Otherwise, for each element E of the args in the indexing order:

1)

If £ isnil:

i) let S be an instance of the class String whose content is “nil”.
A conforming processor may let S be an empty instance of the class String.
ii) Invoke the method write on the receiver with S as the argument.

iii) Invoke the method write on the receiver with an argument, which is an
instance of the class String whose content is a single character 0x0a.

If £ is an instance of the class Array, for each element X of E in the indexing
order:

i) If X is the same object as FE, i.e. if F contains itself, invoke the method
write on the receiver with an instance of the class String, whose content is
implementation defined.

ii) Otherwise, invoke the method write on the receiver with X as the argument.
If F is an instance of the class String:

i) Invoke the method write on the receiver with E as the argument.

ii) If the last character of £ is not 0x0a, invoke the method write on the receiver

with an argument, which is an instance of the class String whose content is
a single character 0x0a.

Return nil.

1 15.2.20.4.14 1O+#read

2 read(length=nil)

3 Visibility: public

4 Behavior:

5 a) If the receiver is not readable, raise a direct instance of the class IOError.

6 b) If the receiver has reached its end:

7 1) If the length is nil, create an empty instance of the class String and return that
8 instance.

9 2) If the length is not nil, return nil.

10 ¢) Otherwise:

1 1) If the length is nil, read characters from the receiver until the receiver reaches its
12 end.

13 2) If the length is an instance of the class Integer, let N be the value of the length.
14 Otherwise, the behavior is implementation dependent.

15 3) If N is smaller than 0, raise a direct instance of the class ArgumentError.

16 4) Read bytes from the receiver until N bytes are read or the receiver reaches its end.
17 d) Return a direct instance of the class String whose content is the sequence of characters
18 read in Step o.

19 15.2.20.4.15 10#readchar

20 readchar

21 Visibility: public

2 Behavior:

23 a) If the receiver is not readable, raise a direct instance of the class I0Error.

2 b) If the receiver has reached its end, raise a direct instance of the class EOFError.

25 ¢) Otherwise, read a character from the receiver. Return an instance of the class Object
26 which represents the character.

7 15.2.20.4.16 IO#readline

243

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

readline

Visibility: public

Behavior:

a) If the receiver is not readable, raise a direct instance of the class I0Error.

b) If the receiver has reached its end, raise a direct instance of the class EOFError.

¢) Otherwise, read characters from the receiver until 0x0a is read or the receiver reaches
its end.

d) Return a direct instance of the class String whose content is the sequence of characters
read in Step o.

15.2.20.4.17 10+#readlines

readlines

Visibility: public

Behavior:

a) If the receiver is not readable, raise a direct instance of the class I0Error.
b) Create an empty direct instance of the class Array A.

c) If the receiver has reached to its end, return A.

d) Otherwise, read characters from the receiver until 0x0a is read or the receiver reaches
its end.

e) Append a direct instance of the class String whose content is the sequence of characters
read in Step d to A.

f) Continue processing from Step o.

15.2.20.4.18 IO#sync

sync

244

Visibility: public
Behavior:
a) If the receiver is closed, raise a direct instance of the class IOError.

b) If the buffering flag of the receiver is true, return false. Otherwise, return true.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

15.2.20.4.19 IO+#sync=

sync =(bool)

Visibility: public

Behavior:

a)

b)

)

If the receiver is closed, raise a direct instance of the class IOError.

If the bool is a true value, set the buffering flag of the receiver to false. If the bool is a
false value, set the buffering flag of the receiver to true.

Return the bool.

15.2.20.4.20 IO+ write

write(str)

Visibility: public

Behavior:

a)

e)

If the str is not an instance of the class String, the behavior is implementation de-
pendent.

If the str is empty, return an instance of the class Integer whose value is 0.
If the receiver is not writable, raise a direct instance of the class I0Error.

Write all the characters in the str to the stream which the receiver represents, preserving
their order.

Return an instance of the class Integer, whose value is implementation defined.

15.2.21 File

Instances of the class File represent opened files.

A conforming processor may raise an instance of the class SystemCallError during the execution
of the methods of the class File if the underlying system reports an error.

A path of a file is a sequence of characters which represents the location of the file. The correct
syntax of paths is implementation defined.

An instance of the class File has the following property:

path: The path of the file.

245

=

0

-

1

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

15.2.21.1 Direct superclass

The class 10

15.2.21.2 Singleton methods

15.2.21.2.1 File.exist?

File.exist?(path)

Visibility: public

Behavior:

a)

b)

If the file specified by the path exists, return true.

Otherwise, return false.

15.2.21.3 Instance methods

15.2.21.3.1 File#initialize

initialize(path, mode="xr")

246

Visibility: private

Behavior:

a)

If the path is not an instance of the class String, the behavior is implementation
dependent.

If the mode is not an instance of the class String whose content is a single character

[{%))

r” or “w”, the behavior is implementation dependent.

Open the file specified by the path in an implementation defined way, and associate it
with the receiver.

Set the path of the receiver to the content of the path.
Set the openness flag and the buffering flag of the receiver to true.
Set the readability flag and the writability flag of the receiver as follows:

1) If the mode is an instance of the class String whose content is a single character
[19%))

r”, set the readability flag of the receiver to true and set the writability flag of
the receiver to false.

2) If the mode is an instance of the class String whose content is a single character
“w”, set the readability flag of the receiver to false and set the writability flag of
the receiver to true.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

g) Return an implementation defined value.

15.2.21.3.2 File#path

path

Visibility: public

Behavior: The method returns a direct instance of the class String whose content is the
path of the receiver.

15.2.22 Exception

Instances of the class Exception represent exceptions. The class Exception is a superclass of
all the other exception classes.

Instances of the class Exception have the following property.

message: An object returned by the method to_s (see §IH222473).
When the method clone (see §Th-3T2R) or the method dup (see §LA-3T29) of the class Kernel
is invoked on an instance of the class Exception, the message property shall be copied from the
receiver to the resulting value.
15.2.22.1 Direct superclass
The class Object
15.2.22.2 Built-in exception classes
This document defines several built-in subclasses of the class Exception. Figure 0 shows the
list of these subclasses and their class hierarchy. A conforming processor shall raise instances
of these built-in subclasses in various erroneous conditions as described in this document. The
class hierarchy shown in Figure [is used to handle an exception (see §I4).

15.2.22.3 Singleton methods

15.2.22.3.1 Exception.exception

Exception.exception(*args, &block)

Visibility: public
Behavior: Same as the method new (see §TA2Z373).
15.2.22.4 Instance methods

15.2.22.4.1 Exception#exception

247

10

Figure 1 — The exception class hierarchy

Exception

—— StandardError

——— ArgumentError
——— LocalJumpError
——— RangeError

—— RegexpError

RuntimeError
——— TypeError

—— ZeroDivisionError
— NameError

\— NoMethodError

IndexError
L44181:opI1:eration

—— IO0Error

\— EOFError

-—— SystemCallError

L— ScriptError

——— SyntaxError

—— LoadError

exception(*string)

248

Visibility: public
Behavior:
a) If the length of the string is 0, return the receiver.
b) If the length of the string is 1:
1) If the only argument is the same object as the receiver, return the receiver.
2) Otherwise let M be the argument.
i) Create a direct instance of the class of the receiver. Let E be the instance.
ii) Set the message property of F to M.
iii) Return E.

c) If the length of the string is larger than 1, raise a direct instance of the class ArgumentError.

1

7

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

15.2.22.4.2 Exception#message

message

Visibility: public
Behavior:

a) Invoke the method to_s on the receiver with no arguments.

b) Return the resulting value of the invocation.

15.2.22.4.3 Exception#to_s

to_s

Visibility: public

Behavior:

a) Let M be the message property of the receiver.

b) If M is nil, return an implementation defined value.

¢) If M is not an instance of the class String, the behavior is implementation dependent.
d) Otherwise, return M.

15.2.22.4.4 Exception#initialize

initialize(message = nil)

Visibility: private
Behavior:
a) Set the message property of the receiver to the message.
b) Return an implementation defined value.
15.2.23 StandardError

Instances of the class StandardError represent standard errors, which can be handled in a
rescue-clause without a exception-class-list (see §IIZ1T21).

15.2.23.1 Direct superclass

The class Exception

249

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

15.2.24 ArgumentError

Instances of the class ArgumentError represent argument errors.
15.2.24.1 Direct superclass

The class StandardError

15.2.25 LocalJumpError

Instances of the class LocalJumpError represent errors which occur while evaluating blocks and
JUMP-exTPTesSSLons.

15.2.25.1 Direct superclass
The class StandardError
15.2.25.2 Instance methods

15.2.25.2.1 LocalJumpError#exit_value

exit_value

Visibility: public

Behavior: The method returns the value of the instance variable @exit_value of the
recelver.

15.2.25.2.2 LocalJumpError#reason

reason

Visibility: public
Behavior: The method returns the value of the instance variable @reason of the receiver.
15.2.26 RangeError
Instances of the class RangeError represent range errors.
15.2.26.1 Direct superclass
The class StandardError
15.2.27 RegexpError
Instances of the class RegexpError represent regular expression errors.
15.2.27.1 Direct superclass

The class StandardError

250

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

15.2.28 RuntimeError

Instances of the class RuntimeError represent runtime errors, which are raised by the method
raise of the class Kernel by default (see §TA3TT13).

15.2.28.1 Direct superclass
The class StandardError
15.2.29 TypeError
Instances of the class TypeError represent type errors.
15.2.29.1 Direct superclass
The class StandardError
15.2.30 ZeroDivisionError
Instances of the class ZeroDivisionError represent zero division errors.
15.2.30.1 Direct superclass
The class StandardError
15.2.31 NameError
Instances of the class NameError represent errors which occur while resolving names to values.
Instances of the class NameError have the following property.
name: The name a reference to which causes this exception to be raised.
When the method clone (see §IA3T2H) or the method dup (see §I531T29) of the class Kernel
is invoked on an instance of the class NameError, the name property shall be copied from the
receiver to the resulting value.
15.2.31.1 Direct superclass
The class StandardError

15.2.31.2 Instance methods

15.2.31.2.1 NameError#name

name

Visibility: public

Behavior: The method returns the name property of the receiver.

251

10

11

12

13

14

15

16

17

18

19

20

21

26

15.2.31.2.2 NameError#initialize

initialize(message=nil, name=nil)

Visibility: public

Behavior:

a) Set the name property of the receiver to the name.

b) Invoke the method initialize defined in the class Exception, which is a superclass
of the class NameError, as if super-with-argument were evaluated with the message as

the argument of the super-with-argument.

c¢) Return an implementation defined value.

15.2.32 NoMethodError

Instances of the class NoMethodError represent errors which occur while invoking methods which
do not exists or which cannot be invoked.

Instances of the class NoMethodError have properties called name (see §I5231) and argu-
ments. The values of these properties are set in the method initialize (see §IEZ3ZT27).

When the method clone (see §IA3T2R) or the method dup (see §IH31T29) of the class Kernel
is invoked on an instance of the class NoMethodError, those properties shall be copied from the
receiver to the resulting value.

15.2.32.1 Direct superclass

The class NameError

15.2.32.2 Instance methods

15.2.32.2.1 NoMethodError#args

args

Visibility: public
Behavior: The method returns the value of the arguments property of the receiver.

15.2.32.2.2 NoMethodError#tinitialize

initialize(message=nil, name=nil, args=nil)

Visibility: public

252

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Behavior:
a) Set the arguments property of the receiver to the args.
b) Perform all the steps of the method initialize described in §IEZ3T22.
¢) Return an implementation defined value.
15.2.33 IndexError
Instances of the class IndexError represent index errors.
15.2.33.1 Direct superclass
The class StandardError
15.2.34 Stoplteration

Instances of the class StopIteration represent exceptions, which are raised to terminate the
method loop of the class Kernel (see §Ih3TTH).

15.2.34.1 Direct superclass

The class IndexError

15.2.35 IOError

Instances of the class I0Error represent input/output errors.
15.2.35.1 Direct superclass

The class StandardError

15.2.36 EOFError

Instances of the class EOFError represent errors which occur when a stream has reached its end.
15.2.36.1 Direct superclass

The class I0Error

15.2.37 SystemCallError

Instances of the class SystemCallError represent errors which occur while invoking the instance
methods of the class I0.

15.2.37.1 Direct superclass
The class StandardError
15.2.38 ScriptError

Instances of the class ScriptError represent programming errors.

253

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

15.2.38.1 Direct superclass

The class Exception

15.2.39 SyntaxError

Instances of the class SyntaxError represent syntax errors.
15.2.39.1 Direct superclass

The class ScriptError

15.2.40 LoadError

Instances of the class LoadError represent errors which occur while loading external programs
(see §IRZTII4).

15.2.40.1 Direct superclass
The class ScriptError

15.3 Built-in modules
15.3.1 Kernel

The module Kernel is included in the class Object. Unless overridden, instance methods defined
in the module Kernel can be invoked on any instance of the class Object.

15.3.1.1 Singleton methods

15.3.1.1.1 Kernel.¢

Kernel. (string)

The method ¢ is invoked in the form described in §85 5 7H.
Visibility: public

Behavior: The method ¢ executes an external command corresponding to the string. The
external command executed by the method is implementation defined.

When the method is invoked, take the following steps:

a) If the string is not an instance of the class String, the behavior is implementation
dependent.

b) Execute the command which corresponds to the content of the string. Let R be the
output of the command.

c) Create a direct instance of the class String whose content is R, and return the instance.

254

1 15.3.1.1.2 Kernel.block_given?

2 Kernel.block_given?

3 Visibility: public

4 Behavior:

5 a) If the top of [block] is block-not-given, return false.
6 b) Otherwise, return true.

7 15.3.1.1.3 Kernel.eval

8 Kernel.eval(string)

9 Visibility: public

10 Behavior:

11 a) If the string is not an instance of the class String, the behavior is implementation
12 dependent.

13 b) Parse the content of the string as a program (see §II). If it fails, raise a direct instance
14 of the class SyntaxError.

15 c) Evaluate the program. Let V be the resulting value of the evaluation.

16 d) Return V.

17 In Step o, the string is evaluated under the new local variable scope in which references to
18 local-variable-identifiers are resolved in the same way as in scopes created by blocks (see
19 §OI).

20 15.3.1.1.4 Kernel.global _variables

21 Kernel.global_variables

2 Visibility: public

23 Behavior: The method returns a new direct instance of the class Array which consists
2% of names of all the global variables. These names are represented by instances of either
25 the class String or the class Symbol. Which of those classes is chosen is implementation
2 defined.

27 15.3.1.1.5 Kernel.iterator?

255

4

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Kernel.iterator?

Visibility: public

Behavior: Same as the method Kernel.block_given? (see §Ih3117).

15.3.1.1.6 Kernel.lambda

Kernel.lambda(&block)

256

Visibility: public

Behavior: The method creates an instance of the class Proc as Proc.new does (see §I521T721).
However, the way in which the block is evaluated differs from the one described in §IT22
except when the block is called by a yield-expression.

The differences are as follows.

a) Before Step @ of §T1T272, the number of arguments is checked as follows:

1) Let A be the list of arguments passed to the block. Let N, be the length of A.

2) If the block-formal-argument-list is of the form left-hand-side, and if N, is not 1,
the behavior is implementation dependent.

3) If the block-formal-argument-list is of the form multiple-left-hand-side:

i) If the multiple-left-hand-side is not of the form grouped-left-hand-side or packing-
left-hand-side:

I) Let N, be the number of multiple-left-hand-side-items of the multiple-
left-hand-side.

II) If N, < Np, raise a direct instance of the class ArgumentError.

III) If a packing-left-hand-side does not occur, and if N, > Np, raise a direct
instance of the class ArgumentError.

i) If the multiple-left-hand-side is of the form grouped-left-hand-side, and if N,
is not 1, the behavior is implementation dependent.

b) In Step e of T2, when the evaluation of the block associated with a lambda invo-
cation is terminated by a return-expression or break-expression, the execution context
is restored to E, (i.e. the saved execution context), and the evaluation of the lambda
invocation is terminated.

The value of the 1lambda invocation is determined as follows:

1) If the jump-argument of the return-expression or the break-expression occurs, the
value of the lambda invocation is the value of the jump-argument.

1 2) Otherwise, the value of the lambda invocation is nil.

> 15.3.1.1.7 Kernel.local_variables

3 Kernel.local_variables

4 Visibility: public

5 Behavior: The method returns a new direct instance of the class Array which contains all
6 the names of local variable bindings which meet the following conditions.

7 e The name of the binding is of the form local-variable-identifier.

8 e The binding can be resolved in the scope of local variables which includes the point of
9 invocations of this method by the process described in §G11.

10 In the instance of the class Array returned by the method, names of the local variables are
11 represented by instances of either the class String or the class Symbol. Which of those
12 classes is chosen is implementation defined.

13 15.3.1.1.8 Kernel.loop

14 Kernel.loop(&block)

15 Visibility: public

16 Behavior:

17 a) If the block is not given, the behavior is implementation dependent.

18 b) Otherwise, repeat calling the block.

19 ¢) If a direct instance of the class StopIteration is raised and not handled in Step B,
20 handle the exception and return nil.

2 15.3.1.1.9 Kernel.method _missing

2 Kernel.method missing(symbol, *args)

23 Visibility: public

2 Behavior:

25 a) If the symbol is not an instance of the class Symbol, raise a direct instance of the class
26 ArgumentError.

257

6

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

b) Otherwise, raise a direct instance of the class NoMethodError which has the symbol
as its name property and the args as its arguments property. A conforming processor
may raise a direct instance of the class NameError which has the symbol as its name
property instead of NoMethodError if the method is invoked in Step & of §IC333 during
an evaluation of a local-variable-identifier as a method invocation.

15.3.1.1.10 Kernel.p

Kernel.p(*args)

Visibility: public
Behavior:
a) For each element E of the args, in the indexing order, take the following steps:

1) Invoke the method inspect on E with no arguments and let X be the resulting
value of this invocation.

2) If X is not an instance of the class String, the behavior is implementation depen-
dent.

3) Invoke the method write on Object::STDOUT with X as the argument.

4) Invoke the method write on Object: :STDOUT with an argument, which is a direct
instance of the class String whose content is a single character 0x0a.

b) Return nil. A conforming processor may return the args instead of nil.

15.3.1.1.11 Kernel.print

Kernel.print (*args)

Visibility: public

Behavior: The method behaves as if the method print of the class I0 (see §ThZ 204 1)
were invoked on Object: :STDOUT with the same arguments.

15.3.1.1.12 Kernel.puts

Kernel.puts(*args)

258

Visibility: public

Behavior: The method behaves as if the method puts of the class I0 (see §IAZZ04T3)
were invoked on Object: :STDOUT with the same arguments.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

26

27

28

29

30

15.3.1.1.13 Kernel.raise

Kernel.raise(*args)

Visibility: public

Behavior:

a)

b)

)

If the length of the args is larger than 2, the behavior is implementation dependent.

If the length of the args is 0:

1)

2)

If the location of the method invocation is within an operator-expressions of an
assignment-with-rescue-modifier, a fallback-statement-of-rescue-modifier-statement,
or a rescue-clause, let E be the current exception (see §[472).

Otherwise, invoke the method new on the class RuntimeError with no argument.
Let E be the resulting value.

If the length of the args is 1, let A be the only argument.

)

2)

3)

If A is an instance of the class String, invoke the method new on the class
RuntimeError with A as the only argument. Let E be the resulting instance.

Otherwise, invoke the method exception on A. Let E be the resulting value.

If F is not an instance of the class Exception, raise a direct instance of the class
TypeError.

If the length of the args is 2, let F' and S be the first and the second argument,
respectively.

1)

Invoke exception on F with S as the only argument. Let E be the resulting
value.

2) If F is not an instance of the class Exception, raise a direct instance of the class
TypeError.
Raise L.

15.3.1.1.14 Kernel.require

Kernel.require(string)

Visibility: public

Behavior: The method require evaluates the external program P corresponding to the
string. The way in which P is determined from the string is implementation defined.

When the method is invoked, take the following steps:

259

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

a) If the string is not an instance of the class String, the behavior is implementation
dependent.

b) Search for the external program P corresponding to the string.
¢) If the program does not exist, raise a direct instance of the class LoadError.

d) If P cannot be derived from the program (§II), raise a direct instance of the class
SyntaxError.

e) Change the state of the execution context temporarily for the evaluation of P as follows:

1) [self] contains only one object which is the object at the bottom of [self] in the
current execution context.

2) [class-module-list] contains only one list whose only element is the class Object.
3) [default-visibility] contains only one visibility, which is the private visibility.
4) All the other attributes of the execution context are empty logical stacks.

f) Evaluate P under the execution context set up in Step e.

g) Restore the state of the execution context as it is just before Step B, even when an
exception is raised and not handled during the evaluation of P.

Note that the evaluation of P affects the restored execution context if it changes the
attributes of objects in the original execution context.

h) Unless an exception is raised and not handled in Step F, return true.
15.3.1.2 Instance methods

15.3.1.2.1 Kernel#==

==(other)

Visibility: public
Behavior:

a) If the receiver and the other is the same object, return true.

b) Otherwise, return false.

15.3.1.2.2 Kernel#===

==(other)

260

1 Visibility: public

2 Behavior:

3 a) If the receiver and the other is the same object, return true.

4 b) Otherwise, invoke the method == on the receiver with the other as the only argument.
5 Let V be the resulting value.

6 c) If V is a true value, return true. Otherwise, return false.

7 15.3.1.2.3 Kernel#__id__

8 _-id__
9 Visibility: public
10 Behavior: Same as the method object_id (see §IH3T233).

un 15.3.1.2.4 Kernel#__send__

12 __send__(symbol, *args, &block)
13 Visibility: public
14 Behavior: Same as the method send (see §IA31T2744).

15 15.3.1.2.5 Kernel#¢

16 “(string)

17 The method ¢ is invoked in the form described in §85H7HA.
18 Visibility: private
19 Behavior: Same as the method Kernel. ¢ (see §ICA3 1T 11).

20 15.3.1.2.6 Kernel#block_given?

21 block_given?
2 Visibility: private
23 Behavior: Same as the method Kernel.block given? (see §I53117).

261

5

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

15.3.1.2.7 Kernel#class

class

Visibility: public

Behavior: The method returns the class of the receiver.

15.3.1.2.8 Kernel#clone

clone

Visibility: public

Behavior:

a)

c)
f)

If the receiver is an instance of one of the following classes: NilClass, TrueClass,
FalseClass, Integer, Float, or Symbol, then raise a direct instance of the class
TypeError.

Create a direct instance of the class of the receiver which has no bindings of instance
variables. Let O be the newly created instance.

For each binding B of the instance variables of the receiver, create a variable binding
with the same name and value as B in the set of bindings of instance variables of O.

If the receiver is associated with an eigenclass, let FE, be the eigenclass, and take the
following steps:

1)

5)

Create an eigenclass whose direct superclass is the direct superclass of E,. Let E,
be the eigenclass.

For each binding B,; of the constants of E,, create a variable binding with the
same name and value as B, in the set of bindings of constants of E,.

For each binding B, of the class variables of F,, create a variable binding with
the same name and value as B,o in the set of bindings of class variables of E,,.

For each binding B, of the instance methods of E,, create a method binding with
the same name and value as B,, in the set of bindings of instance methods of E,,.

Associate O with E,.

Invoke the method initialize_copy on O with the receiver as the argument.

Return O.

15.3.1.2.9 Kernel#dup

262

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

dup

Visibility: public
Behavior:

a) If the receiver is an instance of one of the following classes: NilClass, TrueClass,
FalseClass, Integer, Float, or Symbol, then raise a direct instance of the class
TypeError.

b) Create a direct instance of the class of the receiver which has no bindings of instance
variables. Let O be the newly created instance.

c) For each binding B of the instance variables of the receiver, create a variable binding
with the same name and value as B in the set of bindings of instance variables of O.

d) Invoke the method initialize_copy on O with the receiver as the argument.

e) Return O.

15.3.1.2.10 Kernel#eql?

eql?(other)

Visibility: public
Behavior: Same as the method == (see §IH31T21).

15.3.1.2.11 Kernel#equal?

equal?(other)

Visibility: public
Behavior: Same as the method == (see §IH-31T21).

15.3.1.2.12 Kernel#eval

eval (string)

Visibility: private
Behavior: Same as the method Kernel.eval (see §IAi3T13).

15.3.1.2.13 Kernel#extend

263

10

11

12

16

17

18

19

20

21

22

23

24

25

26

extend (*module_list)

Visibility: public
Behavior: Let R be the receiver of the method.
a) If the length of the module_list is 0, raise a direct instance of the class ArgumentError.

b) For each element A of the module_list, take the following steps:

1) If A is not an instance of the class Module, raise a direct instance of the class
TypeError.

2) If Ais an instance of the class Class, raise a direct instance of the class TypeError.
3) Invoke the method extend object on A with R as the only argument.

4) Invoke the method extended on A with R as the only argument.

¢) Return R.

15.3.1.2.14 Kernel#global _variables

global _variables

Visibility: private

Behavior: Same as the method Kernel.global variables (see §I5 31 14).

15.3.1.2.15 Kernel#hash

hash

Visibility: public

Behavior: The method returns an instance of the class Integer. When invoked on the
same object, the method shall always return an instance of the class Integer whose values
is same.

When a conforming processor overrides the method eql? (see §IA-31T210), it shall override
the method hash in the same class or module in which the method eql? is overridden in
such a way that, if an invocation of the method eql? on an object with an argument returns
a true value, invocations of the method hash on the object and the argument return the
instances of the class Integer with the same value.

15.3.1.2.16 Kernel#initialize_copy

264

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

initialize_copy(original)

Visibility: private

Behavior: The method initialize_copy is invoked when an object is created by the
method clone (see §IH312H) or the method dup (see §C31T21).

When the method is invoked, take the following steps:

a) If the classes of the receiver and the original are not the same class, raise a direct
instance of the class TypeError.

b) Return an implementation defined value.

15.3.1.2.17 Kernel#inspect

inspect

Visibility: public

Behavior: The method returns an instance of the class String, the content of which
represents the state of the receiver. The content of the resulting instance of the class
String is implementation defined.

15.3.1.2.18 Kernel#instance_eval

instance_eval (string = nil, &block)

Visibility: public
Behavior:

a) If the receiver is an instance of one of the implementation defined set of classes as
described in Step & of §I32A, or if the receiver is one of nil, true, or false, then the
behavior is implementation dependent.

b) If the receiver is not associated with an eigenclass, create a new eigenclass. Let M be
the newly created eigenclass.

c) If the receiver is associated with an eigenclass, let M be that eigenclass.

d) Take Step B through the last step of the method class_eval of the class Module (see
§IH 22 3TH).

15.3.1.2.19 Kernel#instance_of?

265

8

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

instance_of? (module)

Visibility: public
Behavior: Let C be the class of the receiver.

a) If the module is not an instance of the class Class or the class Module, raise a direct
instance of the class TypeError.

b) If the module and C' are the same object, return true.

¢) Otherwise, return false.

15.3.1.2.20 Kernel#instance_variable_defined?

instance_variable_defined? (symbol)

Visibility: public
Behavior:
a) Let N be the name designated by the symbol.

b) If N is not of the form instance-variable-identifier, raise a direct instance of the class
NameError which has the symbol as its name property.

¢) If a binding of an instance variable with name N exists in the set of bindings of instance
variables of the receiver, return true.

d) Otherwise, return false.

15.3.1.2.21 Kernel#instance_variable_get

instance_variable_get (symbol)

266

Visibility: public
Behavior:
a) Let N be the name designated by the symbol.

b) If N is not of the form instance-variable-identifier, raise a direct instance of the class
NameError which has the symbol as its name property.

c) If a binding of an instance variable with name N exists in the set of bindings of instance
variables of the receiver, return the value of the binding.

d) Otherwise, return nil.

10

11

12

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

15.3.1.2.22 Kernel#instance_variable_set

instance_variable_set (symbol, 0bj)

Visibility: public

Behavior:

2)

b)

e)

Let N be the name designated by the symbol.

If N is not of the form instance-variable-identifier, raise a direct instance of the class
NameError which has the symbol as its name property.

If a binding of an instance variable with name N exists in the set of bindings of instance
variables of the receiver, replace the value of the binding with the o0bj.

Otherwise, create a variable binding with name N and value obj in the set of bindings
of instance variables of the receiver.

Return the obj.

15.3.1.2.23 Kernel#instance_variables

instance_variables

Visibility: public

Behavior: The method returns a direct instance of the class Array which consists of names
of all the instance variables of the receiver. These names are represented by instances of
either the class String or the class Symbol. Which of those classes is chosen is implemen-
tation defined.

15.3.1.2.24 Kernel#is_a?

is_a?(module)

Visibility: public

Behavior:

a)

If the module is not an instance of the class Class or the class Module, raise a direct
instance of the class TypeError.

Let C be the class of the receiver.

If the module is an instance of the class Class and one of the following conditions
holds, return true.

267

7

10

11

13

14

15

16

17

18

19

20

21

22

23

e The module and C are the same object.
e The module is a superclass of C.

e The module and the eigenclass of the receiver are the same object.

d) If the module is an instance of the class Module and is included in C or one of the
superclasses of C, return true.

e) Otherwise, return false.

15.3.1.2.25 Kernel#titerator?

iterator?

Visibility: private
Behavior: Same as the method Kernel.iterator? (see §TO3111).

15.3.1.2.26 Kernel#kind_of?

kind_of?(module)

Visibility: public
Behavior: Same as the method is_a? (see §IH3T2724).

15.3.1.2.27 Kernel#lambda

lambda (&block)

Visibility: private
Behavior: Same as the method Kernel.lambda (see §IA31T1H).

15.3.1.2.28 Kernel#local _variables

local_variables

Visibility: private
Behavior: Same as the method Kernel.local variables (see §I53 1T 17).

15.3.1.2.29 Kernel#loop

268

10

11

12

13

14

15

[

6

17

18

19

20

21

loop (&block)

Visibility: private
Behavior: Same as the method Kernel.loop (see §IA3T1R).

15.3.1.2.30 Kernel##method_missing

method missing(symbol, *args)

Visibility: private
Behavior: Same as the method Kernel .method missing (see §Th-3114).

15.3.1.2.31 Kernel#methods

methods (all=true)

Visibility: public
Behavior: Let C be the class of the receiver.

a) If the all is a true value, the method behaves as if the method instance methods were
invoked on C with no arguments (see §Ih22-333).

b) If the all is a false value, the method behaves as if the method singleton methods
were invoked on the receiver with false as the only argument (see §IA3T243).

15.3.1.2.32 Kernel#nil?

nil?

Visibility: public
Behavior:

a) If the receiver is nil, return true.

b) Otherwise, return false.

15.3.1.2.33 Kernel#object_id

269

6

10

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

object_id

Visibility: public

Behavior: The method returns an instance of the class Integer with the same value
whenever it is invoked on the same object. When invoked on two distinct objects, the
method returns an instance of the class Integer with different value for each invocation.

15.3.1.2.34 Kernel#p

p(*args)

Visibility: private

Behavior: Same as the method Kernel.p (see §IA-31T110).

15.3.1.2.35 Kernel#print

print (*args)

Visibility: private

Behavior: Same as the method Kernel.print (see §Ch-3T 1T 171).

15.3.1.2.36 Kernel#private_methods

private methods(all=true)

270

Visibility: public

Behavior:

a) Create an empty direct instance of the class Array A.

b) If the receiver is associated with an eigenclass, let C' be the eigenclass.
¢) Let I be the set of bindings of instance methods of C.

For each binding B of I, let N and V be the name and the value of B respectively, and
take the following steps:

1) If V is undef, or the visibility of V is not private, skip the next two steps.

2) Let S be either a direct instance of the class String whose content is N or a
direct instance of the class Symbol whose name is N. Which of the these classes of
instance is chosen as the value of S is implementation defined.

10

11

12

13

14

15

16

17

19

20

21

22

24

25

26

g)

3) Unless A contains the element of the same name (if S is an instance of the class
Symbol) or the same content (if S is an instance of the class String) as S, append
S to A.

For each module M in included module list of C, take Step o, assuming that C' in that
step to be M.

Replace €' with the class of the receiver, and take Step o.
If the all is a true value:

1) Take Step @.

2) Replace C with the direct superclass of current C.

3) If C is not nil, take Step o, and then, repeat from Step EI.

Return A.

15.3.1.2.37 Kernel#protected _methods

protected methods(all=true)

Visibility: public

Behavior: Same as the method private methods (see §I531236), except that the method
returns a direct instance of the class Array which contains names of protected methods.

15.3.1.2.38 Kernel#public_methods

public_methods

Visibility: public

Behavior: Same as the method private methods (see §I531236), except that the method
returns a direct instance of the class Array which contains names of public methods.

15.3.1.2.39 Kernel#puts

puts(*args)

Visibility: private

Behavior: Same as the method Kernel.puts (see §IA3TT17).

15.3.1.2.40 Kernel#raise

271

10

11

12

13

14

15

16

17

raise(*args)

Visibility: private

Behavior: Same as the method Kernel.raise (see §Ih3 11 13).

15.3.1.2.41 Kernel#remove_instance_variable

remove_instance_variable (symbol)

Visibility: private

Behavior:

a)

b)

d)

Let N be the name designated by the symbol.

If N is not of the form instance-variable-identifier, raise a direct instance of the class
NameError which has the symbol as its name property.

If a binding of an instance variable with name N exists in the set of bindings of instance
variables of the receiver, let V' be the value of the binding.

1) Remove the binding from the set of bindings of instance variables of the receiver.

2) Return V.

Otherwise, raise a direct instance of the class NameError which has the symbol as its
name property.

15.3.1.2.42 Kernel#require

require(*args)

Visibility: private

Behavior: Same as the method Kernel.require (see §IA3 T 1 14).

15.3.1.2.43 Kernel#respond_to?

respond_to?(symbol, include_private=false)

272

Visibility: public

Behavior:

1 a) Let N be the name designated by the symbol.

2 b) Search for a binding of an instance method named N starting from the receiver of the
3 method as described in §IE3734.

4 ¢) If a binding is found, let V be the value of the binding.

5 1) If V is undef, return false.

6 2) If the visibility of V is private:

7 i) If the include_private is a true value, return true.

8 ii) Otherwise, return false.

9 3) Otherwise, return true.

10 d) Otherwise, return false.

un 15.3.1.2.44 Kernel#send

12 send (symbol, *args, &block)

13 Visibility: public

14 Behavior:

15 a) Let N be the name designated by the symbol.

16 b) Invoke the method named N on the receiver with the args as arguments and the block
17 as the block, if any.

18 c¢) Return the resulting value of the invocation.

v 15.3.1.2.45 Kernel#singleton_methods

20 singleton methods (all=true)

21 Visibility: public

2 Behavior: Let E be the eigenclass of the receiver.

23 a) Create an empty direct instance of the class Array A.

2 b) Let I be the set of bindings of instance methods of F.

25 For each binding B of I, let N and V be the name and the value of B respectively, and
2 take the following steps:

273

10

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

1) If V is undef, or the visibility of V is private, skip the next two steps.

2) Let S be either a direct instance of the class String whose content is N or a
direct instance of the class Symbol whose name is N. Which of the these classes of
instance is chosen as the value of S is implementation defined.

3) Unless A contains the element of the same name (if S is an instance of the class

Symbol) or the same content (if S is an instance of the class String), append S
to A.

c) If the all is a true value, for each module M in included module list of E, take Step B,
assuming that F in that step to be M.

d) Return A.

15.3.1.2.46 Kernel#to_s

to_s

Visibility: public

Behavior: The method returns an instance of the class String, the content of which is
the string representation of the receiver. The content of the resulting instance of the class
String is implementation defined.

15.3.2 Enumerable

The module Enumerable provides methods which iterates over the elements of the object using
the method each.

In the following description of the methods of the module Enumerable, an element of the
receiver means one of the values which is yielded by the method each.

15.3.2.1 Instance methods

15.3.2.1.1 Enumerable#all?

all?(&block)

Visibility: public
Behavior:
a) Invoke the method each on the receiver.
b) For each element X which the method each yields:
1) If the block is given, call the block with X as the argument.

If this call results in a false value, return false.

274

1 2) If the block is not given, and X is a false value, return false.
2 c¢) Return true.

3 15.3.2.1.2 Enumerable#any?

4 any? (&block)

5 Visibility: public

6 Behavior:

7 a) Invoke the method each on the receiver.

8 b) For each element X which each yields:

9 1) If the block is given, call the block with X as the argument.
10 If this call results in a true value, return true.

11 2) If the block is not given, and X is a true value, return true.
12 ¢) Return false.

13 15.3.2.1.3 Enumerable#-collect

14 collect (&block)

15 Visibility: public

16 Behavior:

17 a) If the block is not given, the behavior is implementation dependent.

18 b) Create an empty direct instance of the class Array A.

19 ¢) Invoke the method each on the receiver.

20 d) For each element X which each yields, call the block with X as the argument and
21 append the resulting value to A.

2 e) Return A.

» 15.3.2.1.4 Enumerable#detect

275

10

11

12

13

14

15

16

17

18

19

21

22

23

24

detect (ifnone=nil, &block)

Visibility: public

Behavior:

d)

If the block is not given, the behavior is implementation dependent.
Invoke the method each on the receiver.

For each element X which each yields, call the block with X as the argument. If this
call results in a true value, return X.

Return the ifnone.

15.3.2.1.5 Enumerable#each_with_index

each_with_index (&block)

Visibility: public

Behavior:

e)

If the block is not given, the behavior is implementation dependent.
Let ¢ be 0.

Invoke the method each on the receiver.

For each element X which each yields:

1) Call the block with X and 7 as the arguments.

2) Increase i by 1.

Return the receiver.

15.3.2.1.6 Enumerable#entries

entries

276

Visibility: public

Behavior:

a)

Create an empty direct instance of the class Array A.

1 b) Invoke the method each on the receiver.
2 ¢) For each element X which each yields, append X to A.
3 d) Return A.

4+ 15.3.2.1.7 Enumerable#find

5 find (ifnone=nil, &block)
6 Visibility: public
7 Behavior: Same as the method detect (see §IH-3214).

s 15.3.2.1.8 Enumerable#find_all

0 find_all(&block)

10 Visibility: public

11 Behavior:

12 a) If the block is not given, the behavior is implementation dependent.

13 b) Create an empty direct instance of the class Array A.

14 ¢) Invoke the method each on the receiver.

15 d) For each element X which each yields, call the block with X as the argument. If this
16 call results in a true value, append the element to A.

17 e) Return A.

1 15.3.2.1.9 Enumerable#grep

19 grep (pattern, &block)

20 Visibility: public

21 Behavior:

2 a) Create an empty direct instance of the class Array A.

23 b) Invoke the method each on the receiver.

% ¢) For each element X which each yields, invoke the method === on the pattern with X
25 as the argument.

26 If this invocation results in a true value:

277

1 1) If the block is given, call the block with X as the argument and append the resulting
2 value to A.

3 2) Otherwise, append X to A.
4 d) Return A.

5 15.3.2.1.10 Enumerable#include?

6 include? (0bj)

7 Visibility: public

8 Behavior:

9 a) Invoke the method each on the receiver.

10 b) For each element X which each yields, invoke the method == on X with the 0bj as the
11 argument. If this invocation results in a true value, return true.

12 c¢) Return false.

13 15.3.2.1.11 Enumerable#inject

14 inject (*args, &block)

15 Visibility: public

16 Behavior:

17 a) If the block is not given, the behavior is implementation dependent.

18 b) If the length of the args is 2, the behavior is implementation dependent. If the length
19 of the args is smaller than 0 or larger than 2, raise a direct instance of the class
20 ArgumentError.

21 ¢) Invoke the method each on the receiver. If the method each does not yield any element,
2 return nil.

23 d) For each element X which each yields:

2 1) If X is the first element, and the length of the args is 0, let V be X.

25 2) If X is the first element, and the length of the args is 1, call the block with two
2 arguments, which are the only element of the args and X. Let V be the resulting
27 value of this call.

28 3) If X is not the first element, call the block with V and X as the arguments. Let
20 new V be the resulting value of this call.

278

2

6

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

e) Return V.

15.3.2.1.12 Enumerable#map

map (&block)

Visibility: public
Behavior: Same as the method collect (see §IA3213).

15.3.2.1.13 Enumerable##max

max (&block)

Visibility: public
Behavior:
a) Invoke the method each on the receiver.
b) If the method each does not yield any elements, return nil.
¢) For each element X which the method each yields:
1) If X is the first element, let V be X.

2) Otherwise, if the block is given:

i) Call the block with X and V as the arguments. Let D be the result of this
call.

ii) If D is not an instance of the class Integer, the behavior is implementation
dependent.

iii) If the value of D is larger than 0, let new V be X.
If the block is not given:

i) Invoke the method <=> on X with V as the argument. Let D be the result
of this invocation.

ii) If D is not an instance of the class Integer, the behavior is implementation
dependent.

iii) If the value of D is larger than 0, let new V be X.

d) Return V.

279

1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

25

26

15.3.2.1.14 Enumerable#min

min(&block)

Visibility: public

Behavior:

a) Invoke the method each on the receiver.

b) If the method each does not yield any elements, return nil.

¢) For each element X which the method each yields:

1) If X is the first element, let V be X.

2) Otherwise, if the block is given:

i) Call the block with X and V as the arguments. Let D be the result of this
call.

ii) If D is not an instance of the class Integer, the behavior is implementation
dependent.

iii) If the value of D is smaller than 0, let new V be X.
If the block is not given:

i) Invoke the method <=> on X with V as the argument. Let D be the result
of this invocation.

ii) If D is not an instance of the class Integer, the behavior is implementation
dependent.

iii) If the value of D is smaller than 0, let new V be X.

d) Return V.

15.3.2.1.15 Enumerable#member?

member? (0bj)

Visibility: public

Behavior: Same as the method include? (see §IA3T10).

15.3.2.1.16 Enumerable#partition

280

10

11

12

13

14

15

16

17

18

19

20

21

22

24

25

partition(&block)

Visibility: public

Behavior:

If the block is not given, the behavior is implementation dependent.

Create two empty instances of the class Array T and F.

Invoke the method each on the receiver.

For each element X which each yields, call the block with X as the argument.

If this call results in a true value, append X to 7. If this call results in a false value,
append X to F.

Return a newly created instance the class Array, which contains only 7" and F' in this
order.

15.3.2.1.17 Enumerable#reject

reject (&block)

Visibility: public

Behavior:

)

If the block is not given, the behavior is implementation dependent.
Create an empty direct instance of the class Array A.
Invoke the method each on the receiver.

For each element X which each yields, call the block with X as the argument. If this
call results in a false value, append the element to A.

Return A.

15.3.2.1.18 Enumerable#select

select (&block)

Visibility: public

Behavior: Same as the method find_all (see §IH3ZTR).

281

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

27

28

15.3.2.1.19 Enumerable#sort

sort (&block)

Visibility: public

Behavior:

2)

b)

c)

d)

Create an empty direct instance of the class Array A.

Invoke the method each on the receiver.

Insert all the elements which the method each yields into A. For any two elements F;
and Ej; of A, all of the following conditions shall hold:

1)

Let 7 and j be the index of E; and Ej, respectively.

2) If the block is given:
i) Suppose the block is called with F; and Ej as the arguments.
ii) If this invocation does not result in an instance of the class Integer, the
behavior is implementation dependent.
iii) If this invocation results in an instance of the class Integer whose value is
larger than 0, j shall be larger than .
iv) If this invocation results in an instance of the class Integer whose value is
smaller than 0, ¢ shall be larger than j.
3) If the block is not given:
i) Suppose the method <=> is invoked on FE; with E; as the argument.
ii) If this invocation does not result in an instance of the class Integer, the
behavior is implementation dependent.
iii) If this invocation results in an instance of the class Integer whose value is
larger than 0, j shall be larger than .
iv) If this invocation results in an instance of the class Integer whose value is
smaller than 0, ¢ shall be larger than j.
Return A.

15.3.2.1.20 Enumerable#to_a

to_a

282

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Visibility: public
Behavior: Same as the method entries (see §IR3ZTH).
15.3.3 Comparable

The module Comparable provides methods which compare the receiver and an argument using
the method <=>.

15.3.3.1 Instance methods

15.3.3.1.1 Comparable#<

<(other)

Visibility: public
Behavior:

a) Invoke the method <=> on the receiver with the other as the argument. Let I be the
resulting value of this invocation.

b) If I is not an instance of the class Integer, the behavior is implementation dependent.

c) If the value of I is smaller than 0, return true. Otherwise, return false.

15.3.3.1.2 Comparable#<=

<=(other)

Visibility: public
Behavior:

a) Invoke the method <=> on the receiver with the other as the argument. Let I be the
resulting value of this invocation.

b) 1If I is not an instance of the class Integer, the behavior is implementation dependent.

c) If the value of I is smaller than or equal to 0, return true. Otherwise, return false.

15.3.3.1.3 Comparable#==

==(other)

Visibility: public

283

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Behavior:

a) Invoke the method <=> on the receiver with the other as the argument. Let I be the
resulting value of this invocation.

b) If I is not an instance of the class Integer, the behavior is implementation dependent.

c) If the value of I is 0, return true. Otherwise, return false.

15.3.3.1.4 Comparable#>

>(other)

Visibility: public
Behavior:

a) Invoke the method <=> on the receiver with the other as the argument. Let N be the
resulting value of this invocation.

b) If I is not an instance of the class Integer, the behavior is implementation dependent.

c) If the value of I is larger than 0, return true. Otherwise, return false.

15.3.3.1.5 Comparable#>=

>=(other)

Visibility: public
Behavior:

a) Invoke the method <=> on the receiver with the other as the argument. Let N be the
resulting value of this invocation.

b) If I is not an instance of the class Integer, the behavior is implementation dependent.

c) If the value of I is larger than or equal to 0, return true. Otherwise, return false.

15.3.3.1.6 Comparable#between?

between? (left, right)

284

Visibility: public

Behavior:

10

Invoke the method <=> on the receiver with the left as the argument. Let I; be the
resulting value of this invocation.

1) If I; is not an instance of the class Integer, the behavior is implementation de-
pendent.

2) If the value of [; is smaller than 0, return false.

Invoke the method <=> on the receiver with the right as the argument. Let Iy be the
resulting value of this invocation.

1) If I is not an instance of the class Integer, the behavior is implementation de-
pendent.

2) If the value of I is larger than 0, return false. Otherwise, return true.

285

4

5

6

7

9

11

12

-
w

14

15

17

18

22

23

24

Annex A

(informative)
Grammar Summary

A.1 Lexical structure
A.1.1 Source text

see §E1

source-character ::
[any character in ISO/IEC 646 |

A.1.2 Line terminators

see S8

line-terminator ::
0x0d? 0x0a

separator ::
5

| [line-terminator here|

single-variable-assignment-expression ::
variable [no line-terminator here| = operator-expression

A.1.3 Whitespace

see §8J

whitespace ::
0x09 | 0xOb | O0xOc | 0x0d | 0x20 |\ 0x0d? 0xOa

A.1.4 Comments

see §&Z

286

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

comment ::
single-line-comment
| multi-line-comment

single-line-comment ::
comment-content?

comment-content ::
line-content

line-content ::
source-character+

multi-line-comment ::
multi-line-comment-begin-line multi-line-comment-line?
multi-line-comment-end-line

multi-line-comment-begin-line ::
[beginning of a line | =begin rest-of-begin-end-line? line-terminator

multi-line-comment-end-line ::
[beginning of a line | =end rest-of-begin-end-line?
(line-terminator | | end of a program |)

rest-of-begin-end-line ::
whitespace + comment-content

line ::
comment-content line-terminator

multi-line-comment-line ::
line but not multi-line-comment-end-line

A.1.5 Tokens

see §8H

token ::
reserved-word
| identifier
| punctuator
| operator
| literal

287

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

A.1.5.1 Reserved words

see §8A

reserved-word ::

__LINE__ | __ENCODING _FILE__ | BEGIN | END | alias | and | begin
break | case | class | def | defined? | do | else | elsif | end
ensure | for | false | if | in | module | next | nil | not | or | redo
rescue | retry | return | self | super | then | true | undef | unless
until | when | while | yield

A.1.5.2 Identifiers

see §8H 72

identifier
local-variable-identifier
| global-variable-identifier
| class-variable-identifier
| instance-variable-identifier
| constant-identifier
| method-identifier

local-variable-identifier ::

(lowercase-character | _) identifier-character™®

global-variable-identifier ::
$ identifier-start-character identifier-character™®

class-variable-identifier ::

@@ identifier-start-character identifier-character*

instance-variable-identifier ::
@ identifier-start-character identifier-character™

constant-identifier ::
uppercase-character identifier-character™

method-identifier ::
method-only-identifier
| assignment-like-method-identifier
| constant-identifier
| local-variable-identifier

288

1 method-only-identifier ::

2 (constant-identifier | local-variable-identifier) (! | 7))

3 assignment-like-method-identifier ::

4 (constant-identifier | local-variable-identifier) =

5 identifier-character ::

6 lowercase-character

7 | uppercase-character

8 | decimal-digit

0 | _

10 identifier-start-character ::

11 lowercase-character

12 | uppercase-character

13 | _

14 uppercase-character ::

15 A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q]|R
16 S| T|U|V|W|X]|Y]Z

17 lowercase-character ::

18 a|bfcldfe|f|[g|h[i|j[k|1l][m|nf[o|lp[aqlr
19 |ls|t|u]|]v]|w]|x]|y]|z

20 decimal-digit ::

21 o|1|2|3|4|5|6|7|8]|29

» A.1.5.3 Punctuators

23 see §BH3

24 punctuator ::

2 O O T O e L AR I S B B
% A.1.5.4 Operators

27 see S84

28 operator ::

20 operator-method-name

30 | assignment-operator

289

N

4

6

8

9

10

16

18

19

20

21

22

23

24

25

26

27

28

29

30

operator-method-name ::

assignment-operator ::

assignment-operator-name =

assignment-operator-name ::

okl [/ R << > e] &

A.1.5.5 Literals

see §8H A

literal ::

numeric-literal
| string-literal
| array-literal
| reqular-expression-literal
| symbol

A.1.5.5.1 Numeric literals

see §EH ATl

numeric-literal ::

signed-number
| unsigned-number

unsigned-number ::

integer-literal
| float-literal

integer-literal ::

decimal-integer-literal
| binary-integer-literal
| octal-integer-literal
| hezadecimal-integer-literal

decimal-integer-literal ::

290

digit-decimal-integer-literal
| prefived-decimal-integer-literal

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

digit-decimal-integer-literal ::
0
| decimal-digit-without-zero (_? decimal-digit)*

prefized-decimal-integer-literal ::
0 (d | D) digit-decimal-part

digit-decimal-part
decimal-digit (_7 decimal-digit)*

binary-integer-literal ::
0 (b | B) binary-digit (_?7 binary-digit)*

octal-integer-literal ::
0(_]o|0)?octal-digit (_? octal-digit)*

hexadecimal-integer-literal ::
0 (x| X) hexadecimal-digit (_7 hexadecimal-digit)*

float-literal ::
decimal-float-literal
| exponent-float-literal

decimal-float-literal ::
digit-decimal-integer-literal . digit-decimal-part

exponent-float-literal ::
base-part exponent-part

base-part ::
decimal-float-literal
| digit-decimal-integer-literal

exponent-part ::
(e|E) (+]|-)? digit-decimal-part

signed-number ::
(+ | =) unsigned-number

decimal-digit-without-zero ::
1123|456 7]|8]09

octal-digit ::
ol1]|2|3|4|5]6]|T7

291

1 binary-digit ::

2 0 ’ 1
3 hexadecimal-digit ::
4 decimal-digit | a | b | ¢ | d| e | £f|A|B|C|D|E]|F

5 A.1.5.5.2 String literals

6 see §8HDH A

7 string-literal ::

8 single-quoted-string

9 | double-quoted-string

10 | quoted-non-expanded-literal-string
11 | quoted-expanded-literal-string

12 | here-document

13 | external-command-execution

1 A.1.5.5.2.1 Single quoted strings

15 see S8 L

16 single-quoted-string ::

17 > single-quoted-string-character™

18 single-quoted-string-character ::

19 non-escaped-single-quoted-string-character

20 | single-quoted-escape-sequence

21 single-quoted-escape-sequence ::

2 single-escape-character-sequence

23 | non-escaped-single-quoted-string-character-sequence
% single-escape-character-sequence ::

25 \ single-escaped-character

2 non-escaped-single-quoted-string-character-sequence ::

27 \ non-escaped-single-quoted-string-character

28 single-escaped-character ::

20 >\

30 non-escaped-single-quoted-string-character ::

31 source-character but not single-escaped-character

292

1

2

3

9

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

A.1.5.5.2.2 Double quoted strings

see §8Hh D T2

double-quoted-string ::

" double-quoted-string-character™ "

double-quoted-string-character ::
source-character but not (" |\)
| double-escape-sequence
| interpolated-character-sequence

double-escape-sequence ::
simple-escape-sequence
| non-escaped-sequence
| line-terminator-escape-sequence
| octal-escape-sequence
| hez-escape-sequence
| control-escape-sequence

simple-escape-sequence ::
\ double-escaped-character

non-escaped-sequence ::
\ non-escaped-double-quoted-string-character

line-terminator-escape-sequence ::
\ line-terminator

non-escaped-double-quoted-string-character ::
source-character but not (double-escaped-character | line-terminator)

double-escaped-character ::
\|n|t]|]r|f|v]al|el|b]|s

octal-escape-sequence ::
\ octal-digit (octal-digit octal-digit?)?

hex-escape-sequence ::
\ x hexadecimal-digit hexadecimal-digit?

control-escape-sequence ::
\ (C - | ¢) control-escaped-character

293

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

control-escaped-character ::
double-escape-sequence
| 7

| source-character but not (\ | 7)

interpolated-character-sequence ::
global-variable-identifier
| # class-variable-identifier
| # instance-variable-identifier
| # { compound-statement }

A.1.5.5.2.3 Quoted non-expanded literal strings

see S8Hh D3

quoted-non-expanded-literal-string ::
%hq literal-beginning-delimiter non-expanded-literal-string™ literal-ending-delimiter

non-expanded-literal-string ::
non-expanded-literal-character
| non-expanded-delimited-string

non-expanded-delimited-string ::
literal-beginning-delimiter non-expanded-literal-string™ literal-ending-delimiter

non-expanded-literal-character ::
non-escaped-literal-character
| non-expanded-literal-escape-sequence

non-escaped-literal-character ::
source-character but not quoted-literal-escape-character

non-expanded-literal-escape-sequence ::
non-expanded-literal-escape-character-sequence
| non-escaped-non-expanded-literal-character-sequence

non-expanded-literal-escape-character-sequence ::
\ non-expanded-literal-escaped-character

non-expanded-literal-escaped-character ::
literal-beginning-delimiter
| literal-ending-delimiter

|\

294

3

5

7

8

9

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

quoted-literal-escape-character ::
non-expanded-literal-escaped-character

non-escaped-non-expanded-literal-character-sequence ::
\ non-escaped-non-expanded-literal-character

non-escaped-non-expanded-literal-character ::
source-character but not mnon-expanded-literal-escaped-character

A.1.5.5.2.4 Quoted expanded literal strings

see SO H 77

quoted-expanded-literal-string ::
% Q7 literal-beginning-delimiter expanded-literal-string™ literal-ending-delimiter

expanded-literal-string ::
expanded-literal-character
| expanded-delimited-string

expanded-literal-character ::
non-escaped-literal-character
| double-escape-sequence
| interpolated-character-sequence

expanded-delimited-string ::
literal-beginning-delimiter expanded-literal-string™® literal-ending-delimiter

literal-beginning-delimiter ::
source-character but not alpha-numeric-character-or-separator

alpha-numeric-character-or-separator ::
whitespace
| line-terminator
| uppercase-character
| lowercase-character
| decimal-digit
literal-ending-delimiter ::
[depending on the literal-beginning-delimiter |

matching-literal-beginning-delimiter ::

Cl L] <]

295

1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

A.1.5.5.2.5 Here documents

see §8H H7H

here-document ::

heredoc-start-line heredoc-body heredoc-end-line

heredoc-start-line ::

heredoc-signifier rest-of-line

heredoc-signifier ::

<< heredoc-delimiter-specifier

rest-of-line ::

line-content? line-terminator

heredoc-body ::

heredoc-body-line *

heredoc-body-line ::

line but not heredoc-end-line

heredoc-delimiter-specifier ::

-7 heredoc-delimiter

heredoc-delimiter ::

non-quoted-delimiter
| single-quoted-delimiter
| double-quoted-delimiter
| command-quoted-delimiter

non-quoted-delimiter ::

non-quoted-delimiter-identifier

non-quoted-delimiter-identifier ::

identifier-character™®

single-quoted-delimiter ::

? single-quoted-delimiter-identifier *

single-quoted-delimiter-identifier ::

source-character but not °

double-quoted-delimiter ::

296

" double-quoted-delimiter-identifier* "

10

11

12

13

14

15

17

18

19

21

22

24

25

27

28

double-quoted-delimiter-identifier ::
source-character but not "

command-quoted-delimiter ::
¢ command-quoted-delimiter-identifier*

command-quoted-delimiter-identifier ::
source-character but not ¢

heredoc-end-line ::
indented-heredoc-end-line
| non-indented-heredoc-end-line

indented-heredoc-end-line ::

[beginning of a line | whitespace® heredoc-delimiter-identifier line-terminator

non-indented-heredoc-end-line ::

[beginning of a line | heredoc-delimiter-identifier line-terminator

heredoc-delimiter-identifier ::
non-quoted-delimiter-identifier
| single-quoted-delimiter-identifier
| double-quoted-delimiter-identifier
| command-quoted-delimiter-identifier

4

A.1.5.5.2.6 External command execution

see RO H7H

external-command-execution ::
backquoted-external-command-ezxecution
| quoted-external-command-execution

backquoted-external-command-execution ::
¢ double-quoted-string-character™ ¢

quoted-external-command-execution ::

%x literal-beginning-delimiter expanded-literal-string™ literal-ending-delimiter

A.1.5.5.3 Array literals

see §8HH3

297

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

array-literal ::

quoted-non-expanded-array-constructor
| quoted-expanded-array-constructor

quoted-non-expanded-array-constructor ::

% literal-beginning-delimiter non-expanded-array-content literal-ending-delimiter

non-expanded-array-content ::

quoted-array-item-separator-list? non-expanded-array-item-list?
quoted-array-item-separator-list?

non-expanded-array-item-list ::

non-expanded-array-item (quoted-array-item-separator-list non-expanded-array-item)*

quoted-array-item-separator-list ::

quoted-array-item-separator +

quoted-array-item-separator ::

whitespace
| line-terminator

non-expanded-array-item ::

non-expanded-array-item-character +

non-expanded-array-item-character ::

non-escaped-array-item-character
| non-expanded-array-escape-sequence

non-escaped-array-item-character ::

non-escaped-array-character
| matching-literal-delimiter

non-escaped-array-character ::

non-escaped-literal-character but not quoted-array-item-separator

matching-literal-delimiter ::

ClLl<|0LlY Y >]1

non-expanded-array-escape-sequence ::

non-expanded-literal-escape-sequence but not escaped-quoted-array-item-separator
| escaped-quoted-array-item-separator

escaped-quoted-array-item-separator ::

298

\ quoted-array-item-separator

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

quoted-expanded-array-constructor ::
MW literal-beginning-delimiter expanded-array-content literal-ending-delimiter

expanded-array-content ::
quoted-array-item-separator-list? expanded-array-item-list?
quoted-array-item-separator-list?

expanded-array-item-list ::
expanded-array-item (quoted-array-item-separator-list exrpanded-array-item)*

expanded-array-item ::
expanded-array-item-character +

expanded-array-item-character ::
non-escaped-array-item-character
| expanded-array-escape-sequence
| interpolated-character-sequence

expanded-array-escape-sequence ::
double-escape-sequence but not escaped-quoted-array-item-separator
| escaped-quoted-array-item-separator

A.1.5.5.4 Regular expression literals

see §8H h A

regular-expression-literal ::
/ regular-expression-body / regular-expression-option™
| %r literal-beginning-delimiter expanded-literal-string*
literal-ending-delimiter reqular-expression-option ™

reqular-expression-body ::
reqular-expression-character*

reqular-expression-character ::
source-character but not (/| \)
| \\
| line-terminator-escape-sequence
| interpolated-character-sequence

regular-expression-option ::
i | m

299

1 A.2 Program structure
> A.2.1 Program

3 see §IIT

4

6

7

8

10

11

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

program ::
compound-statement

A.3 Expressions
A.3.1 Logical expressions

see §IIT

keyword-logical-expression ::
keyword-NOT-expression
| keyword-AND-expression

| keyword-OR-expression

keyword-NOT-expression ::
method-invocation-without-parentheses
| operator-expression
| logical-NOT-with-method-invocation-without-parentheses
| not keyword-NOT-expression

logical-NOT-expression ::=
logical-NO T-with-method-invocation-without-parentheses
| logical-NOT-with-unary-expression

logical-NO T-with-method-invocation-without-parentheses ::
I method-invocation-without-parentheses

logical-NO T-with-unary-expression ::
I unary-expression

keyword-AND-expression ::
expression and keyword-NOT-expression

keyword-OR-expression ::
expression or keyword-NOT-expression

logical-OR-expression ::
logical-AND-expression
| logical-OR-expression || logical-AND-expression

300

4

5

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

36

37

logical-AND-expression ::
equality-expression
| logical-AND-expression && equality-expression

A.3.2 Method invocation expressions

see §IT2

primary-method-invocation ::
super-with-optional-argument

| indezing-method-invocation

| method-only-identifier

| method-identifier ([no whitespace here] argument-with-parentheses)? block?

| primary-expression [no line-terminator here]
. method-name ([no whitespace here| argument-with-parentheses)? block?

| primary-expression [no line-terminator here]
:: method-name [no whitespace here| argument-with-parentheses block?

| primary-expression [no line-terminator here| :: method-name-without-constant

block?

indexing-method-invocation ::
primary-expression [no line-terminator here| optional-whitespace?
[indexing-argument-list?]

optional-whitespace ::
[whitespace here |

method-name-without-constant ::
method-name but not constant-identifier

method-invocation-without-parentheses ::
command
| chained-command-with-do-block
| chained-command-with-do-block (. | ::) method-name argument
| return-with-argument
| break-with-argument
| next-with-argument

command ::
super-with-argument
| yield-with-argument
| method-identifier argument
| primary-expression [no line-terminator here] (. | ::) method-name argument

chained-command-with-do-block ::
command-with-do-block chained-method-invocation*

301

N

10

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

chained-method-invocation ::

(.| ::) method-name
| (.| ::) method-name [no whitespace here]
[lookahead ¢ { { }| argument-with-parentheses

command-with-do-block ::

super-with-argument-and-do-block
| method-identifier argument do-block
| primary-ezpression [no line-terminator here] (. | ::) method-name arqument

do-block

A.3.2.1 Method arguments

see STl

indexing-argument-list ::

command
| operator-expression-list ,7
| operator-expression-list , splatting-argument
| association-list ,?
| splatting-argument

splatting-argument ::

* operator-erpression

operator-expression-list ::

operator-expression (, operator-erpression)*

argument-with-parentheses ::

@)
| C argument-in-parentheses)
| C operator-expression-list , chained-command-with-do-block)
| C chained-command-with-do-block)

argument ::

[no line-terminator here] [lookahead ¢ { { }] optional-whitespace?
argument-in-parentheses

argument-in-parentheses ::

302

command
| (operator-expression-list | association-list)
(, splatting-argument)? (, block-argument)?
| operator-expression-list , association-list
(, splatting-argument)? (, block-argument)?
| splatting-argument (, block-argument)?
| block-argument

3

4

5

10

11

12

13

14

15

16

17

18

19

20

21

24

25

26

block-argument ::
& operator-expression

A.3.2.2 Blocks

see ST

block ::
brace-block
| do-block

brace-block ::
{ block-formal-argument? block-body }

do-block ::
do block-formal-argument? block-body end

block-formal-argument ::
(I
| 1

| | block-formal-argument-list |

block-formal-argument-list ::
left-hand-side
| multiple-left-hand-side

block-body ::

compound-statement

A.3.2.3 The super expression

see §IT23

super-expression =
super-with-optional-argument
| super-with-argument
| super-with-argument-and-do-block

super-with-optional-argument ::

super ([no whitespace here| argument-with-parentheses)? block?

super-with-argument ::
super argument

303

3

4

5

10

11

12

13

14

15

16

17

18

24

super-with-argument-and-do-block ::

super argument do-block

A.3.2.4 The yield expression

see {24

yield-expression ::=

yield-with-optional-argument
| yield-with-argument

yield-with-optional-argument ::

yield-with-parentheses-and-argument
| yield-with-parentheses-without-argument
| yield

yield-with-parentheses-and-argument ::

yield [no whitespace here] (argument-in-parentheses)

yield-with-parentheses-without-argument ::

yield [no whitespace here] ()

yield-with-argument ::

yield argument

A.3.3 Operator expressions

see §IT3

operator-expression ::

assignment-exrpression
| defined ?-without-parentheses
| conditional-operator-expression

A.3.3.1 Assignments

see §IT-3T

assignment 1=

304

assignment-expression
| assignment-statement

12

13

15

16

17

18

20

21

22

24

27

28

32

assignment-exrpression ::
single-assignment-expression
| abbreviated-assignment-expression
| assignment-with-rescue-modifier

assignment-statement ::
single-assignment-statement
| abbreviated-assignment-statement
| multiple-assignment-statement

A.3.3.1.1 Single assignments

see §IT3 11

single-assignment ::=
single-assignment-expression
| single-assignment-statement

single-assignment-expression ::

single-vartable-assignment-expression

| scoped-constant-assignment-expression
| single-indexing-assignment-expression
| single-method-assignment-expression

single-assignment-statement ::

single-variable-assignment-statement
| scoped-constant-assignment-statement

| single-indexing-assignment-statement

| single-method-assignment-statement

A.3.3.1.1.1 Single variable assignments

see §IT-3 111

single-variable-assignment ::=

single-variable-assignment-expression

| single-variable-assignment-statement

single-variable-assignment-expression ::
variable [no line-terminator here |

single-variable-assignment-statement ::
variable [no line-terminator here]

operator-expression

method-invocation-without-parentheses

305

12

14

21

22

23

24

26

27

29

30

32

scoped-constant-assignment ::=

scoped-constant-assignment-expression
| scoped-constant-assignment-statement

scoped-constant-assignment-expression ::

primary-expression [no whitespace here| :: constant-identifier
[no line-terminator here| = operator-expression
| :: constant-identifier [no line-terminator here| = operator-expression

scoped-constant-assignment-statement ::

primary-expression [no whitespace here] :: constant-identifier
[no line-terminator here| = method-invocation-without-parentheses
: 1 constant-identifier [no line-terminator here| = method-invocation-without-parentheses

A.3.3.1.1.2 Single indexing assignments

see §IT 3T 17

single-indexing-assignment 1=

single-indexing-assignment-expression
| single-indexing-assignment-statement

single-indexing-assignment-expression ::

primary-expression [no line-terminator here] [indexing-argument-list?]
[no line-terminator here| = operator-expression

single-indexing-assignment-statement ::

primary-expression [no line-terminator here] [indexing-argument-list?]
[no line-terminator here| = method-invocation-without-parentheses

A.3.3.1.1.3 Single method assignments

see §IT 3T T3

single-method-assignment ::=

single-method-assignment-expression
| single-method-assignment-statement

single-method-assignment-expression ::

306

primary-expression [no line-terminator here] (. | ::) local-variable-identifier
[no line-terminator here| = operator-expression
| primary-expression [no line-terminator here] . constant-identifier

[no line-terminator here| = operator-expression

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

single-method-assignment-statement ::

primary-expression [no line-terminator here] (. | ::) local-variable-identifier

[no line-terminator here] = method-invocation-without-parentheses
| primary-expression [no line-terminator here| . constant-identifier
[no line-terminator here] = method-invocation-without-parentheses

A.3.3.1.2 Abbreviated assignments

see §IT3T7

abbreviated-assignment 1=
abbreviated-assignment-expression
| abbreviated-assignment-statement

abbreviated-assignment-expression ::
abbreviated-variable-assignment-expression
| abbreviated-indezing-assignment-expression
| abbreviated-method-assignment-expression

abbreviated-assignment-statement ::
abbreviated-variable-assignment-statement
| abbreviated-indexring-assignment-statement
| abbreviated-method-assignment-statement

A.3.3.1.2.1 Abbreviated variable assignments

see §IT-3 T2

abbreviated-variable-assignment 1=
abbreviated-variable-assignment-expression
| abbreviated-variable-assignment-statement

abbreviated-variable-assignment-expression ::

variable [no line-terminator here| assignment-operator operator-expression

abbreviated-variable-assignment-statement ::
variable [no line-terminator here| assignment-operator
method-invocation-without-parentheses

A.3.3.1.2.2 Abbreviated indexing assignments

see §IT-3 T2

10

12

20

21

22

24

25

27

28

29

30

abbreviated-indexing-assignment ::=

abbreviated-indexing-assignment-expression
| abbreviated-indexing-assignment-statement

abbreviated-indezring-assignment-expression ::

primary-ezpression [no line-terminator here| [indexing-argument-list?]
[no line-terminator here] assignment-operator operator-expression

abbreviated-indezring-assignment-statement ::

primary-ezpression [no line-terminator here| [indexing-argument-list?]
[no line-terminator here | assignment-operator method-invocation-without-parentheses

A.3.3.1.2.3 Abbreviated method assignments

see §IT-3 T3

abbreviated-method-assignment ::=

abbreviated-method-assignment-expression
| abbreviated-method-assignment-statement

abbreviated-method-assignment-expression ::

primary-expression [no line-terminator here] (. | ::) local-variable-identifier
[no line-terminator here] assignment-operator operator-expression
| primary-expression [no line-terminator here| . constant-identifier
[no line-terminator here] assignment-operator operator-expression

abbreviated-method-assignment-statement ::

primary-expression [no line-terminator here] (. | ::) local-variable-identifier
[no line-terminator here | assignment-operator method-invocation-without-parentheses
| primary-expression [no line-terminator here| . constant-identifier
[no line-terminator here| assignment-operator method-invocation-without-parentheses

A.3.3.1.3 Multiple assignments

see §IT 313

multiple-assignment-statement ::

many-to-one-assignment-statement
| one-to-packing-assignment-statement
| many-to-many-assignment-statement

many-to-one-assignment-statement ::

308

left-hand-side [no line-terminator here| = multiple-right-hand-side

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

one-to-packing-assignment-statement ::
packing-left-hand-side [no line-terminator here| =
(method-invocation-without-parentheses | operator-expression)

many-to-many-assignment-statement ::
multiple-left-hand-side [no line-terminator here| = multiple-right-hand-side
| (multiple-left-hand-side but not packing-left-hand-side)
[no line-terminator here| =
(method-invocation-without-parentheses | operator-expression)

left-hand-side ::
variable
| primary-expression [no line-terminator here] [indexing-argument-list?]
| primary-expression [no line-terminator here]
(.]::) (local-variable-identifier | constant-identifier)
| :: constant-identifier

multiple-left-hand-side ::
(multiple-left-hand-side-item ,)+ multiple-left-hand-side-item?
| (multiple-left-hand-side-item ,)+ packing-left-hand-side?
| packing-left-hand-side
| grouped-left-hand-side

packing-left-hand-side ::
* left-hand-side?

grouped-left-hand-side ::
(multiple-left-hand-side)

multiple-left-hand-side-item ::
left-hand-side
| grouped-left-hand-side

multiple-right-hand-side ::
operator-expression-list (, splatting-right-hand-side)?
| splatting-right-hand-side

splatting-right-hand-side ::
splatting-argument

A.3.3.1.4 Assignments with rescue modifiers

see §IT3 T4

309

10

12

13

14

22

23

24

N

5

26

27

28

29

30

31

32

assignment-with-rescue-modifier ::

left-hand-side [no line-terminator here| =
operator-expression, rescue operator-erpressions

A.3.3.2 Unary operators

see §IT37

UNATY-MINUS-ETPTeSSIONn ::

POWET-ELPTeSSLON, |
— power-expression o

unary—empression b

PTIMAry-erpression
logical-NO T-with-unary-expression
UNGTY-eTPression |

| + unary-expressions

A.3.3.2.1 The defined? expression

see §IT-3 27T

defined?-expression 1=

defined ?-with-parentheses
defined ?-without-parentheses

defined ?-with-parentheses ::

defined? (expression)

defined ?-without-parentheses ::

defined? operator-expression

A.3.3.3 Binary operators

see §I1T33

equality-expression ::

310

relational-expression
relational-expression <=> relational-expression

relational-expression == relational-expression
relational-expression === relational-expression
relational-expression '= relational-expression
relational-expression =" relational-expression
relational-expression '~ relational-expression

w

~

o

o

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

relational-expression ::
bitwise-OR-expression
| relational-expression > bitwise-OR-expression
| relational-expression >= bitwise-OR-expression
| relational-expression < bitwise-OR-expression
| relational-expression <= bitwise-OR-expression

bitwise-OR-expression ::
bitwise-AND-expression
| bitwise-OR-expression | bitwise-AND-expression
| bitwise-OR-expression ~ bitwise-AND-expression

bitwise-AND-expression ::
bitwise-shift-expression
| bitwise-AND-expression whitespace-before-operator? & bitwise-shift-expression

bitwise-shift-expression ::
additive-expression
| bitwise-shift-expression whitespace-before-operator? << additive-expression
| bitwise-shift-expression >> additive-expression

additive-expression ::
multiplicative-expression
| additive-expression whitespace-before-operator? + multiplicative-expression
| additive-expression whitespace-before-operator? — multiplicative-expression

multiplicative-expression ::
UNATY-MINUS-eTPTesSIon
| multiplicative-expression whitespace-before-operator? * unary-minus-expression
| multiplicative-expression whitespace-before-operator? / unary-minus-expression
| multiplicative-expression whitespace-before-operator? Y, unary-minus-expression

power-expression ::
unary-erpression
| = (numeric-literal) ** power-expression
| unary-expression ** power-expression

binary-operator ::=
e [<< [> [| =[x [/%] e

A.3.4 Primary expressions

see §IT4

311

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

30

31

32

33

34

35

36

37

38

PTIMaATY-ETPTession

class-definition
etgenclass-definition
module-definition
method-definition
singleton-method-definition
yield-with-optional-argument
if-expression
unless-expression
case-expression
while-expression
until-expression
for-expression
return-without-argument
break-without-argument
next-without-argument
redo-expression
retry-expression
rescue-erpression
grouping-exrpression
variable-reference
scoped-constant-reference
array-constructor
hash-constructor

literal

defined ?-with-parentheses

| primary-method-invocation

A.3.4.0.0.1 The if expression

see ST AT 11

if-expression ::

if expression then-clause elsif-clause™® else-clause? end

then-clause ::

separator compound-statement
| separator? then compound-statement

else-clause ::

else compound-statement

elsif-clause ::

elsif expression then-clause

312

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

A.3.4.0.0.2 The unless expression

see §CTAT T2

unless-expression ::

unless expression then-clause else-clause? end

A.3.4.0.0.3 The case expression

see §ITATT3

case-expression ::
case-expression-with-expression
| case-expression-without-expression

case-expression-with-expression

case expression separator-list? when-clause+ else-clause? end

case-expression-without-expression ::

case separator-list? when-clause+ else-clause? end

when-clause ::
when when-argument then-clause

when-argument ::

operator-expression-list (, splatting-argument)?

| splatting-argument

A.3.4.0.0.4 Conditional operator

see §IT AT 14

conditional-operator-expression ::
range-constructor
| range-constructor 7 operator-expression

operator-erpression o

A.3.4.0.1 Iteration expressions

see ST 4T

iteration-expression 1=
while-expression

313

5

6

7

9

10

12

16

23

24

25

26

28

| until-expression

| for-expression

| while-modifier-statement
| until-modifier-statement

A.3.4.0.1.1 The while expression

see §CTA T2

while-expression ::

while expression do-clause end

do-clause ::

separator compound-statement
| do compound-statement

A.3.4.0.1.2 The until expression

see §ITAT77

until-expression ::

until expression do-clause end

A.3.4.0.1.3 The for expression

see §IT 4T3

for-expression ::

for for-variable in expression do-clause end

for-variable ::

left-hand-side
| multiple-left-hand-side

A.3.4.0.2 Jump expressions

see ST 4T3

Jump-expression =

314

return-erpression
| break-expression
| next-expression

3

4

10

11

12

13

14

16

17

19

20

21

22

23

24

25

26

27

| redo-expression
| retry-expression

A.3.4.0.2.1 The return expression

see §ITZA T3

retuTrn-erpression 1=
return-without-argument
| return-with-argument

return-without-argument ::
return

return-with-argument ::
return jump-argument

jump-argument ::
arqument

A.3.4.0.2.2 The break expression

see §IT 4137

break-expression 1=
break-without-argument
| break-with-argument

break-without-argument ::
break

break-with-argument ::
break jump-argument

A.3.4.0.2.3 The next expression

see §ITZ4T33

next-expression 1=
next-without-argument
| next-with-argument

315

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

next-without-argument ::

next

next-with-argument ::

next jump-argument

A.3.4.0.2.4 The redo expression

see §IT 4134

redo-expression ::

redo

A.3.4.0.2.5 The retry expression

see §ITAT°3H

retry-expression ::

retry

A.3.4.0.2.6 The rescue expression

see §IT 4T

rescue—e:cpressz’on o

begin body-statement end

body-statement ::

compound-statement rescue-clause™ else-clause? ensure-clause?

rescue-clause ::

rescue [no line-terminator here] exception-class-list?
exception-variable-assignment? then-clause

exception-class-list ::

operator-expression
| multiple-right-hand-side

exception-variable-assignment ::

316

=> left-hand-side

3

4

8

9

10

11

12

-

3

14

15

16

17

18

20

21

22

29

ensure-clause ::

ensure compound-statement

A.3.4.1 Grouping expression

see T4

grouping-exrpression
(expression)
| ¢ compound-statement)

A.3.4.2 Variable references

see §ITZ3

variable-reference ::

variable

| pseudo-variable

variable ::

constant-identifier
global-variable-identifier
class-variable-identifier
instance-variable-identifier
local-variable-identifier

scoped-constant-reference ::
primary-expression [no whitespace here] ::
| :: constant-identifier

constant-identifier

A.3.4.2.1 Pseudo variables

see §ITA37

pseudo-variable ::

nil
| true
| false
| self

A.34.2.1.1

see §ITA-377

nil

317

3

nil

nil

A.3.4.2.1.2 +true and false

see §ITA 377

true ::

true

false ::

false

A.3.4.2.1.3 self

see §IT 4373

self ::

self

A.3.4.2.2 Array constructor

see {2

array-constructor ::

[indexing-argument-list?]

A.3.4.2.3 Hash constructor

see ST 422

hash-constructor ::

{ (association-list ,?)? }

association-list ::

association (, association)*

association ::

318

association-key => association-value

3

5

6

7

10

11

12

13

14

18

22

association-key ::
operator-erpression

association-value ::
operator-erpression

A.3.4.2.4 Range constructor

see §IT 47273

range-constructor ::
logical-OR-expression
| logical-OR-expression range-operator logical-OR-expression

range-operator ::

A.4 Statements
A.4.1 The expression statement

see §21

expression-statement ::
exTpression

A.4.2 The if modifier statement

see §22

if-modifier-statement ::
statement [no line-terminator here] if expression

A.4.3 The unless modifier statement

see §IC23

unless-modifier-statement ::
statement [no line-terminator here] unless expression

319

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

A.4.4 The while modifier statement

see §24

while-modifier-statement ::

statement [no line-terminator here] while expression

A.4.5 The until modifier statement

see §XH

until-modifier-statement ::

statement [no line-terminator here] until ezpression

A.5 Classes and modules
A.5.0.1 Module definition

see §C3IT2

module-definition ::
module module-path module-body end

module-path ::
top-module-path
| module-name
| nested-module-path

module-name ::
constant-identifier

top-module-path ::
11 module-name

nested-module-path ::

primary-expression [no line-terminator here| : :

module-body ::
body-statement

module-name

A.5.0.2 Class definition

see §C3I72

320

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

class-definition ::

class class-path [no line-terminator here| superclass class-body end

class-path ::
top-class-path
| class-name
| nested-class-path

class-name ::
constant-identifier

top-class-path ::
1t class-name

nested-class-path ::

primary-expression [no line-terminator here] : :

superclass ::
separator
| < expression separator

class-body ::
body-statement

class-name

A.5.0.3 Method definition

see §C3°3T

method-definition ::

def method-name [no line-terminator here| method-parameter-part

method-body end

method-name ::
method-identifier
| operator-method-name
| reserved-word

method-body ::
body-statement

321

1

2

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

A.5.0.4 Method parameters

see §MC3°32

method-parameter-part ::
(parameter-list?)
| parameter-list? separator

parameter-list ::
mandatory-parameter-list , optional-parameter-list? ,
array-parameter? , block-parameter?
| optional-parameter-list , array-parameter? , block-parameter?
| array-parameter , block-parameter?
| block-parameter

mandatory-parameter-list ::
mandatory-parameter
| mandatory-parameter-list , mandatory-parameter

mandatory-parameter ::
local-variable-identifier

optional-parameter-list ::
optional-parameter
| optional-parameter-list , optional-parameter

optional-parameter ::
optional-parameter-name = default-parameter-expression

optional-parameter-name ::
local-variable-identifier

default-parameter-expression ::
operator-expression

array-parameter ::
* array-parameter-name
| *

array-parameter-name ::
local-variable-identifier

block-parameter ::
& block-parameter-name

322

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

block-parameter-name ::
local-variable-identifier

A.5.0.5 The alias statement

see §C3I3H

alias-statement ::
alias new-name aliased-name

new-name ::
method-name
| symbol

aliased-name ::
method-name
| symbol

A.5.0.6 The undef statement

see §I3371

undef-statement ::
undef undef-list

undef-list ::
method-name-or-symbol (, method-name-or-symbol)*

method-name-or-symbol ::
method-name
| symbol

A.5.0.7 Eigenclass definition

see §C3A2

eigenclass-definition ::
class << expression separator eigenclass-body end

etgenclass-body ::
body-statement

323

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

A.5.0.7.1 Patterns

see §IH2ZTHh 3

pattern

alternative
| patterny | alternative

alternative

[empty |
| alternatives term

term

anchor
| atom
| atomq quantifier

anchor ::

g

quantifier ::

R

atom

pattern-character
| grouping

| atom-escape-sequence

pattern-character ::

source-character but not regexp-meta-character

regexp-meta-character ::

e I R I O O O

| future-reserved-meta-character

future-reserved-meta-character ::

(I A S
grouping ::
(pattern)

atom- escape-sequence

324

decimal-escape-sequence
| regexp-character-escape-sequence

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

decimal-escape-sequence ::
\ decimal-digit-without-zero

regexp-character-escape-sequence ::
regexrp-escape-sequence
| regexp-non-escaped-sequence
| hex-escape-sequence
| regexp-octal-escape-sequence
| regexp-control-escape-sequence
regexp-escape-sequence ::
\ regexp-escaped-character

regexp-escaped-character ::
n|t|r|f|v]alelb

regexp-non-escaped-sequence ::
\ regexp-non-escaped-character

regexp-non-escaped-character ::
source-character but not regexp-escaped-character

regexp-octal-escape-sequence ::
octal-escape-sequence but not decimal-escape-sequence

regexp-control-escape-sequence ::
\ (C - | ¢) regexp-control-escaped-character

regexp-control-escaped-character ::
regexp-character-escape-sequence
| ?

| source-character butnot (\ | 7)

325

	Contents
	Scope
	Normative references
	Conformance
	Terms and definitions
	Notational conventions
	Objects
	Execution context
	Lexical structure
	Scope of variables
	Program structure
	Expressions
	Statements
	Classes and modules
	Exceptions
	Built-in classes and modules
	Grammar Summary

