’Hﬁﬁeus "Q:“ADcac!:ssNPLATIFeoné

DataNucleus Access Platform
v.1.1-SNAPSHOT

Project Documentation

DataNucleus 19 April 2009

11

1.1 WELCOME 1

Welcome

DataNucleus Access Platform 1.1

’DataNucIeus

ACCESS PLATFORM

The DataNucleus Access Platform provides persistence and retrieval of data to a range of datastores

using a range of APIs, with a range of query languages.

The majority of competing software only caters for a single API and a single type of datastore.
DataNucleus Access Platform is not just an ORM. It allows access to RDBMS just like other persistence
software, but it also allows access to object-based datastores, or LDAP, or even documents! It is
continually evolving. It also provides access via JDO or JPA APIs. It doesn't just stop thetre. You could
define your persistence mapping using JDO (XML or annotations) and then persist using the JPA API.
Or define your persistence mapping using JPA (XML or annotations) and then persist using the JDO
API!. Flexibility

DataNucleus AccessPlatform Checklist
* License : Apache 2

* APIs Supported : JDO, JPA, REST

« Datastores Supported : RDBMS, db4o, LDAP, Excel, XML, NeoDatis, JSON, ODF, AppEngine
* Query Languages : JDOQL, JPQL, SQL, db4o Native, NeoDatis Native, NeoDatis Criteria

« JRE required : 1.5 or above

If you find something that DataNucleus Access Platform can't handle you can always extend it using its
plugin mechanism for one of its defined interfaces.

rATA Oajec s

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

http://www.datanucleus.org/project/license.html

1.2

1.2 GETTING STARTED 2

Getting Started

Access Platform 1.1 : Getting Started

DataNucleus Access Platform implements the JDO and JPA specifications. These specifications define
how Java classes can be persisted to a datastore and how they can be queried. By choosing Access
Platform you can select which of these APIs you feel most comfortable with. Time for you to get started
and use Access Platform!

What is required?

1. DataNucleus Access Platform 1.1 requires a JDK of 1.5 or above.

2. The first thing to do is Download DataNucleus Access Platform. Download the bundle that is most
approptiate to your needs so, for example, if you are going to be developing for access of RDBMS
data download the accessplatform-rdbms zip. 1f you want instead to just download the individual
DataNucleus plugins that make up Access Platform then please refer to the list of dependencies for
details of what other packages are required.

3. You also need a datastore. DataNucleus Access Platform 1.1 supports RDBMS, DB40O, LDAP, Excel
spreadsheets, NeoDatis ODB, XML JSON and OpenDocument spreadsheets. Please refer to the
linked pages for full details of the datastore required.

4. Depending on what development environment you use, you could also download a DataNucleus
plugin for Eclipse or Maven.

That should be enough to get you going. You have the necessary components to start investigating use of
DataNucleus.

Starting up

The next thing to do is to learn about JDO and JPA. You need to understand the basic concepts
involved. The JDO Overview is one place to start but there is plenty of reading on the internet, starting
with the JDOZ2 or JPA1 specifications of course.

The best thing to do after some reading is to try the JDO Tutorial or the JPA Tutorial. This explains the
basic steps of applying JDO/JPA (and DataNucleus) to your own application. The source code from the
Tutorial is available for download. Please download it and start up your development environment with
the Tutorial classes and files.

Once you have completed the Tutorial you should be ready to start applying DataNucleus to your own
application and benefiting from what it offers.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

http://www.datanucleus.org/project/download.html
http://www.datanucleus.org/project/download.html
http://www.datanucleus.org/project/download.html

1.3

1.3 DEVELOPMENT PROCESS 3

Development Process

DataNucleus Development Process

DataNucleus attempts to make the whole process of persisting data a transparent process. The idea
revolves around the developer having a series of Java classes that need persisting. With DataNucleus, the
developer defines the persistence of these classes using Metadata (defined in XML, annotations ot by
API), and byte-code "enhances" these classes. DataNucleus also provides RDBMS SchemaTool that
allows for schema generation/ validation before running your application, to make sure that all is correctly
mapped. Finally you provide persistence code (to manage the persistence of your objects), and queties (to
retrieve your persisted data). DataNucleus Access Platform implements all JDO specifications (1.0, 2.0,
2.1, 2.2 etc) and also the JPA specification (JPA1), plus some preview JPA2 features. The following diagram
shows the process for DataNuclens Access Platform (several parts of the diagram are clickable giving more details).

[Mapping of model ‘ [Runtime : Persistence and Querying

I‘IS Excel [BigTabIe}

S

L]

a-'\-_o-'

noms | || owe
st

SON

b FAY e

[ODF

|
NeoDati }

S

©2008-2009, DataNucleus » ALL RIGHTS RESERVED

1.4 WHAT'S NEW ? 4

What's New ?

Access Platform : What's New in 1.1

DataNucleus Access Platform version 1.1 extends the 1.0 capabilities aiming for increased stability,
performance as well as adding on a more complete feature set for some datastores. Below are some of the
new features you can find in DataNucleus Access Platform 1.1.

* JRE 1.5 or above is required to use DataNucleus Access Platform 1.1. If you require JRE 1.3 or 1.4
then please use Access Platform 1.0

* Upgrade db4o support to support db4o 7.0 and above. If you require db4o 6.x please use Access
Platform 1.0

* JDO 2.2 : Support for transaction isolation control (previously vendor extension).
* JDO 2.x: Supportt for "PersistenceManager Proxy"

* JDO 2.3 : Provision of a JDO2.3 compliant enhancer API

* JDO 2.3 : Provision of a JDO2.3 compliant metadata API

* JDO 2.3 : Support for JDO 2.3 Query timeout/cancel API

* JPA : Support for JPQL bulk delete added for DB4O, Excel, JSON, LDAP, NeoDatis and XML
datastores

* JPA 2: Supportt for @OrderColumn allowing surrogate columns for ordering collections
* Support for Datastore Replication for JDO and JPA

* Add capability to attach objects and update ALL fields not just those that were updated whilst
detached (for use in datastore replication).

* RDBMS : Support for sequences with H2 database.
* RDBMS : Start of a rewrite of the SQL generation process

* RDBMS : Support for persistence of interface/Object fields as a single column. Also support for
petsistence of Collection/Map of interface/Object storing the element as a single column (provides
capability to map to Kodo/Xcalia schemas).

* RDBMS : plugin point for defining your own INSERT, UPDATE, DELETE, FETCH and
LOCATE operations.

* LDAP : Support for native querying of LDAP datastores (Stefan Seelmann)

* XML : Completed support for 1-1 and 1-N referenced relations

* Support for alternative datastore-identity string form (in particular Open]PA, Xcalia)
* Addition of MetaData "auto-start mechanism" (Eric Sultan)

* Support input of String forms of ids into pm.getObjectByld() for convenience in upgrading from
other implementations like Xcalia

* Support for performing enhancement with JDK1.6 during compilation

* Support for persisting to OpenDocument spreadsheets

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

15

1.5 UPGRADE MIGRATION 5

Upgrade Migration

Access Platform : Migration between versions

DataNucleus Access Platform 1.1 builds on the 1.0 release, adding on more features around the currently
supported datastores, and additionally changing the JDK requirement to be JDK1.5 or above. All releases
are checked regularly against the JDO/JPA TCKs, meaning that DataNucleus has reached a level of
stability in terms of functionality. Occasionally, due to unknown bugs, or due to new functionality being
introduced we need to change some aspects of DataNucleus. As a result sometimes users will have to
make some changes to move between versions of DataNucleus. We aim to keep this to a minimum.

Migration from 1.1.1t0 1.1.1
Migrating from DataNucleus 1.1.1 to 1.1.2 will require the following changes

* Nuclens] DOHelper.getObjectStateAsS tring() has been deprecated for some time and is now removed.

Migration from 1.1.0to 1.1.1

Migrating from DataNucleus 1.1.0 to 1.1.1 should not require any changes.

Migration from 1.1.0 Milestone4 to 1.1.0 Release
Migrating from DataNucleus 1.1.0 M4 to 1.1.0 Release will require the following changes.

* The value for query timeouts datanucleus.query.timeont was previously in seconds, but is now in
milliseconds. Adjust values accordingly. This is also now a standard JDO property.

Migration from 1.1.0 Milestone3 to 1.1.0 Milestone4
Migrating from DataNucleus 1.1.0 M3 to 1.1.0 M4 will require the following changes.

* The BCEL enhancer has been removed and you must use ASM now.

Migration from 1.1.0 Milestone2 to 1.1.0 Milestone3
Migrating from DataNucleus 1.1.0 M2 to 1.1.0 M3 will require the following changes.

* The persistence property datanuclens.datastoreldentityClassNamse is renamed to
datanucleus.datastoreIdentity Type

* The programmatic API for the DataNucleusEnhancer has had some changes to align it better with the
new JDO2.3 Enhancer API

* The programmatic API for the RDBMS SchemaTvol has had some changes to allow multiple instances

Migration from 1.1.0 Milestonel to 1.1.0 Milestone2

Migrating from DataNucleus 1.1.0 M1 to 1.1.0 M2 will require the following changes.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

1.5 UPGRADE MIGRATION 6

* All"POID" generator classes have been repackaged and renamed. They are now stored in
org.datanucleus.store.valuegenerator

* Persistence properties relating to "poid" are renamed
* datanucleus.poid.transactionlsolation is now datanucleus.valuegeneration.transactionIsolation

* datanucleus.poid.transactionAttribute is now datanucleus.valuegeneration.transactionAttribute

* Log category "DataNucleus.POID" is renamed to "DataNucleus.ValueGeneration"

Migration from 1.0.0 Release to 1.1.0 Milestonel
Migrating from DataNucleus 1.0.0 Release to 1.1.0 M1 will require the following changes.

* Upgrade your JDK to be 1.5 or above
* If using db4o, you must now use version 7.0 or above.
* The Java5 plugin has been removed and a JPA plugin added. All JDO annotations are now in "core"

* The "springframework" plugin is no longer required. Specification of transaction isolation can now be
performed via the JDO2.2 interface.

* The plugin extension-point org.datanuclens.javas.annotations has been renamed to
org.datanucleus.annotations

* NucleusSQL queries for RDBMS are now no longer supported. Please use straight SQL

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

1.6

1.6 DEPENDENCIES

Dependencies

Access Platform : Dependencies

DataNucleus Access Platform utilises some third party software to provide some of its functionality.

Dependent on how you intend to use this product you may have to also download some of these third

party software packages. You can see below the dependencies and when they are required.

Software Description Version Requirement
JDO API JDO API definition, developed by 2.3+ Required
Apache JDO.
JPA API JPA API definition 1.0+ Required if you are using the JPA
API or JPA annotations
Log4j Log4J logging library. 1.2+ Required if you wish to log using
Log4J. DataNucleus supports
Log4J or JDK1.4 logging
ASM ASM bytecode enhancement 3.0+ Required
framework
DB40O DB40 object database 7.0+ Required if you are using a DB40O
datastore
NeoDatis NeoDatis object database 1.9.0-beta-3.9+ Required if you are using a
NeoDatis datastore
Apache POI Apache library for writing to 3.2 Required if you want to use Excel
Microsoft documents documents
Oracle Coherence Oracle Coherence caching Required if you want to use
product Oracle Coherence for level 2
caching. This is commercial
software
EHCache EHCache caching product 10,11 Required if you want to use
EHCache for level 2 caching
OScCache OSCache caching product 2.1 Required if you want to use
OScCache for level 2 caching
SwarmCache SwarmCache caching product 1.0RC2 Required if you want to use
SwarmCache for level 2 caching
C3P0O C3P0 RDBMS connection 0.9.0+ Required if you are using an
pooling library RDBMS datastore and want to
use C3PO0 for connection pooling
commons-dbcp DBCP RDBMS connection 1.1+ Required if you are using an
pooling library RDBMS datastore and want to
use DBCP for connection pooling
commons-pool DBCP RDBMS connection 1.1+ Required if you are using an
pooling library RDBMS datastore and want to
use DBCP for connection pooling
commons-collections Apache commons collections 3.0+ Required if you are using an

library

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

RDBMS datastore and want to
use DBCP for connection pooling

http://db.apache.org/jdo/downloads.html
http://www.ibiblio.org/maven2/javax/persistence/persistence-api/1.0/
http://jakarta.apache.org/log4j/
http://asm.objectweb.org/
http://www.db4o.com
http://www.neodatis.org
http://poi.apache.org//
http://www.tangosol.com
http://www.ibiblio.org/maven/ehcache/jars/
http://www.ibiblio.org/maven/opensymphony/oscache/jars/
http://www.ibiblio.org/maven/swarmcache/jars/
http://www.ibiblio.org/maven/c3p0/jars/
http://www.ibiblio.org/maven/commons-dbcp/jars/
http://www.ibiblio.org/maven/commons-pool/jars/
http://www.ibiblio.org/maven/commons-collections/jars/
http://www.ibiblio.org/maven/proxool/jars/

1.6 DEPENDENCIES

Software Description Version Requirement
proxool Proxool RDBMS connection 0.9.0RC3 Required if you are using an
pooling library RDBMS datastore and want to

use Proxool for connection
pooling

commons-logging Apache commons logging library 1.0+ Required if you are using an
RDBMS datastore and want to
use Proxool for connection
pooling

Flexjson Flexjson 1.7+ Required if you want to use the
REST API.

mx4j MX4J management library 3.0+ Required if you want to manage
DataNucleus operations using
MX4J

jaxb-api 2.1 JAXB API Required is you are using an
XML datastore

jaxb-impl 2.X JAXB Implementation Required is you are using an
XML datastore

mx4j-tools MX4J tools 1.2+ Required if you want to manage
DataNucleus operations using
MX4J

sdoapi Oracle Spatial library 1.2+ Required if you want to persist
Oracle spatial types

JDBC Driver JDBC Driver for your chosen Required if you want to use an

RDBMS RDBMS datastore. Obtain from

your RDBMS vendor

ODFDOM ODF Toolkit for Java 0.6+ Required if you want to use an
ODF document for persistence.

Xerces Xerces XML parser 2.8+ Required if you want to use an

ODF document for persistence.
Required by ODFDOM

©2008-20009,

DataNucleus

« ALL RIGHTS RESERVED

http://www.ibiblio.org/maven/proxool/jars/
http://www.ibiblio.org/maven/commons-logging/jars/
http://flexjson.sourceforge.net/
http://www.mx4j.org
http://mirrors.ibiblio.org/pub/mirrors/maven2/javax/xml/bind/jaxb-api/2.1/
http://mirrors.ibiblio.org/pub/mirrors/maven2/javax/xml/jaxb-impl/
http://www.mx4j.org
http://www.oracle.com/technology/software/products/spatial/index.html
http://odftoolkit.org
http://xerces.apache.org/

1.7

1.7 ARCHITECTURE 9

Architecture

Access Platform : Architecture

The DataNucleus Access Platform provides persistence and retrieval of data to a range of datastores
using a range of APIs, with a range of query languages. It is architected with flexibility in mind.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

1.8 COMPATIBILITY 10

18 Compatibility

Access Platform : Compatibility

We aim to make DataNucleus AccessPlatform as compatible with related software as possible. Here we
give an overview of known compatibilities/problems

Software Status

GraniteDS The GraniteDS team wrote a plugin to support DataNucleus. This is in
their 2.0.0.B1 release and later.

Scala In versions up to and including 1.1.1 there was a problem since Scala
generates constructor bytecode that doesn't always initialise the
superclass first. This was fixed in 1.1.2 (datanucleus-enhancer)

GWT There is a known problem in the serialisation of detached objects
where GWT fails to handle serialisation of a field. This is a problem in
GWT since the field is of type Object[] and every element is
Serializable. There is a project GILEAD that attempts to handle this
for various persistence solutions. Also look at this and this.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

http://noon.gilead.free.fr/gilead/
http://groups.google.com/group/Google-Web-Toolkit-Contributors/browse_thread/thread/3c768d8d33bfb1dcseems
http://timepedia.blogspot.com/2009/04/google-appengine-and-gwt-now-marriage.html

1.9

1.9 JDO-JPA FAQ 11

JDO-JPA FAQ

JDO - JPA Frequently Asked Questions

DataNucleus Access Platform supports both JDO and JPA specifications of Java persistence. As such it
has no "vested interest" in either technology, believing that it is for users to choose which they like best.
There has been much FUD on the web about JDO and JPA, largely perpetrated by RDBMS vendors.
This FAQ corrects many of these points

Q: Which specification was the original?

JDO was the first Java persistence specification, starting in 1999, and the JDO 1.0 specification being
published in April 2002. This provided the persistence API, and was standardised as JSR012. In May
2006 JDO 2.0 was released. This provided an update to the persistence API as well as a complete
definition of ORM, standardised as J[SR243. Later in May 2006 JPA 1.0 was released. This provided a
persistence API, and a limited definition of ORM, concentrating only on RDBMS, and was standardised
as JSR220.

Q: Why did JPA come about when we already had a specification for Java persistence in JDO?
Politics. RDBMS vendors didn't like the idea of having a technology that allowed usets to leverage a
single API, and easily swap to a different type of datastore. Much pressure was applied to SUN to provide
a different specification, and even to try to say that JPA was to supercede JDO. The JCP is dominated by
large organisations and SUN capitulated. They even published a FAQ to try to justify their decision.

Q: Is JDO dead?
No. As part of SUN's capitulation above, they donated JDO to Apache to develop the technology
further. In the last year and a half there have been two revisions to the JDO 2 specification;

* JDO 2.1 adding on support for annotations, enums, and some JPA concepts.

* JDO 2.2 adding on support for dynamic fetch groups, transaction isolation and cache control.

Q: Will JPA replace JDO ?

It is hard to see that happening since JPA provides nothing to cater for persistence of Java objects to
non-RDBMS datastores. It doesn't even provide a complete definition of ORM, so cannot yet compete
with JDO's ORM handling. Perhaps in JPA 2.0 (2009?) it will be able to cope with the majority of things
that JDO does for RDBMS. JDO is still being developed, and while users require this technology then it
will continbue to exist. DatalNuclens will continne to support both APls since there is a need for both in modern
enterprise applications

Q: What differences are there between how JDO is developed and how JPA is developed ?

JPA is developed in private by an "expert group". JDO is developed in public by anybody interested in
the technology. The tests to verify compliance with JPA are only available after signing non-disclosure
agreements with SUN and this process can take up to 3 months just to get the test suite. The tests to
verify compliance with JDO are freely downloadable and can be run by users or developers. This means
that anybody can check whether an implementation is compliant with JDO, whereas the same is not true
of JPA. DatalNucleus run the J[DO 2 and [PA 1 TCKs at frequent intervals and publish the results on onr website.

Q: Why should I use JDO when JPA is supported by "large organisations" ?
By "large organisations" you presumably mean commercial organisations like Oracle, SUN,
RedHat(JBoss). And they have their own vested interest in RDBMS technologies, or in selling application

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

http://jcp.org/en/jsr/detail?id=012
http://jcp.org/en/jsr/detail?id=243
http://jcp.org/en/jsr/detail?id=220
http://java.sun.com/javaee/overview/faq/persistence.jsp
http://db.apache.org/jdo

1.9 JDO-JPA FAQ 12

servers. You should make your own decisions rather than just follow down the path you are shepherded
in by any commercial organisation. Your application will be supported by you not by them. The
technology you use should be the best for the job and what you feel most comfortable with. If you feel
more comfortable with JPA and it provides all that your application needs then use it. Similarly if JDO
provides what you need then you use that. For this reason DataNucleus provides support for both
specifications.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

2.1 BYTECODE ENHANCEMENT 13

Bytecode Enhancement

Class enhancement

DataNucleus requires that all classes that are persisted implement PersistenceCapable, an interface defined
by JDO. Why should we do this, Hibernate/TopLink dont need it ?. Well thats a simple question
really

* DataNucleus uses this PersistenceCapable interface, and adds it using bytecode enhancement techniques
so that you never need to actually change your classes. This means that you get transparent
persistence, and your classes always remain your classes. ORM tools that use a mix of reflection
and/or proxies are not totally transparent.

* DataNucleus' use of PersistenceCapable provides transparent change tracking. When any change is made
to an object the change creates a notification to DataNucleus allowing it to be optimally persisted.
ORM tools that dont have access to such change tracking have to use reflection to detect changes.
The performance of this process will break down as soon as you read a large number of objects, but
modify just a handful, with these tools having to compare all object states for modification at
transaction commit time.

In a JDO-enabled application there are 3 categories of classes. These are PersistenceCapable,
PersistenceAware and normal classes. The Meta-Data defines which classes fit into these categories. To
give an example for JDO, we have 3 classes. The class A is to be persisted in the datastore. The class B
directly updates the fields of class A but doesn't need petsisting, The class C is not involved in the
persistence process. We would define JDO MetaData for these classes like this

<cl ass name="A" persistence-nodifier="persistence-capabl e">
<field name="nyFiel d'>

</field>
</ cl ass>
<cl ass nane="B" persistence-nodifier="persistence-aware">
</cl ass>

So our MetaData is mainly for those classes that are PersistenceCapable and are to be persisted to the
datastore (we don't really need the persistence-modifier for thse classes since this is the default). For
PersistenceAware classes we simply notate that the class knows about persistence. We don't define
MetaData for any class that has no knowledge of persistence.

JDO requires that all classes to be persisted must implement the PersistenceCapable interface . Users
could manually do this themselves but this would impose work on them. JDO permits the use of a
byte-code enhancer that converts the users normal classes to implement this interface. DataNucleus
provides its own byte-code enhancer (this can be found in the datanucleus-enhancer.jar). This section
describes how to use this enhancer with DataNucleus. The DataNucleus enhancer fully implements
JDO2 and so is the recommended choice when persisting using the JDO2 API. The enhancement
process adds the necessary methods to the users class in order to implement PersistenceCapable.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

2.1 BYTECODE ENHANCEMENT

MycClass
fieldl

14

==PersistenceCapabl e==

MycClass

[} fieldl

field2

fieldz2

-jdoFieldTypes
-jdoFiel diames
+jdoProvideField()
+jdoReplaceField()
+jdoCopyField()
+jdoSetfieldl()
+jdoSetfield2()
+jdoGetfieldl()
+jdoGetfield2()

The example above doesn't show all PersistenceCapable methods, but demonstrates that all added
methods and fields are prefixed with "jdo" to distinguish them from the users own methods and fields.
Also each persistent field of the class will be given a jJdoGetXXX, jdoSetXXX method so that accesses of
these fields are intetcepted so that JDO can manage their "dirty" state.

The MetaData defines which classes are required to be persisted, and also defines which aspects of
persistence each class requires. For example if a class has the detachable attribute set to true, then that

class will be enhanced to also implement Detachable

MyClass
fieldl

==PersistenceCapable, Detachable==

MyClass

field2

fieldl
field?
-jdoFieldTypes

-jdoFiel diames
+jdoDetached5State

+jdoProvideField()
+jdoReplaceField()
+jdoCopyField()
+jdoSetfieldl()
+jdoSetfield2()
+jdoGetfieldli)
+jdoGetfield2()
+jdoGet0bjectId])
+jdoReplaceletachedstatel)

+jdoGetVersioni)

Again, the example above doesn't show all methods added for the Detachable interface but the main
thing to know is that the detached state (object id of the datastore object, the version of the datastore

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

2.1 BYTECODE ENHANCEMENT 15

object when it was detached, and which fields were detached is stored in "jdoDetachedState"). Please see
the JDO spec for more details.

If the MetaData is changed in any way during development, the classes should always be
recompiled and re-enhanced afterwards.

Byte-Code Enhancement Myths

Some groups (e.g Hibernate) perpetuated arguments against "byte-code enhancement" saying that it was
somehow 'evil'. The most common wete :-

* Slows down the code-test cycle. This is erroneous since you only need to enhance just before test and
the provided plugins for Ant, Eclipse and Maven all do the enhancement job automatically and
rapidly.

* Isless "lazy" than the proxy approach since you have to load the object as soon as you get a pointer
to it. In a 1-1 relation you have to load the object then since you would cause issues with null pointers
otherwise. With 1-N relations you load the elements of the collection/map only when you access
them and not the collection/map. Hardly an issue then is it!

* Fail to detect changes to public fields unless you enhance your client code. Firstly very few people will
be writing code with public fields since it is bad practice in an OO design, and secondly, this is why
we have "PersistenceAware" classes.

So as you can see, there are no valid reasons against byte-code enhancement, and the pluses are that
runtime detection of dirty events on objects is much quicker, hence your persistence layer operates faster
without any need for iterative reflection-based checks. The fact is that Hibernate itself also now has a
mode whereby you can do bytecode enhancement although not the default mode of Hibernate. So maybe
it wasn't so evil after all ?

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

2.2 ENHANCER 16

Enhancer

DataNucleus Enhancer

As is described in the ByteCode Enhancement guide, DataNucleus utilises the common technique of
byte-code manipulation to make your normal Java classes "persistable”. The mechanism provided by
DataNucleus is to use an "enhancer" process to perform this manipulation before you use your classes at
runtime. The process is very quick and easy.

How to use the DataNucleus Enhancer depends on what environment you are using, Below are some
typical examples.

* Automatic invocation from javac

* Manual invocation at the command line

* Using Mavenl via the DataNucleus Maven1 plugin
* Using Maven2 via the DataNucleus Maven2 plugin
* Using Ant

* Runtime Enhancement

* Using the Eclipse DataNucleus plugin

* Programmatically via an API

Javac

DataNucleus provides a JAR containing the Enhancer (datanucleus-enhancer.jar). From J2SE 1.6 and
forward, you can automatically enhance your classes when compiling your classes. Just add the
datanucleus-enhancet.jar, datanucleus-cot.jar, jJdo2-api.jar and asm.jar to the compiler classpath and the
classes will be enhanced.

Manually

DataNucleus provides a JAR containing the Enhancer (datanucleus-enhancer.jar). If you are building
your application manually and want to enhance your classes you follow the instructions in this section.
You invoke the enhancer as follows

java -cp classpath org.datanucl eus. enhancer. Dat aNucl eusEnhancer [options]
[jdo-files] [class-files]
where options can be
-persistenceUnit persistence-unit-nane : Nane of a "persistence-unit" to
enhance the cl asses for
-d target-dir-name : Wite the enhanced classes to the specified directory
-api api-nanme : Nanme of the APl we are enhancing for (JDO JPA). Default is
JDO
-enhancer Name nanme : Name of the C assEnhancer to use. Options ASM
-checkonly : Just check the classes for enhancenent status
-v @ verbose out put

where cl asspath nust contain the follow ng

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

2.2 ENHANCER 17

dat anucl eus- enhancer. j ar
dat anucl eus-core. jar
asm j ar

jdo2-api.jar

| og4j .jar (optional)
your cl asses

your neta-data files

The input to the enhancer should be either a set of MetaData/class files or the name of the
"persistence-unit” to enhance. In the first option, if any classes have annotations then they must be

specified. All classes and MetaData files should be in the CLASSPATH when enhancing. To give an
example of how you would invoke the enhancer

Li nux/ Uni x :
java -cp
target/cl asses: |i b/ datanucl eus-enhancer.jar:|ib/datanucl eus-core.jar:1ib/jdo2-api.jar:
lib/log4j.jar:lib/asmjar
-Dlog4j.configuration=file:log4j.properties
or g. dat anucl eus. enhancer . Dat aNucl eusEnhancer
*% [*-j do

W ndows :
java -cp
target\cl asses; | i b\ dat anucl eus- enhancer.jar;|ib\datanucl eus-core.jar;!|ib\jdo2-api.jar;
lib\log4j.jar;lib\asmjar
-Dlog4j.configuration=file:log4j.properties
or g. dat anucl eus. enhancer . Dat aNucl eusEnhancer -v
target/cl asses/ org/ mydomai n/ nypackagel/ package. j do
target/cl asses/ or g/ nydomai n/ nypackage?2/ package. j do

[should all be on same line. Shown like this for clarity]

So you pass in your JDO MetaData files (and/or the class files wihich use annotations) as the final
argument(s) in the list, and include the respective JAR's in the classpath (-cp). The enhancer responds as
follows

Dat aNucl eus Enhancer (version 1.0.0) : Enhancenent of classes

Dat aNucl eus Enhancer : dasspath

>> [hone/ andy/ wor k/ myproj ect//target/cl asses

>> [hone/ andy/ wor k/ myproj ect/lib/log4j.jar

>> [hone/ andy/ wor k/ myproj ect/lib/jdo2-api.jar

>> [hone/ andy/ wor k/ mypr oj ect/ i b/ dat anucl eus-core.jar

>> [hone/ andy/ wor k/ mypr oj ect/ | i b/ dat anucl eus- enhancer. j ar
>> [home/ andy/ wor k/ nyproj ect/lib/asmjar

Dat aNucl eus Enhancer : Using O assEnhancer "asni for APl "JDO'

Dat aNucl eus Enhancer : Input Files

>> [hone/ andy/ wor k/ mypr oj ect/t arget/ cl asses/ or g/ nydomai n/ nypackagel/ package. j do
>> [home/ andy/ wor k/ mypr oj ect/t arget/ cl asses/ or g/ nydomai n/ mypackage2/ package. j do

Processing class "org. nydonui n. nypackagel. Pack"

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

2.2 ENHANCER 18

ENHANCED: or g. nydonai n. nypackagel. Pack
Processing class "org. nydonai n. nypackagel. Card"
ENHANCED: or g. nydonai n. mypackagel. Card
Processing class "org. mydonmai n. nypackage2. Pack"
ENHANCED: or g. mydonai n. mypackage2. Pack
Processing class "org. nydomai n. nypackage2. Card"
ENHANCED: or g. mydonai n. mypackage2. Card
Dat aNucl eus Enhancer conpleted with success for 4 classes. Timngs : input=422 ns,
enhance=490 ms, total =912 ns.
Consult the log for full details

If you have errors here relating to "Log4]" then you must fix these first. If you receive no output about
which class was ENHANCED then you should look in the DataNucleus enhancer log for errors. The
enhancer performs much error checking on the validity of the passed MetaData and the majority of
errors are caught at this point. You can also use the DataNucleus Enhancer to check whether classes are
enhanced. To invoke the enhancer in this mode you specify the checkonly flag. This will return a list of
the classes, stating whether each class is enhanced for persistence under JDO or not. The classes need to
be in the CLASSPATH (Please note that a CLASSPATH shonld contain a set of JAR's, and a set of directories. It
should NOT excplictly include class files, and shounld NOT include parts of the package names. If in doubt please consult a
Java book).

Mavenl

Mavenl operates from a series of plugins. There is a DataNucleus plugin for Maven1 that allows
enhancement of classes. Go to the Download section of the website and download this. Once you have
the Maven1 plugin, you then need to set the properties for the plugin in your project.properties file. This
will typically not require any addition to your project.properties. If you do need to change this file, the
following parameters are the likely ones to change

maven. dat anucl eus. jdo. fil eset. di r=${maven. bui | d. dest} # Location of the JDO files
maven. dat anucl eus. j do. fil eset.include=**/*_jdo fileset to include
#maven. dat anucl eus. j do. fil eset. excl ude=sonmething.jdo # fileset to exclude, if any

H*

maven. dat anucl eus. cl asses. di r =${ naven. bui | d. dest} # Location of classes to
enhance

maven. dat anucl eus. api =3JDO # APl to enhance to (JDO,
JPA)

maven. dat anucl eus. enhancer . cl assenhancer =asm # Use ASM

maven. dat anucl eus. i nput node=fil es # Mode of input. Can al so be
set to "persistenceunit"

maven. dat anucl eus. persi st enceuni t = # Name of the
persistence-unit to enhance

maven. dat anucl eus. | og4j . confi gurati on= # Log definition to use
maven. dat anucl eus. ver bose=t r ue # Turn on nore output ?

You then run the Maven DataNucleus plugin, as follows

maven dat anucl eus: enhance

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

2.2 ENHANCER 19

This will enhance all classes found that correspond to the classes defined in the JDO files in your source
tree. If you want to check the current status of enhancement you can also type

maven dat anucl eus: enhance- check

Maven2

Maven2 operates from a series of plugins. There is a DataNucleus plugin for Maven?2 that allows
enhancement of classes. Go to the Download section of the website and download this. Once you have
the M2 plugin, you then need to set any properties for the plugin in your pom.xn/ file. If you are using
annotations then you'll need to add *.cass to "mappinglncludes” for example. Some properties that you
may need to change are below

Property Default Description

mappingincludes **[* jdo Fileset to include for enhancement

mappingExcludes Fileset to exclude for enhancement

persistenceUnitName Name of the persistence-unit to enhance

log4jConfiguration Config file location for Log4J (if using it)

jdkLogConfiguration Config file location for JDK1.4 logging (if
using it)

api JDO API to enhance to (JDO, JPA)

verbose false Verbose output?

targetDirectory

fork

true

Where the enhanced classes are written
(default is to overwrite them)

Whether to fork the enhancer process

You then run the Maven2 DataNucleus plugin, as follows

mvn dat anucl eus: enhance

This will enhance all classes found that correspond to the classes defined in the JDO files in your source
tree. If you want to check the current status of enhancement you can also type

nmvn dat anucl eus: enhance- check

Or alternatively, you could add the following to your POM

<bui | d>

<pl ugi ns>

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

2.2 ENHANCER 20

<pl ugi n>
<gr oupl d>or g. dat anucl eus</ gr oupl d>
<artifactl|d>dat anucl eus- maven- pl ugi n</artifactl d>
<versi on>1. 1. 0</ ver si on>
<confi guration>

<l og4j Confi gurati on>%${basedir}/| og4j.properties</|og4j Configuration>

<ver bose>true</verbose>
</configuration>
<executions>
<execution>
<phase>conpi | e</ phase>
<goal s>
<goal >enhance</ goal >
</ goal s>
</ execution>
</ executions>
</ pl ugi n>
</ pl ugi ns>

</ bui | d>

So you then get auto-enhancement after each compile

Ant

Ant provides

a powerful framework for performing tasks. DataNucleus provides an Ant task to enhance

classes. DataNucleus provides a JAR containing the Enhancer (datanucleus-enhancer.jar). You need to
make sure that the datanucleus-enhancer.jar, datanucleus-core.jar, asm.jar, log4j.jar and jdo2-api.jar are in
your classpath. In the DataNucleus Enhancer Ant task, the following parameters are available

Parameter Description values
dir Optional. Directory containing the JDO files to
use for enhancing. Uses ant build file
directory if the parameter is not specified.
destination Optional. Defining a directory where
enhanced classes will be written. If omitted,
the original classes are updated.
api Optional. Defines the API to be used when JDO, JPA
enhancing
enhancerName Optional. Defines the ClassEnhancer to use ASM

persistenceUnit

checkonly

verbose

©2008-20009,

when enhancing.

Optional. Defines the "persistence-unit" to
enhance.

Whether to just check the classes for true, false
enhancement status. Will respond for each

class with "ENHANCED" or "NOT

ENHANCED". This will disable the

enhancement process and just perform

these checks.

Whether to have verbose output. true, false

DataNucleus « ALL RIGHTS RESERVED

2.2 ENHANCER

Parameter

Description

values

21

filesuffixes

fileset

Optional. Suffixes to accept for the input files.
The Enhancer Ant Task will scan for the files
having these suffixes under the directory
specified by dir option. The value can include
comma-separated list of suffixes. If using
annotations you can have "class" included as
a valid suffix here or use the fileset.

Optional. Defines the files to accept as the
input files. Fileset enables finer control to
which classes / metadata files are accepted
to enhanced. If one or more files are found in
the fileset, the Enhancer Ant Task will not
scan for additional files defined by the option
filesuffixes. For more information on defining
a fileset, see Apache FileSet Manual.

Optional. The name of a property that must
be set in order to the Enhancer Ant Task to
execute.

jdo

The enhancer task extends the Apache Ant Java task, thus all parameters available to the Java task are

also available to the enhancer task.

So you could define something /e the following, setting up the parameters enhancer.classpath,

jdo.file.dir, and log4j.config.file to suit your situation (the jdo.file.dir is a directory containing the JDO

files defining the classes to be enhanced). The classes specified by the XML Meta-Data files, together

with the XML Meta-Data files must be in the CLASSPATH (Please note that a CLASSPATH should contain

a set of JAR's, and a set of directories. It shonld NOT excplictly include class files, and should NOT include parts of the

package names. If in doubt please consult a Java book).

<t arget nane="enhance" descri pti on="Dat aNucl eus enhancenent">

<t askdef name="dat anucl eusenhancer" cl asspat hr ef ="enhancer. cl asspat h"
cl assnanme="or g. dat anucl eus. enhancer. t ool s. Enhancer Task" />

<dat anucl eusenhancer cl asspat hr ef ="enhancer. cl asspat h"

dir="%{jdo.file.dir}" failonerror="true" verbose="true">

<jvmarg |ine="-D og4j.configuration=${1o0g4j.config.file}"/>

</ dat anucl eusenhancer >
</target>

You can also define the files to be enhanced using a fileset. When a fileset is defined, the Enhancer Ant
Task will not scan for additional files, and the option filesuffixes is ignored.

<t arget nane="enhance" descri pti on="Dat aNucl eus enhancenent">

<t askdef nanme="dat anucl eusenhancer" cl asspat hr ef ="enhancer. cl asspat h"
cl assnanme="or g. dat anucl eus. enhancer. t ool s. Enhancer Task" />

<dat anucl eusenhancer

dir="%${jdo.file.dir}" failonerror="true" verbose="true">
<fileset dir="${classes.dir}">
<i nclude name="**/*_jdo"/>

<i ncl ude nanme="**/acne/ annot at ed/ per si st ent cl asses/*. cl ass"/ >

</fileset>
<cl asspat h>

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

http://ant.apache.org/manual/CoreTypes/fileset.html
http://ant.apache.org/manual/CoreTasks/java.html

2.2 ENHANCER 22

<pat h refid="enhancer. cl asspath"/>
</ cl asspat h>
</ dat anucl eusenhancer >
</target>

You can disable the enhancement execution upon the existence of a property with the usage of the 7/
parameter.

<target nane="enhance" descri pti on="Dat aNucl eus enhancenent">
<t askdef nanme="dat anucl eusenhancer" cl asspat hr ef ="enhancer. cl asspat h"
cl assnanme="or g. dat anucl eus. enhancer. t ool s. Enhancer Task"
i f="aPropertyNane"/>

<dat anucl eusenhancer cl asspat hr ef ="enhancer. cl asspat h"
dir="%{jdo.file.dir}" failonerror="true" verbose="true">
<jvmarg |ine="-D og4j.configuration=${1og4j.config.file}"/>

</ dat anucl eusenhancer >

</target>

Runtime Enhancement

Enhancement of persistent classes at runtime is possible when using JRE 1.5 or superior versions.
Runtime Enhancement requires the following runtime dependencies: ASM, DataNucleus Core and
DataNucleus Enhancer libraries. To enable runtime enhancement, the javaagent option must be set in the
java command line. Example:

java -javaagent: dat anucl eus- enhancer- 1. 0- SNAPSHOT. j ar Mai n

The statement above will mean that all classes, when being loaded, will be processed by the
ClassFileTransformer (except class in packages "java.*", "javax.*", "org.datanucleus.*"). This means that it
can be slow since the MetaData search algorithm will be utilised for each. To speed this up you can
specify an argument to that command specifying the names of package(s) that should be processed (and
all others will be ignored). Like this

java
-j avaagent : dat anucl eus- enhancer - 1. 0- SNAPSHOT. j ar =nydonmi n. nypackagel, nydonai n. nypackage2
Mai n

so in this case only classes being loaded that are in mydomain.mypackagel and mydomain.mypackage2 will be
attempted to be enhanced.

Please take care over the following when using runtime enhancement

* When you have a class with a field of another persistable type make sure that you mark that field as

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

2.2 ENHANCER 23

"persistent” (@Petsistent, or in XML) since with runtime enhancement at that point the related class
is likely not yet enhanced so will likely not be marked as persistent otherwise. Be explicit

Programmatic API

JD02.3

You could alternatively programmatively enhance classes from within your application. This is done as
follows

inmport javax.jdo.JDCOEnhancer;
JDCEnhancer enhancer = JDOHel per. get Enhancer ();
enhancer . set Ver bose(true);

enhancer . addPer si st enceUni t (" MyPer si stenceUnit");
enhancer . enhance();

This will look in META-INF/persistence.xml and enhance all classes defined by that unit.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

2.3

2.3 PERSISTENCE PROPERTIES 24

Persistence Properties

Persistence Properties

Any JDO-enabled application will require at least one PersistenceManagerFactory which accepts
properties to define its capabilities. Any JPA-enabled application will require at least one
EntityManagerFactory which also accepts properties to define its capabilities. DataNucleus provides a
large number of properties for use with either JDO or JPA APIs.

Use of the following properties gives you more control over the operations of DataNucleus, but bear in
mind that these properties are only for use with DataNucleus and will not work with other JDO/JPA
implementations.

* Datastore Definition - datastore properties

* General - general properties

* Schema Control - properties controlling the generation of the datastore schema.

* Transactions and Locking - properties controlling how transactions operate

* Caching - properties controlling the behaviour of the cache(s)

* Value Generation - properties controlling the generation of object identities and field values
* MetaData - metadata properties

* Auto-Start - Auto-Start Mechanism properties

* Query - properties controlling the behaviour of queries

* JPA - properties allowing extra functionality with JPA.

Please note that there are additional persistence properties for each supported datastore. See RDBMS and
DB40O

Datastore Definition

datanucleus.ConnectionFactory

Description Instance of a connection factory. For RDBMS, it must be an instance
of javax.sql.DataSource. See Data Sources. This is for a
transactional DataSource

Range of Values

datanucleus.ConnectionFactory?2

Description Instance of a connection factory. For RDBMS, it must be an instance
of javax.sgl.DataSource. See Data Sources. This is for a
non-transactional DataSource

Range of Values

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

2.3 PERSISTENCE PROPERTIES

datanucleus.ConnectionFactoryName

25

Description

Range of Values

The JNDI name for a connection factory. For RBDMS, it must be a
JNDI name that points to a javax.sgl.DataSource object. See Data
Sources. This is for a transactional DataSource

datanucleus.ConnectionFactory2Name

Description

Range of Values

The JNDI name for a connection factory. For RBDMS, it must be a
JNDI name that points to a javax.sql.DataSource object. See Data
Sources. This is for a non-transactional DataSource

datanucleus.ConnectionDriverName

Description

Range of Values

The name of the (JDBC) driver to use for the DB

datanucleus.ConnectionURL

Description

Range of Values

URL specifying the datastore to use for persistence

datanucleus.ConnectionUserName

Description

Range of Values

Username to use for connecting to the DB

datanucleus.ConnectionPassword

Description

Range of Values

Password to use for connecting to the DB

General

datanucleus.lgnoreCache

Description

Range of Values

Whether to ignore the cache for queries

true | false

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

2.3 PERSISTENCE PROPERTIES

datanucleus.Multithreaded

26

Description

Range of Values

Whether to run the PersistenceManager multithreaded. Nit that this
is a hint only to try to allow thread-safe operations on the PM

true | false

datanucleus.NontransactionalRead

Description

Range of Values

Whether to allow nontransactional reads

true | false

datanucleus.NontransactionalWrite

Description

Range of Values

Whether to allow nontransactional writes

true | false

datanucleus.Optimistic

Description

Range of Values

Whether to use Optimistic transactions For JDO this defaults to false
and for JPA it defaults to true

true | false

datanucleus.RetainValues

Description

Range of Values

Whether to suppress the clearing of values from persistent instances
on transaction completion

true | false

datanucleus.RestoreValues

Description

Range of Values

Whether persistent object have transactional field values restored
when transaction rollback occurs.

true | false

datanucleus.Mapping

Description

Range of Values

Name for the ORM MetaData mapping files to use with this PMF. For
example if this is set to "mysqgl" then the implementation looks for
MetaData mapping files called "{classname}-mysqgl.orm" or
"package-mysql.orm". If this is not specified then the JDO
implementation assumes that all is specified in the JDO MetaData file.
RDBMS datastores only

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

2.3 PERSISTENCE PROPERTIES

datanucleus.mapping.Catalog

27

Description

Range of Values

Name of the catalog to use by default for all classes persisted using
this PMF/EMF. This can be overridden in the MetaData where
required, and is optional. DataNucleus will prefix all table names with
this catalog name if the RDBMS supports specification of catalog
names in DDL. RDBMS datastores only

datanucleus.mapping.Schema

Description

Range of Values

Name of the schema to use by default for all classes persisted using
this PMF/EMF. This can be overridden in the MetaData where
required, and is optional. DataNucleus will prefix all table names with
this schema name if the RDBMS supports specification of schema
names in DDL. RDBMS datastores only

datanucleus.DetachAllOnCommit

Description

Range of Values

Allows the user to select that when a transaction is committed all
objects enlisted in that transaction will be automatically detached.

true | false

datanucleus.CopyOnAttach

Description

Range of Values

Whether, when attaching a detached object, we create an attached
copy or simply migrate the detached object to attached state

true | false

datanucleus.TransactionType

Description

Range of Values

Type of transaction to use. If running under J2SE the default is
RESOURCE_LOCAL, and if running under J2EE the default is JTA.

RESOURCE_LOCAL | JTA

datanucleus.ServerTimeZonelD

Description

Range of Values

Id of the TimeZone under which the datastore server is running. If this
is not specified or is set to null it is assumed that the datastore server

is running in the same timezone as the JVM under which DataNucleus
is running.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

2.3 PERSISTENCE PROPERTIES

datanucleus.PersistenceUnitName

28

Description

Range of Values

Name of a persistence-unit to be found in a persistence.xml file (under
META-INF) that defines the persistence properties to use and the
classes to use within the persistence process.

datanucleus.persistenceXmlFilename

Description

Range of Values

URL name of the persistence.xml file that should be used instead of
using "META-INF/persistence.xml".

datanucleus.storeManagerType

Description

Range of Values

Type of the StoreManager to use for this PMF/EMF. This has typical
values of "rdbms", "db4o". If it isnt specified then it falls back to trying
to find the StoreManager from the connection URL. The associated
DataNucleus plugin has to be in the CLASSPATH when selecting this.
When using data sources (as usually done in a JavaEE container),
DataNucleus cannot find out the correct type automatically and this
option must be set.

rdbms | db4o | alternate StoreManager key

datanucleus.managedRuntime

Description

Range of Values

Whether to allow management of the runtime of DataNucleus. Allows
hooking in JMX. Please refer to the Management Guide

true | false

datanucleus.deletionPolicy

Description

Range of Values

Allows the user to decide the policy when deleting objects. The default
is "JDO2" which firstly checks if the field is dependent and if so
deletes dependents, and then for others will null any foreign keys out.
The problem with this option is that it takes no account of whether the
user has also defined <foreign-key> elements, so we provide a
"DataNucleus" mode that does the dependent field part first and then
if a FK element is defined will leave it to the FK in the datastore to
perform any actions, and otherwise does the nulling.

JDO2 | DataNucleus

datanucleus.findObjectCheckInheritance

Description

Range of Values

When retrieving an object by identity DataNucleus can do a check on
the inheritance level of the object. In many cases this check is not
adding anything since the id implies the inheritance level. This allows
the user to turn off the check.

true | false

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

2.3 PERSISTENCE PROPERTIES

datanucleus.identityTranslatorType

29

Description

Range of Values

You can allow identities input to pm.getObjectByld be translated into
valid JDO ids if there is a suitable translator. See Identity Translator
Plugin

datanucleus.datastoreldentityType

Description

Range of Values

Which "datastore-identity” class plugin to use to represent datastore
identities. Refer to Datastore Identity extensions for details.

datanucleus | kodo | xcalia | {user-supplied plugin}

datanucleus.attachSameDatastore

Description

Range of Values

When attaching an object DataNucleus by default makes no
assumption about which datastore the object was detached from and
so makes a check for existence before attaching each object. This
option allows you to turn off that check when you know you are
detaching and attaching using the same datastore.

false | true

datanucleus.attachPolicy

Description

Range of Values

When attaching the default behaviour is to attach fields/properties that
have been changed since being detached. This property allows
changing of this behaviour so that if using “attach-all" all fields are
attached.

attach-dirty | attach-all

datanucleus.detachAsWrapped

Description

Range of Values

When detaching, any mutable second class objects (Collections,
Maps, Dates etc) are typically detached as the basic form (so you can
use them on client-side of your application). This property allows you
to select to detach as wrapped objects. It only works with
"detachAllOnCommit" situations (not with detachCopy) currently

true | false

datanucleus.detachOnClose

Description

Range of Values

This allows the user to specify whether, when a PersistenceManager
is closed, that all objects in the L1 cache are automatically detached.
Users are recommended to not use this option, and instead use
the JDO2 standard datanucleus.DetachAllOnCommit. This option
may be removed in a later release.

false | true

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

2.3 PERSISTENCE PROPERTIES

datanucleus.detachmentFields

30

Description

Range of Values

When detaching you can control what happens to loaded/unloaded
fields of the FetchPlan. The default for JDO is to load any unloaded
fields of the current FetchPlan before detaching. You can also unload
any loaded fields that are not in the current FetchPlan (so you only
get the fields you require) as well as a combination of both options

load-fields | unload-fields | load-unload-fields

datanucleus.manageRelationships

Description

Range of Values

This allows the user control over whether DataNucleus will try to
manage bidirectional relations, correcting the input objects so that all
relations are consistent. This process runs when flush()/commit() is
called. You can set it to false if you always set both sides of a relation
when persisting/updating.

true | false

datanucleus.manageRelationshipsChecks

Description

Range of Values

This allows the user control over whether DataNucleus will make
consistency checks on bidirectional relations. If
"datanucleus.managedRelationships" is not selected then no checks
are performed. If a consistency check fails at flush()/commit() then a
JDOUserException is thrown. You can set it to false if you want to
omit all consistency checks.

true | false

datanucleus.persistenceByReachabilityAtCommit

Description

Range of Values

Whether to run the "persistence-by-reachability” algorithm at commit()
time. This means that objects that were reachable at a call to
makePersistent() but that are no longer persistent will be removed
from persistence. For performance improvements, consider turning
this off.

true | false

datanucleus.maxFetchDepth

Description

Range of Values

Specifies the default maximum fetch depth to use for fetching
operations. The JDO2 specification defines a default of 1, and this is
the DataNucleus default, meaning that only the first level of related
objects will be fetched by default.

-1| 1| positive integer (non-zero)

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

2.3 PERSISTENCE PROPERTIES

datanucleus.classLoaderResolverName

31

Description

Range of Values

Name of a ClassLoaderResolver to use in class loading. DataNucleus
provides a default that implements the JDO2 specification for class
loading. This property allows the user to override this with their own
class better suited to their own loading requirements.

jdo | {name of class-loader-resolver plugin}

datanucleus.primaryClassLoader

Description

Range of Values

Sets a primary classloader for situations where a primary classloader
is not accessible. This ClassLoader is used when the class is not
found in the default ClassLoader search path. As example, when the
database driver is loaded by a different ClassLoader not in the
ClassLoader search path for JDO or JPA specifications.

instance of java.lang.ClassLoader

datanucleus.implementationCreatorName

Description

Range of Values

Symbolic name of an implementation creator for "persistent
interfaces" (JDO2). DataNucleus provides an implementation creator
using ASM. Please note that you should have the DataNucleus
Enhancer in the CLASSPATH together with ASM to use "persistent
interfaces".

asm

datanucleus.plugin.pluginRegistryClassName

Description

Range of Values

Name of a class that acts as registry of plug-ins.

{fully-qualified class name}

datanucleus.plugin.pluginRegistryBundleCheck

Description

Range of Values

Defines what happens when plugin bundles are found and are
duplicated

EXCEPTION | LOG | NONE

Schema Control

datanucleus.autoCreateSchema

Description

Range of Values

Whether to automatically generate any tables and constraints that
don't exist. Please refer to the RDBMS Schema Guide for more
details.

true | false

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

2.3 PERSISTENCE PROPERTIES

datanucleus.autoCreateTables

32

Description

Range of Values

Whether to automatically generate any tables that don't exist. Please
refer to the RDBMS Schema Guide for more details.

true | false

datanucleus.autoCreateColumns

Description

Range of Values

Whether to automatically generate any columns that don't exist.
Please refer to the RDBMS Schema Guide for more details.

true | false

datanucleus.autoCreateConstraints

Description

Range of Values

Whether to automatically generate any constraints that don't exist.
Please refer to the RDBMS Schema Guide for more details.

true | false

datanucleus.autoCreateWarnOnError

Description

Range of Values

Whether to only log a warning when errors occur during the
auto-creation/validation process. Please use with care since if the
schema is incorrect errors will likely come up later and this will
postpone those error checks til later, when it may be too late!!

true | false

datanucleus.validateTables

Description

Range of Values

Whether to validate tables against the persistence definition. Please
refer to the RDBMS Schema Guide for more details.

true | false

datanucleus.validateColumns

Description

Range of Values

Whether to validate columns against the persistence definition. This
refers to the column detail structure and NOT to whether the column
exists or not. Please refer to the RDBMS Schema Guide for more
details.

true | false

datanucleus.validateConstraints

Description

Whether to validate table constraints against the persistence
definition. Please refer to the Schema Guide for more details.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

2.3 PERSISTENCE PROPERTIES

datanucleus.validateConstraints

33

Range of Values

true | false

datanucleus.readOnlyDatastore

Description

Range of Values

Whether the datastore is read-only or not (fixed in structure and
contents).

true | false

datanucleus.readOnlyDatastoreAction

Description

Range of Values

What happens when a datastore is read-only and an object is
attempted to be persisted.

EXCEPTION | IGNORE

datanucleus.fixedDatastore

Description

Range of Values

Whether the datastore is fixed in structure or not.

true | false

datanucleus.identifierFactory

Description

Range of Values

Name of the identifier factory to use when generating table/column
names etc. See also the JDO RDBMS ldentifier Guide.

jpox | jpox2 | jpa | {user-plugin-name}

datanucleus.identifier.case

Description

Range of Values

Which case to use in generated table and column names. See also
the JDO RDBMS Identifier Guide.

UpperCase | LowerCase | PreserveCase

datanucleus.identifier.wordSeparator

Description

Separator character(s) to use between words in generated identifiers.

Defaults to (underscore)

datanucleus.identifier.tablePrefix

Description

Prefix to be prepended to all generated table names (if the identifier
factory supports it)

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

2.3 PERSISTENCE PROPERTIES

datanucleus.identifier.tableSuffix

34

Description

Suffix to be appended to all generated table names (if the identifier
factory supports it)

datanucleus.defaultinheritanceStrategy

Description

Range of Values

How to choose the inheritance strategy default for classes where no
strategy has been specified. With JDO2 this will be "new-table" for
base classes and "superclass-table" for subclasses. With
TABLE_PER_CLASS this will be "new-table" for all classes.

JDO2 | TABLE_PER_CLASS

Transactions and Locking

datanucleus.transactionlsolation

Description

Range of Values

Select the default transaction isolation level for ALL
PersistenceManager factories. Some databases do not support all
isolation levels, refer to your database documentation. Please refer to
the transaction guides for JDO and JPA

read-uncommitted | read-committed | repeatable-read | serializable

datanucleus.SerializeRead

Description

Range of Values

With datastore transactions you can apply locking to objects as they
are read from the datastore. This setting applies as the default for all
PersistenceManagers/EntityManagers obtained. You can also specify
this on a per-transaction or per-query basis (which is often better to
avoid deadlocks etc)

true | false

datanucleus.jtaLocator

Description

Range of Values

Selects the locator to use when using JTA transactions so that
DataNucleus can find the JTA TransactionManager. If this isn't
specified and using JTA transactions DataNucleus will search all
available locators which could have a performance impact. See JTA
Locator extension. If specifying "custom_jndi" please also specify
"datanucleus.jtaJndiLocation"

jboss | jonas | jotm | oc4j | orion | resin | sap | sun | weblogic |
websphere | custom_jndi | alias of a JTA transaction locator

datanucleus.jtaJndiLocation

Description

Name of a JNDI location to find the JTA transaction manager from
(when using JTA transactions). This is for the case where you know
where it is located. If not used DataNucleus will try certain well-known
locations

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

2.3 PERSISTENCE PROPERTIES

datanucleus.jtaJndiLocation

35

Range of Values

JNDI location

datanucleus.datastoreTransactionDelayOperations

Description

Range of values

For use when using datastore transactions and has the effect of
delaying datastore operations until flush()/commit()

true | false

datanucleus.datastoreTransactionFlushLimit

Description

Range of values

For use when using datastore transactions and is the limit on number
of dirty objects before a flush to the datastore will be performed.

1| positive integer

datanucleus.connectionPoolingType

Description

Range of Values

This property allows you to utilise a 3rd party software package for
enabling connection pooling using a DataNucleus plugin. Currently
DataNucleus supports use of DBCP, C3P0 or Proxool. You must have
the plugin and the related 3rd party JARs in your CLASSPATH to use
this option. Please refer to the RDBMS Connection Pooling guide for
details.

None | DBCP | C3PO0 | Proxool

datanucleus.connectionPoolingConfigurationFile

Description

Range of Values

Allows specification of configuration properties for controlling the
connection pooling when you have specified the
datanucleus.connectionPoolingType above.

Filename present in the CLASSPATH

datanucleus.connection.resourceType

Description

Range of Values

Resource Type for connection ???

JTA | RESOURCE_LOCAL

datanucleus.connection.resourceType2

Description

Range of Values

Resource Type for connection 2

JTA | RESOURCE_LOCAL

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

2.3 PERSISTENCE PROPERTIES

Caching

datanucleus.cache.collections

36

Description

Range of Values

SCO collections can be used in 2 modes in DataNucleus. You can
allow DataNucleus to cache the collections contents, or you can tell
DataNucleus to access the datastore for every access of the SCO
collection. The default is to use the cached collection.

true | false

datanucleus.cache.collections.lazy

Description

Range of Values

When using cached collections/maps, the elements/keys/values can
be loaded when the object is initialised, or can be loaded when
accessed (lazy loading). The default is to use lazy loading when the
field is not in the current fetch group, and to not use lazy loading when
the field is in the current fetch group.

true | false

datanucleus.cache.levell.type

Description

Range of Values

Name of the type of Level 1 cache to use. Defines the backing map.

weak | soft | hard | {your-plugin-name}

datanucleus.cache.level2

Description

Range of Values

Whether to use a Level 2 Cache with this Persistence Manager
Factory.

true | false

datanucleus.cache.level2.type

Description

Range of Values

Name of the type of Level 2 Cache to use. Can be used to interface
with external caching products.

default | soft | coherence | ehcache | ehcacheclassbased | oscache |
swarmcache | {your-plugin-name}

datanucleus.cache.level2.cacheName

Description

Range of Values

Name of the cache. This is for use with plugins such as the Tangosol
cache plugin for accessing the particular cache. Please refer to the
Cache Guide for JDO or JPA

your cache name

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

2.3 PERSISTENCE PROPERTIES

datanucleus.cache.level2.configurationFile

37

Description

Range of Values

The path to the configuration file. e.g. /cache.xml The file must be in
the classpath and will be looked up as a java resource. Please refer to
the Cache Guide for JDO or JPA

your configuration file

Value Generation

datanucleus.valuegeneration.transactionAttribute

Description

Range of Values

Whether to use the PM connection or open a new connection. Only
used by value generators that require a connection to the datastore.

New | UsePM

datanucleus.valuegeneration.transactionlsolation

Description

Range of Values

Select the default transaction isolation level for identity generation.
Must have datanucleus.valuegeneration.transactionAttribute set to
New Some databases do not support all isolation levels, refer to your
database documentation. Please refer to the transaction guides for
JDO and JPA

read-uncommitted | read-committed | repeatable-read | serializable

MetaData

datanucleus.metadata.jdoFileExtension

Description

Range of values

Suffix for IDO MetaData files. Provides the ability to override the
default suffix and also to have one PMF with one suffix and another
with a different suffix, hence allowing differing persistence of the same
classes using different PMF's.

jdo | {file suffix}

datanucleus.metadata.ormFileExtension

Description

Range of values

Suffix for ORM MetaData files. Provides the ability to override the
default suffix and also to have one PMF with one suffix and another
with a different suffix, hence allowing differing persistence of the same
classes using different PMF's.

orm | {file suffix}

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

2.3 PERSISTENCE PROPERTIES

datanucleus.metadata.jdoqueryFileExtension

38

Description

Range of values

Suffix for IDO Query MetaData files. Provides the ability to override
the default suffix and also to have one PMF with one suffix and
another with a different suffix, hence allowing differing persistence of
the same classes using different PMF's.

jdoquery | {file suffix}

datanucleus.metadata.validate

Description

Range of values

Whether to validate the MetaData file(s) for XML correctness (against
the DTD) when parsing

true | false

datanucleus.metadata.autoregistration

Description

Range of values

Whether to use the JDO auto-registration of metadata. Turned on by
default

true | false

datanucleus.metadata.supportORM

Description

Range of values

Whether to support "orm" mapping files. By default we use what the
datastore plugin supports. This can be used to turn it off when the
datastore supports it but we dont plan on using it (for performance)

true | false

Auto-Start

datanucleus.autoStartMechanism

Description

Range of Values

How to initialise DataNucleus at startup. This allows DataNucleus to
read in from some source the classes that it was persisting for this
data store the previous time. "XML" stores the information in an XML
file for this purpose. "SchemaTable" (only for RDBMS) stores a table
in the RDBMS for this purpose. “"Classes" looks at the property
datanucleus.autoStartClassNames for a list of classes. "MetaData"
looks at the property datanucleus.autoStartMetaDataFiles for a list of
metadata files The other option is "None" (start from scratch each
time). Please refer to the Auto-Start Mechanism Guide for more
details. The default for RDBMS is "SchemaTable". The default for all
other datastores is "None".

XML | Classes | MetaData | None | SchemaTable

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

2.3 PERSISTENCE PROPERTIES

datanucleus.autoStartMechanismMode

39

Description

Range of values

The mode of operation of the auto start mode. Currently there are 3
values. "Quiet" means that at startup if any errors are encountered,
they are fixed quietly. "Ignored” means that at startup if any errors are
encountered they are just ignored. "Checked" means that at startup if
any errors are encountered they are thrown as exceptions.

Checked | Ignored | Quiet

datanucleus.autoStartMechanismXmlFile

Description

Filename used for the XML file for AutoStart when using "XML"
Auto-Start Mechanism

datanucleus.autoStartClassNames

Description

This property specifies a list of classes (comma-separated) that are
loaded at startup when using the "Classes" Auto-Start Mechanism.

datanucleus.autoStartMetaDataFiles

Description

This property specifies a list of metadata files (comma-separated) that
are loaded at startup when using the "MetaData" Auto-Start
Mechanism.

Query control

datanucleus.query.timeout

Description

Range of Values

The timeout to apply to all queries (millisecs). This also will apply to all
fetch statements - for example when retrieving objects using
PM.getObjectByld().

0 | A positive value (MILLISECONDS)

datanucleus.query.flushBeforeExecution

Description

Range of Values

This property can enforce a flush to the datastore of any outstanding
changes just before executing all queries. If using optimistic
transactions any updates are typically held back until flush/commit
and so the query would otherwise not take them into account.

true | false

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

2.3 PERSISTENCE PROPERTIES

datanucleus.query.useFetchPlan

Description Whether to use the FetchPlan when executing a JDOQL query. The
default is to use it which means that the relevant fields of the object

will be retrieved. This allows the option of just retrieving the identity
columns.

Range of Values true | false

JPA

datanucleus.jpa.level

Description This property defines the level of JPA to be allowed. If you select
JPA1 then you get strict JPA1, without DataNucleus extensions and
without things like 1-N uni FK relations. If you select JPA2 then you
get strict JPA2, without DataNucleus extensions. If you select
"DataNucleus" you get full capabilities

Range of Values DataNucleus | JPAL | JPA2

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

2.4

2.4 OBJECT LIFECYCLE 41

Object Lifecycle

Object Lifecycle

During the persistence process, whether using JDO or JPA APIs, an object goes through lifecycle
changes. The following diagram highlights the crucial points in the objects lifecycle.

persist detach

delete attach

So a newly created object is transient. You then persist it (via either JDO makePersistent or JPA persist) and
it becomes persistent. You can then detach it for use elsewhere in the application, so it is detached.
When attaching any changes back to persistence (via JDO makePersistent or JPA merge) it becomes
persistent again. Finally when you delete the object from persistence it is in transient state.

With JDO there are actually some additional lifecycle states, notably when an object has a field changed,
becoming dirty, so you get an object in "persistent-dirty", "detached-dirty" states for example.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

2.5

2.5 PERFORMANCE TUNING 42

Performance Tuning

Performance Tuning

DataNucleus, by default, provides certain functionality. In particular circumstances some of this
functionality may not be appropriate and it may be desirable to turn on or off particular features to gain
more performance for the application in question. This section contains a few common tips

PersistenceManagerFactory/EntityManagerFactory creation

Creation of PersistenceManagerFactory and EntityManagerFactory objects can be expensive and should
be kept to a minimum. Depending on the structure of your application, use a single persistence factory
per datastore wherever possible. Clearly if your application spans multiple servers then this may be
impractical, but should be borne in mind.

You can improve startup speed by setting the property datanucleus.autoStartMechanism to Noze. This
means that it won't try to load up the classes (or better said the metadata of the classes) handled the
previous time that this schema was used. If this isn't an issue for your application then you can make this
change. Please refer to the Auto-Start Mechanism for full details.

Some RDBMS (such as Oracle) have trouble returning information across multiple catalogs/schemas and
so, when DataNucleus starts up and tries to obtain information about the existing tables, it can take some
time. This is easily remedied by specifying the catalog/schema name to be used - either for the PMF as a
whole (using the persistence properties javax.jdo.mapping.Catalog, javax.jdo.mapping.Schema) or
for the package/class using attributes in the MetaData. This subsequently reduces the amount of
information that the RDBMS needs to search through and so can give significant speed ups when you
have many catalogs/schemas being managed by the RDBMS.

Use of PersistenceManager/EntityManager

Clearly the structure of your application will have a major influence on how you utilise a
PersistenceManager or EntityManager. A pattern that gives a clean definition of process is to use a
different persistence manager for each request to the data access layer. This reduces the risk of conflicts
where one thread performs an operation and this impacts on the successful completion of an operation
being performed by another thread. Creation of PM/EM's is not an expensive process and use of
multiple threads writing to the same persistence manager should be avoided.

Schema Creation

DataNucleus provides 4 PersistenceManagerFactory properties datanucleus.autoCreateSchema,
datanucleus.autoCreateTables, datanucleus.autoCreateColumns, and
datanucleus.autoCreateConstraints that allow creation of the datastore tables. This can cause
performance issues at startup. We recommend setting these to false at runtime, and instead using
SchemaTool to generate any required database schema before running DataNucleus.

Schema Validation

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

2.5 PERFORMANCE TUNING 43

DataNucleus provides 3 PersistenceManagerFactory properties datanucleus.validateTables,
datanucleus.validateConstraints, datanucleus.validateColumns that enforce strict validation of the
datastore tables against the Meta-Data defined tables. This can cause performance issues at startup. In
general this should be run only at schema generation, and should be turned off for production usage. Set
all of these properties to false. In addition there is a PMF property
datanucleus.rdbms.CheckExistTablesOrViews which checks whether the tables/views that the
classes map onto are present in the datastore. This should be set to false if you require fast start-up.
Finally, the property datanucleus.rdbms.initializeColumnlInfo determines whether the default values
for columns are loaded from the database. This property should be set to NONE to avoid loading
database metadata.

To sum up, the optimal settings with schema creation and validation disabled are:

#schema creation

dat anucl eus. aut oCr eat eSchena=f al se

dat anucl eus. aut oCr eat eTabl es=f al se

dat anucl eus. aut oCr eat eCol utms=f al se

dat anucl eus. aut oCr eat eConst rai nt s=f al se

#schema val i dation

dat anucl eus. val i dat eTabl es=f al se

dat anucl eus. val i dat eConst rai nt s=f al se

dat anucl eus. val i dat eCol ums=f al se

dat anucl eus. r dbrs. CheckExi st Tabl esOr Vi ews=f al se
dat anucl eus. rdbns. i ni tializeCol uml nf o=None

O/R Mapping

Whete you have an inheritance tree it is best to add a discriminator to the base class so that it's simple
for DataNucleus to determine the class name for a particular row. This results in cleaner/simpler SQL
which is faster to execute. Otherwise it would be necessary to do a UNION of all possible tables.

Database Connection Pooling

DataNucleus, by default, will allocate connections when they are required. It then will close the
connection. In addition, when it needs to perform something via JDBC (RDBMS datastores) it will
allocate a PreparedStatement, and then discard the statement after use. This can be inefficient relative to a
database connection and statement pooling facility such as Apache DBCP. With Apache DBCP a
Connection is allocated when required and then when it is closed the Connection isn't actually closed but
just saved in a pool for the next request that comes in for a Connection. This saves the time taken to
establish a Connection and hence can give performance speed ups the order of maybe 30% or more. You
can read about how to enable connection pooling with DataNucleus in the Connection Pooling Guide.

Commit of transaction

DataNucleus verifies if newly persisted objects are memory reachable on commit, if they are not, they are
removed from the database. This process mirrors the garbage collection, where objects not referenced are
garbage collected or removed from memory. Reachability is expensive because it traverses the whole

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

2.5 PERFORMANCE TUNING 44

object tree and may require reloading data from database. If reachability is not needed by your
application, you should disable it. To disable reachability set to false the PMF property
datanucleus.persistenceByReachabilityAtCommit.

DataNucleus will, by default, perform a check on any bidirectional relations to make sure that they are set
at both sides at commit. If they aren't set at both sides then they will be made consistent. This check
process can involve the (re-)loading of some instances. You can skip this step if you always set bozh sides of
a relation by setting the persistence property datanucleus.manageRelationships to fa/se.

Identity Generators

DataNucleus provides a series of value generators for generation of identity values. These can have an
impact on the performance depending on the choice of generator, and also on the configuration of the
generator.

* The max strategy should not really be used for production since it makes a separate DB call for each
insertion of an object. Something like the ncrement strategy should be used instead. Better still would
be to choose native and let DataNucleus decide for you.

* The sequence strategy allows configuration of the datastore sequence. The default can be
non-optimum. As a guide, you can try setting key-cache-size to 10 and key-increment-by to 10.

The native identity generator value is the recommended choice since this will allow DataNucleus to
decide which identity generator is best for the RDBMS in use.

Collection/Map caching

‘. Extensicn

DataNucleus has 2 ways of handling calls to SCO Collections/Maps. The original method was to pass all
calls through to the datastore. The second method (which is now the default) is to cache the
collection/map elements/keys/values. This second method will read the elements/keys/values once only
and thereafter use the internally cached values. This second method gives significant performance gains
relative to the original method. You can configure the handling of collections/maps as follows :-

* Globally for the PMF/EMEF - this is controlled by setting the persistence property
datanucleus.cache.collections. Set it to ##e for caching the collections (default), and fa/lse to pass
through to the datastore.

* For the specific Collection/Map - this overrides the global setting and is controlled by adding a
MetaData <collection> or <map> extension cache. Set it to #rue to cache the collection data, and fa/se
to pass through to the datastore.

The second method also allows a finer degree of control. This allows the use of lazy loading of data,
hence elements will only be loaded if they are needed. You can configure this as follows :-

* Globally for the PersistenceManagerFactory - this is controlled by setting the PMF property
datanucleus.cache.collections.lazy. Set it to true to use lazy loading, and set it to false to load the
elements when the collection/map is initialised.

* For the specific Collection/Map - this overrides the global PMF setting and is controlled by
adding a MetaData <collection> or <map> extension cache-lazy-loading. Set it to true to use lazy

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

2.5 PERFORMANCE TUNING 45

loading, and false to load once at initialisation.

NonTransactionRead (Reading persistent objects outside a transaction)

NontransactionalRead has advantages and disadvantages in performance and data freshness in cache. In
NontransactionalRead=true mode, the PersistenceManager is able to read objects outside a transaction.
The objects read are held cached by the PersistenceManager. The second time a user application requests
the same objects from the PersistenceManager they are retrieved from cache. The time spent reading the
object from cache is minimum, but the objects may become stale and not represent the database status. If
fresh values need to be loaded from the database, then the user application should first call refresh on the
object.

Another disadvantage of NontransactionalRead=true mode is due to each operation realized opens a new
database connection, but it can be minimized with the use of connection pools.

Reading persistent objects outside a transaction and PersistenceManager

Reading objects outside a transaction and PersistenceManager is a trivial task, but performed in a certain
manner can determine the application performance. The objective here is not give you an absolute
response on the subject, but point out the benefits and drawbacks for the many possible solutions.

e Use makeTransient method.

Obj ect pc = null;

try
{
Per si st enceManager pm = pnf. get Per si st enceManager () ;
pm current Transaction(). begin();
/lretrieve in sone way the object, query, getObjectByld, etc
pc = pm get Obj ect Byl d(i d);
pm nmakeTr ansi ent (pc) ;
pm current Transaction().conmmt();
}
finally
{
pm cl ose();
}

//read the persistent object here
System out . prinl n(pc. get Nane());

¢ Use RetainValues=true.

Qbj ect pc = null;
try
{

Per si st enceManager pm = pnf. get Per si st enceManager () ;
pm current Transaction(). set Ret ai nVal ues(true);
pm current Transaction(). begin();

/lretrieve in some way the object, query, get(CbjectByld, etc
pc = pm get Obj ect Byl d(i d);

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

2.5 PERFORMANCE TUNING

46

pm current Transaction().commt();

}
finally
{
pm cl ose();
}

//read the persistent object here
System out. prinl n(pc. get Nane());

* Use detachCopy method.

Obj ect copy = nul |;

try
{
Per si st enceManager pm = pnf. get Per si st enceManager () ;
pm current Transaction(). begin();
/lretrieve in some way the object, query, getCbjectByld, etc
Obj ect pc = pm get Obj ect Byl d(id);
copy = pm detachCopy(pc);
pm current Transaction().commt();
}
finally
{
pm cl ose();
}

//read or change the detached object here
System out. prinl n(copy. get Narme()) ;

Use detach AllOnCommit.

Obj ect pc = null;

try
{
Per si st enceManager pm = pnf. get Per si st enceManager () ;
pm set Det achAl | OnConmi t (true);
pm current Transaction(). begin();
/lretrieve in sone way the object, query, getObjectByld, etc
pc = pm get Obj ect Byl d(i d);
pm current Transaction().commt(); // Object "pc" is now detached
}
finally
{
pm cl ose();
}

//read or change the detached object here
System out. prinl n(pc. get Nane());

The most expensive in terms of performance is the detachCopy because it makes copies of persistent
objects. The advantage of detachment (via detachCopy ot detachANOnCommii) is that changes made outside

©2008-20009,

DataNucleus « ALL RIGHTS RESERVED

2.5 PERFORMANCE TUNING 47

the transaction can be futher used to update the database in a new transaction. The other methods also
allow changes outside of the transaction, but the changed instances can't be used to update the database.

In RetainV alues=true and mafkeTransient no object copies are made and the object values are set down in
instances when the PersistenceManager disassociates them. Both methods are equivalent in performance,
however the makelransient method will set the values of the object during the instant the wakeTransient
method is invoked, and the Retainl alues=true will set values of the object during commit.

The bottom line is to not use detachment if instances will only be used to read values.

Logging

I/O consumes a huge slice of the total processing time. Therefore it is recommended to reduce or disable
logging in production. To disable the logging set the DataNucleus category to OFF in the Log4;
configuration. See Logging for more information.

| og4j . cat egory. Dat aNucl eus=CFF

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

2.6

2.6 FAILOVER 48

Failover

Failover

In the majority of production situations it is desirable to have a level of failover between the underlying
datastores used for persistence. You have at least 2 options available to you here. These are shown below

Sequoia

contiruent

Sequoia is a transparent middleware solution offering clustering, load balancing and failover services for
any database. Sequoia is the continuation of the C-JDBC project. The database is distributed and
replicated among several nodes and Sequoia balances the queries among these nodes. Sequoia handles
node and network failures with transparent failover. It also provides support for hot recovery, online
maintenance operations and online upgrades.

Sequoia can be used with DataNucleus by just providing the Sequoia datastore URLs as input to
DataNucleus. There is a problem outstanding in Sequoia itself in that its JDBC driver doesnt
provide DataNucleus with the correct major/minor versions of the undetlying datastore. Until
Sequoia fix this issue, use of Sequoia will be unreliable

DataNucleus Failover capability

‘. Extensicn

DataNucleus has the capability to switch to between DataSources upon failure of one while obtaining a
datastore connection. The failover mechanism is useful for applications with multiple database nodes
when the data is actually replicated/synchronized by the undetlying database. There are 2 things to be
aware of before utilising this functionality.

* DataNucleus doesn't replicate changes to all database nodes, and for this reason, this feature is
suggested to be used only for reading objects or if the database is capable to replicate the changes to
all nodes.

* If a connection breaks while in use the failover mechanism will not handle it, thus the user
application must take care of restarting the transaction and execute the operations.

Several failover algorithm are allowed to be used, one at time, as for example round-robin, ordered list ot
random. The default algorithm, ordered list, is described below and is provided by DataNucleus. You can
also implement and plug your own algorithm. See Connection Provider.

To use failover, each datastore connection must be provided through DataSources. The
datannclens. ConnectionFactoryName property must be declared with a list of JNDI names pointing to
DataSources, in the form of <[NDINAME> [,<[NDINAME?>]. See the example:

dat anucl eus. Connect i onFact or yName=JNDI NAMEL, JNDI NAVE2

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

http://sequoia.continuent.org/

2.6 FAILOVER 49

At least one least one JNDI name must be declared.

The Ordered List Algorithm (default) allows you to switch to slave DataSources upon failure of a
master DataSource while obtaining a datastore connection. This is shown below.

' —
User Application User Application

Server 1 EEI"'I-FEII 2

Each time DataNucleus needs to obtain a connection to the datastore, it takes the first DataSource, the
Master, and tries, on failure to obtain the connection goes to the next on the list until it obtains a
connection to the datastote or the end of the list is reached.

©2008-2009, DataNucleus » ALL RIGHTS RESERVED

2.6 FAILOVER 50

-

I - mm e ! |
| T ' !

The first JNDI name in the datanuclens. ConnectionFactoryName property is the Master DataSource and the
following JNDI names are the Slave DataSources.

©2008-2009, DataNucleus » ALL RIGHTS RESERVED

2.7

2.7 SECURITY 51

Security

Java Security Manager

The Java Security Manager can be used with DataNucleus to provide a security platform to sensitive
applications.

To use the Security Manager, specify the java.security.manager and java.security.policy arguments when starting
the JVM. e.g.

java -D ava. security. manager
-Dj ava. security. policy==/etc/apps/security/security.policy ...

Note that when you use -Dyjava.security.policy==... (double equals sign) you override the default JVM
security policy files, while if you use -Djava.security.policy=... (single equals sign), you append the security
policy file to any existing ones.

The following is a sample security policy file to be used with DataNucleus.

grant codeBase "file:${/}jdo2-api-2.0.jar" {

//jdo APl needs datetime (tinmezone class needs the follow ng)

perm ssion java. util.PropertyPerm ssion "user.country", "read";

perm ssion java.util.PropertyPerm ssion "user.variant", "read";

permi ssion java.util.PropertyPerm ssion "user.tinezone", "read,wite";
permi ssion java.util.PropertyPerm ssion "java. hone", "read";

}s

grant codeBase "file: ${/}datanucl eus*.jar" {

/1jdo
perm ssion javax.jdo. spi.JDOPerm ssi on "get Met adata";
perm ssion javax.jdo. spi.JDOPerm ssion "set Stat eManager”;

/ / Dat aNucl eus needs to get classl oader of classes
permission java.lang. Runti mePerm ssion "get d assLoader";

// Dat aNucl eus needs to detect the java and os version
perm ssion java. util.PropertyPerm ssion "java.version", "read";
perm ssion java.util.PropertyPerm ssion "os.nane", "read";

/ / Dat aNucl eus reads these system properties
permission java.util.PropertyPerm ssion "datanucl eus.*", "read";
permi ssion java.util.PropertyPerm ssion "javax.jdo.*", "read";

/| Dat aNucl eus runtine enhancenent (needs read access to all jars/classes in
cl asspat h,

/1 so use <<ALL FILES>> to facilitate config)

perm ssion java.lang. Runti mePerm ssion "createCd assLoader";

permission java.io.FilePerm ssion "<<ALL FILES>>", "read";

// Dat aNucl eus needs to read manifest files (read permi ssion to |ocation of
MANI FEST. MF fi | es)

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

2.7 SECURITY 52

permission java.io.FilePermssion "${user.dir}${/}-", "read";
permi ssion java.io.FilePerm ssion "<<ALL FILES>>", "read";

/] Dat aNucl eus uses reflection!!!

perm ssion java.lang.refl ect.Refl ect Perm ssion "suppressAccessChecks";
perm ssion java.lang. Runti mePerm ssion "accessDecl ar edMenbers”;

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

2.8

2.8 TROUBLESHOOTING 53

Troubleshooting

Troubleshooting

This section describes the most common problems found when using DataNucleus in different
architectures. It describes symptoms and methods for collecting data for troubleshooting thus reducing
time to narrow the problem down and come to a solution.

Out Of Memory error

Introdution

Java allocate objects in the runtime memory data area called beap. The heap is created on virtual machine
start-up. The memory allocated to objects are reclaimed by Garbage Collectors when the object is no
longer referenced (See Object References). The heap may be of a fixed size, but can also be expanded
when more memory is needed or contracted when no longer needed. If a larger heap is needed and it
cannot be allocated an OutOfMemory is thrown. See |VM Specification.

Native memory is used by the JVM to perform its operations like creation of threads, sockets, jdbe drivers
using native code, libraries using native code, etc.

The maximum size of heap memory is determined by the -Xmx on the java command line. If Xmx is not
set, then the JVM decides for the maximum heap. The heap and native memory are limited to the
maximum memory allocated by the JVM. For example, if the JVM Xmx is set to 1GB and currently use
of native memory is 256MB then the heap can only use 768MB.

Causes

Common causes of out of memory:
* Not enough heap - The JVM needs more memory to deal with the application requirements. Queries
returning more objects than usual can be the cause.

* Not enough PermGen - The JVM needs more memory to load class definitions.

* Memory Leaks - The application does not close the resources, like the PersistenceManager,
EntityManager or Queries, and the JVM cannot reclaim the memory.

* Caching - Caching in the application or inside DataNucleus holding strong references to objects.

* Garbage Collection - If no full garbage collection is performed before the OutOfMemory it can
indicate a bug in the JVM Garbage Collector.

* Memory Fragmentation - A large object needs to be placed in the memory, but the JVM cannot
allocate a continous space to it because the memory is fragmented.

* JDBC driver - a bug in the JDBC driver not flushing resources or keeping large result sets in memory.

Throubleshooting

JVM

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

http://java.sun.com/developer/technicalArticles/ALT/RefObj/
http://java.sun.com/docs/books/vmspec/2nd-edition/html/VMSpecTOC.doc.html

2.8 TROUBLESHOOTING 54

Collect garbage collection information by adding -verbosege to the java command line. The zerbosege flag will
print garbage collections to System output.

Sun JVM

The Sun JVM 1.4 or upper accepts the flag -XX:+PrintGCDetails, which prints detailed information on
Garbage Collections.

The Sun JVM accepts the flag -verbose:class, which prints information about each class loaded. This is
useful to troubleshoot issues when OutOfMemory occurs due to lack of space in the PermGen, or when
NoClassDefFoundError or Linkage errors occurs.

The Sun JVM 1.5 or upper accepts the flag -XX:+Heap Dungp OnOutOfMemoryError; which creates a hprof
binary file head dump in case of an OutOfMemoryError. You can analyse the heap dump using tools
such as jhat or YourKit profiler.

DataNucleus

DataNucleus keeps in cache persistent objects using weak references by default. Enable debug mode
DataNucleus.Cache category to investigate the size of the cache in DataNucleus.

Resolution

DataNucleus can be configured to reduce the number of objects in cache. DataNucleus has cache for
petsistent objects, metadata, datastore metadata, fields of type Collection or Map, or query results.

Query Results Cache

The query results hold strong references to the retrieved objects. If a query returns too many objects it
can lead to OutOfMemory error. To be able to query over large result sets, change the result set type to
scroll-insensitive in the pmf setting datanuclens.rdbms.query.resultSetType.

Query leak

The query results are kept in memory until the PersistenceManager or Query are closed. To avoid
memory leaks caused by queties in memory, it's capital to explicitly close the quety as soon as possible.
The following snippet shows how to do it.

Query query = pm newQuery("SELECT FROM or g. dat anucl eus. sanpl es. st or e. Product WHERE
price <:limt");

List results = (List)query.execute(new Doubl e(200.0));

/...

/...

//closes the query

query.closeAl 'l ();

PersistenceManager leak

It's also a best practice to ensure the PersistenceManager is closed in a try finally block. The
PersistenceManager/EntityManager has level 1 cache of persistence objects. See the following example:

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

2.8 TROUBLESHOOTING 55

Per si st enceManager pm = pnf. get Per si st enceManager () ;
Transaction tx = pmcurrentTransaction();

try
{
t x. begin();
/1. ..
tx.commit();
}
finally
{
if (tx.isActive())
{
tx.rol | back();
}
pm cl ose();
}

Cache for fields of Collection or Map

If collection or map fields have large number of elements, the caching of elements can be disabled with
the pmf datanuclens.cache.collections setting it to false.

Persistent Objects cache
The cache control of persistent objects is described in the Cache Guide for JDO or JPA
Metadata and Datastore Metadata cache

The metadata and datastore metadata caching cannot be controled by the application, because the
memory required for it is insignificant.

OutOfMemory when persisting new objects

When persistent many objects, the flush operation should be periodically invoked. This will give a hint to
DataNucleus to flush the changes to the database and release the memory. In the below sample the
pm.flush() operation is invoked on every 10,000 objects persisted.

Per si st enceManager pm = pnf. get Per si st enceManager () ;
Transaction tx = pmcurrentTransaction();

try
{
t x. begin();
for (int i=0; i<100000; i++)
{
War dr obe war dr obe = new Wardrobe();
war dr obe. set Mbdel ("3 doors");
pm makePer si st ent (war dr obe) ;
if (i % 10000 == 0)
{
pm flush();
}
}
tx.commit();
}
finally

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

2.8 TROUBLESHOOTING 56

{
if (tx.isActive())
{
tx. rol I back();
}
pm cl ose();
}

Frozen application

Introdution

The application pauses for short or long periods or hangs during very long time.

Causes

Common causes:
* Database Locking - Database waiting other transactions to release locks due to deadlock or locking
contentions.

* Garbage Collection Pauses - The garbage collection pauses the application to free memory resources.

* Application Locking - Thread 2 waiting for resources locked by Thread 1.

Throubleshooting

Database locking

Use a database specific tool or database scripts to find the current database locks.

In Microsoft SQL, the stored procedured sp_Jock can be used to examinate the database locks.
Query Timeout

To avoid database locking to hang the application when a query is performed, set the query timeout. See
Query Timeout.

Garbage Collection pauses

Check if the application freezes when the garbage collection starts. Add -verbosege to the java command
line and restart the application.

Application Locking

Thread dumps are snapshots of the threads and monitors in the JVM. Thread dumps help to diagnose
applications by showing what the application is doing at a certain moment of time.

To generate Thread Dumps in MS Windows, press <ctt]><break> in the window running the java
application.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

2.8 TROUBLESHOOTING 57

To generate Thread Dumps in Linux/Unix, execute kill -3 process_id

To effectivelly diagnose the problem, take 5 Thread Dumps with 3 to 5 seconds internal between each
one.

See An Introduction to Java Stack Traces.

Postgres

ERROR: schema does not exist

Problem

Exception org.postgresql.util. PSQIL Exception: ERROR: schema "PUBLIC" does not existraised duting
transaction.

Troubleshooting

* Verify that the schema "PUBLIC" exists. If the name is lowercased ("public"), set
datanucleus.identifier.case=PreserveCase, since Postgres is case sensitive.

* Via pgAdmin Postgres tool, open a connection to the schema and verify it is acessible with issuing a
SELECT 1 statement.

Command Line Tools

CreateProcess error=87
Problem
CreateProcess error=87 when running DataNucleus tools under Microsoft Windows OS.

Windows has a command line length limitation, between 8K and 64K characters depending on the
Windows version, that may be triggered when running tools such as the Enhancer or the SchemaTool
with too many arguments.

Solution

When running such tools from Maven or Ant, disable the fork mechanism by setting the option
fork="false".

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

http://java.sun.com/developer/technicalArticles/Programming/Stacktrace/

2.9

2.9 MANAGEMENT (JMX) 58

Management (JMX)

Management (JMX) with JVM MBean Server

DataNucleus provides MBeans that can be used to monitor, manage and configure DataNucleus at
runtime. More about JMX here.

An MBean server is bundled with Sun JRE since its version 1.5, and you can easily activate DataNucleus
MBeans registration by adding the DataNucleus Management Platform plugin found in jar
datanuclens-management-{ version} jar to the classpath, and creating your PMF/EMF with the persistence
property datanucleus.managedRuntime as true

Additionaly, setting a few system properties are necessary for configuring the Sun JMX implementation.
The minimum properties required are the following:

* com.sun.management.jmxremote
* com.sun.management.jmxremote.authenticate
* com.sun.management.jmxremote.ssl

* com.sun.management.jmxremote.port=<port number>

Usage example:

java -cp Thed assPat hl nHer e
- Dcom sun. managenent . j nxr enot e
-Dcom sun. managenent . j nxr enot e. aut henti cat e=f al se
- Dcom sun. managenent . j nxr enot e. ssl =f al se
- Dcom sun. managenent . j nxr enot e. port =8001
TheMai nCl assl nHere

Once you start your application and DataNucleus is initialized you can browse DataNucleus MBeans
using a tool called jconsole (jconsole is distributed with the Sun JDK) via the URL:

service:jnmk:rm:///jndi/rm://host Name: port Num j nxr m

Note that the mode of usage is presented in this document as matter of example, and by no means we
recommend to disable authentication and secured communication channels. Further details on the Sun
JMX implementation and how to configure it propetly can be found in here.

DataNucleus MBeans are registered in a MBean Server when DataNucleus is started up (e.g. upon JDO
PMF or JPA EMF instantiation). To see the full list of DataNucleus MBeans, refer to the javadocs.

Management (JMX) with MX4J

DataNucleus provides MBeans that can be used to monitor, manage and configure DataNucleus at
runtime. More about JMX here. To enable management using MX4J you must

* specify the persistence property datanucleus.managedRuntime as true when creating the

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

http://java.sun.com/developer/technicalArticles/J2SE/jmx.html
http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html
http://www.datanucleus.org/javadocs/core/latest/org/datanucleus/management/runtime/package-summary.html
http://java.sun.com/developer/technicalArticles/J2SE/jmx.html

2.9 MANAGEMENT (JMX)

PMF/EMF
* have the datanucleus-mx4j plugin jar in the CLASSPATH.

DataNucleus MBeans are registered in a MBean Server when DataNucleus is started up (e.g. upon JDO
PMF or JPA EMF instantiation). To see the full list of DataNucleus MBeans, refer to the javadocs.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

59

http://www.datanucleus.org/javadocs/core/latest/org/datanucleus/management/runtime/package-summary.html

2.10

2.10 LOGGING

Logging

DataNucleus Logging

DataNucleus can be configured to log significant amounts of information regarding its process. This

60

information can be very useful in tracking the persistence process, and particularly if you have problems.

DataNucleus will log as follows :-

* JDK1.4 - if you don't have Log4] in the CLASSPATH, but you are using JDK1.4 or later

* No logging - if you have neither Log4], nor JDK1.4+ then no logging will be performed

Log4] - if you have Log4] in the CLASSPATH, Apache Log4] will be used

Java.util.logging will be used

DataNucleus logs messages to various categories (in Log4] and JDK1.4 these cortespond to a "Logget"),

allowing you to filter the logged messages by these categories - so if you are only interested in a particular

category you can effectively turn the others off. DataNucleus's log is written by default in English. If your

JDK is running in a Spanish locale then your log will be written in Spanish. If you have time to translate

our log messages into other languages, please contact one of the developers via the Online Forum.

Logging Categories

DataNucleus uses a series of categories, and logs all messages to these categories. Currently DataNucleus

uses the following

DataNucleus.JDO - All messages general to JDO

DataNucleus.JPA - All messages general to JPA
DataNucleus.Persistence - All messages relating to the persistence process
DataNucleus.Query - All messages relating to queries
DataNucleus.Lifecycle - All messages relating to object lifecycle changes
DataNucleus.Reachability - All messages relating to "persistence-by-reachability”
DataNucleus.Cache - All messages relating to the DataNucleus Cache
DataNucleus.ClassLoading - All exceptions relating to class loading issues
DataNucleus.MetaData - All messages relating to MetaData
DataNucleus.Management - All messages relating to Management
DataNucleus.General - All general operational messages
DataNucleus.Connection - All messages relating to Connections.
DataNucleus.JCA - All messages relating to Connector JCA.
DataNucleus.Transaction - All messages relating to transactions
DataNucleus.Plugin - All messages relating to DataNucleus plug-ins
DataNucleus.ValueGeneration - All messages relating to value generation
DataNucleus.Datastore - All general datastore messages

DataNucleus.Datastore.Schema - All schema related datastore log messages

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

http://jakarta.apache.org/log4j
http://forum.datanucleus.org

2.10 LOGGING 61

* DataNucleus.Datastore.Persist - All datastore persistence messages

* DataNucleus.Datastore.Retrieve - All datastore retrieval messages

* DataNucleus.Datastore.Native - Log of all 'native' statements sent to the datastore
* DataNucleus.Enhancer - All messages from the DataNucleus Enhancer.

* DataNucleus.SchemaTool - All messages from DataNucleus SchemaTool

* DataNucleus.IDE - Messages from the DataNucleus IDE.

Using Log4J

Log4] allows logging messages at various severity levels. The levels used by Log4], and by DataNucleus's
use of Log4] are DEBUG, INFO, WARN, ERROR, FATAL. Each message is logged at a particular level
to a category (as described above). The other setting is OFF which turns off a logging category. This is
very useful in a production situation where maximum performance is required.

To enable the DataNucleus log, you need to provide a Log4] configuration file when starting up your
application. This may be done for you if you are running within a J2EE application server (check your
manual for details). If you are starting your application yourself, you would set a JVM parameter as

-Dlog4j.configuration=file:log4j.properties

where log4j.properties is the name of your Log4] configuration file. Please note the "file:" prefix to the
file since a URL is expected. [When using JDK 1.4 logging you need to specify the system property
"java.util logging.config.file"|

The Log4] configuration file is very simple in nature, and you typically define where the log goes to (e.g
to a file), and which logging level messages you want to see. Here's an example

Define the destination and format of our |ogging

| 0g4j . appender. Al=or g. apache. | og4j . Fi | eAppender

| 0g4j . appender . Al. Fi | e=dat anucl eus. | og

| 0g4j . appender. Al. | ayout =or g. apache. | og4j . Patt er nLayout

| og4j . appender . Al. | ayout . Conver si onPat t er n=%@d{ HH: nm ss, SSS} (%) %5p [%] - Y%¥n

Dat aNucl eus Cat egori es

| 0g4j . cat egory. Dat aNucl eus. JDO=I NFO, Al

| 0g4j . cat egory. Dat aNucl eus. Cache=I NFO, Al

| 0g4j . cat egory. Dat aNucl eus. Met aDat a=I NFO, Al

| 0g4j . cat egory. Dat aNucl eus. Gener al =I NFO, Al

| og4j . cat egory. Dat aNucl eus. Utility=I NFO, Al

| og4j . cat egory. Dat aNucl eus. Transacti on=I NFO, Al

| 0g4j . cat egory. Dat aNucl eus. Dat ast or e=DEBUG, Al

| 0g4j . cat egory. Dat aNucl eus. C assLoadi ng=DEBUG, Al
| 0g4j . cat egory. Dat aNucl eus. Pl ugi n=DEBUG, Al

| 0g4j . cat egory. Dat aNucl eus. Val ueGener at i on=DEBUG, Al

| 0g4j . cat egory. Dat aNucl eus. Enhancer =I NFO, Al
| og4j . cat egory. Dat aNucl eus. SchemaTool =I NFO, Al

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

2.10 LOGGING 62

In this example, I am directing my log to a file (datanuclens.log). 1 have defined a particular "pattern" for the
messages that appear in the log (to contain the date, level, category, and the message itself). In addition I
have assigned a level "threshold" for each of the DataNucleus categories. So in this case I want to see all
messages down to DEBUG level for the DataNucleus RDBMS persister.

Performance Tip : Turning OFF the logging, or at least down to ERROR level provides a significant
improvement in performance. With Log4] you do this via

| og4j . cat egory. Dat aNucl eus=0FF

Using java.util.logging

Java.util.logging allows logging messages at various severity levels. The levels used by java.utillogging, and
by DataNucleus's internally are fine, info, warn, severe. Each message is logged at a particular level to a
category (as described above).

By default, the java.util.logging configuration is taken from a properties file
<JRE_DIRECTORY>/lib/logging.properties". Modify this file and configure the categoties to be
logged, or use the java.util.logging.config.file system property to specify a properties file (in java.util. Properties
format) where the logging configuration will be read from. Here is an example:

handl ers=java. util .l ogging. Fil eHandl er, java.util.l oggi ng. Consol eHandl er
Dat aNucl eus. Gener al . | evel =fi ne
Dat aNucl eus. JDO. | evel =fi ne

--- Consol eHandl er ---

Override of global 1ogging |evel

java.util.logging. Consol eHandl er. | evel =SEVERE

java.util .l oggi ng. Consol eHandl er.formatter=java. util .l oggi ng. Si npl eFormatter
--- FileHandler ---

Override of global Iogging |evel

java.util.logging. Fil eHandl er. | evel =SEVERE

Naming style for the output file:
java.util.logging. Fil eHandl er. patt er n=dat anucl eus. | og

Limting size of output file in bytes:
java.util.logging. FileHandl er.limt=50000

Number of output files to cycle through, by appending an
integer to the base file nane:

java.util.logging. Fil eHandl er. count =1

Style of output (Sinple or XM):
java.util.logging. FileHandl er.formatter=java. util.loggi ng.Si npl eFormatter

Please read the javadocs for java.util.logging for additional details on its configuration.

Sample Log Output

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/LogManager.html

2.10 LOGGING

Here is a sample of the type of information you may see in the DataNucleus log when using Log4].

21:26: 09,000 (main) |NFO DataNucl eus. Datastore. Schema - Adapter initialised :
MySQLAdapt er, MySQL version 4.0.11
21:26:09, 365 (main) | NFO DataNucl eus. Datastore. Schema - Creating table
nul | . DELETE_ME1080077169045
21:26:09, 370 (main) DEBUG Dat aNucl eus. Dat ast ore. Schema - CREATE TABLE
DELETE_ME1080077169045
(
UNUSED | NTEGER NOT NULL
) TYPE=I NNODB
21:26: 09, 375 (mai n) DEBUG Dat aNucl eus. Dat ast ore. Schema - Execution Time = 3 ns
21:26: 09, 388 (main) WARN Dat aNucl eus. Dat ast ore. Schema - Schema Nanme coul d not be
determned for this datastore
21:26:09,388 (main) | NFO DataNucl eus. Dat astore. Schema - Dropping table
nul | . DELETE_ME1080077169045
21:26: 09, 388 (nmain) DEBUG Dat aNucl eus. Dat ast ore. Schema - DROP TABLE
DELETE_ME1080077169045
21:26: 09,392 (main) DEBUG Dat aNucl eus. Dat ast ore. Schenma - Execution Tine = 3 ns
21:26: 09,392 (main) | NFO DataNucl eus. Datastore. Schema - Initialising Schema ""
usi ng "SchemaTabl e" auto-start
21:26:09, 401 (rmain) DEBUG Dat aNucl eus. Dat ast ore. Schema - Retrieving type for table
Dat aNucl eus_TABLES
21:26:09,406 (main) | NFO DataNucl eus. Datastore. Schema - Creating table
nul | . Dat aNucl eus_TABLES
21:26:09, 406 (nmain) DEBUG Dat aNucl eus. Dat ast ore. Schema - CREATE TABLE
Dat aNucl eus_TABLES
(
CLASS_NAME VARCHAR (128) NOT NULL UNI QUE ,
" TABLE_NAME® VARCHAR (127) NOT NULL UNI QUE
) TYPE=I NNODB
21:26:09, 416 (rmain) DEBUG Dat aNucl eus. Dat ast ore. Schema - Execution Tine = 10 ns
21:26: 09, 417 (main) DEBUG Dat aNucl eus. Datastore - Retrieving type for table
Dat aNucl eus_TABLES
21:26: 09, 418 (mai n) DEBUG Dat aNucl eus. Datastore - Validating table :
nul | . Dat aNucl eus_TABLES
21:26:09, 425 (main) DEBUG Dat aNucl eus. Dat astore - Execution Tine = 7 ns

So you see the time of the log message, the level of the message (DEBUG, INFO, etc), the category
(DataNucleus.Datastore, etc), and the message itself. So, for example, if I had set the
DatalNuclens.Datastore.S chema to DEBUG and all other categories to INFO I would see *all* DDL
statements sent to the database and very little else.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

211

2.11 ORM RELATIONSHIPS

ORM Relationships

ORM Relationships

There are 2 prevalent persistence specifications in the Java ORM world. JDO2 provides the most
complete definition, whilst JPA is the most recent. In this guide we show the different types of ORM

64

relation commonly used, and mark against it which specification supports it. This list is not yet complete

but will be added to to provide a comprehensive list of relationship type and where you can find it.

Field Type Relation JDO2 JPA1 DataNucleus
PC 1-1 Unidirectional L L i
PC 1-1 Bidirectional -. -. L
PC 1-1 serialised b b b
PC 1-1 Compoundldentity L L
Unidirectional r,.,‘ a l'.l.‘
PC 1-N Compoundidentity I I
Bidirectional ek a ek
Interface 1-1 Unidirectional L a L
Interface 1-1 Bidirectional -. a L
Interface 1-1 serialised b ? b
Collection<PC> 1-N ForeignKey L L
Unidirectional Collection .-_.‘ a .-_.‘
Collection<PC> 1-N ForeignKey I I I
Bidirectional Collection ek ek ek
Collection<PC> 1-N JoinTable L L L
Unidirectional Collection il il il
Collection<PC> 1-N JoinTable L L -.
Bidirectional Collection .-.‘ .-.‘ .-.‘
Collection<Non-PC> 1-N JoinTable Collection b a b
Collection<PC> 1-N JoinTable Collection L
using shared JoinTable a a el
Collection<PC> 1-N ForeignKey Collection I
using shared ForeignKey a a .-_-‘
Collection<PC> M-N JoinTable L L L
Collection<PC> 1-N Compoundldentity L L
Unidirectional .-.‘ a .-.‘

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

2.11 ORM RELATIONSHIPS

Field Type

Relation

DataNucleus

65

Collection<PC>

1-N serialised Collection

L

1-N JoinTable Collection
of serialised elements

1-N ForeignKey
Unidirectional Indexed List

1-N ForeignKey
Bidirectional Indexed List

1-N JoinTable
Unidirectional Indexed List

1-N JoinTable
Bidirectional Indexed List

1-N JoinTable Indexed
List

1-N ForeignKey
Unidirectional Ordered
List

1-N ForeignKey
Bidirectional Ordered List

1-N JoinTable
Unidirectional Ordered
List

1-N JoinTable
Bidirectional Ordered List

1-N ForeignKey Map
Unidirectional (key stored
in value)

1-N ForeignKey Map
Bidirectional (key stored in
value)

1-N ForeignKey Map
Unidirectional (value
stored in key)

1-N JoinTable Map of
serialised keys/values

©2008-2009, DataNucleus » ALL RIGHTS RESERVED

2.11 ORM RELATIONSHIPS 66

Field Type Relation JDO2 JPA1 DataNucleus

PC[] 1-N ForeignKey A o
Unidirectional Array ﬂ a ﬂ

PC[] 1-N JoinTable
Unidirectional Array a

PC[] 1-N serialised Array 2

Non-PC[] 1-N JoinTable o o
Unidirectional Array ek a ek

©2008-2009, DataNucleus » ALL RIGHTS RESERVED

3.1

3.1 JDO CLASS MAPPING 67

JDO Class Mapping

Class Mapping
JDO2

When persisting a class you need to decide how it is to be mapped to the datastore. By this we mean
which fields of the class are persisted. DataNucleus knows how to persist certain Java types and so you
bear this list in mind when deciding which fields to persist. Also please note that JDO cannot persist
static or final fields. Let's take a sample class as an example

public class Hotel

{
private long id; // identity
private String nane;
private String address;
private String tel ephoneNunber;
private int number Of Roons;
private String hotel N cknane;
private Set rooms = new HashSet();
private Manager nanager;

We have a series of fields and we want to persist all fields apart from hoze/Nickname which is of no real use
in our system. In addition, we want our Hoze/ class to be detachable, meaning that we can detach objects
of that type update them in a different part of our system, and the attach them again.

We can define this basic persistence information in 3 ways - with XML MetaData, with JDK1.5
Annotations or with a mix of MetaData and Annotations. We show all ways here.

MetaData

'To achieve the above aim we define our Meta-Data like this

<cl ass nane="Hotel " detachabl e="true">
<field nane="id" primary-key="true"/>
<field name="nane"/>
<field nane="address"/>
<field nane="t el ephoneNunber"/ >
<field nane="nunber O Roons"/ >
<field nane="hot el Ni cknane" persi stence-nodifier="none"/>
<field name="roons" >
<col l ection el enent-type="Roon{/>

</field>
<field name="manager"/ >
</ cl ass>

Note the following

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.1 JDO CLASS MAPPING 68

* We have identified the 4 field as the primary key. We didn't bother specifying a Primary Key class
since there is only a single PK field. By doing this we have selected application-identity

* We have included all fields in the MetaData, although if you look at the Types Guide you see the
column "Persistent?". All "simple" types like String, int are by default persistent and so we could have
omitted these since they are by default going to be persisted.

* We have used persistence-modifier for the hote/Nickname field to make it non-persistent.

* Our Set field we have identified the type of the element that it contains. This is compulsory for
collection and map fields. If the field is declared using JDK1.5 generics then you can safely omit this
since all necessary information is in the class declaration.

¢ We have added the attribute "detachable" as true for the class.

So it is really very simple. This first step is to define the basic persistence of a class. If you are using a
datastore (such as RDBMS) that requires detailed mapping information then you now need to proceed to
the Schema Mapping Guide. If however you are using a datastore that doesnt need such information
(such as DB4O) then you have defined the persistence of your class.

See also :-

¢ MetaData reference for <class> element
¢ MetaData reference for <field> element
¢ MetaData reference for <collection> element

* MetaData reference for <map> element

Annotations

Here we are using JDK1.5 or higher and we annotate the class directly using JDO Annotations We
annotate the class like this

@per si st enceCapabl e
public class Hotel

{
@Persi stent (pri maryKey="true")
private long id;

@Per si st ent
private String nane;

@rer si st ent
private String address;

@Per si st ent
private String tel ephoneNunber;

@er si st ent
private int number Of Roons;

@er si st ent (per si st enceModi fi er=Per si st enceMdi fi er. NONE)
private String hotel Ni cknane;

@Per si st ent
@l enent (t ypes=or g. dat anucl eus. sanpl es. Room cl ass)

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.1 JDO CLASS MAPPING

private Set roons = new HashSet ();

@Per si st ent
private Manager nanager;

Note that we could have omitted the @Element if we had declared the rooms field as Set<Room>.
See also :-

* Annotations reference for @PersistenceCapable
* Annotations reference for (@Persistence Aware

* Annotations reference for (@Persistent

* Annotations reference for (@Transient

* Annotations reference for (@Transactional

* Annotations reference for @FElement

* Annotations reference for @Key

* Annotations reference for (@Value

Annotations + MetaData

If we are using JDK 1.5+ we can take advantage of Annotations, but we want to take into account the
disadvantage of Annotations, namely that we may want to deploy our application to multiple datastores.

69

This means that we would be extremely unwise to specify ORM information in Annotations. With this in

mind we decide that we will specify just the basic persistence information (which classes/fields are
persisted etc) using Annotations, and the remainder will go in MetaData.

The order of precedence for persistence information is

* ORM MetaData definition
* JDO MetaData definition

¢ Annotations definition

So anything specified in MetaData will override all Annotations.
Persistence Aware
With JDO persistence all classes that are persisted have to be identified in MetaData or annotations as

shown above. In addition, if any of your other classes access the fields of these persistable classes
directly then these other classes should be defined as PersistenceAware. You do this as follows

<cl ass nane="M/C ass" persistence-nodifier="persistence-aware"/>

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.1 JDO CLASS MAPPING 70

or with annotations

@Per si st enceAwar e
public class My ass

{
}

See also :-

* Annotations reference for (@Persistence Aware

Overriding Superclass MetaData

If you are using XML MetaData you can also override the MetaData for fields/properties of superclasses.
You do this by adding an entry for {class-name}.fieldName, like this

<cl ass nane="Hotel " detachabl e="true">

<field nane="Hot el Supercl ass. soneFi el d* defaul t-fetch-group="fal se"/>

so we have changed the field "someField" specified in the persistent superclass "HotelSuperclass" to not
be part of the DFG.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.2

3.2 JAVA TYPES 71

Java Types

JDO : Persistable Java Types

When persisting a class, a persistence solution needs to know how to persist the types of each field in the
class. Clearly a persistence solution can only support a finite number of Java types; it cannot know how to
petsist every possible type creatable. The JDO specification define lists of types that are required to be
supported by all implementations of those specifications. This support can be conveniently split into two
parts

First-Class (FCO) Types

An obiject that can be referred fo (object reference, providing a relation) and that has an "identity" is termed
a First Class Object (FCO). DataNucleus supports the following Java types as FCO

* PersistenceCapable : any class marked for persistence can be persisted with its own identity in the
datastore

* interface where the field represents a PersistenceCapable object

* java.lang.Object where the field represents a PersistenceCapable object

Supported Second-Class (SCO) Types

An object that does not have an "identity" is termed a Second Class Object (SCO). This is something
like a String or Date field in a class, or alternatively a Collection (that contains other objects). The table
below shows the currently supported SCO java types in DataNucleus. The table shows
* Extension? : whether the type is JDO2 standard, or is a DataNucleus extension
* default-fetch-group (DFG) : whether the field is retrieved by default when retrieving the object
itself

* persistence-modifier : whether the field is persisted by default, or whether the user has to mark the
field as persistent in XML/annotations to persist it

* proxied : whether the field is represented by a "proxy" that intercepts any operations to detect
whether it has changed internally.

* primary-key : whether the field can be used as part of the primary-key

Java Type Extension? DFG? Persistent? Proxied? PK?
boolean 1 1 1
byte 1 1
&b & o &
char 1 1
&b &b Q &b
double 1 a a

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.2 JAVA TYPES

Java Type Extension?

DFG? Persistent?

Proxied?

72

float

H
ﬁl'l

©

©2008-2009, DataNucleus -

ALL RIGHTS RESERVED

3.2 JAVA TYPES

Java Type Extension?

Persistent?

Proxied?

o
A
-~

73

java.lang.Character[]
java.lang.Double[]
java.lang.Float[]
java.lang.Integer(]
java.lang.Long]]
java.lang.Short[]
java.lang.Number [4]
java.lang.Object

java.lang.String

java.lang.StringBuffer -
3l ‘ Extension

java.lang.String[]
java.math.BigDecimal
java.math.Biginteger
java.math.BigDecimal]
java.math.Biginteger(]
java.sql.Date
java.sgl.Time
java.sql.Timestamp
java.util. ArrayList
java.util.BitSet

java.util.Calendar

..Emrrsinn

O 00000

S < < S

OCO0O0O0O0O0COOF

EeR bbb

:;,

PEE BB OE

©C0O0bL b

©OFb

©2008-2009, DataNucleus » ALL RIGHTS RESERVED

CO0O0O0O0 000000 OO0

ek

b

e

©OO00000O0G0

©CO0L OO b b

e

2

OO0 0P

3.2 JAVA TYPES 74

Java Type Extension? Persistent? Proxied? PK?

java.util.Collection

Jk
o
e
©

Q
j[g\]/a.util.GregorianCalen a ﬂ ﬁ:i ﬂ
Q

java.util.LinkedHashMap a 7 /2 E
(5] dnilh il
java.util.LinkedHashSet 7 /3

(6] L% ind indh @

2
QD
=
=
QD
©
e
e

o o a)

©2008-2009, DataNucleus » ALL RIGHTS RESERVED

3.2 JAVA TYPES

Java Type Extension?

Persistent?

Proxied?

T
A
-~

75

java.util.Stack -
‘. Extension

java.util. TimeZone
java.util. TreeMap [2]

java.util. TreeSet [1]

java.util.UUID -
’ Extension

java.util.Vector

java.awt.Color

java.awt.Point

java.awt.image.Buffered -
’ Extension

java.net.URI i
‘. Extensicn

java.net.URL -
‘. Extension

java.io.Serializable
javax.jdo.spi.PersistenceCapable
javax.jdo.spi.PersistenceCapable[]
java.lang.Enum

java.lang.Enum[]

OCP 000 00 0000 0000 O

OO0 OO0 0 0 0P O P O O

&

CO0OO0O0O0 OO0 0P 060 OCFP O FP

PO O PP OO OO POOP O

* [1] - java.util.SortedSet, java.util. TreeSet allow the specification of comparators via the

"comparator-name" DataNucleus extension MetaData element (within <collection>). The headSet,

tailSet, subSet methods are only supported when using cached collections.

* [2] - java.util.SortedMap, java.util. TreeMap allow the specification of comparators via the

"comparator-name" DataNucleus extension MetaData element (within <map>). The headMap,
tailMap, subMap methods are only supported when using cached containers.

* [3] - javalang.StringBuffer dirty check mechanism is limited to immutable mode, it means, if you

change a StringBuffer object field, you must reassign it to the owner object field to make sure changes

are propagated to the database.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.2 JAVA TYPES 76

* [4] - javalang. Number will be stored in a column capable of storing a BigDecimal, and will store to
the precision of the object to be persisted. On reading back the object will be returned typically as a
BigDecimal since there is no mechanism for determing the type of the object that was stored.

* [5] - java.util. LinkedHashMap treated as a Map currently. No List-ordering is supported.
* [0] - java.util. LinkedHashSet treated as a Set currently. No List-ordering is supported.

* [7] - java.util.Calendar can be stored into two columns (millisecs, Timezone) or into a single column
(Timestamp). The single column option is not guaranteed to preserve the TimeZone of the input
Calendar.

Note that support is available for persisting other types depending on the datastore to which you are
persisting
* RDBMS GeoSpatial types via the DataNucleus RDBMS Spatial plugin

* JodaTime types for RDBMS datastores

If you have support for any additional types and would either like to contribute them, or have them listed
here, let us know

i .F"Jugm DataNucleus allows you the luxury of being able to provide SCO support for your own

Java types when using RDBMS datastores

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

http://code.google.com/p/joda-time-jpox/

3.3

3.3 DATASTORE IDENTITY 77

Datastore Identity

Datastore Identity

JDO2

With datastore identity you ate leaving the assignment of id's to DataNucleus and your class will not have
a field for this identity - it will be added to the datastore representation by DataNucleus. It is, to all
extents and purposes a surrogate key that will have its own column in the datastore. To specify that a
class is to use datastore identity with JDO, you add the following to the MetaData for the class.

<cl ass nane="Md ass" identity-type="datastore">

</ cl ass>
or using JDO2 annotations

@Per si st enceCapabl e(i dentityType=ldentityType. DATASTORE)
public class My ass

{
}

So you are specifying the identity-type as datastore. You don't need to add this because datastore is the
default, so in the absence of any value, it will be assumed to be 'datastore'.

When you have an inheritance hierarchy, you should specify the identity type in the base class for the
inheritance tree. This is then used for all persistent classes in the tree.

Generating identities

JDO2

By choosing datastore identity you are handing the process of identity generation to the JDO
implementation. This does not mean that you haven't got any control over how it does this. JDO 2
defines many ways of generating these identities and DataNucleus supports all of these and provides
some more of its own besides.

Defining which one to use is a simple matter of adding a MetaData element to your classes definition, like
this

<cl ass nane="Md ass" identity-type="datastore">
<datastore-identity strategy="sequence" sequence="MY_SEQUENCE"/ >

</ cl ass>

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.3 DATASTORE IDENTITY 78

<cl ass name="M/Cl ass" identity-type="datastore">
<datastore-identity strategy="identity"/>

</ cl ass>

or using annotations, for example

@Per si st enceCapabl e
@pat ast orel dentity(strategy="sequence", sequence="MY_SEQUENCE")
public class Myd ass

{
}

Some of the datastore identity strategies requite additional attributes, but the specification is
straightforward.

See also :-

* Identity Generation Guide - strategies for generating ids
* MetaData reference for <datastore-identity> element

* Annotations reference for @Datastoreldentity

Accessing the Identity

When using datastore identity, the class has no associated field so you can't just access a field of the class
to see its identity - if you need a field to be able to access the identity then you should be usingapplication
identity. There are, however, ways to get the identity for the datastore identity case, if you have the object.

oj ect id = pmget Obj ectld(obj);

oj ect id = JDCOHel per. get Ooj ectld(obj);

You should be aware however that the "identity" is in a complicated form, and is not available as a simple
integer value for example. Again, if you want an identity of that form then you should use application
identity

DataNucleus Implementation

When implementing datastore identity all JDO implementations have to provide a public class that
represents this identity. If you call pm.getObjectld(...) for a class using datastore identity you will be
passed an object which, in the case of DataNucleus will be of type org.datanucleus.identity. OIDImpl. If
you were to call "toString()" on this object you would get something like

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.3 DATASTORE IDENTITY

79

1[O D] nydonai n. nycl ass

This is nade up of :-
1 = identity nunber of this object
cl ass-nane

The definition of this datastore identity is JDO implementation dependent. As a result you should not
use the org.datanucleus.identity. OID class in your application if you want to remain implementation
independent

i Phrgm DataNucleus allows you the luxury of being able to provide yout own datastore identity

class so you can have whatever formatting you want for identities.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.4

3.4 APPLICATION IDENTITY 80

Application Identity

Application Identity
JDO2

With application identity you are taking control of the specification of id's to DataNucleus. Application
identity requires a primary key class (unless using SingleFieldIdentity, where one is provided for you), and
each persistent capable class may define a different class for its primary key, and different persistent
capable classes can use the same primary key class, as appropriate. With application identity the field(s) of
the primary key will be present as field(s) of the class itself. To specify that a class is to use application
identity, you add the following to the MetaData for the class.

<cl ass name="M/Cl ass" identity-type="application" objectid-class="M/IdC ass">
<field name="nyPri maryKeyFi el d" primary-key="true"/>

</ cl ass>

For JDO2 we specify the identity-type and objectid-class. The objectid-class is the class defining the
identity for this class. Alternatively, if we are using annotations

@Per si st enceCapabl e(obj ect 1 dC ass=MyI dd ass. cl ass)
public class My ass

{
@Per si stent (pri maryKey="true")
private | ong nyPrimaryKeyFi el d;

When you have an inheritance hierarchy, you should specify the identity type and any primary-key fields
in the base class for the inheritance tree. This is then used for all persistent classes in the tree.

See also :-

¢ MetaData reference for <field> element

* Annotations reference for @Persistent

Primary Key

Using application identity requires the use of a Primary Key class. In JDO 1.0 it was necessaty to always
provide this class. In JDO 2.0 an in-built class is available where the identity is defined in a single field.
This is referred to as SingleFieldIdentity. DataNucleus supports this builtin class. Where the class has
multiple fields that form the primary key a Primary Key class must be provided. In JPA1 when there is a
single primary key field you dont need to specify the primary key class. If there are more than 1 id field
then you define the id-class.

See also :-

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.4 APPLICATION IDENTITY 81

* Primary Key Guide - user-defined and built-in primary keys

Compound Identity

Where one of the fields that is primary-key of your class is a persistable object you have something
known as compound identity since the identity of this class contains the identity of a related class.
Please refer to the docs for Compound Identity

Generating identities

By choosing application identity you are controlling the process of identity generation for this class. This
does not mean that you have a lot of work to do for this. JDO2 and JPA1 define many ways of
generating these identities and DataNucleus supports all of these and provides some more of its own
besides.

See also :-

* Identity Generation Guide - strategies for generating ids

Accessing the Identity

When using application identity, the class has associated field(s) that equate to the identity. As a result you
can simply access the values for these field(s). Alternatively you could use a JDO identity-independent
way

Object id = pmget Objectld(obj);

oj ect id = JDCHel per. get Obj ectld(obj);

Changing Identities

JDO allows implementations to support the changing of the identity of a persisted object. This is an
optional feature and DataNucleus doesn't currently support it.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.5

3.5 NONDURABLE IDENTITY 82

Nondurable ldentity

Nondurable Identity
JDO2

With nondurable identity your objects will not have a unique identity in the datastore. This type of
identity is typically for log files, history files etc whete you aren't going to access the object by key, but
instead by a different parameter. In the datastore the table will typically not have a primary key. To
specify that a class is to use nondurable identity with JDO2 you would add the following to the MetaData
for the class.

<cl ass nane="M/C ass" identity-type="nondurable">

</ cl ass>
or using annotations, for example

@per si st enceCapabl e(i dentityType=IldentityType. NONDURABLE)
public class Myd ass

{
}

DataNucleus provides limited support for "nondurable" identity currently. Any class marked as
"nondurable" will, for RDBMS datastores, have a table with no primary-key. It will support petsistence of
records into the datastore. Records can be deleted using SQL bulk delete statements. What is not
currently supported is the ability to delete a particular object, or update a particular object without
affecting all others with the same parameter values.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.6

3.6 PRIMARY KEYS 83

Primary Keys

Primary Key Classes

As has been described in the application identity guide, when you choose application identity you are
defining which fields of the class are part of the primary key, and you are taking control of the
specification of id's to DataNucleus. Application identity requires a primary key (PK) class, and each
persistent capable class may define a different class for its primary key, and different persistent capable
classes can use the same primary key class, as appropriate. You specify the primary key class like this

<cl ass nane="MC ass" identity-type="application" objectid-class="MWIdd ass">

</ cl ass>
or using annotations

@Per si st enceCapabl e(obj ect | dC ass=My| dCl ass. cl ass)
public class MO ass

{
}

You now need to define the PK class to use. This is simplified for you because if you have only one PK
field then you dont need to define a PK class and you only define it when you have a composite PK.

An important thing to note is that the PK can only be made up of fields of the following Java types

* Primitives : boolean, byte, char, int, long, short

* javalang : Boolean, Byte, Character, Integer, Long, Short, String, Enum, StringBuffer
* java.math : BigInteger

* java.sql : Date, Time, Timestamp

* java.util : Date, Currency, Locale, TimeZone, UUID

* java.net: URI, URL

* javax.jdo.spi: PersistenceCapable

Note that the types in bold are JDO standard types. Any others are DataNucleus extensions and, as
always, check the specific datastore docs to see what is supported for your datastore.

Single primary-key field
JDO2

The simplest way of using application identity is where you have a single PK field, and in this case you
use the JDO 2 SingleFieldIdentity . mechanism. This provides a PrimaryKey for cases where
you have a single PK field and you don't need to specify the objectid-class. Let's take an example

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

http://db.apache.org/jdo/api20/apidocs/javax/jdo/identity/SingleFieldIdentity.html

3.6 PRIMARY KEYS

public class My ass

{

long id;

String nane;

String description;
}

<cl ass name="M/Cl ass" identity-type="application">
<field name="id" primary-key="true"/>
<field nane="nane"/>
<field nane="description"/>

</ cl ass>

So we didnt specify the JDO "objectid-class". You will, of course, have to give the field a value before
persisting the object, either by setting it yourself, or by using a value-strategy on that field.

If you need to create an identity of this form for use in querying via pm.getObjectByld() then you can
create the identities in the following way

For a "long" type :
javax.jdo.identity.Longldentity id = new javax.jdo.identity.Longldentity(nyd ass,
101);

For a "String" type :

javax.jdo.identity.Stringldentity id = new
javax.jdo.identity.Stringldentity(md ass, "ABCD');

We have shown an example above for type "long", but you can also use this for the following

short, Short - javax.jdo.identity. Shortldentity
int, Integer - javax.jdo.identity.Intldentity

I ong, Long - javax.jdo.identity.Longldentity
String - javax.jdo.identity.Stringldentity
char, Character - javax.jdo.identity. Charldentity
byte, Byte - javax.jdo.identity.Byteldentity
java.util.Date - javax.jdo.identity. Objectldentity
java.util.Currency - javax.jdo.identity.Qojectldentity
java.util.Local e - javax.jdo.identity. Chjectldentity

Rules for User-Defined Primary Key classes

If you wish to use application identity and don't want to use the "SingleFieldIdentity" builtin PK classes
then you must define a Primary Key class of your own. You can't use classes like java.lang.String, or
java.lang.Long directly. You must follow these rules when defining your primary key class.

* the Primary Key class must be public

* the Primary Key class must implement Serializable

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.6 PRIMARY KEYS 85

* the Primary Key class must have a public no-arg constructor, which might be the default constructor

* the field types of all non-static fields in the Primary Key class must be serializable, and are
recommended to be primitive, String, Date, or Number types

* all serializable non-static fields in the Primary Key class must be public

* the names of the non-static fields in the Primary Key class must include the names of the primary key
fields in the JDO class, and the types of the common fields must be identical

* the equals() and hashCode() methods of the Primary Key class must use the value(s) of all the fields
corresponding to the primary key fields in the JDO class

* if the Primary Key class is an inner class, it must be static

* the Primary Key class must override the toString() method defined in Object, and return a String that
can be used as the parameter of a constructor

* the Primary Key class must provide a String constructor that returns an instance that compares equal
to an instance that returned that String by the toString() method.

* the Primary Key class must be only used within a single inheritence tree.

Primary Key Example - Multiple Field

Here's an example of a composite (multiple field) primary key class

public class Conposedl dKey inplenments Serializable

{
public String fieldl;
public String field2;

/**

* Default constructor.
*/

publ i ¢ Conposedl| dKey ()

{
}

/**

* String constructor.

*/
public Conposedl dKey(String val ue)
{
StringTokeni zer token = new StringTokeni zer (value, "::");
// cl assName
t oken. next Token ();
//fieldl
this.fieldl = token.nextToken ();
/1field2
this.field2 = token. next Token ();
}
/**

* | mpl ement ati on of equal s nethod.
*/
publi ¢ bool ean equal s(Obj ect obj)
{
if (obj == this)
{

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.6 PRIMARY KEYS

return true;

}
if (!(obj instanceof Conposed| dKey))
{
return fal se;
}

Conposedl dkey ¢ = (Conposedl dKey) obj ;

return fieldl. equals(c.fieldl) & field2.equal s(c.field2);
}

/**

* Inplenentation of hashCode nethod that supports the
* equal s- hashCode contract.

*/
public int hashCode ()
{
return this.fieldl. hashCode() ~ this.field2. hashCode();
}
/**

* Inmplenentation of toString that outputs this object id s PK val ues.

*/
public String toString ()
{
return this.getd ass().getNane() + "::" + this.fieldl + "::" + this.field2
}

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.7

3.7 FIELDS/PROPERTIES 87

Fields/Properties

Persistent Fields or Properties

JDO2.1

There are two distinct modes of persistence definition. The most common uses fields, whereas an
alternative uses properties.

Persistent Fields

The most common form of persistence is where you have a field in a class and want to persist it to the
datastore. With this mode of operation DataNucleus will persist the values stored in the fields into the
datastore, and will set the values of the fields when extracting it from the datastore.

Requirement : you have a field in the class. This can be public, protected, private or package
access, but cannot be static or final.

An example of how to define the persistence of a field is shown below

@er si st enceCapabl e
public class My ass

{
@Per si st ent
Dat e birthday;

So, using annotations, we have marked this class as persistent, and the field also as persistent. Using XML
MetaData we would have done

<cl ass nane="MWd ass" >
<field nane="birthday" persistence-nodifier="persistent"/>
</ cl ass>

Persistent Properties

A second mode of operation is where you have Java Bean-style getter/setter for a property. In this
situation you want to persist the output from ge£XXX to the datastore, and use the se£2XXX to load up the
value into the object when extracting it from the datastore.

Requirement : you have a property in the class with Java Bean getter/setter methods. These
methods can be public, protected, private or package access, but cannot be static. The class
must have BOTH getter AND setter methods.

An example of how to define the persistence of a property is shown below

@er si st enceCapabl e

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.7 FIELDS/PROPERTIES

public class MyC ass
{

@Per si st ent
Dat e get Birthday()

{
}

voi d setBirthday(Date date)
{

}

So, using annotations, we have marked this class as persistent, and the getter is marked as persistent.
Using XML MetaData we would have done

<cl ass nane="Md ass" >
<property name="birthday" persistence-nodifier="persistent"/>
</ cl ass>>

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

88

3.8

3.8 VALUE GENERATION

Value Generation

Value generation

Fields of a class can either have the values set by you the user, or you can set DataNucleus to generate

89

them for you. This is of particular importance with identity fields where you want unique identities. You

can use this value generation process with any field in JDO, and with the identity field(s) in JPA. There

are many different "strategies" for generating values, as defined by the JDO specifications, and also some

DataNucleus extensions. Some strategies are specific to a particular datastore, and some are generic. You

should choose the strategy that best suits your target datastore. The available strategies for JDO are :-

native - this is the default and allows DataNucleus to choose the most suitable for the datastore
sequence - this uses a datastore sequence (if supported by the datastore)

identity - these use autoincrement/identity/serial features in the datastore (if supported by the
datastore)

increment - this is datastore neutral and increments a sequence value using a table.
uuid-string - this is a UUID in string form
uuid-hex - this is a UUID in hexadecimal form

datastore-uuid-hex - UUID in hexadecimal form using datastore capabilities ‘.Ertenaiun
max - uses a2 max(column)+1 method ‘.Erh.tnainn

auid - provides a pure UUID following the OpenGroup standard ‘.Erh_tnainn
timestamp - creates a java.sql. Timestamp of the current time ‘.Ertengiun
timestamp-value - creates a long (millisecs) of the current time ‘.Ertenainn

user-supplied value generators - allows you to hook in your own identity generator ‘.Ertenﬂiurl

See also :-

JDO MetaData reference for <class>

JDO MetaData reference for <datastore-identity>
JDO MetaData reference for <field>

JDO Annotation reference for (@Datastoreldentity

JDO Annotation reference for (@Persistent

native

JDO2

With this strategy DataNucleus will choose the most appropriate strategy for the datastore being used. If

you also specify the 'sequence' name attribute and the datastore supports sequences then "sequence”

strategy would be used. Otherwise it will always choose "increment" strategy.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.8 VALUE GENERATION 90

sequence

JDO2

A sequence is a user-defined database function that generates a sequence of unique numeric ids. The
unique identifier value returned from the database is translated to a java type: java.langLong.
DataNucleus supports sequences for the following datastores:

* Oracle

* PostgreSQL

* SAPDB

* DB2

* Firebird

*+ HSQLDB

* H2

* DB40O

To configure a class to use either of these generation methods with datastore identity you simply add this
to the class' Meta-Data

<cl ass name="nyclass" ... >
<datastore-identity strategy="sequence" sequence="yourseq"/>

<sequence nane="yourseq" dat astore-sequence="YOUR_SEQUENCE_NAME"/ >
</ cl ass>

or using annotations

@Per si st enceCapabl e

@pat astorel dentity(strategy="sequence", sequence="yourseq"/>
@equence(nane="your seq", datastore-sequence="YOUR_SEQUENCE_NAME"/ >
public class MO ass

You replace "YOUR_SEQUENCE_NAME" with your sequence name. To configure a class to use
cither of these generation methods using application identity you would add the following to the class'
Meta-Data

<cl ass name="nyclass" ... >
<field nane="nyfield" primry-key="true" val ue-strategy="sequence"
sequence="yourseq"/ >

<sequence nanme="yourseq" datastore-sequence="YOUR_SEQUENCE_ NAME"/ >
</cl ass>

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.8 VALUE GENERATION

or using annotations

@Per si st enceCapabl e
@equence(nanme="your seq",
public class MO ass

{

dat ast or e- sequence="YOUR_SEQUENCE_NAME"/ >

@er si stent (val ueStrat egy="sequence", sequence="yourseq"/>

private long nyfield;

91

If the sequence does not yet exist in the database at the time DataNucleus needs a new unique identifier,

a new sequence is created in the database based on the JDO Meta-Data configuration. Additional
properties for configuring sequences ate set in the JDO Meta-Data, see the available properties below.

Unsupported properties by a database are silently ignored by DataNucleus.

Property

Description

Required

key-cache-size

key-min-value

key-max-value

key-start-with

key-increment-by

key-database-cache-size

sequence-catalog-name

sequence-schema—name

number of unique identifiers to cache in the
PersistenceManagerFactory instance. Notes:
1. This setting SHOULD match the
key-start-with setting value if key-start-with
is provided, otherwise it can cause
duplicate keys errors when inserting new
objects into the database.

. The keys are pre-allocated, cached and
used on demand. If key-cache-size is
greater than 1, it may generate holes in
the object keys in the database, if not all
keys are used.

N

determines the minimum value a sequence
can generate

determines the maximum value a sequence
can generate

the initial value for the sequence

specifies which value is added to the current
sequence value to create a new value. default
isl

specifies how many sequence numbers are to
be preallocated and stored in memory for
faster access. This is an optimization feature
provided by the database

Name of the catalog where the sequence is.

Name of the schema where the sequence is.

No. Defaults to 1.

No

No

No

No

No

No.

No.

This value generator will generate values unique across different JVMs

identity

JDO2

Auto-increment/identity/serial are primary key columns that are populated when a row is inserted in the

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.8 VALUE GENERATION 92

table. These use the databases own keywords on table creation and so rely on having the table structure
cither created by DataNucleus or having the column with the necessary keyword.

DataNucleus supports auto-increment/identity/serial keys for many databases including :

* DB2 (IDENTITY)

* MySQL (AUTOINCREMENT)
* MSSQL (IDENTITY)

* Sybase IDENTITY)

* HSQLDB (IDENTITY)

* H2 IDENTITY)

* PostgreSQL (SERIAL)

This generation strategy should only be used if there is a single ""root" table for the inheritance
tree. If you have more than 1 root table (e.g using subclass-table inheritance) then you should
choose a different generation strategy

For a class using datastore identity you need to set the strategy attribute. You can configure the Meta-Data
for the class something like this (teplacing 'myclass' with your class name) :

<cl ass nane="nycl ass" >
<datastore-identity strategy="identity"/>

</ cl ass>
For a class using application identity you need to set the va/ue-strategy attribute on the primary key field.

You can configure the Meta-Data for the class something like this (replacing 'myclass' and 'myfield' with
your class and field names) :

<cl ass nane="nycl ass" identity-type="application”
obj ecti d-cl ass="nypri mar ykeycl ass" >
<field name="nyfield" primary-key="true" value-strategy="identity"/<

</cl ass>
Please be aware that if you have an inheritance tree with the base class defined as using "identity" then
the column definition for the PK of the base table will be defined as "AUTO_INCREMENT" ot
"IDENTITY" or "SERIAL" (dependent on the RDBMS) and all subtables will NOT have this identifier

added to their PK column definitions. This is because the identities are assigned in the base table (since
all objects will have an entry in the base table).

This value generator will generate values unique across different JVMs

increment

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.8 VALUE GENERATION

JDO2

93

This method is database neutral and uses a sequence table that holds an incrementing sequence value.

The unique identifier value returned from the database is translated to a java type: java.lang.Long. This
strategy will work with any datastore. This method require a sequence table in the database and creates

one if doesn't exist.

To configure a datastore identity class to use this generation method you simply add this to the classes

Meta-Data.

<cl ass nane="nycl ass"

<dat astore-identity strategy="increnent"/>

</ cl ass>

To configure an application identity class to use this generation method you simply add this to the class'

Meta-Data. If your class is in an inheritance tree you should define this for the base class only.

<cl ass nane="nycl ass"

<field name="nyfield" primary-key="true" val ue-strategy="increnment"/>

</ cl ass>>

Additional properties for configuring this generator are set in the JDO Meta-Data, see the available
properties below. Unsupported properties are silently ignored by DataNucleus.

Property

Description

Required

key-initial-value

key-cache-size

sequence-table-basis

sequence-name

sequence-table-name
sequence-catalog-name
sequence-schema-name

sequence—name—column—name

First value to be allocated.

number of unique identifiers to cache. The
keys are pre-allocated, cached and used on
demand. If key-cache-size is greater than 1, it
may generate holes in the object keys in the
database, if not all keys are used.

Whether to define uniqueness on the base
class name or the base table name. Since
there is no "base table name" when the root
class has "subclass-table" this should be set
to "class" when the root class has
"subclass-table" inheritance

name for the sequence (overriding the
"sequence-table-basis" above). The row in
the table will use this in the PK column

Table name for storing the sequence.
Name of the catalog where the table is.
Name of the schema where the table is.

Name for the column that represent sequence
names.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

No. Defaults to 1

No. Defaults to 5

No. Defaults to class, but the other option is
table

No

No. Defaults to SEQUENCE_TABLE
No.
No.

No. Defaults to SEQUENCE_NAME

3.8 VALUE GENERATION 94

Property Description Required

sequence-nextval-column-name Name for the column that represent No. Defaults to NEXT_VAL
incremeting sequence values.

table-name Name of the table whose column we are No.
generating the value for (used when we have
no previous sequence value and want a start
point.

column-name Name of the column we are generating the No.
value for (used when we have no previous
sequence value and want a start point.

This value generator will generate values unique across different JVMs (from DataNucleus 1.1.3)

uuid-string (JDO2)
JDO2

This generator creates identities with 16 characters in string format. The identity contains the IP address
of the local machine where DataNucleus is running, as well as other necessary components to provide
uniqueness across time.

This generator can be used in concurrent applications. It is especially useful in situations where large
numbers of transactions within a certain amount of time have to be made, and the additional overhead of
synchronizing the concurrent creation of unique identifiers through the database would break
performance limits. It doesn't require datastore access to generate the identities and so has performance
benefits over some of the other generators.

For a class using datastore identity you need to add metadata something like the following

<cl ass name="nyclass" ... >
<datastore-identity strategy="uuid-string"/>

</ cl ass>

To configure an application identity class to use this generation method you simply add this to the class'
JDO Meta-Data.

<cl ass name="nyclass" ... >
<field nane="nyfield" primary-key="true" val ue-strategy="uuid-string"/>

</cl ass>

uuid-hex (JDO2)
D02

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.8 VALUE GENERATION 95

This generator creates identities with 32 characters in hexadecimal format. The identity contains the IP
address of the local machine where DataNucleus is running, as well as other necessary components to
provide uniqueness across time.

This generator can be used in concurrent applications. It is especially useful in situations where large
numbers of transactions within a certain amount of time have to be made, and the additional overhead of
synchronizing the concurrent creation of unique identifiers through the database would break
petformance limits. It doesn't require datastore access to generate the identities and so has performance
benefits over some of the other generators.

For a class using datastore identity you need to add metadata something like the following

<cl ass nane="nyclass" ... >
<dat astore-identity strategy="uuid-hex"/>

</ cl ass>

To configutre an application identity class to use this generation method you simply add this to the class'
JDO Meta-Data.

<cl ass nane="nyclass" ... >
<field name="nyfield' primary-key="true" val ue-strategy="uuid-hex"/>

</ cl ass>

datastore-uuid-hex

‘. Extensicn

This method is like the "uuid-hex" option above except that it utilises datastore capabilities to generate
the UUIDHEX code. Consequently this only works on some RDBMS (MSSQL, MySQL). The
disadvantage of this strategy is that it makes a call to the datastore for each new UUID required. The
generated UUID is in the same form as the AUID strategy where identities are generated in memory and
so the AUID strategy is the recommended choice relative to this option.

For a class using datastore identity you need to add metadata something like the following

<cl ass nane="nyclass" ... >
<datastore-identity strategy="datastore-uuid-hex"/>

</ cl ass>

To configutre an application identity class to use this generation method you simply add this to the class'
JDO Meta-Data.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.8 VALUE GENERATION 96

<cl ass name="nyclass" ... >
<field nane="nyfield" primry-key="true" val ue-strategy="dat ast or e-uui d- hex"/ >

</ cl ass>

‘. Extensicn

This method is database neutral and uses the "select max(column) from table" + 1 strategy to create
unique ids. The unique identifier value returned from the database is translated to a java type:
java.lang.Long. It is however not recommended by DataNucleus since it makes a DB call for every record
to be inserted and hence is inefficient. Each DB call will run a scan in all table contents causing
contention and locks in the table. We recommend the use of either Sequence or Identity based value
generators (see below) - which you use would depend on your RDBMS.

For a class using datastore identity you need to add metadata something like the following

<cl ass nane="nyclass" ... >
<datastore-identity strategy="max"/>

</ cl ass>

To configure an application identity class to use this generation method you simply add this to the class'
JDO Meta-Data.

<cl ass name="nyclass" ... >
<field nane="nyfield" primary-key="true" val ue-strategy="max"/>

</cl ass>

This value generator will NOT guarantee to generate values unique across different JVMs. This is
because it will select the "max+1" and before creating the record another thread may come in and insert
one.

This generator uses a Java implementation of DCE UUIDs to create unique identifiers without the
overhead of additional database transactions or even an open database connection. The identifiers are
Strings of the form "LLLLLLLI-MMMM-HHHH-CCCC-NNNNNNNNNNNN" where 'L', 'M', 'H', 'C'
and 'N' are the DCE UUID fields named time low, time mid, time high, clock sequence and node.

This generator can be used in concurrent applications. It is especially useful in situations where large
numbers of transactions within a certain amount of time have to be made, and the additional overhead of

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.8 VALUE GENERATION 97

synchronizing the concurrent creation of unique identifiers through the database would break
performance limits.

For a class using datastore identity you need to add metadata something like the following

<cl ass nane="nyclass" ... >
<datastore-identity strategy="auid"/>

</cl ass>
To configure an application identity class to use this generation method you simply add this to the class'

JDO Meta-Data.

<cl ass name="nyclass" ... >
<field nane="nyfield" primary-key="true" val ue-strategy="auid"/>

</ cl ass>
This value generator will generate values unique across different JVMs

timestamp

‘ Extensicn

This method will create a java.sql. Timestamp of the current time (at insertion in the datastore).

For a class using datastore identity you need to add metadata something like the following

<cl ass nane="nyclass" ... >
<datastore-identity strategy="timestanp"/>

</ cl ass>

To configure an application identity class to use this generation method you simply add this to the class'
JDO Meta-Data.

<cl ass nanme="nyclass" ... >
<field nane="nyfield" primry-key="true" val ue-strategy="tinmestanp"/>

</ cl ass>

timestamp-value

‘. Extensicn

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.8 VALUE GENERATION 98

This method will create a long of the current time in millisecs (at insertion in the datastore).

For a class using datastore identity you need to add metadata something like the following

<cl ass nane="nyclass" ... >
<datastore-identity strategy="ti nmestanp-val ue"/>

</ cl ass>

To configure an application identity class to use this generation method you simply add this to the class'
JDO Meta-Data.

<cl ass nane="nyclass" ... >
<field nane="nyfield" primry-key="true" val ue-strategy="ti nestanp-val ue"/>

</cl ass>

Standalone ID generation

‘. Extensicn

This section describes how to use the DataNucleus Value Generator API for generating unique keys for
objects outside the DataNucleus (JDO) runtime. DataNucleus defines a framework for identity
generation and provides many builtin strategies for identities. You can make use of the same strategies
described above but for generating identities manually for your own use. The process is described below

The DataNucleus Value Generator API revolves around 2 classes. The entry point for retrieving
generators is the ValueGenerationManager. This manages the appropriate ValueGenerator classes. Value
generators maintain a block of cached ids in memory which avoid reading the database each time it needs
a new unique id. Caching a block of unique ids provides you the best performance but can cause "holes"
in the sequence of ids for the stored objects in the database.

Let's take an example. Here we want to obtain an identity using the TableGenerator ("increment" above).
This stores identities in a datastore table. We want to generate an identity using this. Here is what we add
to our code

Per si st enceManager | npl pm = (PersistenceManagerlnpl) ... // cast your pmto inpl ;

/1 otain a Val ueGener ati onManager
Val ueGener ati onManager ngr = new Val ueCGener ati onManager () ;

// Obtain a ValueGenerator of the required type
Properties properties = new Properties();
properties. setProperty("tabl e-name", "GLOBAL"); // Use a gl obal sequence nunber (for
all tables)
Val ueGener ator generator = ngr.createVal ueGenerator("MCenerator"”,
or g. dat anucl eus. st ore. rdbns. val uegener at or. Tabl eGener at or. cl ass, props,
pm get St or eManager (),

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.8 VALUE GENERATION

new Val ueGener at i onConnect i onProvi der ()
{
RDBVSManager rdbrmsManager = nul |
ManagedConnecti on con;
publ i ¢ ManagedConnecti on retrieveConnection()
{
rdbmsManager = (RDBMSManager) pm get St oreManager () ;
try
{
// inmportant to use TRANSACTI ON_NONE |i ke Dat aNucl eus

does
con =

rdbrmsManager . get Connecti on(Connecti on. TRANSACTI ON_NONE) ; ;
return con;

}
catch (SQ.Exception e)
{
| ogger.error("Failed to obtain new DB connection for
identity generation!");
t hrow new Runti neException(e);
}
}
public void rel easeConnection()
{
try
{
con. cl ose();
con = null;
}
catch (DataNucl eusException e)
{
| ogger.error("Failed to close DB connection for identity
generation!");
t hrow new Runti neException(e);
}
finally
{
rdbnsManager = null;
}
}

s

/!l Retrieve the next identity using this strategy
Long identifier = (Long)generator.next();

Some ValueGenerators are specific to RDBMS datastores, and some are generic, so bear this in mind
when selecting and adding your own.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

99

3.9

3.9 SEQUENCES 100

Sequences

JDO Datastore Sequences

JDO2

Particularly when specifying the identity of an object, sequences are a very useful facility. DataNucleus
supports the automatic assignment of sequence values for object identities. However such sequences may
also have use when a user wishes to assign such identity values themselves, or for other roles within an
application. JDO 2 defines an interface for sequences for use in an application - known as Sequence. .
There are 2 forms of "sequence" available through this interface - the ones that DataNucleus provides
utilising datastore capabilities, and ones that a user provides using something known as a "factory class".

DataNucleus Sequences

DataNucleus internally provides 2 forms of sequences. When the underlying datastore supports native
sequences, then these can be leveraged through this interface. Alternatively, where the underlying
datastore doesn't support native sequences, then a table-based incrementing sequence can be used. The
first thing to do is to specify the Sequence in the Meta-Data for the package requiring the sequence. This
is done as follows

<j do>
<package nanme="MPackage" >
<cl ass nane="Md ass" >

</ cl ass>

<sequence nane="Product Sequence" dat ast or e- sequence="PRODUCT_SEQ'
strat egy="contiguous"/>

<sequence nanme="Product SequenceNontrans"
dat ast or e- sequence="PRODUCT_SEQ NONTRANS" strat egy="nontransactional "/>

</ package>
</jdo>

So we have defined two Sequences for the package MyPackage. Each sequence has a symbolic name that
is referred to within JDO (within DataNucleus), and it has a name in the datastore. The final attribute
represents whether the sequence is transactional or not.

All we need to do now is to access the Sequence in our persistence code in our application. This is done
as follows

Per si st enceManager pm = pnf. get Per si st enceManager () ;

Sequence seq = pm get Sequence(" MyPackage. Product Sequence");

and this Sequence can then be used to provide values.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.9 SEQUENCES 101

| ong val ue = seq. next Val ue();

Please be awate that when you have a Sequence declared with a strategy of "contiguous" this means
"transactional contiguous" and that you need to have a Transaction open when you access it.

A DataNucleus extension to this capability allows the user some control over the underlying datastore
sequence being used. This is specified using <extension>. The underlying sequences used by
DataNucleus here are the "SequenceTableValueGenerator" and "SequenceTableGenerator" as described
in the Identity Generation guide. So we can do

<sequence name="Product Sequence" dat ast ore-sequence="PRODUCT_SEQ'
strategy="conti guous">
<ext ensi on vendor - nane="dat anucl eus" key="key-cache-si ze" val ue="10"/>
</ sequence>

which will allocate 10 new sequence values each time the allocated sequence values is exhausted.

Factory Class Sequences

It is equally possible to provide your own Sequence capability using a factory class. This is a class that
creates an implementation of the JDO Sequence. Let's give an example of what you need to provide.
Firstly you need an implementation of the JDO Sequence interface, so we define ours like this

public class SinpleSequence inplenments Sequence

{
String nane;
long current = 0;

public Sinpl eSequence(String nane)

{
this. name = nang;
}
public String getName()
{
return nanme;
}
public oject next()
{
current ++;
return new Long(current);
}
public | ong nextVal ue()
{
current ++;
return current;
}

public void allocate(int arg0)

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.9 SEQUENCES

{
}
public Object current()
{
return new Long(current);
}
public long currentVal ue()
{
return current;
}

So our sequence simply increments by 1 each call to next(). The next thing we need to do is provide a
factory class that creates this Sequence. This factory needs to have a static newlnstance method that
returns the Sequence object. We define our factory like this

package org. dat anucl eus. sanpl es. sequence;
i mport javax. | do. dat ast ore. Sequence;

public class SinpleSequenceFactory

{
public static Sequence new nstance()
{
return new Si npl eSequence(" MySequence");
}
}

and now we define our MetaData like this

<j do>
<package nanme="M/Package" >
<cl ass name="M/C ass" >
</cl ass>
<sequence nane="Product SequenceFactory" strategy="nontransactional"
factory-cl ass="org. dat anucl eus. sanpl es. sequence. Si npl eSequenceFactory"/>

</ package>
</jdo>

So now we can call

Per si st enceManager pm = pnf. get Per si st enceManager () ;

Sequence seq = pm get Sequence(" MyPackage. Product SequenceFactory");

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

102

3.9 SEQUENCES 103

©2008-2009, DataNucleus » ALL RIGHTS RESERVED

3.10

3.10 JDO METADATA 104

JDO MetaData

JDO Metadata Overview
JDO2

JDO requires the persistence of classes to be defined via Metadata. This Metadata can be provided in the
following forms

* XML : the traditional mechanism, with XML files containing information for each class to be
persisted. As a further complication you can define basic persistence metadata for a class in one file,
and then ORM metadata for that class in a separate file (since the ORM metadata is specific to a
certain datastore).

* Annotations : using JDK1.5+ annotations in the classes to be persisted

* API: a programmatic API allowing definition of which classes are to be persisted at runtime

Metadata priority
JDO defines the priority order for metadata as being

* API Metadata

* ORM XML Metadata
* JDO XML Metadata
* Annotations

So if a class has Metadata defined by API then that will override all other Metadata. If a class has
annotations and JDO XML Metadata then the XML Metadata will take precedence over the annotations
(or rather be merged on top of the annotations).

XML Metadata loading

JDO expects the XML Meta-Data to be specified in a file or files in particular locations in the file system.
For example, if you have a class com.mycompany.sample.myexample, JDO will look for any of the following
files until it finds one (in the order stated) :-

META- | NF/ package. j do

VEB- | NF/ package. j do

package. j do

com package. j do

conl nyconpany/ package. j do

com nyconpany/ sanpl e/ package. j do
com nyconpany/ sanpl e/ myexanpl e. j do

In addition, for this example, DataNucleus allows the previous JDO 1.0.0 alternatives of

com j do

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.10 JDO METADATA 105

conl nyconpany. j do
com nyconpany/ sanpl e. j do

In addition to the above, you can split your MetaData definitions between JDO MetaData files. For
example if you have the following classes

com nyconpany/ A. j ava
conl myconpany/ B. j ava
com nyconpany/ C. j ava
conl myconpany/ appl/D. j ava
com nyconpany/ appl/ E. j ava

You could define the MetaData for these 5 classes in many ways -- for example put all class definitions in
com/mycompany/package.jdo, or put the definitions for D and E in
com/mycompany/appl/package.jdo and the definitions for A, B, C in com/mycompany/package.jdo, or
have some in their class named MetaData files e.g com/mycompany/appl/A.jdo, or a mixture of the
above. DataNucleus will always search for the MetaData file containing the class definition for the class
that it requires.

XML Metadata validation

By default any XML Metadata will be validated for accuracy when loading it. Obviously XML is defined
by a DTD or XSD schema and so should follow that. You can turn off such validations by setting the
petsistence property datanucleus.metadata.validate to false when creating your PMFE Note that this
only turns off the XML strictness validation, and oz the checks on inconsistency of specification of
relations etc.

XML ORM Metadata usage

You can use ORM metadata to override particular datastore-specific things like table and column names.
If your application doesn't make use of ORM metadata then you could turn off the searches for ORM
Metadata files when a class is loaded up. You do this with the persistence property
datanucleus.metadata.supportORM setting it to false.

Metadata discovery at class initialisation

JDO provides a mechanism whereby when a class is initialised (by the ClassLoader) any
PersistenceManagerFactory is notified of its existence, and its Metadata can be loaded. This is enabled by
the enhancement process. If you decided that you maybe only wanted some classes present in one PMF
and other classes present in a different PMF then you can disable this and leave it to DataNucleus to
discover the Metadata when operations are performed on that PMFE The persistence property to define
to disable this is datanucleus.metadata.autoregistration (setting it to false).

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.10.1 JDO XML 106

3101 JDO XML

JDO XML Meta-Data Reference

JDO2

One of the types of Metadata that JDO accepts is in XML form. As described in the Metadata Overview
this has to be contained in files with particular filenames in particular locations (relative to the name of
the class), and that this metadata is discovered at runtime. This page defines the format of the XML
Metadata.

JDO MetaData has the following format (obviously only some of the elements/attributes are applicable
to an ORM XML file). Please refer to the JDO XSD for precise details. What follows provides a
reference guide to MetaData elements.

* jdo
* package
* class

¢ implements

* datastore-identity
* column
* extension
* primary-key
e column
* inheritance
¢ discriminator
e column
* join
e column
* version
e column
* extension
* join
e column
* foreign-key

e column

e field
* propetty

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

http://java.sun.com/xml/ns/jdo/jdo_2_0.xsd

3.10.1 JDO XML

e index

* column

* field

¢ property
* unique

* column

o field
* property
* field
* collection
* extension
* map
* extension
* array
* join
* primary-key
* column
* embedded
* field

¢ column

e element

e column
* key

e column
* value

e column
e order

e column

e extension
¢ column
* extension

* foreign-key

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

107

3.10.1 JDO XML

e column
¢ index

e column
* unique

e column
* extension

* property

e collection

* extension
* map

* extension
e array
* join

* primary-key

e column
¢ embedded

e field

¢ column

* clement

e column
* key

* column
e value

e column
e order

* column
e column

* extension
* foreign-key

e column
¢ index

¢ column

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

108

3.10.1 JDO XML 109

* unique
* column
* extension
e fetch-group
e field
® query
* sequence
* extension
* fetch-plan

* extension

* extension

Metadata for package tag

These are attributes within the <package> tag (jJdo/package). This is used to denote a package, and all of
the <class> elements that follow ate in this Java package.

Attribute Description Values

Standard (JDO) Tags
name Name of the java package

catalog Name of the catalog in which to persist the
classes in this package. See also the property
name "javax.jdo.mapping.Catalog" in the
PMF Guide.

schema Name of the schema in which to persist the
classes in this package. See also the property
name "javax.jdo.mapping.Schema" in the
PMF Guide.

Metadata for class tag

These ate attributes within the <class> tag (jdo/package/class). This is used to define the persistence
definition for this class.

Attribute Description Values

Standard (JDO) Tags

name Name of the class to persist

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.10.1 JDO XML

Attribute

Description

Values

110

identity-type

objectid-class

requires-extent

detachable

embedded-only

persistence-modifier

persistence-capable-superclass

catalog

schema

table

cacheable

The identity type, specifying whether they are
uniquely provided by the JDO implementation
(datastore identity), accessible fields in the
object (application identity), or not at all
(nondurable identity). DataNucleus only
supports nondurable identity for SQL views.

The class name of the primary key. When
using application identity.

Whether the JDO implementation must
provide an Extent for this class.

Whether the class is detachable from the
persistence graph.

Whether this class should only be stored
embedded in the tables for other classes.

What type of persistability type this class
exhibits. Please refer to JDO Class Types.

Class name of superclass that is persistent
capable. This is deprecated in JDO2 and you
no longer need to specify it, leaving it to
DataNucleus to determine if there is a
superclass that is PersistenceCapable.

Name of the catalog in which to persist the
class. See also the property name
"javax.jdo.mapping.Catalog" in the PMF
Guide.

Name of the schema in which to persist the
class. See also the property name
"javax.jdo.mapping.Schema" in the PMF
Guide.

Name of the table/view in which to persist the
class. See also the property name
"datanucleus.identifier.case” in the
Persistence Properties Guide.

Whether the class can be cached in a Level 2
cache. From JDO2.2

datastore, application, nondurable

true, false

true, false

true, false

persistence-capable | persistence-aware |
non-persistent

true | false

Metadata for implements tag

These are attributes within the <implements> tag (jdo/package/class/implements). This is used when
the <class> implements interfaces that are used as field types in other classes. This is deprecated in
JDO2.1 since it can be determined from reflection on the class

Attribute

Description

Values

Standard (JDO) Tags

name

Name of the interface being implemented
(fully qualified, else will look in the same
package)

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

http://db.apache.org/jdo/class_types.html

3.10.1 JDO XML

Metadata for datastore-identity tag

111

These ate attributes within the <datastore-identity> tag (jdo/package/class/datastore-identity). This is
used when the <class> to which this pertains uses datastore identity. It is used to define the precise

definition of datastore identity to be used. This element can contain column sub-elements allowing

definition of the column details where required - these are optional.

Attribute Description

Values

Standard (JDO) Tags

strategy Strategy for datastore identity generation for
this class. native allows DataNucleus to
choose the most suitable for the datastore.
sequence will use a sequence (specified by
the attribute sequence) - if supported by the
datastore.

increment will use the id values in the
datastore to decide the next id.

uuid-string will use a UUID string generator
(16-characters).

uuid-hex will use a UUID string generator
(32-characters).

identity will use a datastore inbuilt
auto-incrementing types.

auid is a DataNucleus extension, that is an
almost universal id generator (best possible
derivate of a DCE UUID).

max is a DataNucleus extension, that uses
"select max(column)+1 from table" for the
identity.

timestamp is a DataNucleus extension,
providing the current timestamp.

timestamp-value is a DataNucleus extension,

providing the current timestamp millisecs.
[other values] to utilise user-supplied
DataNucleus value generator plugins.

sequence Name of the sequence to use to generate
identity values, when using a strategy of
sequence. Please see also the class

extension tags for controlling the sequence.

Name of the column used for the datastore
identity for this class.

column

native | sequence | increment | identity |
uuid-string | uuid-hex | auid | max | timestamp
| timestamp-value | [other values]

These ate attributes within the <extension> tag (jdo/package/class/datastore-identity/extension). These

are for controlling the generation of ids when in datastore identity mode.

Attribute Description Values
Extension (JDO) Tags
sequence-table-basis This defines the basis on which to generate class | table

unique identities when using the
TableValueGenerator (used by the
"increment” strategy, and sometimes by
"native"). You can either define identities
unique against the base table name, or
against the base class name (in an
inheritance tree). Used when the strategy is
set to native or increment

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.10.1 JDO XML

Attribute

Description Values

112

sequence-catalog-name

sequence—schema—name

sequence-table-name

sequence-name-column-name

sequence-nextval-column-name

key-min-value

key-max-value

key-start-with

key-increment-by

key-database-cache-size

key-cache-size

The catalog used to store sequences for use
by value generators. See Value Generation.
Default catalog for the datastore will be used
if not specified.

The schema used to store sequences for use
by value generators. See Value Generation.
Default schema for the datastore will be used
if not specified.

The table used to store sequences for use by SEQUENCE_TABLE

value generators. See Value Generation.

The column name in the sequence-table used SEQUENCE_NAME

to store the name of the sequence for use by
value generators. See Value Generation.

The column name in the sequence-table used NEXT_VAL
to store the next value in the sequence for

use by value generators. See Value

Generation.

The minimum key value for use by value
generators. Keys lower than this will not be
generated. See Value Generation.

The maximum key value for use by value
generators. Keys higher than this will not be
generated. See Value Generation.

The starting value for use by value
generators. Keys will start from this value
when being generated. See Value
Generation.

The increment value for use by value
generators. Keys will be incremented by this
value when being generated. See Value
Generation.

The database cache size for keys for use by
value generators. The cache of keys will be
constrained by this value. See Value
Generation.

The cache size for keys for use by value
generators. The cache of keys will be
constrained by this value. See Value
Generation.

Metadata for primary-key tag

These ate attributes within the <primary-key> tag (jdo/package/class/primary-key or

class/field/join/primary-key). It is used to specify the name of the primary key constraint in the datastore

during the schema generation process. When used under <join> it specifies that the join table has a

primary-key.

Attribute

Description Values

Standard (JDO) Tags

name

Name of the primary key constraint.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.10.1 JDO XML 113

Attribute Description Values
column Name of the column to use for the primary
key

Metadata for inheritance tag

These ate attributes within the <inheritance> tag (jJdo/package/class/inheritance). It is used when this
class is part of an inheritance tree, and to denote how the class is stored in the datastore since there are

several ways (strategies) in which it can be stored.

Attribute Description Values

Standard (JDO) Tags

strategy Strategy for inheritance of this class. Please new-table, subclass-table, superclass-table,
refer to the Inheritance Guide. Note that complete-table
"complete-table” is a DataNucleus extension
to JDO2

Metadata for discriminator tag

These ate attributes within the <discriminator> tag (jJdo/package/class/inheritance/disctiminator). This
is used to define a discriminator column that is used when this class is stored in the same table as another
class in the same inheritance tree. The discriminator column will contain a value for objects of this class,
and different values for objects of other classes in the inheritance tree.

Attribute Description Values

Standard (JDO) Tags

strategy Strategy for the discrimination column value-map | class-name | none
value Value for the discrimination column

column Name for the discrimination column

indexed Whether the discriminator column should be true | false | unique

indexed. This is to be specified when defining
index information

Metadata for version tag

These ate attributes within the <version> tag (jdo/package/class/version). This is used to define
whether and how this class is handled with respect to optimistic transactions.

Attribute Description Values

Standard (JDO) Tags

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.10.1 JDO XML

Attribute

Description Values

114

strategy

column

indexed

Strategy for versioning of this class. The state-image, date-time, version-number

"version-number" mode uses an incremental
numbered value, and the "date-time" mode
uses a java.sgl.Timestamp value. state-image
isn't currently supported.

Name of the column in the datastore to store
this field

Whether the version column should be true | false | unique
indexed. This is to be specified when defining
index information

These are attributes within the <extension> tag (jdo/package/class/version/extension).

Attribute

Description Values

Extension (JDO) Tags

field-name

This extension allows you to define a field
that will be used to contain the version of the
object. It is populated by DataNucleus at
persist. See JDO Versioning

Metadata for query tag

These ate attributes within the <query> tag (jdo/package/class/query). This element is used to define
any "named queries" that are to be available for this class. This element contains the query single-string

form as its content.

Attribute

Description Values

Standard (JDO) Tags

name

language

unique

result-class

Name of the query. This name is mandatory
and is used in calls to pm.newNamedQuery().
Has to be unique for this class.

Query language to use. Some datastores JDOQL | SQL | JPQL
offer other languages

Whether the query is to return a unique result true | false
(only for SQL queries).

Class name of any result class (only for SQL
queries).

Metadata for field tag

These ate attributes within the <field> tag (jdo/package/class/field). This is used to define the

petsistence behaviour of the fields of the class to which it pertains. Certain types of fields are, by default,
persisted. This element can be used to change the default behaviour and maybe not persist a field, or to
persist something that normally isn't persisted. It is used, in addition, to define more details about how

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.10.1 JDO XML

the field is persisted in the datastore.

Attribute Description

115

Values

Standard (JDO) Tags
name Name of the field.

persistence-modifier The persistence-modifier specifies how JDO
manage each field in your persistent class.
There are three options: persistent,
transactional and none.
« persistent means that your field will
managed by JDO and stored in the
database on transaction commit.

transactional means that your field will
managed by JDO but not stored in the
database. Transactional fields values will
be saved by JDO when you start your
transaction and restored when you roll
back your transaction.

none means that your field will not be
managed by JDO.

primary-key Whether the field is part of any primary key (if
using application identity).

null-value How to treat null values of persistent fields
during storage. Valid options are "exception”,

"default”, "none" (where "none" is the default).

default-fetch-group Whether this field is part of the default fetch
group for the class. Defaults to true for
non-key fields of primitive types,
java.util.Date, java.lang.*, java.math.*, etc.

embedded Whether this field should be stored, if
possible, as part of the object instead as its
own object in the datastore. This defaults to
true for primitive types, java.util.Date,
java.lang.*, java.math.* etc and false for
PersistenceCapable, reference (Object,
Interface) and container types.

serialized Whether this field should be stored serialised
into a single column of the table of the
containing object.

dependent Whether the field should be used to check for
dependent objects, and to delete them when
this object is deleted. In other words cascade
delete capable.

mapped-by The name of the field at the other end of a
relationship. Used by 1-1, 1-N, M-N to mark a
relation as bidirectional.

value-strategy The strategy for populating values to this
field. Is typically used for generating primary
key values. See the definitions under
"datastore-identity".

sequence Name of the sequence to use to generate
values, when using a strategy of sequence.
Please see also the class extension tags for
controlling the sequence.

recursion-depth The depth that will be recursed when this field
is self-referencing. Should be used alongside
FetchPlan.setMaxFetchDepth() to control the
objects fetched.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

persistent, transactional, none

true, false

exception, default, none

true, false

true, false

true, false

true, false

native | sequence | increment | identity |
uuid-string | uuid-hex | auid | max | timestamp
| timestamp-value | [other values]

-1, 1, 2, ... (integer)

3.10.1 JDO XML

Attribute

Description

Values

116

field-type

indexed

table

column

delete-action

cacheable

Used to specify a more restrictive type than
the field definition in the class. This might be
required in order to map the field to the
datastore. To be portable, specify the name
of a single type that is itself able to be
mapped to the datastore (e.g. a field of type
Object can specify field-type="Integer").

Whether the column(s) for this field should be
indexed. This is to be specified when defining
index information

Table name to use for any join table
overriding the default name provided by
DataNucleus. This is used either for 1-N
relationships with a join table or for
Secondary Tables. See also the property
name "datanucleus.identifier.case” in the
Persistence Properties Guide.

Column name to use for this field (alternative
to specifying column sub-elements if only one
column).

The foreign-key delete action. This is a
shortcut to specifying foreign key information.
Please refer to the <foreign-key> element for
full details.

Whether the field/property can be cached in a
Level 2 cache. From JDO2.2

true | false | unique

cascade | restrict | null | default | none

true | false

These ate attributes within the <extension> tag (jdo/package/class/field/extension).

Attribute

Description

Values

Extension (JDO) Tags

cascade-persist

cascade-update

cascade-refresh

allows-null

insertable

updateable

JDO defines that when an object is persisted
then all fields will also be persisted using
"persistence-by-reachability”. This extension
allows you to turn off the persistence of a field
relation.

JDO defines that when an object is updated
then all fields containing PersistenceCapable
objects will also be updated using
"persistence-by-reachability”. This extension
allows you to turn off the update of a field
relation.

When calling PersistenceManager.refresh()
only fetch plan fields of the passed object will
be refreshed. Setting this to true will refresh
the fields of related PC objects in this field

When the field is a collection by default it will
not be allowed to have nulls present but you
can allow them by setting this DataNucleus
extension tag

Whether this field should be supplied when
inserting into the datastore.

Whether this field should be supplied when
updating the datastore.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

true | false

true | false

true | false

true | false

true | false

true | false

3.10.1 JDO XML

Attribute

Description

Values

117

adapter-column-name

implementation-classes

key-implementation-classes

value-implementation-classes

strategy-when-notnull

relation-discriminator-column

relation-discriminator-pk

relation-discriminator-value

©2008-2009, DataNucleus

In some situations DataNucleus will add a
special datastore column to a join table so
that collections can allow the storage of
duplicate elements. This extension allows the
specification of the column name to be used.
This should be specified within the field at the
collection end of the relationship. JDO2
doesnt allow a standard place for such a
specification and so is an extension tag.

Used to define the possible classes
implementing this interface/Object field. This
is used to limit the possible tables that this is
a foreign key to (when this field is specified as
an interface/Object in the class). Value should
be comma-separated list of fully-qualified
class names

Used to define the possible classes
implementing this interface/Object key. This is
used to limit the possible tables that this is a
foreign key to (when this key is specified as
an interface/Object). Value should be
comma-separated list of fully-qualified class
names

Used to define the possible classes
implementing this interface/Object value. This
is used to limit the possible tables that this is
a foreign key to (when this value is specified
as an interface/Object). Value should be
comma-separated list of fully-qualified class
names

This is to be used in conjunction with the
"value-strategy" attribute. Default JDO2
behaviour when you have a "value-strategy"
defined for a field is to always create a
strategy value for that field regardless of
whether you have set the value of the field
yourself. This extension allows you to only
apply the strategy if the field is null at
persistence. This extension has no effect on
primitive field types (which can't be null) and
the value-strategy will always be applied to
such fields.

Name of a column to use for discrimination of
the relation used by objects stored. This is
defined when, for example, a join table is
shared by multiple relations and the objects
placed in the join table need discriminating for
which relation they are for

Whether the column added for the
discrimination of relations is to be part of the
PK when using a join table.

Value to use in the relation discriminator
column for objects of this fields relation. This
is defined when, for example, a join table is
shared by multiple relations and the objects
placed in the join table need discriminating for
which relation they are for.

« ALL RIGHTS RESERVED

INTEGER_IDX

true | false

RELATION_DISCRIM

true | false

Fully-qualified class name

3.10.1 JDO XML

Attribute

Description Values

118

select-function

insert-function

update-function

sequence-table-basis

sequence-catalog-name

sequence-schema-name

sequence-table-name

sequence-name-column-name

sequence-nextval-column-name

key-min-value

key-max-value

key-start-with

©2008-2009, DataNucleus

Permits to use a function when fetching
contents from the database. A ? (question
mark) is mandatory to have and will be
replaced by the column name when
generating the SQL statement. For example
to specify a value of UPPER(?) will convert
the field value to upper case on a datastore
that supports that UPPER function.

Permits to use a function when inserting into
the database. A ? (question mark) is optional
and will be replaced by the column name
when generating the SQL statement. For
example to specify a value of TRIM(?) will
trim the field value on a datastore that
supports that TRIM function.

Permits to use a function when updating into
the database. A ? (question mark) is optional
and will be replaced by the column name
when generating the SQL statement. For
example to specify a value of FUNC(?) will
perform "FUNC" on the field value on a
datastore that supports that FUNC function.

This defines the basis on which to generate class | table
unique identities when using the

TableValueGenerator (used by the

"increment" strategy, and sometimes by

"native"). You can either define identities

unique against the base table name, or

against the base class name (in an

inheritance tree). Used when the strategy is

set to native or increment

The catalog used to store sequences for use
by value generators. See Value Generation.
Default catalog for the datastore will be used
if not specified.

The schema used to store sequences for use
by value generators. See Value Generation.
Default schema for the datastore will be used
if not specified.

The table used to store sequences for use by SEQUENCE_TABLE

value generators. See Value Generation.

The column name in the sequence-table used SEQUENCE_NAME

to store the name of the sequence for use by
value generators. See Value Generation.

The column name in the sequence-table used NEXT_VAL
to store the next value in the sequence for

use by value generators. See Value

Generation.

The minimum key value for use by value
generators. Keys lower than this will not be
generated. See Value Generation.

The maximum key value for use by value
generators. Keys higher than this will not be
generated. See Value Generation.

The starting value for use by value
generators. Keys will start from this value
when being generated. See Value
Generation.

ALL RIGHTS RESERVED

3.10.1 JDO XML

Attribute

Description Values

119

key-increment-by

key-database-cache-size

key-cache-size

mapping-class

The increment value for use by value
generators. Keys will be incremented by this
value when being generated. See Value
Generation.

The database cache size for keys for use by
value generators. The cache of keys will be
constrained by this value. See Value
Generation.

The cache size for keys for use by value
generators. The cache of keys will be
constrained by this value. See Value
Generation.

Specifies the mapping class to be used for Fully-qualified class name

mapping this field. This is only used where
the user wants to override the default
DataNucleus mapping class and provide their
own mapping class for this field.

Metadata for property tag

These ate attributes within the <property> tag (jJdo/package/class/property). This is used to define the
persistence behaviour of the Java Bean properties of the class to which it pertains. This element can be

used to change the default behaviour and maybe not persist a property, or to persist something that

normally isn't persisted. It is used, in addition, to define more details about how the property is persisted

in the datastore.

Attribute

Description Values

Standard (JDO) Tags

name

persistence-modifier

primary-key

null-value

Name of the property. The "name" of a
property is obtained by taking the getXXX,
setXXX method names and using the XXX
and making the first letter lowercase.

The persistence-modifier specifies how to persistent, transactional, none

manage each property in your persistent
class. There are three options: persistent,
transactional and none.
« persistent means that your field will be
managed and stored in the database on
transaction commit.

transactional means that your field will be
managed but not stored in the database.
Transactional fields values will be saved
by JDO when you start your transaction
and restored when you roll back your
transaction.

none means that your field will not be
managed.

Whether the property is part of any primary true, false
key (if using application identity).

How to treat null values of persistent exception, default, none

properties during storage.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.10.1 JDO XML

Attribute

Description

120

Values

default-fetch-group

embedded

serialized

dependent

mapped-by

value-strategy

sequence

recursion-depth

field-type

indexed

table

column

delete-action

Whether this property is part of the default
fetch group for the class. Defaults to true for
non-key fields of primitive types,
java.util.Date, java.lang.*, java.math.*, etc.

Whether this property should be stored, if
possible, as part of the object instead as its
own object in the datastore. This defaults to
true for primitive types, java.util.Date,
java.lang.*, java.math.* etc and false for
PersistenceCapable, reference (Object,
Interface) and container types.

Whether this property should be stored
serialised into a single column of the table of
the containing object.

Whether the property should be used to
check for dependent objects, and to delete
them when this object is deleted. In other
words cascade delete capable.

The name of the property at the other end of
a relationship. Used by 1-1, 1-N, M-N to mark
a relation as bidirectional.

The strategy for populating values to this
property. Is typically used for generating
primary key values. See the definitions under
"datastore-identity".

Name of the sequence to use to generate
values, when using a strategy of sequence.
Please see also the class extension tags for
controlling the sequence.

The depth that will be recursed when this
property is self-referencing. Should be used
alongside FetchPlan.setMaxFetchDepth() to
control the objects fetched.

Used to specify a more restrictive type than
the property definition in the class. This might
be required in order to map the field to the
datastore. To be portable, specify the name
of a single type that is itself able to be
mapped to the datastore (e.g. a field of type
Object can specify field-type="Integer").

Whether the column(s) for this property
should be indexed. This is to be specified
when defining index information

Table name to use for any join table
overriding the default name provided by
DataNucleus. This is used either for 1-N
relationships with a join table or for
Secondary Tables. See also the property
name "datanucleus.identifier.case” in the
Persistence Properties Guide.

Column name to use for this property
(alternative to specifying column
sub-elements if only one column).

The foreign-key delete action. This is a
shortcut to specifying foreign key information.
Please refer to the <foreign-key> element for
full details.

true, false

true, false

true, false

true, false

native | sequence | increment | identity |
uuid-string | uuid-hex | auid | max | timestamp
| timestamp-value | [other values]

-1, 1, 2, ... (integer)

true | false | unique

cascade | restrict | null | default | none

©2008-2009, DataNucleus

« ALL RIGHTS RESERVED

3.10.1 JDO XML

These ate attributes within the <extension> tag (jJdo/package/class/property/extension).

Attribute

Description

Values

121

Extension (JDO) Tags

cascade-persist

cascade-update

cascade-refresh

allows-null

insertable

updateable

adapter-column-name

implementation-classes

key-implementation-classes

value-implementation-classes

JDO defines that when an object is persisted
then all fields will also be persisted using
"persistence-by-reachability”". This extension
allows you to turn off the persistence of a field
relation.

JDO defines that when an object is updated
then all fields containing PersistenceCapable
objects will also be updated using
"persistence-by-reachability”. This extension
allows you to turn off the update of a field
relation.

When calling PersistenceManager.refresh()
only fetch plan fields of the passed object will
be refreshed. Setting this to true will refresh
the fields of related PC objects in this field

When the field is a collection by default it will
not be allowed to have nulls present but you
can allow them by setting this DataNucleus
extension tag

Whether this field should be supplied when
inserting into the datastore.

Whether this field should be supplied when
updating the datastore.

In some situations DataNucleus will add a
special datastore column to a join table so
that collections can allow the storage of
duplicate elements. This extension allows the
specification of the column name to be used.
This should be specified within the field at the
collection end of the relationship. JDO2
doesnt allow a standard place for such a
specification and so is an extension tag.

Used to define the possible classes
implementing this interface/Object field. This
is used to limit the possible tables that this is
a foreign key to (when this field is specified as
an interface/Object in the class). Value should
be comma-separated list of fully-qualified
class names

Used to define the possible classes
implementing this interface/Object key. This is
used to limit the possible tables that this is a
foreign key to (when this key is specified as
an interface/Object). Value should be
comma-separated list of fully-qualified class
names

Used to define the possible classes
implementing this interface/Object value. This
is used to limit the possible tables that this is
a foreign key to (when this value is specified
as an interface/Object). Value should be
comma-separated list of fully-qualified class
names

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

true | false

true | false

true | false

true | false

true | false

true | false

INTEGER_IDX

3.10.1 JDO XML 122

Attribute Description Values

strategy-when-notnull This is to be used in conjunction with the true | false
"value-strategy" attribute. Default JDO2
behaviour when you have a "value-strategy"”
defined for a field is to always create a
strategy value for that field regardless of
whether you have set the value of the field
yourself. This extension allows you to only
apply the strategy if the field is null at
persistence. This extension has no effect on
primitive field types (which can't be null) and
the value-strategy will always be applied to
such fields.

relation-discriminator-column Name of a column to use for discrimination of RELATION_DISCRIM
the relation used by objects stored. This is
defined when, for example, a join table is
shared by multiple relations and the objects
placed in the join table need discriminating for
which relation they are for

relation-discriminator-pk Whether the column added for the true | false
discrimination of relations is to be part of the
PK when using a join table.

relation-discriminator-value Value to use in the relation discriminator Fully-qualified class name
column for objects of this fields relation. This
is defined when, for example, a join table is
shared by multiple relations and the objects
placed in the join table need discriminating for
which relation they are for.

select-function Permits to use a function when fetching
contents from the database. A ? (question
mark) is mandatory to have and will be
replaced by the column name when
generating the SQL statement. For example
to specify a value of UPPER(?) will convert to
upper case the field value on a datastore that
supports that UPPER function.

insert-function Permits to use a function when inserting into
the database. A ? (question mark) is optional
and will be replaced by the column name
when generating the SQL statement. For
example to specify a value of TRIM(?) will
trim the field value on a datastore that
supports that TRIM function.

update-function Permits to use a function when updating into
the database. A ? (question mark) is optional
and will be replaced by the column name
when generating the SQL statement. For
example to specify a value of FUNC(?) will
perform FUNC() on the field value on a
datastore that supports that FUNC function.

sequence-table-basis This defines the basis on which to generate class | table
unique identities when using the
TableValueGenerator (used by the
"increment” strategy, and sometimes by
"native"). You can either define identities
unique against the base table name, or
against the base class name (in an
inheritance tree). Used when the strategy is
set to native or increment

sequence-catalog-name The catalog used to store sequences for use
by value generators. See Value Generation.
Default catalog for the datastore will be used
if not specified.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.10.1 JDO XML

Attribute

Description

Values

123

sequence-schema-name

sequence-table-name

sequence—name—column—name

sequence-nextval-column-name

key-min-value

key-max-value

key-start-with

key-increment-by

key-database-cache-size

key-cache-size

mapping-class

The schema used to store sequences for use
by value generators. See Value Generation.
Default schema for the datastore will be used
if not specified.

The table used to store sequences for use by
value generators. See Value Generation.

The column name in the sequence-table used
to store the name of the sequence for use by
value generators. See Value Generation.

The column name in the sequence-table used
to store the next value in the sequence for
use by value generators. See Value
Generation.

The minimum key value for use by value
generators. Keys lower than this will not be
generated. See Value Generation.

The maximum key value for use by value
generators. Keys higher than this will not be
generated. See Value Generation.

The starting value for use by value
generators. Keys will start from this value
when being generated. See Value
Generation.

The increment value for use by value
generators. Keys will be incremented by this
value when being generated. See Value
Generation.

The database cache size for keys for use by
value generators. The cache of keys will be
constrained by this value. See Value
Generation.

The cache size for keys for use by value
generators. The cache of keys will be
constrained by this value. See Value
Generation.

Specifies the mapping class to be used for
mapping this field. This is only used where
the user wants to override the default
DataNucleus mapping class and provide their
own mapping class for this field.

SEQUENCE_TABLE

SEQUENCE_NAME

NEXT_VAL

Fully-qualified class name

Metadata for fetch-group tag

These ate attributes within the <fetch-group> tag (jdo/package/class/fetch-group). This element is used

to define fetch groups that ate utilised at runtime, and are of particular use with attach/detach. This
element can contain fetch-group sub-elements allowing definition of hierarchical groups. It can also

contain field elements, defining the fields that are part of this fetch-group.

Attribute

Description

Values

Standard (JDO) Tags

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.10.1 JDO XML

124

Attribute Description Values
name Name of the fetch group. Used with the fetch

plan of the PersistenceManager.
post-load Whether to call jdoPostLoad when the fetch true | false

group is invoked.

Metadata for embedded tag

These ate attributes within the <embedded> tag (jdo/package/class/embedded). It is used when this

tield is a PersistenceCapable and is embedded into the same table as the class.

Attribute Description

Values

Standard (JDO) Tags

owner-field Name of the field in the embedded
PersistenceCapable that is the link back to
the owning object (if any).

null-indicator-column Name of the column to be used for detacting
if the embedded object is null.

null-indicator-value Value of the null-indicator-column that
signifies that the embedded object is null.

Metadata for key tag

These ate attributes within the <key> tag (jdo/package/class/field/key). This element is used to define

details for the persistence of a Map.

Attribute Description

Values

Standard (JDO) Tags

mapped-by When the map is formed by a foreign-key, the
key can be a field in a value
PersistenceCapable class. This attribute
defines which field in the value class is used

as the key
column Name of the column (if only one)
delete-action Action to be performed when the owner

object is deleted. This is to be specified when
defining foreign key information

indexed Whether the key column should be indexed.
This is to be specified when defining index
information

unique Whether the key column should be unique.

This is to be specified when defining unique
key information

cascade | restrict | null | default | none

true | false | unique

true | false

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.10.1 JDO XML 125

Metadata for value tag

These ate attributes within the <value> tag (jdo/package/class/field/value). This element is used to
define details for the persistence of a Map.

Attribute Description Values

mapped-by When the map is formed by a foreign-key, the
value can be a field in a key
PersistenceCapable class. This attribute
defines which field in the key class is used as

the value.
Standard (JDO) Tags
column Name of the column (if only one)
delete-action Action to be performed when the owner cascade | restrict | null | default | none

object is deleted. This is to be specified when
defining foreign key information

indexed Whether the value column should be indexed. true | false | unique
This is to be specified when defining index
information

unique Whether the value column should be unique. true | false

This is to be specified when defining unique
key information

Metadata for order tag

These are attributes within the <order> tag (jdo/package/class/field/order). This is used to define the
column details for the ordering column in a List.

Attribute Description Values

Standard (JDO) Tags

mapped-by When a List is formed by a foreign-key, the
ordering can be a field in the element
PersistenceCapable class. This attribute
defines which field in the element class is
used as the ordering. The field must be of
type int, Integer, long, Long. DataNucleus will
write the index positions to this field (starting
at 0 for the first item in the List)

column Name of the column to use for ordering.

These are attributes within the <extension> tag (jdo/package/class/field/order/extension).

Attribute Description Values

Extension (JDO) Tags

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.10.1 JDO XML

Attribute

Description

126

Values

list-ordering

Used to make the list be an "ordered list"
where it has no index column and instead will
order the elements by the specified
expression upon retrieval. The ordering
expression takes names and ASC/DESC and
can be a composite

{orderfield [ASC|DESC] [.{orderfield}
ASC|DESC]}

Metadata for index tag

These ate attributes within the <index> tag (jdo/package/class/field/index). This element is used where
a user wishes to add specific indexes to the datastore to provide more efficient access to particular fields.

Attribute Description Values
Standard (JDO) Tags

name Name of the index in the datastore

unique Whether the index is unique true | false
column Name of the column to use (alternative to

specifying it as a sub-element).

These are attributes within the <extension> tag (jdo/package/class/field/index/extension).

Attribute

Description

Values

Extension (JDO) Tags

extended-setting

Additional settings to the index. This
extension is used to set database proprietary
settings.

Metadata for foreign-key tag

These ate attributes within the <foreign-key> tag (jJdo/package/class/field/foreign-key). This is used
where the user wishes to define the behaviour of the foreign keys added due to the relationships in the

object model. This is to be read in conjunction with foreign-key guide

Attribute Description Values
Standard (JDO) Tags

name Name of the foreign key in the datastore

deferred Whether the constraints are initially deferred. true | false

delete-action

©2008-20009,

Action to be performed when the owner
object is deleted.

DataNucleus « ALL RIGHTS RESERVED

cascade | restrict | null | default

3.10.1 JDO XML

Values

Attribute Description

127

Action to be performed when the owner cascade | restrict | null | default

object is updated.

update-action

Metadata for unique tag

These ate attributes within the <unique> tag (jdo/package/class/unique,
jdo/package/class/field/unique). This element is used where a user wishes to add specific unique
constraints to the datastore to provide more control over particular fields.

Attribute Description Values
Standard (JDO) Tags
name Name of the constraint in the datastore

Name of the column to use (alternative to
specifying it as a sub-element).

column

Metadata for column tag

These ate attributes within the <column> tag (*/column). This is used to define the details of a column

in the datastore, and so can be used to match to an existing datastore schema.

Attribute Description Values
Standard (JDO) Tags
name Name of the column in the datastore. See

also the property name
"datanucleus.identifier.case" in the
Persistence Properties Guide.

length Length of the column in the datastore (for positive integer
character types), or the precision of the
column in the datastore (for floating point field
types).
scale Scale of the column in the datastore (for positive integer
floating point field types).
jdbc-type JDBC Type to use for this column in the Valid JDBC Type (CHAR, VARCHAR,
datastore when the default value is not LONGVARCHAR, NUMERIC, DECIMAL, BIT,
satisfactory. Please refer to JDBC for the TINYINT, SMALLINT, INTEGER, BIGINT,
valid types. Not all of these types are REAL, FLOAT, DOUBLE, BINARY,
supported for all RDBMS mappings. VARBINARY, LONGVARBINARY, DATE,
TIME, TIMESTAMP, BLOB, BOOLEAN,
CLOB, DATALINK)
sql-type SQL Type to use for this column in the Valid SQL Type (e.g VARCHAR, CHAR,

datastore. This should not usually be
necessary since the specification of JDBC
type together with length/scale will likely
define it.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

NUMERIC etc)

3.10.1 JDO XML

Attribute

Description

Values

128

allows-null

default-value

target

target-field

insert-value

Whether the column in the datastore table
should allow nulls or not. The default is "false"
for primitives, and "true" otherwise.

Default value to use for this column when
creating the table.

Declares the name of the primary key column
for the referenced table. For columns
contained in join elements, this is the name of
the primary key column in the primary table.
For columns contained in field, element, key,
value, or array elements, this is the name of
the primary key column of the primary table of
the other side of the relationship.

Declares the name of the primary key field for
the referenced class. For columns contained
in join elements, this is the name of the
primary key field in the base class. For
columns contained in field, element, key,
value, or array elements, this is the name of
the primary key field of the base class of the
other side of the relationship.

Value to use for this column when it has no
field in the class and an object is being
inserted

true | false

Default value expression

target column name

target field name

Insert value

These are attributes within the <extension> tag (*/column/extension).

Attribute

Description

Values

Extension (JDO) Tags

datastore-mapping-class

enum-check-constraint

Specifies the datastore mapping class to be
used for mapping this field. This is only used
where the user wants to override the default
DataNucleus datastore mapping class and
provide their own mapping class for this field
based on the database data type. This
datastore mapping class must be available for
the DataNucleus PersistenceManagerFactory
classpath.

Specifies that a CHECK constraint for this
column must be generated based on the
values of a java.lang.Enum type. e.g. enum
Color (RED, GREEN, BLUE) where its name
is persisted a CHECK constraint is defined as
CHECK "COLUMN" IN (RED', 'GREEN',
'‘BLUE").

Fully-qualified class name

true | false

Metadata for join tag

These ate attributes within the <join> tag (jdo/package/class/field/join). This element is added when

the field has a mapping to a "join" table (as part of a 1-N relationship). It is also used to specify

overriding of details in an inheritance tree where the primary key columns are shared up the hierarchy. A

further use (when specified under the <class> element) is for specifying the column details for joining to

a Secondary Table.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.10.1 JDO XML

Attribute

Description

Values

129

Standard (JDO) Tags

column

table

delete-action

indexed

unique

outer

Name of the column used to join to the PK of
the primary table (when only one column
used). Used in Secondary Tables.

Table name used when joining the PK of a
FCO class table to a secondary table. See
Secondary Tables.

Action to be performed when the owner
object is deleted. This is to be specified when
defining foreign key information

Whether the join table owner column should
be indexed. This is to be specified when
defining index information

Whether the join table owner column should
be unique. This is to be specified when
defining unique key information

Whether to use an outer join here. This is of
particular relevance to secondary tables

cascade | restrict | null | default | none

true | false | unique

true | false

true | false

These ate attributes within the <extension> tag (jJdo/package/class/field/join/extension). These are for

controlling the join table.

Attribute Description Values
Extension (JDO) Tags
primary-key This parameter defines if the join table will be true | false

assigned a primary key. The default is true
since it is considered a best practice to have
primary keys on all tables. This allows the
option of turning it off.

Metadata for element tag

These ate attributes within the <element> tag (jJdo/package/class/field/clement). This element is added
when the field has a mapping to a "element" (as part of a 1-N relationship).

Attribute

Description

Values

Standard (JDO) Tags

mapped-by

column

©2008-2009, DataNucleus =

The name of the field at the other ("N") end of
a relationship when this field is the "1" side of
a 1-N relationship (for FK relationships). This
performs the same function as specifying
"mapped-by" on the <field> element.

Name of the column (alternative to specifying
it as a sub-element).

ALL RIGHTS RESERVED

3.10.1 JDO XML

Attribute

Description

Values

130

delete-action

indexed

unique

Action to be performed when the owner
object is deleted. This is to be specified when
defining foreign key information

Whether the element column should be
indexed. This is to be specified when defining
index information

Whether the element column should be
unique. This is to be specified when defining
unique key information

cascade | restrict | null | default | none

true | false | unique

true | false

Metadata for collection tag

These ate attributes within the <collection> tag (jdo/package/class/field/collection). This is used to

define the persistence of a Collection.

Attribute

Description

Values

Standard (JDO) Tags

element-type

embedded-element

dependent-element

serialized-element

The type of element stored in this Collection
or array (fully qualified class). This is not
required when the field is an array. It is also
not required when the Collection is defined
using JDK 1.5 generics.

Whether the elements of a collection or
array-valued persistent field should be stored
embedded or as first-class objects. It's a hint
for the JDO implementation to store, if
possible, the elements of the collection as
part of the it instead of as their own instances
in the datastore. See the <embedded>
element for details on how to define the field
mappings for the embedded element.

Whether the elements of the collection are to
be considered dependent on the owner
object.

Whether the elements of a collection or
array-valued persistent field should be stored
serialised into a single column of the join
table (where used).

true, false

true, false

true, false

These are attributes within the <extension> tag (jdo/package/class/field/collection/extension).

Attribute Description Values
Extension (JDO) Tags
cache Whether this SCO collection will be cached true | false

by DataNucleus or whether every access of
the collection will go through to the datastore.
See also "datanucleus.cache.collections” in
the Persistence Properties Guide. This
MetaData attribute is used to override the
value used by the
PersistenceManagerFactory

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.10.1 JDO XML

Attribute

Description

Values

131

cache-lazy-loading

comparator-name

Whether objects from this SCO collection will
be lazy loaded (loaded when required) or
whether they should be loaded at
initialisation. See also
"datanucleus.cache.collections.lazy" in the
Persistence Properties Guide. This MetaData
attribute is used to override the value used by
the PersistenceManagerFactory

Defines the name of the comparator to use
with SortedSet, TreeSet collections. The
specified name is the name of the comparator
class, which must have a default constructor.
This extension is only used by SortedSet,
TreeSet fields.

true | false

Fully-qualified class name

Metadata for map tag

These ate attributes within the <map> tag (jdo/package/class/field/map). This is used to define the

persistence of a Map.

Attribute Description Values
Standard (JDO) Tags
key-type The type of key stored in this Map (fully
qualified class). This is not required when the
Map is defined using JDK 1.5 generics.
embedded-key Whether the elements of a Map key field true, false
should be stored embedded or as first-class
objects.
value-type The type of value stored in this Map (fully
qualified class). This is not required when the
Map is defined using JDK 1.5 generics.
embedded-value Whether the elements of a Map value field true, false
should be stored embedded or as first-class
objects.
dependent-key Whether the keys of the map are to be true, false
considered dependent on the owner object.
dependent-value Whether the value of the map are to be true, false
considered dependent on the owner object.
serialized-key Whether the keys of a map-valued persistent true, false
field should be stored serialised into a single
column of the join table (where used).
serialized-value Whether the values of a map-valued true, false

persistent field should be stored serialised
into a single column of the join table (where
used).

These ate attributes within the <extension> tag (jdo/package/class/field/map/extension).

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.10.1 JDO XML

Attribute

Description

Values

132

Extension (JDO) Tags

cache

cache-lazy-loading

comparator-name

Whether this SCO map will be cached by
DataNucleus or whether every access of the
map will go through to the datastore. See also
"datanucleus.cache.collections" in the
Persistence Properties Guide. This MetaData
attribute is used to override the value used by
the PersistenceManagerFactory

Whether objects from this SCO map will be
lazy loaded (loaded when required) or
whether they should be loaded at
initialisation. See also
"datanucleus.cache.collections.lazy" in the
Persistence Properties Guide. This MetaData
attribute is used to override the value used by
the PersistenceManagerFactory

Defines the name of the comparator to use
with SortedMap, TreeMap maps. The
specified name is the name of the comparator
class, which must have a default constructor.
This extension is only used by SortedMap,
TreeMap fields.

true | false

true | false

Fully-qualified class name

Metadata for array tag

This is used to define the persistence of an array. DataNucleus provides support for many types of arrays,

either serialised into a single column, using a join table, or via a foreign-key (for arrays of PC objects).

Attribute Description Values
Standard (JDO) Tags
embedded-element Whether the array elements should be stored true, false
embedded (default = true for primitives,
wrappers etc and false for
PersistenceCapable objects).
serialized-element Whether the array elements should be stored true, false
serialised into a single column in the join
table.
dependent-element Whether the elements of the array are to be true, false

considered dependent on the owner object.

Metadata for sequence tag

These are attributes within the <sequence> tag. This is used to denote a JDO datastore sequence.

Attribute

Description

Values

Standard (JDO) Tags

name

Symbolic name for the sequence for this
package

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.10.1 JDO XML

Attribute

Description

133

Values

datastore-sequence

factory-class

strategy

Name of the sequence in the datastore

Factory class for creating the sequence.
Please refer to the Sequence guide

Strategy to use for application of this
sequence.

nontransactional | contiguous | noncontiguous

These are attributes within the <extension> tag (jdo/package/class/sequence/extension). These are for

controlling the datastore sequences created by DataNucleus. Please refer to the documentation for the

value generator being used for applicability

Attribute

Description

Values

Extension (JDO) Tags

sequence-catalog-name

sequence-schema-name

sequence-table-name

sequence-name-column-name

sequence-nextval-column-name

key-min-value

key-max-value

key-start-with

key-increment-by

key-database-cache-size

©2008-2009, DataNucleus

The catalog used to store sequences for use
by value generators. See Value Generation.
Default catalog for the datastore will be used
if not specified.

The schema used to store sequences for use
by value generators. See Value Generation.
Default schema for the datastore will be used
if not specified.

The table used to store sequences for use by
value generators. See Value Generation.

The column name in the sequence-table used
to store the name of the sequence for use by
value generators. See Value Generation.

The column name in the sequence-table used
to store the next value in the sequence for
use by value generators. See Value
Generation.

The minimum key value for use by value
generators. Keys lower than this will not be
generated. See Value Generation.

The maximum key value for use by value
generators. Keys higher than this will not be
generated. See Value Generation.

The starting value for use by value
generators. Keys will start from this value
when being generated. See Value
Generation.

The increment value for use by value
generators. Keys will be incremented by this
value when being generated. See Value
Generation.

The database cache size for keys for use by
value generators. The cache of keys will be
constrained by this value. See Value
Generation.

« ALL RIGHTS RESERVED

SEQUENCE_TABLE

SEQUENCE_NAME

NEXT_VAL

3.10.1 JDO XML 134

Attribute Description Values

key-cache-size The cache size for keys for use by value
generators. The cache of keys will be
constrained by this value. See Value
Generation.

Metadata for fetch-plan tag

These ate attributes within the <fetch-plan> tag (jdo/fetch-plan). This element is used to define fetch
plans that are utilised at runtime, and are of particular use with queries. This element contains fetch-group

sub-elements.

Attribute Description Values

Standard (JDO) Tags

name Name of the fetch plan.
maxFetchDepth Max depth to fetch with this fetch plan 1
fetchSize Size to fetch with this fetch plan (for use with 0

query result sets

Metadata for class extension tag

These ate attributes within the <extension> tag (jJdo/package/class/extension). These are for controlling
the class definition

Attribute Description Values

Extension (JDO) Tags

requires-table This is for use with a "nondurable" identity true | false
case and specifies whether the class requires
a table/view in the datastore.

ddl-definition Definition of the TABLE SCHEMA to be used true | false
by the class.
ddl-imports Classes imported resolve macro identifiers in

the definition of a RDBMS Table.

mysql-engine-type "Engine Type" to use when creating the table
for this class in MySQL. Refer to the MySQL
documentation for ENGINE type (e.g
INNODB, MEMORY, ISAM)

view-definition Definition of the VIEW to be used by the
class. Please refer to the RDBMS Views
Guide for details. If your view already exists,
then specify this as " " and have the autoStart
flags set to false.

view-imports Classes imported resolve macro identifiers in
the definition of a RDBMS View. Please refer
to the RDBMS Views Guide for details.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.10.1 JDO XML 135

Metadata for extension tag

These are attributes within the <extension> tag. This is used to denote a DataNucleus extension to JDO.

Attribute Description Values

Standard (JDO) Tags

vendor-name Name of the vendor. For DataNucleus we use
the name "datanucleus” (lowercase).

key Key of the extension property

value Value of the extension property

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.10.2

3.10.2 JDO ANNOTATIONS 136

JDO Annotations

JDO Annotations
JDO2.1

One of the things that JDK 1.5 provides that can be of some use is annotations. JDO 2.1 introduces
support for annotations to the JDO standard. When selecting to use annotations please bear in mind the
following :-

* You must be using JDK 1.5 or above.

* You must have JDO 2.1 or later in your CLASSPATH since this provides the annotations

* Annotations should really only be used for attributes of persistence that you won't be changing at
deployment. Things such as table and column names shouldn't really be specified using annotations
although it is permitted. Instead it would be better to put such information in an ORM MetaData file.

* Annotations can be added in two places - for the class as a whole, or for a field in particular.

* You can annotate fields or getters with field-level information. If you annotate fields then the fields
are processed for persistence. If you annotate the methods (getters) then the methods (properties) are
processed for persistence.

* Annotations are prefixed by the @ symbol and can take properties (in brackets after the name,
comma-separated)

Annotations supported by DataNucleus are shown below. The annotations/attributes coloured in pink
are ORM and really should be placed in XML rather than directly in the class using annotations.

Annotation Class/Field/Method Description

@PersistenceCapable Class Specifies that the class/interface is persistent.
In the case of an interface this would utilise
JDO2's "persistent-interface” capabilities

@PersistenceAware Class Specifies that the class is not persistent but
needs to be able to access fields of persistent
classes

@Cacheable Class Specifies whether this class can be cached in

a Level 2 cache or not.

@EmbeddedOnly Class Specifies that the class is persistent and can
only be persisted embedded in another
persistent class

@Datastoreldentity Class Specifies the details for generating
datastore-identity for this class

@Version Class Specifies any versioning process for objects
of this class

@FetchPlans Class Defines a series of fetch plans

@FetchPlan Class Defines a fetch plan

@FetchGroups Class Defines a series of fetch groups for this class

@FetchGroup Class Defines a fetch group for this class

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.10.2 JDO ANNOTATIONS

137

Annotation Class/Field/Method Description

@Sequence Class Defines a sequence for use by this class

@~Queries Class Defines a series of named queries for this
class

@Query Class Defines a named query for this class

@Inheritance Class Specifies the inheritance model for persisting
this class

@Discriminator Class Specifies any discriminator for this class to be
used for determining object types

@PrimaryKey Class ORM : Defines the primary key constraint for
this class

@Indices Class ORM : Defines a series of indices for this
class

@Index Class ORM : Defines an index for the class as a
whole (typically a composite index)

@Uniques Class ORM : Defines a series of unique constraints
for this class

@Unique Class ORM : Defines a unique constraint for the
class as a whole (typically a composite)

@ForeignKeys Class ORM : Defines a series of foreign-keys
(typically for non-mapped columns/tables)

@ForeignKey Class ORM : Defines a foreign-key for the class as
a whole (typically for non-mapped
columns/tables)

@Joins Class ORM : Defines a series of joins to secondary
tables from this table

@Join Class ORM : Defines a join to a secondary table
from this table

@Columns Class ORM : Defines a series of columns that dont
have associated fields ("unmapped columns")

@Persistent Field/Method Defines the persistence for a field/property of
the class

@Serialized Field/Method Defines this field as being stored serialised

@NotPersistent Field/Method Defines this field as being not persisted

@Transactional Field/Method Defines this field as being transactional (not
persisted, but managed)

@Cacheable Field/Method Specifies whether this field/property can be
cached in a Level 2 cache or not.

@PrimaryKey Field/Method Defines this field as being (part of) the
primary key

@Element Field/Method Defines the details of elements of an
array/collection stored in this field

@Key Field/Method Defines the details of keys of a map stored in

©2008-20009,

DataNucleus « ALL RIGHTS RESERVED

this field

3.10.2 JDO ANNOTATIONS

138

Annotation Class/Field/Method Description

@Value Field/Method Defines the details of values of a map stored
in this field

@Order Field/Method ORM : Defines the details of ordering of an
array/collection stored in this field

@Join Field/Method ORM : Defines the join to a join table for a
collection/array/map

@Embedded Field/Method ORM : Defines that this field is embedded
and how it is embedded

@Columns Field/Method ORM : Defines a series of columns where a
field is persisted

@Column Field/Method ORM : Defines a column where a field is
persisted

@Index Field/Method ORM : Defines an index for the field

@Unique Field/Method ORM : Defines a unique constraint for the
field

@ForeignKey Field/Method ORM : Defines a foreign key for the field

@EXxtensions Class/Field/Method Defines a series of JDO extensions

@EXxtension Class/Field/Method Defines a JDO extension

@PersistenceCapable

This annotation is used when you want to mark a class as persistent. It equates to the <class> MetaData
element (though with only some of its attributes). Specified on the class.

Attribute Type Description Default
requiresExtent String Whether an extent is required for true
this class
embeddedOnly String Whether objects of this class can false
only be stored embedded in other
objects
detachable String Whether objects of this class can false
be detached
identityType IdentityType Type of identity (APPLICATION, DATASTORE
DATASTORE, NONDURABLE)
objectldClass Class Object-id class
table String ORM : Name of the table where
this class is persisted
catalog String ORM : Name of the catalog
where this table is persisted
schema String ORM : Name of the schema

©2008-20009,

where this table is persisted

DataNucleus « ALL RIGHTS RESERVED

3.10.2 JDO ANNOTATIONS 139

Attribute Type Description Default

cacheable String Whether the class can be L2 true | false
cached. From JDO2.2

extensions Extension[] Vendor extensions

@Per si st enceCapabl e(i dentityType=ldentityType. APPLI CATI ON)
public class Myd ass
{

}

@PersistenceAware

This annotation is used when you want to mark a class as being used in persistence but not being
persistable. That is "persistence-aware" in JDO2 terminology. It has no attributes. Specified on the class.

@Per si st enceAwar e
public class Myd ass

{
}

@Cacheable

This annotation is a shortcut for @PersistenceCapable(cacheable= {value}) specifying whether the class
can be cached in a Level 2 cache. This is new in JDO 2.2 Specified on the class. The default

Attribute Type Description Default

value String Whether the class is cacheable true | false

@acheabl e("fal se")
public class My ass

{
}

@EmbeddedOnly

This annotation is a shortcut for @PersistenceCapable(embeddedOnly="true") meaning that the class
can only be persisted embedded into another class. It has no attributes. Specified on the class.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.10.2 JDO ANNOTATIONS 140

@nbeddedOnl y

public class Myd ass
{

}

@Inheritance

Annotation used to define the inheritance for a class. Specified on the class.

Attribute Type Description Default
strategy InheritanceStrategy The inheritance strategy
(NEW_TABLE,

SUBCLASS_TABLE,
SUPERCLASS_TABLE)

customStrategy String Name of a custom inheritance
strategy (DataNucleus supports
"complete-table")

@rer si st enceCapabl e
@ nheritance(strategy=IlnheritanceStrategy. NEW TABLE)
public class MO ass

{
}

@Discriminator

Annotation used to define a discriminator to be stored with instances of this class and is used to
determine the types of the objects being stored. Specified on the class.

Attribute Type Description Default
strategy DiscriminatorStrategy The discriminator strategy
(VALUE_MAP, CLASS_NAME,
NONE)
value String Value to use for instances of this
type when using strategy of
VALUE_MAP
column String ORM : Name of the column to

use to store the discriminator

indexed String ORM : Whether the discriminator
column is to be indexed

columns Column[] ORM : Column definitions used
for storing the discriminator

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.10.2 JDO ANNOTATIONS 141

@Per si st enceCapabl e

@ nheritance(strategy=IlnheritanceStrategy. NEW TABLE)

@i scrim nator(strategy=Di scrim natorStrategy. CLASS_NAME)
public class Myd ass

{
}

@Datastoreldentity

Annotation used to define the identity when using datastore-identity for the class. Specified on the class.

Attribute Type Description Default

strategy IdGeneratorStrategy The inheritance strategy
(NATIVE, SEQUENCE,
IDENTITY, INCREMENT,
UUIDSTRING, UUIDHEX)

customStrategy String Name of a custom id generation
strategy (e.g "max", "auid"). This
overrides the value of "strategy"

sequence String Name of the sequence to use
(when using SEQUENCE
strategy) - refer to @Sequence

column String ORM : Name of the column for
the datastore identity

columns Column[] ORM : Column definition for the
column(s) for the datastore
identity

extensions Extension[] Vendor extensions

@Per si st enceCapabl e
@pat ast orel dentity(strategy=l dGenerator Strategy. | NCREMENT)
public class Myd ass

{
}

@Version

Annotation used to define the versioning details for use with optimistic transactions. Specified on the
class.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.10

.2 JDO ANNOTATIONS

142

Attribute Type Description Default

strategy VersionStrategy The version strategy (NONE,
STATE_IMAGE, DATE_TIME,
VERSION_NUMBER)

indexed String Whether the version column(s) is
indexed

column String ORM : Name of the column for
the version

columns Column[] ORM : Column definition for the
column(s) for the version

extensions Extension[] Vendor extensions

@Pr

Annotation used to define the primary key constraint for a class. Maps across to the <primary-key>
MetaData element. Specified on the class.

@Per si st enceCapabl e

@l/er si on(strategy=VersionStrat egy. VERSI ON_NUVBER)

public class My ass

{

imaryKey

Attribute Type Description Default
name String ORM : Name of the primary key
constraint
column String ORM : Name of the column for
this key
columns Column[] ORM : Column definition for the

column(s) of this key

@Per si st enceCapabl e
@°r i mar yKey(name=" MYCLASS_PK")
public class Myd ass

{

@FetchPlans

Annotation used to define a set of fetch plans. Specified on the class. Used by named queries

©2008-20009,

DataNucleus « ALL RIGHTS RESERVED

3.10.2 JDO ANNOTATIONS 143

Attribute Type Description Default

value FetchPlan[] Array of fetch plans - see
@FetchPlan annotation

@rer si st enceCapabl e
@-et chPl ans({ @et chPl an(name="pl an_3", maxFet chDept h=3, fetchG oups={"groupl",

"group4"}),
@et chPl an(name="pl an_4", maxFet chDept h=2, fetchG oups={"groupl",

"group2"})})
public class MO ass

{
}

@FetchPlan

Annotation used to define a fetch plan Is equivalent to the <fetch-plan> metadata element. Specified on
the class. Used by named queries

Attribute Type Description Default
name String Name of the FetchPlan
maxFetchDepth int Maximum fetch depth 1
fetchSize int Size hint for fetching query result 0

sets
fetchGroups String[] Names of the fetch groups

included in this FetchPlan.

@er si st enceCapabl e
@ et chPl an(nane="pl an_3", naxFet chDept h=3, fetchG oups={"groupl", "group4"})
public class MO ass

{
}

@FetchGroups

Annotation used to define a set of fetch groups for a class. Specified on the class.

Attribute Type Description Default

value FetchGroup[] Array of fetch groups - see
@FetchGroup annotation

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.10.2 JDO ANNOTATIONS 144

@Per si st enceCapabl e
@et chG oups({ @et chG oup(nanme="one_two", menbers={@ersistent(name="fiel d1"),
@per si stent (nane="fiel d2")}),

@et chG oup(name="t hree", nenbers={@ersistent(name="fiel d3")})})
public class MO ass

{
@Per si st ent
String fieldl;
@Per si st ent
String field2;
@er si st ent
String field3;

}

@FetchGroup

Annotation used to define a fetch group. Is equivalent to the <fetch-group> metadata element. Specified
on the class.

Attribute Type Description Default
name String Name of the fetch group
postLoad String Whether to call jdoPostLoad after

loading this fetch group

members Persistent[] Definitions of the fields/properties
to include in this fetch group

@rer si st enceCapabl e

@-et chG oup(nanme="one_two", menbers={ @ersistent(nane="fieldl"),
@er si stent (name="fiel d2")})

public class MyC ass

{
@Per si st ent
String fieldl;
@ver si st ent
String field2;
}
@Sequence

Annotation used to define a sequence generator. Is equivalent to the <sequence> metadata element.
Specified on the class.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.10.2 JDO ANNOTATIONS

145

Attribute Type Description Default

name String Name of the sequence

strategy SequenceStrategy Strategy for the sequence
(NONTRANSACTIONAL,
CONTIGUOUS,
NONCONTIGUOUS)

datastoreSequence String Name of a datastore sequence
that this maps to

factoryClass Class Factory class to use to generate
the sequence

extensions Extension[] Vendor extensions

@Queries

Annotation used to define a set of named queries for a class. Specified on the class.

Attribute Type

Description Default

value Query[]

Array of queries - see @Query
annotation

@Per si st enceCapabl e

@ueries({@uery(nane="Peopl eCal | edSm t h",
val ue="SELECT FROM or g. dat anucl eus. sanpl es. Person WHERE sur nane

\"Smith\ "y,

@uer y(name="Peopl eCal | edJones",

| anguage="JDOQ",

| anguage="JDOQL",

val ue="SELECT FROM or g. dat anucl eus. sanpl es. Per son WHERE sur nane ==

\"Jones\"")})
public class Person

{
@per si stent
String surnane;

}
@Query
Annotation used to define a named query. Is equivalent to the <query> metadata element. Specified on
the class.
Attribute Type Description Default
name String Name of the query
value String The query string itself

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.10.2 JDO ANNOTATIONS 146
Attribute Type Description Default
language String Language of the query (JDOQL, JDOQL
sQL, ..)

unmodifiable String Whether the query is not
modifiable at runtime

unique String Whether the query returns unique
results (for SQL queries only)

resultClass Class Result class to use (for SQL
queries only)

fetchPlan String Name of a named FetchPlan to
use with this query

extensions Extension[] Vendor extensions

@er si st enceCapabl e
@uery(name="Peopl eCal | edSm th", |anguage="JDOQL",
val ue="SELECT FROM or g. dat anucl eus. sanpl es. Per son WHERE sur nane ==

\"Snith\"")
public class Person
{

@rer si st ent
String surnane;

@Indices

Annotation used to define a set of indices for a class. Specified on the class.

Attribute Type Description Default
value Index(] Array of indices - see @Index
annotation

@Per si st enceCapabl e

@ ndi ces({ @ ndex(nane="MylI NDEX_1", nenbers={"fieldl","field2"}),
@ ndex(nanme=" MYl NDEX_2", nenbers={"field3"})})

public class Person

{
}

@Index

Annotation used to define an index for the class as a whole typically being a composite index across

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.10.2 JDO ANNOTATIONS

multiple columns or fields/properties. Is equivalent to the <index> metadata element when specified

under class. Specified on the class.

147

Attribute Type Description Default
name String ORM : Name of the index
table String ORM : Name of the table for the
index
unique String ORM : Whether the index is
unique
members String[] ORM : Names of the
fields/properties that make up this
index
columns Column[] ORM : Columns that make up

this index

@Per si st enceCapabl e

@ ndex(name="My_COWPOSI TE_| DX",

public class MO ass

{

@rer si st ent
String fieldl;

@Per si st ent
String field2;

@Uniques

nenbers={"fiel dl", "field2"})

Annotation used to define a set of unique constraints for a class. Specified on the class.

Attribute

Type

Description Default

value

Unique[]

Array of constraints - see
@Unigue annotation

@er si st enceCapabl e

@Jni ques({ @i que(name="MYCONST_1",

@Jni que(name="MYCONST_2",
public class Person

{
}

©2008-20009,

menmbers={"field1","fiel d2"}),
menbers={"fiel d3"})})

DataNucleus « ALL RIGHTS RESERVED

3.10.2 JDO ANNOTATIONS 148

@Unique

Annotation used to define a unique constraints for the class as a whole typically being a composite
constraint across multiple columns or fields/properties. Is equivalent to the <unique> metadata element
when specified under class. Specified on the class.

Attribute Type Description Default
name String ORM : Name of the constraint
table String ORM : Name of the table for the
constraint
deferred String ORM : Whether the constraint is
deferred
members String[] ORM : Names of the
fields/properties that make up this
constraint
columns Column[] ORM : Columns that make up

this constraint

@rer si st enceCapabl e
@Jni que(name="MY_COWPCSI TE_I DX", menbers={"fieldl", "field2"})
public class MO ass

{
@Per si st ent
String fieldl;
@rer si st ent
String field2;
}

@ForeignKeys

Annotation used to define a set of foreign-key constraints for a class. Specified on the class.

Attribute Type Description Default

value ForeignKey([] Array of FK constraints - see
@ForeignKey annotation

@ForeignKey

Annotation used to define a foreign-key constraint for the class. Specified on the class.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.10.2 JDO ANNOTATIONS

149

Attribute Type Description Default
name String ORM : Name of the constraint
table String ORM : Name of the table that the
FK is to
deferred String ORM : Whether the constraint is
deferred
unique String ORM : Whether the constraint is
unique
deleteAction ForeignKeyAction ORM : Action to apply to the FK ForeignKeyAction.RESTRICT
to be used on deleting
updateAction ForeignKeyAction ORM : Action to apply to the FK ForeignKeyAction.RESTRICT
to be used on updating
members String[] ORM : Names of the
fields/properties that compose
this FK.
columns Column[] ORM : Columns that compose
this FK.
@Joins

Annotation used to define

Attribute

Type

Description

a set of joins (to secondary tables) for a class. Specified on the class.

Default

value

Join[]

Array of joins - see @Join
annotation

@rer si st enceCapabl e
@oi ns({@oi n(tabl e="MY_OTHER_TABLE",

@oi n(t abl e=" MY_SECOND_TABLE",

public class MyC ass

{

col um="My_PK_COL"),
col um="My_PK_CCOL")})

@per si stent (t abl e="MY_OTHER _TABLE")

Stri

ng nyFiel d;

@Per si stent (t abl e="MY_SECOND_TABLE")

Stri

@Join

Annotation used to specify a join for a secondary table. Specified on the class.

©2008-20009,

ng nyFi el d2;

DataNucleus « ALL RIGHTS RESERVED

3.10.2 JDO ANNOTATIONS

Attribute Type

Description Default

150

table String

column String

outer String

columns Column[]

extensions Extension][]

ORM : Table name used when
joining the PK of a FCO class
table to a secondary table.

ORM : Name of the column used
to join to the PK of the primary
table (when only one column
used)

ORM : Whether to use an outer
join when retrieving
fields/properties stored in the
secondary table

ORM : Name of the colums used
to join to the PK of the primary
table (when multiple columns
used)

Vendor extensions

@Per si st enceCapabl e(nane=" MYTABLE")
@oi n(tabl e="MY_OTHER TABLE",

public class Myd ass

{
@er si st ent (name="MY_OTHER _TABLE")
String nyField;
}
@Columns

col um="My_PK_COL")

Annotation used to define the columns which have no associated field in the class. User should specify a

minimum of @Column "name", "jdbcType", and "insertValue". Specified on the class.

Attribute Type

Description Default

value Column[]

Array of columns - see @Column
annotation

@rer si st enceCapabl e

@ol ums(@ol um(nane="MY_OTHER COL",

public class Myd ass
{

}

@Persistent

Annotation used to define the fields/properties to be persisted. Is equivalent to the <field> and

j dbcType=" VARCHAR",

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

insertVal ue="NA")

3.10.2 JDO ANNOTATIONS

<property> metadata elements. Specified on the field/method.

Attribute

Type

Description

Default

151

persistenceModifier

defaultFetchGroup

nullValue

embedded

embeddedElement

embeddedKey

embeddedValue

serialized

serializedElement

serializedKey

serializedValue

dependent

dependentElement

dependentKey

dependentValue

primaryKey

valueStrategy

customValueStrategy

sequence

PersistenceModifier

String

NullValue

String

String

String

String

String

String

String

String

String

String

String

String

String

IdGeneratorStrategy

String

String

Whether the field is persistent
(PERSISTENT,
TRANSACTIONAL, NONE)

Whether the field is part of the
DFG

Required behaviour when
inserting a null value for this field
(NONE, EXCEPTION,
DEFAULT).

Whether this field is embedded

Whether the element stored in
this field/property is embedded

Whether the key stored in this
field/property is embedded

Whether the value stored in this
field/property is embedded

Whether this field is serialised

Whether the element stored in
this field/property is serialised

Whether the key stored in this
field/property is serialised

Whether the value stored in this
field/property is serialised

Whether this field is dependent,
deleting the related object when
deleting this object

Whether the element stored in
this field/property is dependent

Whether the key stored in this
field/property is dependent

Whether the value stored in this
field/property is dependent

Whether this field is (part of) the
primary key

Strategy to use when generating
values for the field (NATIVE,
SEQUENCE, IDENTITY,
INCREMENT, UUIDSTRING,
UUIDHEX)

Name of a custom id generation
strategy (e.g "max", "auid"). This
overrides the value of
"valueStrategy"

Name of the sequence when
using valueStrategy of
SEQUENCE - refer to
@Sequence

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

[depends on field type]

NONE

false

3.10.2 JDO ANNOTATIONS 152

Attribute Type Description Default
loadFetchGroup String Whether to load the fetch group
types Class|[] Type(s) of field (when using

interfaces/reference types).
DataNucleus currently only
supports the first value although
in the future it is hoped to support
multiple.

mappedBy String Field in other class when the
relation is bidirectional to signify
the owner of the relation

recursionDepth int Recursion depth for this field 1
when fetching

table String ORM : Name of the table where
this field is persisted. If this field
is a collection/map/array then the
table refers to a join table,
otherwise this refers to a
secondary table.

name String Name of the field when defining
an embedded field.

columns Column[] ORM : Column definition(s) for
the columns into which this field
is persisted. This is only typically
used when specifying columns of
a field of an embedded class.

cacheable String Whether the field/property can be true | false
L2 cached. From JDO2.2

extensions Extension[] Vendor extensions

@Per si st enceCapabl e
public class Myd ass

{
@Per si stent (pri maryKey="true")
String nyField;
}
@Serialized

—n

This annotation is a shortcut for @Persistent(setialized="true") meaning that the field is stored serialized.

It has no attributes. Specified on the field/method.

@Per si st enceCapabl e
public class My ass

{
@erialized
Obj ect nyFiel d;

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.10.2 JDO ANNOTATIONS 153

@NotPersistent

This annotation is a shortcut for @Persistent(persistenceModifier=PersistenceModifier NONE) meaning
that the field/property is not persisted. It has no attributes. Specified on the field/method.

@rer si st enceCapabl e
public class Myd ass

{
@Not Per si st ent

String nyQ herField;

@Transactional

This annotation is a shortcut for
@Persistent(persistenceModifier=PersistenceModifier. TRANSACTIONAL) meaning that the
field/property is not persisted yet managed. It has no attributes. Specified on the field/method.

@per si st enceCapabl e
public class MO ass

{
@ransacti onal
String nmyQ herFi el d;
}
@Cacheable

This annotation is a shortcut for @Persistent(cacheable={value}) specifying whether the field/property
can be cached in a Level 2 cache. This is new in JDO 2.2 Specified on the field/property. The default

Attribute Type Description Default
value String Whether the field/property is true | false
cacheable

public class MO ass

{
@Cacheabl e("f al se")

Col l ection el ements;

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.10.2 JDO ANNOTATIONS 154

@PrimaryKey

—n

This annotation is a shortcut for @Persistent(primaryKey="true") meaning that the field/property is part
of the primary key for the class. No attributes are needed when specified like this. Specified on the
field/method.

@er si st enceCapabl e
public class MyC ass

{
@r i mar yKey
String myQtherField;
}
@Element

Annotation used to define the element for any collection/array to be persisted. Maps across to the
<collection>, <array> and <element> MetaData elements. Specified on the field/method.

Attribute Type Description Default

types Class[] Type(s) of element. While the When using an array is not
attribute allows multiple values needed. When using a collection
DataNucleus currently only will be taken from the collection
supports the first type value definition if using generics,

otherwise must be specified.

embedded String Whether the element is
embedded into a join table

serialized String Whether the element is serialised
into the join table

dependent String Whether the element objects are
dependent when deleting the
owner collection/array

mappedBy String Field in the element class that
represents this object (when the
relation is bidirectional)

embeddedMapping Embedded[] Definition of any embedding of
the (persistable) element. Only 1
"Embedded" should be provided

table String ORM : Name of the table for this
element

column String ORM : Name of the column for
this element

foreignKey String ORM : Name of any foreign-key

constraint to add

generateForeignKey String ORM : Whether to generate a FK
constraint for the element (when
not specifying the name)

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.10.2 JDO ANNOTATIONS

155

Attribute Type Description Default

deleteAction ForeignKeyAction ORM : Action to be applied to the
foreign key for this element for
action upon deletion

updateAction ForeignKeyAction ORM : Action to be applied to the
foreign key for this element for
action upon update

index String ORM : Name of any index
constraint to add

indexed String ORM : Whether this element
column is indexed

unique String ORM : Whether this element
column is unique

uniqueKey String ORM : Name of any unique key
constraint to add

columns Column[] ORM : Column definition for the
column(s) of this element

extensions Extension[] Vendor extensions

@rer si st enceCapabl e
public class Myd ass

{
@l enent (types=or g. dat anucl eus. sanpl es.
Col l ection nyField;
}
@Order

M/El enent Cl ass. cl ass, dependent="true")

Annotation used to define the ordering of an ordet-based Collection/array to be persisted. Maps across
to the <order> MetaData element. Specified on the field/method.

Attribute Type Description Default
mappedBy String ORM : Field in the element class
that represents the ordering of
the collection/array
column String ORM : Name of the column for
this order
columns Column(] ORM : Column definition for the
column(s) of this order
extensions Extension[] Vendor extensions

@Per si st enceCapabl e
public class MyC ass

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.10.2 JDO ANNOTATIONS

@l enent (t ypes=or g. dat anucl eus. sanpl es. MEl enent d ass. cl ass,
@D der (col um="ORDER _| DX")
Col | ecti on nyField;

@Key

Annotation used to define the key for any map to be persisted. Maps across to the <map> and <key>
MetaData elements. Specified on the field/method.

Attribute

Type

Description

dependent ="true")

Default

156

types

embedded

serialized

dependent

mappedBy

embeddedMapping

table

column

foreignKey

generateForeignKey

deleteAction

updateAction

index

indexed

Class[]

String

String

String

String

Embedded[]

String

String

String

String

ForeignKeyAction

ForeignKeyAction

String

String

Type(s) of key. While the attribute
allows multiple values
DataNucleus currently only
supports the first type value

Whether the key is embedded
into a join table

Whether the key is serialised into
the join table

Whether the key objects are
dependent when deleting the
owner map

Used to specify the field in the
value class where the key is
stored (optional).

Definition of any embedding of
the (persistable) key. Only 1
"Embedded" should be provided

ORM : Name of the table for this
key

ORM : Name of the column for
this key

ORM : Name of any foreign-key
constraint to add

ORM : Whether to generate a FK
constraint for the key (when not
specifying the name)

ORM : Action to be applied to the
foreign key for this key for action
upon deletion

ORM : Action to be applied to the
foreign key for this key for action
upon update

ORM : Name of any index
constraint to add

ORM : Whether this key column
is indexed

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

When using generics will be
taken from the Map definition,
otherwise must be specified

3.10.2 JDO ANNOTATIONS

157

Attribute Type Description Default
uniqueKey String ORM : Name of any unique key
constraint to add
unique String ORM : Whether this key column
is unique
columns Column[] ORM : Column definition for the
column(s) of this key
extensions Extension[] Vendor extensions

@er si st enceCapabl e

public class MO ass

{

@ey(types=java.l ang. String. cl ass)
Map nyFi el d;

@Value

Annotation used to define the value for any map to be persisted. Maps across to the <map> and
<value> MetaData elements. Specified on the field/method.

Attribute

Type

Description Default

types

embedded

serialized

dependent

mappedBy

embeddedMapping

table

column

Class[]

String

String

String

String

Embedded[]

String

String

Type(s) of value. While the When using generics will be
attribute allows multiple values taken from the Map definition,
DataNucleus currently only otherwise must be specified
supports the first type value

Whether the value is embedded
into a join table

Whether the value is serialised
into the join table

Whether the value objects are
dependent when deleting the
owner map

Used to specify the field in the
key class where the value is
stored (optional).

Definition of any embedding of
the (persistable) value. Only 1
"Embedded" should be provided

ORM : Name of the table for this
value

ORM : Name of the column for
this value

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.10.2 JDO ANNOTATIONS

158

Attribute Type Description Default

foreignKey String ORM : Name of any foreign-key
constraint to add

deleteAction ForeignKeyAction ORM : Action to be applied to the
foreign key for this value for
action upon deletion

generateForeignKey String ORM : Whether to generate a FK
constraint for the value (when not
specifying the name)

updateAction ForeignKeyAction ORM : Action to be applied to the
foreign key for this value for
action upon update

index String ORM : Name of any index
constraint to add

indexed String ORM : Whether this value column
is indexed

uniqueKey String ORM : Name of any unique key
constraint to add

unique String ORM : Whether this value column
is unique

columns Column(] ORM : Column definition for the
column(s) of this value

extensions Extension[] Vendor extensions

@er si st enceCapabl e

public class MyC ass

{
@Xey(types=j ava.l ang. String. cl ass)
@/al ue(types=org. dat anucl eus. sanpl es. MyVal ued ass. cl ass, dependent="true")
Map nyFi el d;
}
@Join
Annotation used to specify a join to a join table for a collection/array/map. Specified on the
field/method.
Attribute Type Description Default
table String ORM : Name of the table
column String ORM : Name of the column to
join our PK to in the join table
(when only one column used)
primaryKey String ORM : Name of any primary key

©2008-20009,

constraint to add for the join table

DataNucleus « ALL RIGHTS RESERVED

3.10.2 JDO ANNOTATIONS

159

Attribute Type Description Default

generatePrimaryKey String ORM : Whether to generate a PK
constraint on the join table (when
not specifying the name)

foreignKey String ORM : Name of any foreign-key
constraint to add

generateForeignKey String ORM : Whether to generate a FK
constraint on the join table (when
not specifying the name)

index String ORM : Name of any index
constraint to add

indexed String ORM : Whether the join
column(s) is indexed

uniqueKey String ORM : Name of any unique
constraint to add

unique String ORM : Whether the join
column(s) has a unique
constraint

columns Column[] ORM : Name of the columns to
join our PK to in the join table
(when multiple columns used)

extensions Extension[] Vendor extensions

@Per si st enceCapabl e
public class MyC ass
{

@Per si st ent

@l enent (types=or g. dat anucl eus. sanpl es. MyEl enent . cl ass)

@oi n(tabl e=" MYCLASS_ELEMENTS",

Col | ecti on nyFi el d;

@Embedded

Annotation used to define that the field contents is embedded into the same table as this field Maps

col um=" MYCLASS_ELEMENTS_PK")

across to the <embedded> MetaData element. Specified on the field/method.

Attribute Type Description Default
ownerMember String ORM : The field/property in the

embedded object that links back

to the owning object (where it has

a bidirectional relation)
nullindicatorColumn String ORM : The column in the

embedded object used to judge if
the embedded object is null.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.10.2 JDO ANNOTATIONS 160

Attribute Type Description Default
nullindicatorValue String ORM : The value in the null

column to interpret the object as

being null.
members Persistent[] ORM : Field/property definitions

for this embedding.

@er si st enceCapabl e
public class MyC ass

{
@nbedded(menber s={
@per si stent (nane="fiel d1", col ums=@ol um(nane="0OTHER FLD 1")),
@per si stent (nane="fi el d2", col ums=@ol um(nane="0THER FLD 2"))
}
MyQt her d ass nyFi el d;
}

@Per si st enceCapabl e
@nbeddedOnl y
public class MOt herd ass

{
@er si st ent
String fieldl;
@Per si st ent
String field2;
}
@Columns

Annotation used to define the columns into which a field is persisted. If the field is persisted into a single
column then @Column should be used. Specified on the field/method.

Attribute Type Description Default

value Column[] Array of columns - see
@Columns annotation

@er si st enceCapabl e
public class MyC ass
{
@per si stent
@Col ums({ @ol um(nanme="RED"'), @Col um(nanme="GREEN"'), @Col um(nane="BLUE"),
@ol um(nanme="ALPHA") })
Col or nyFiel d;

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.10.2 JDO ANNOTATIONS

@Column

Annotation used to define that the colum where a field is persisted. Is equivalent to the <column>
metadata element when specified under field. Specified on the field/method (and within other

161

annotations).

Attribute Type Description Default

name String ORM : Name of the column

target String ORM : Column in the other class
that this maps to

targetMember String ORM : Field/Property in the other
class that this maps to

jdbcType String ORM : JDBC Type to use for
persisting into this column

sqlType String ORM : SQL Type to use for
persisting into this column

length int ORM : Max length of data to
store in this column

scale int ORM : Max number of floating
points of data to store in this
column

allowsNull String ORM : Whether null is allowed to
be persisted into this column

defaultValue String ORM : Default value to persist
into this column

insertValue String ORM : Value to insert into this
column when it is an "unmapped"”
column.

extensions Extension[] Vendor extensions

@Per si st enceCapabl e

public class MO ass

{

@ver si st ent
@col um(name=" MYCCL",
String fieldl;

@Index

j dbcType="VARCHAR"', | engt h=40)

Annotation used to define that this field is indexed. Is equivalent to the <index> metadata element when
specified under field. Specified on the field/method.

©2008-20009,

DataNucleus « ALL RIGHTS RESERVED

3.10.2 JDO ANNOTATIONS 162

Attribute Type Description Default
name String ORM : Name of the index
unique String ORM : Whether the index is

unique

@rer si st enceCapabl e
public class Myd ass
{

@er si st ent
@ ndex(nane="MYFI ELD1_| DX")
String fieldl;

@rer si st ent

@ ndex(nanme="MYFI ELD2_| DX", uni que="true")
String field2;

@Unique

Annotation used to define that this field has a unique constraint. Is equivalent to the <unique> metadata
element when specified under field. Specified on the field/method.

Attribute Type Description Default
name String ORM : Name of the constraint
deferred String ORM : Whether the constraint is

deferred

@Per si st enceCapabl e
public class Myd ass

{
@rer si st ent
@Jni que(name="MYFI ELD1_| DX")
String fieldl;

}

@ForeignKey

Annotation used to define the foreign key for a relationship field. Is equivalent to the <foreign-key>
metadata element when specified under field. Specified on the field/method.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.10.2 JDO ANNOTATIONS 163

Attribute Type Description Default
name String ORM : Name of the constraint
deferred String ORM : Whether the constraint is
deferred
unique String ORM : Whether the constraint is
unique
deleteAction ForeignKeyAction ORM : Action to apply to the FK ForeignKeyAction.RESTRICT

to be used on deleting

updateAction ForeignKeyAction ORM : Action to apply to the FK ForeignKeyAction.RESTRICT
to be used on updating

@er si st enceCapabl e
public class My ass

{
@per si st ent
@or ei gnKey(name="MYFI ELD1_FK", del et eActi on=For ei gnKeyActi on. RESTRI CT)
String fieldl;

}

@Extensions

Annotation used to define a set of extensions specific to the JDO2 implementation being used. Specified
on the class or field.

Attribute Type Description Default

value Extension[] Array of extensions - see
@Extension annotation

@Per si st enceCapabl e
@xt ensi ons({ @xt ensi on(vendor Nane="dat anucl eus", key="firstExtension",
val ue="nyVal ue"),

@xt ensi on(vendor Nane="dat anucl eus", key="secondExtensi on",
val ue="nyVal ue")})
public class Person

{
}

@Extension

Annotation used to define an extension specific to a particular JDO implementation. Is equivalent to the
<extension> metadata element. Specified on the class or field.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.10.2 JDO ANNOTATIONS 164

Attribute Type Description Default
vendorName String Name of the JDO vendor

key String Key for the extension

value String Value of the extension

@Per si st enceCapabl e
@xt ensi on(vendor Nane="Dat aNucl eus", key="RunFast", val ue="true")
public class Person

{

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.10.3

3.10.3 JDO METADATA API 165

JDO MetaData API

JDO Metadata API
JDO2.3

When using JDO you need to define which classes are persistent, and also how they are persisted. JDO
has allowed XML metadata since its first revision, and introduced support for annotations in JDO 2.1.
JDO 2.3 introduces a programmatic API to do the same task.

Defining Metadata for classes

The basic idea behind the Metadata API is that the developer obtains a metadata object from the
PersistenceManagerFactory, and adds the definition to that as required, before registering it for use in the
persistence process.

Per si st enceManager Factory pnf =
JDCOHel per . get Per si st enceManager Fact ory(propsFile);

JDOWet adata nmd = pnf. newMet adat a() ;

So we have a JDOMetadata object and want to define the persistence for our class mydomain.MyClass, so we
do as follows

PackageMet adat a pnmd = nd. newPackageMet adat a(" nydomai n") ;
Cl assMetadata cnd = pnd. newCl assMet adat a("MyCl ass") ;

So we follow the same structure of the JDO XML Metadata file adding packages to the top level, and
classes to the respective package. Note that we could have achieved this by a simple typesafe invocation

Cl assMet adata cnd = nd. newCl assMet adat a(MyCl ass. cl ass) ;

So now we have the class defined, we need to set its key information

cnd. set Tabl e(" CLI ENT") . set Det achabl e(true). setldentityType(ldentityType. DATASTORE);
crd. set Persi st enceModi fi er (Cl assPersi st enceMddi fi er. PERSI STENCE_CAPABLE) ;

I nheritanceMetadata i nhmd = cnd. new nheritanceMet adat a();

i nhnd. set Strat egy(| nheritanceStrategy. NEW TABLE) ;

Di scrim nator Metadata dnd = i nhnd. newDi scri mi nat or Met adata() ;

dnd. set Col um("disc").setValue("Cient");

dnd. set Strat egy(Di scri minatorStrategy. VALUE_MAP) . set | ndexed(| ndexed. TRUE) ;

Ver si onMet adata vernmd = cnd. newWer si onMet adat a() ;
vernd. set St rat egy(Versi onStrat egy. VERSI ON_NUVBER) ;

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.10.3 JDO METADATA API 166

ver md. set Col um(" versi on"). set | ndexed(| ndexed. TRUE);

And we define also define fields/properties via the API in a similar way

Fi el dvetadata fnd = cnd. newri el dvet adat a(" nane");
fnd. set Nul | Val ue(Nul | Val ue. DEFAULT) . set Col utim(" cl i ent _nane");
fd. set | ndexed(true). set Uni que(true);

Note that, just like with XML metadata, we don't need to add information for all fields since they have

their own default persistence settings based on the type of the field.

All that remains is to register the metadata with the persistence process

pnf . regi sterMetadat a(nd);

Accessing Metadata for classes

Maybe you have a class with its persistence defined in XML or annotations and you want to check its
persistence information at runtime. With the JDO Metadata API you can do that

Conponent Met adat a conpnd = pnf. get Met adat a(" nmydonai n. MyQt her d ass") ;
and we can now inspect the information, casting the compmd to either javax.jdo.metadata.ClassMetadata ox

Javax.jdo.metadata. InterfaceMetadata.

Please note that you cannot currently change metadata retrieved in this way, only view it

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.11 PERSISTENCE UNIT 167

311 Persistence Unit

Persistence Unit

When designing an application you can usually nicely separate your persistable objects into independent
groupings that can be treated separately, perhaps within a different DAO object, if using DAOs. JDO2.1
uses the (JPA1) idea of a persistence-unit. A persistence-unit provides a convenient way of specifying a set of
metadata files, and classes, and jars that contain all classes to be persisted in a grouping. The
persistence-unit is named, and the name is used for identifying it. Consequently this name can then be
used when defining what classes are to be enhanced, for example.

To define a persistence-unit you first need to add a file persistence.xml to the META-INF/ directory of
your application jar. This file will be used to define your persistence-units. Let's show an example

<?xm version="1.0" encodi ng="UTF-8" ?>
<persi stence xm ns="http://java.sun.conl xm /ns/ persi stence"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xsi :schemaLocati on="http://java. sun. com xnl / ns/ persi st ence
http://java. sun. com xm / ns/ persi st ence/ persi stence_1 0. xsd" version="1.0">

<!-- Online Store -->
<persi stence-unit name="OnlineStore">
<cl ass>or g. dat anucl eus. sanpl es. net adat a. st or e. Product </ cl ass>
<cl ass>or g. dat anucl eus. sanpl es. net adat a. st or e. Book</ cl ass>
<cl ass>or g. dat anucl eus. sanpl es. met adat a. st or e. Conpact Di sc</ cl ass>
<cl ass>or g. dat anucl eus. sanpl es. net adat a. st or e. Cust oner </ cl ass>
<cl ass>or g. dat anucl eus. sanpl es. net adat a. st ore. Suppl i er </ cl ass>
<properties>
<property nanme="dat anucl eus. Connecti onDri ver Name"
val ue="org. h2. Driver"/>
<property name="dat anucl eus. Connecti onURL" val ue="j dbc: h2: dat anucl eus"/ >
<property name="dat anucl eus. Connecti onUser Nane" val ue="sa"/>
<property nanme="dat anucl eus. Connecti onPassword" val ue=""/>
</ properties>
</ per si st ence- uni t >

<l-- Accounting -->
<persi stence-unit name="Accounting">
<mappi ng- fi | e>com dat anucl eus/ sanpl es/ met adat a/ account s/ package. j do</ mappi ng-fil e>
<properties>
<property nanme="dat anucl eus. Connecti onDri ver Name"
val ue="org. h2. Driver"/>
<property nanme="dat anucl eus. Connecti onURL" val ue="j dbc: h2: dat anucl eus"/ >
<property nanme="dat anucl eus. Connecti onUser Nane" val ue="sa"/ >
<property name="dat anucl eus. Connecti onPassword" val ue=""/>
</ properties>
</ per si st ence-unit>

</ per si st ence>

In this example we have defined 2 persistence-units. The first has the name "OnlineStore" and contains 5
classes (annotated). The second has the name "Accounting” and contains a metadata file called "orm.xml"
in a particular package (which will define the classes being part of that unit). This means that once we

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

3.11 PERSISTENCE UNIT 168

have defined this we can reference these persistence-units in our persistence operations.

There ate several sub-elements of this persistence.xcm! file

* provider - Not used by JDO
* jar-file - name of a JAR file to scan for annotated classes to include in this persistence-unit.

* mapping-file - name of an XML "mapping" file containing persistence information to be included in
this persistence-unit. This is the "JDO" mapping file (not the ORM)

* class - name of an annotated class to include in this persistence-unit

* properties - properties defining the persistence factory to be used.

Use with JDO2.1

JDO2.1 accepts the "persistence-unit" name to be specified at runtime when creating the
PersistenceManagerFactory, like this

Properties props = new Properties();
props. put ("dat anucl eus. Per si st enceUni t Nanme", "MPersistenceUnit");
Per si st enceManager Fact ory pnf = JDOHel per. get Per si st enceManager Fact or y(props);

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.1

4.1 ORM WITH JDO 169

ORM with JDO

JDO Object/Relational Mapping

When you are using an RDBMS datastore you need to specify how your class will map on to the
relational datastore. This part is termed Object-Relational Mapping. This is not required for other
types of datastore. When you are persisting to RDBMS datastores you are mapping a series of objects
into a series of datastore Zables in a schema. These tables are interrelated using foreign-keys. With JDO2 you
can define fully this object-relational mapping in the MetaData (or in annotations if you so wish).

The design of the persistence layer of an application requiring object-relational mapping can be
approached in 3 ways.

* Forward Mapping - Here you have a set of model classes, and want to design the datastore schema
that will store represent these classes.

* Reverse Mapping - Here you have an existing datastore schema, and want to design your model
classes to represent this schema.

* Meet in the Middle Mapping - Here you have a set of model classes and you have an existing
datastore schema, and you want to match them up.

DataNucleus can be used in all of these modes, though provides significant assistance for Forward
Mapping cases. In particular, when using this mode you can use the DataNucleus SchemaTool to
generate the datastore schema, based on a set of input classes and MetaData files. It should be noted
though that DataNucleus SchemaTool also provides modes of operation for updating an existing schema,
and hence can also be used for Meet in the Middle Mapping. Additionally, it can be used as a validation
mechanism when designing your system in Reverse Mapping mode, where it will inform you of
inconsistencies between your classes and your datastore schema.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.2 ORM META-DATA 170

42 ORM Meta-Data

ORM Meta-Data
D02

JDO defines that MetaData (defined in the MetaData guide) can be found in particular locations in the
CLASSPATH, and has a particular format. It also defines that you can split your MetaData for Object
Relational Mapping (ORM) into separate files if you so wish. So you would define your basic persistence in
a file "package.jdo" and then define the MetaData files "package-mysql.orm" (for MySQL), and
"package-oracle.orm” (for Oracle). To make use of this JDO 2 Object-Relational Mapping file separation,
you must specify the PersistenceManagerFactory property datanucleus.Mapping, 1f you set this to, for
example, #ysq/ DataNucleus would look for files such as package.jdo and package-mysql.orm in the same
locations as specified above.

Simple Example

Let us take a sample class and generate MetaData for it. Suppose I have a class as follows

package nydomai n;

public class Person

{
/** Title of the Person. */
String title=null;
/** Forename of the Person. */
String forename=null;
/** Surnane of the Person. */
String surnanme=nul | ;

}

and I want to use an existing schema. With this case I need to define the table and column names that it
maps to. To do this I need to use JDO 2 ORM tags. So I come up with MetaData as follows in
package.jdo

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE j do PUBLIC
"-//Sun M crosystens, Inc.//DTD Java Data Objects Metadata 2.0//EN'
"http://java. sun.confdtd/jdo_2_0.dtd">
<j do>
<package nane="nydomai n">
<cl ass nane="Person" identity-type="datastore">
<field nane="title"/>
<field nane="forenanme"/>
<field nanme="surnane"/>
</cl ass>

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.2 ORM META-DATA 171

</ package>
</j do>

and then I add the ORM information in package-mysql.orm as

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE or m PUBLI C
"-//Sun M crosystens, Inc.//DTD Java Data Objects Mappi ng Metadata 2.0//EN'
"http://java.sun.conmfdtd/jdo_orm?2_ 0.dtd">
<or
<package nane="nydomai n">
<cl ass nane="Person" tabl e="PERSON' >
<field nane="title">
<col um nane="TI TLE"/ >
</field>
<field name="f orenane" >
<col um nane="FORENAME" | engt h="100" j dbc-type="VARCHAR'/ >
</field>
<field nane="surnanme">
<col um nane="SURNAME" | engt h="100" j dbc-type="VARCHAR'/>
</field>
</ cl ass>
</ package>
</ ornmp

So you see that our class is being mapped across to a table "PERSON" in the datastore, with columns
"TITLE", "FORENAME", "SURNAME". We have also specified that the upper size limit on the
forename and surname fields is 100.

Memory utilisation

The XML files are parsed and populated to memory the first time a pesistent operation is executed over a
petsistent class (e.g. pmz.makePersistent(object)). 1f the persistent class has relationships to other persistent
classes, the metadata for the classes in the relationships are loaded. In addition to the persistent class and
classes in the relationships, all other classes / files that were encountered while searching for the
persistent classes are loaded, plus their relationships.

In average, for each persistent class a 3kb of memory is used to hold metadata information. This value
will vary according the amount of metadata declared. Although this value can be used as reference in
earlier stages of development, you should verify if it corresponds to your persistent classes.

A general formula can be used (with caution) to estimate the amount of memory required:

Anmount Required = (# of persistent classes) * 3KB

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.3

4.3 SCHEMA MAPPING 172

Schema Mapping

Schema Mapping

You saw in our basic class mapping guide how you define MetaData for a classes basic persistence,
notating which fields are persisted. The next step is to define how it maps to the schema of the datastore
(in this case RDBMS). The simplest way of mapping is to map each class to its own table. This is the
default model in JDO persistence (with the exception of inheritance). If you don't specify the table and
column names, then DataNucleus will generate table and column names for you. You should specify
your table and column names if you have an existing schema. Failure to do so will mean that
DataNucleus uses its own names and these will almost certainly not match what you have in the
datastore. There are several aspects to cover here

* Table and column names

* Column for datastore identity

* Column(s) for application identity

* Column nullability and default value
* Column Types

¢ Columns with no field in the class

Tables and Column names

The main thing that developers want to do when they set up the persistence of their data is to control the
names of the tables and columns used for storing the classes and fields. This is an essential step when
mapping to an existing schema, because it is necessary to map the classes onto the existing database
entities. Let's take an example

public class Hotel

{
private String nane;
private String address;
private String tel ephoneNunber;
private int nunber O Roons;
}

In our case we want to map this class to a table called ESTABLISHMENT, and has columns NAME,
DIRECTION, PHONE and NUMBER_OF_ROOMS (amongst other things). So we define our
Meta-Data like this

<cl ass nane="Hotel " tabl e=" ESTABLI SHVENT" >
<field nanme="nane">
<col um nane="NAME"/ >
</field>
<field nane="address">
<col um nane="DI RECTI ON'/ >
</field>

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.3 SCHEMA MAPPING 173

<field name="t el ephoneNunber" >
<col um nane="PHONE"/ >
</field>
<field nane="nunber O Roons" >
<col um nane="NUMBER_OF_ROOVS"/ >
</field>
</cl ass>

So we have defined the table and the column names. It should be mentioned that if you don't specify the
table and column names then DataNucleus will generate names for the datastore identifiers. The table
name will be based on the class name, and the column names will be based on the field names and the
role of the field (if part of a relationship).

See also :-

* Identifier Guide - defining the identifiers to use for table/column names
* MetaData reference for <column> element

* MetaData reference for <primary-key> element

* Annotations reference for @Column

* Annotations reference for @PrimaryKey

Column names for datastore-identity

When you select datastore-identity a surrogate column will be added in the datastore. You need to be able to
define the column name if mapping to an existing schema (or wanting to control the schema). So lets say
we have the following

public class MyClass // persisted to table "MYCLASS"
{

}

public class MySubC ass extends MyClass // persisted to table "MYSUBCLASS"
{

}

We want to define the names of the identity column in "MYCLASS" and "MYSUBCLASS". Here's how
we do it

<cl ass nane="M/C ass" tabl e=" MYCLASS" >
<dat astore-identity>
<col um nanme="M¥_PK_COLUWN'/ >
</ dat astore-identity>
</cl ass>
<cl ass name="M/SubC ass" tabl e=" MYSUBCLASS" >

<dat astore-identity>
<col um nane="MYSUB_PK_COLUWN"/ >

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.3 SCHEMA MAPPING 174

</datastore-identity>

</ cl ass>

So we will have a PK column "MY_PK_COLUMN" in the table "MYCLASS", and 2 PK column
"MYSUB_PK_COLUMN" in the table "MYSUBCLASS" (and that cortesponds to the
"MY_PK_COLUMN" value in "MYCILASS"). We could also do

<cl ass nane="M/Cd ass" tabl e=" MYCLASS" >
<dat astore-identity>
<col um nane="MY_PK_COLUWN'/ >
</ datastore-identity>
</cl ass>
<cl ass nane="M/Subd ass" tabl e=" MYSUBCLASS" >
<i nheritance strategy="newtable"/>
<pri mary-key>
<col um nane="MySUB_PK_COLUWN"/ >
</ primary-key>

</cl ass>

See also :-

* Inheritance Guide - defining how to use inheritance between classes
e MetaData reference for <column> element

* MetaData reference for <primary-key> element

* Annotations reference for @Column

* Annotations reference for (@PrimaryKey

Column names for application-identity

When you select application-identity you have some field(s) that form the "primary-key" of the class. A
common situation is that you have inherited classes and each class has its own table, and so the
primary-key column names can need defining for each class in the inheritance tree. So lets show an
example how to do it

public class MyClass // persisted to table "MYCLASS"

{
long id; // PKfield

}

public class MySubC ass extends MyClass // persisted to table "MYSUBCLASS"
{

}

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.3 SCHEMA MAPPING 175

Defining the column name for "MyClass.id" is easy since we use the same as shown previously "column"
for the field. Obviously the table "MYSUBCLASS" will also need a PK column. Here's how we define
the column mapping

<cl ass nane="M/C ass" identity-type="application" table="MYCLASS">
<field nanme="nyPri maryKeyFi el d* prinmary-key="true">
<col um nanme="MY_PK_COLUWN'/ >
</field>
</cl ass>
<cl ass nane="M/SubC ass" identity-type="application" table="MYSUBCLASS">
<i nheritance strategy="newtable"/>
<primary-key>
<col um nane="MySUB_PK_COLUWN" target ="My_PK_CCLUW'/ >
</ primary-key>

</ cl ass>

So we will have a PK column "MY_PK_COLUMN" in the table "MYCLASS", and a PK column
"MYSUB_PK_COLUMN" in the table "MYSUBCLASS" (and that corresponds to the
"MY_PK_COLUMN" value in "MYCLASS"). You can also use

<cl ass nane="My/C ass" identity-type="application" table="MYCLASS">
<field nanme="nyPri maryKeyFi el d* prinmary-key="true">
<col um nane="My_PK_CCLUWN'/ >
</field>
</ cl ass>
<cl ass nane="M/SubC ass" identity-type="application" table="MYSUBCLASS">
<i nheritance strategy="newtable">
<j oi n>
<col um nane="MySUB_PK_COLUWN"' target="My_PK COLUW'/ >
</j oi n>
</inheritance>

</ cl ass>

See also :-

* Inheritance Guide - defining how to use inheritance between classes
e MetaData reference for <inheritance> element

e MetaData reference for <column> element

* MetaData reference for <primary-key> element

* Annotations reference for @Inheritance

* Annotations reference for @Column

* Annotations reference for (@PrimaryKey

Column nullability and default values

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.3 SCHEMA MAPPING 176

So we've seen how to specify the basic structure of a table, naming the table and its columns, and how to
control the types of the columns. We can extend this further to control whether the columns are allowed
to contain nulls and to set a default value for a column if we ever have need to insert into it and not
specify a particular column. Let's take a related class for our hotel. Here we have a class to model the
payments made to the hotel.

public class Paynent

{
Cust oner custoner;
String bankTransf er Ref erence;
String currency;
doubl e anmpunt;
}

In this class we can model payments from a customer of an amount. Where the customer pays by bank
transfer we can save the reference number. Since our hotel is in the United Kingdom we want the default
currency to be pounds, ot to use its ISO4217 currency code "GBP". In addition, since the bank transfer
reference is optional we want that column to be nullable. So let's specify the MetaData for the class.

<cl ass nane="Paynent ">
<field nane="customer" persistence-capabl e="persistent” col um="CUSTOVER_I D'/ >
<field nane="bankTr ansf er Ref erence" >
<col um nanme="TRANSFER_REF" al | ows-nul | ="true"/>
</field>
<field nane="currency">
<col um name="CURRENCY" defaul t - val ue="GBP"/ >

</field>
<field name="anobunt" col utmm="AMOUNT"/ >
</cl ass>

So we make use of the allows-null and default-value attributes. The table, when created by DataNucleus,
will then provide the default and nullability that we require.

See also :-

¢ MetaData reference for <column> element

* Annotations reference for @Column

Column types

DataNucleus will provide a default type for any columns that it creates, but it will allow users to override
this default. The default that DataNucleus chooses is always based on the Java type for the field being
mapped. For example a Java field of type "int" will be mapped to a column type of INTEGER in
RDBMS datastores. Similarly String will be mapped to VARCHAR. To override the default setting (and
always the best policy if you are wanting your MetaData to give the same datastore definition with all
JDO implementations) you do as follows

<cl ass nanme="Paynent ">

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.3 SCHEMA MAPPING 177

<field name="custoner" persistence-capabl e="persistent"” col um="CUSTOVER | D' >
<field name="bankTr ansf er Ref erence" >
<col um nane="TRANSFER_REF" j dbc-type="VARCHAR' | engt h="255"
allows-null ="true"/>
</field>
<field nane="currency">
<col um nane=" CURRENCY" | dbc-type="CHAR' | ength="3" default-val ue="GBP"/>
</field>
<field nane="anount">
<col um nane="AMOUNT" j dbc-type="DECH MAL" | engt h="10" scal e="2"/>
</field>
</ cl ass>

So we have defined TRANSFER_REF to use VARCHAR(255) column type, CURRENCY to use
CHAR(3) column type, and AMOUNT to use DECIMAL(10,2) column type. Please be aware that
DataNucleus only supports petsisting particular Java types to particular JDBC/SQL types. We have
demonstrated above the jdbc-type attribute, but there is also an sql-type attribute. This is to be used
where you want to map to some specific SQL type (and will not be needed in the vast majority of cases -

the jdbc-type should generally be used).
See also :-

* Types Guide - defining persistence of Java types
* RDBMS Types Guide - defining mapping of Java types to available JDBC/SQL types
* MetaData reference for <column> element

* Annotations reference for @Column

Columns with no field in the class

DataNucleus supports mapping of columns in the datastore that have no associated field in the java class.
These are useful where you maybe have a table used by other applications and dont use some of the
information in your Java model. DataNucleus needs to know about these columns so that it can validate
the schema correctly, and also insert particular values when inserting objects into the table. You could
handle this by defining your schema yourself so that the particular columns have "DEFAULT" settings,
but this way you allow DataNucleus to know about all information. So to give an example

<cl ass nane="Hotel " tabl e="ESTABLI SHVENT" >
<field name="nane">
<col um nane="NAME"/ >
</field>
<field nane="address">
<col um nane=" DI RECTI ON'/ >
</field>
<field name="t el ephoneNunber" >
<col um nane="PHONE"/ >
</field>
<field nane="nunber O Roons" >
<col um nane="NUMBER_OF_ROOVS"/ >
</field>
<col um nane="YEAR ESTABLI SHED"' j dbc-type="1NTEGER"' insert-val ue="1980"/>
<col um nane="MANAGER_NAME" | dbc-type="VARCHAR' insert-val ue="NA"/>
</ cl ass>

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.3 SCHEMA MAPPING 178

So in this example our table "ESTABLISHMENT" has the columns associated with the specified fields
and also has columns "YEAR_ESTABLISHED" (that is INTEGER-based and will be given a value of
"1980" on any inserts) and "MANAGER_NAME" (VARCHAR-based and will be given a value of
"N/A" on any inserts).

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.4

4.4 DATASTORE IDENTIFIERS 179

Datastore Identifiers

JDO Datastore Identifiers

A datastore identifier is a simple name of a database object, such as a column, table, index, or view, and is
composed of a sequence of letters, digits, and underscores (_) that represents it's name. DataNucleus
allows users to specify the names of tables, columns, indexes etc but if the user doesn't specify these
DataNucleus will generate names. Generation of identifier names is controlled by an IdentifierFactory,
and DataNucleus provides a default implementation. You can provide your own IdentifierFactory plugin
to give your own preferred naming if so desired. You set the Identifierlactory by setting the PMF property
datanuclens.identifierFactory. Set it to the symbolic name of the factory you want to use. JDO doesnt define
what the names of datastore identifiers should be but DataNucleus provides 3 factories for your use.

* jpox IdentifierFactory (default for JDO persistence)
* jpox2 IdentifierFactory
* jpa IdentifierFactory (default for JPA persistence)

In describing the different possible naming conventions available out of the box with DataNucleus we'll
use the following example

class Myd ass

{
String nyFiel di;
Col | ecti on<MyEl enent > el ementsl; // Using join table
Col | ecti on<MyEl enent > el ements2; // Using foreign-key
}
cl ass MYEl enent
{
String nyEl ement Fi el d;
MyCl ass nyd ass2;
}

IdentifierFactory 'jpox’

‘ Extensicn

The default IdentifierFactory (when using JDO petsistence) goes by the name "jpox" and provides a
reasonable default naming of datastore identifiers using the class and field names as its basis.
DataNucleus has used this naming convention for all versions.

Using the example above, the rules in this Identifierlactory mean that, assuming that the user doesnt specify
any <column> elements :-

* MyClass will be persisted into a table named MYCLASS

* When using datastore identity MYCLASS will have a column called MYCLASS_ID
* MyClass.myField! will be persisted into a column called MY_FIELD1

* MyE/ement will be persisted into a table named MYELEMENT

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.4 DATASTORE IDENTIFIERS

* MyClass.elements1 will be persisted into a join table called MYCLASS_ELEMENTS1

180

* MYCLASS_ELEMENTS1 will have columns called MYCLASS_ID_OID (FK to owner table) and

MYELEMENT_ID_EID (FK to element table)

* MYCLASS_ELEMENTS1 will have column names like STRING_ELE, STRING_KEY,
STRING_VAL for non-PC elements/keys/values of collections/maps

* MyClass.elements2 will be persisted into a column ELEMENTS2_MYCLASS_ID_OID (FK to

ownetr) table
* Any discriminator column will be called DISCRIMINATOR
* Any index column in a List will be called INTEGER_IDX

* Any adapter column added to a join table to form part of the primary key will be called
ADPT_PK_IDX

* Any version column for a table will be called OPT_VERSION

IdentifierFactory 'jpox2'

_. Extensicn

The Identifierliactory "jpox2" changes a few things over the default "jpox" factory, attempting to make the

naming mote concise and consistent (we retain "jpox” for backwards compatibility).

Using the same example above, the rules in this IdentifierFactory mean that, assuming that the user doesnt

specify any <column> elements :-

* MyClass will be persisted into a table named MYCLASS

* When using datastore identity MYCLASS will have a column called MYCLASS_ID
* MyClass.myField! will be persisted into a column called MYFIELD1

* MyE/ement will be persisted into a table named MYELEMENT

* MyClass.elements? will be persisted into a join table called MYCLASS_ELEMENTS1

* MYCLASS_ELEMENTS1 will have columns called MYCLASS_ID_OID (FK to owner table) and

MYELEMENT_ID_EID (FK to element table)

* MYCLASS_ELEMENTS1 will have column names like STRING_ELE, STRING_KEY,
STRING_VAL for non-PC elements/keys/values of collections/maps

* MyClass.elements2 will be persisted into a column ELEMENTS2_MYCLASS_ID_OID (FK to

ownetr) table
* Any discriminator column will be called DISCRIMINATOR
* Any index column in a List will be called IDX
* Any adapter column added to a join table to form part of the primary key will be called IDX
* Any version column for a table will be called VERSION

IdentifierFactory 'jpoxCompatibility’

‘. Extensicn

This Identifierlactory exists for backward compatibility with JPOX 1.2.0. If you experience changes of

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.4 DATASTORE IDENTIFIERS 181

schema identifiers when migrating from JPOX 1.2.0 to datanucleus, you should give this one a try.

Schema compatibility between JPOX 1.2.0 and datanucleus had been broken e.g by the number of
characters used in hash codes when truncating identifiers: this has changed from 2 to 4.

IdentifierFactory 'jpa’

JPA1

The Identifierliactory "jpa" aims at providing a naming policy consistent with the "JPA1" specification.

Using the same example above, the rules in this IdentifierFactory mean that, assuming that the user doesnt
specify any <column> elements :-

* MyClass will be persisted into a table named MYCLASS

* When using datastore identity MYCLASS will have a column called MYCLASS_ID

* MyClass.myField! will be persisted into a column called MYFIELD1

* MyE/ement will be persisted into a table named MYELEMENT

* MyClass.elements1 will be persisted into a join table called MYCLASS_MYELEMENT

* MYCLASS_ELEMENTS1 will have columns called MYCLASS_MYCLASS_ID (FK to owner
table) and ELEMENTS1_ELEMENT_ID (FK to element table)

* MyClass.elements2 will be persisted into a column ELEMENTS2_MYCLASS_ID (FK to owner)
table

* Any discriminator column will be called DTYPE

* Any index column in a List for field MyClass.myField1 will be called MYFIELD1_ORDER
* Any adapter column added to a join table to form part of the primary key will be called IDX
* Any version column for a table will be called VERSION

IdentifierFactory - Controlling the Case

The underlying datastore will define what case of identifiers are accepted. By default, DataNucleus will
capitalise names (assuming that the datastore supports it). You can however influence the case used for
identifiers. This is specifiable with the PMFE property datanucleus.identifier.case, having the following values

* UpperCase: identifiers are in upper case
¢ LowerCase: identifiers are in lower case

* PreserveCase: No case changes are made to the name of the identifier provided by the user (class
name or jdo metadata).

Please be aware that some datastores only support UPPERCASE or lowercase identifiers and so setting
this parameter may have no effect if your database doesn't support that option.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.5 SECONDARY TABLES 182

Secondary Tables

JDO Secondary Tables
JDO2

The standard JDO persistence strategy is to persist an object of a class into its own table. In some
situations you may wish to map the class to a primary table as well as one or more secondary tables. For
example when you have a Java class that could have been split up into 2 separate classes yet, for whatever
reason, has been written as a single class, however you have a legacy datastore and you need to map
objects of this class into 2 tables. JDO allows persistence of fields of a class into secondary tables.

The process for managing this situation is best demonstrated with an example. Let's suppose we have a
class that represents a Printer. The Printer class contains within it various attributes of the toner cartridge.
So we have

package com nydomai n. sanpl es. secondar yt abl e;

public class Printer

{
long id;
String meke;
String nodel ;
String tonerMdel;
int tonerLifetine;
/**
* Constructor.
* @aram make Make of printer (e.g Hew ett-Packard)
* @aram nodel Model of Printer (e.g LaserJet 1200L)
* @aram toner Model Mdel of toner cartridge
* @aramtonerLifetime lifetinme of toner (nunber of prints)
*/
public Printer(String make, String nodel, String tonerModel, int tonerLifetine)
{
this. make = make;
this. mrodel = nodel;
thi s.toner Model = toner Mdel ;
this.tonerLifetine = tonerLifetine;
}
}

Now we have a database schema that has 2 tables (PRINTER and PRINTER_TONER) in which to
store objects of this class. So we need to tell DataNucleus to perform this mapping. So we define the
MetaData for the Printer class like this

<class nanme="Printer" table="PRI NTER'>
<join tabl e="PRI NTER_TONER' col um="PRI NTER_REFI D'/ >

<field nanme="id" prinmary-key="true">

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.5 SECONDARY TABLES 183

<col um nanme="PRI NTER_I D'/ >

</field>

<field name="nmake" >
<col um nane="MAKE"/ >

</field>

<field name="nodel ">
<col um nane="MODEL"/ >

</field>

<field nane="t oner Mbdel " tabl e=" PRI NTER_TONER' >
<col um nane="MODEL"/ >

</field>

<field nane="tonerlLifetinme" tabl e="PRI NTER TONER"'>
<col um nane="LI FETI ME"/ >

</field>

</ cl ass>

So here we have defined that objects of the Printer class will be stored in the primary table PRINTER. In
addition we have defined that some fields are stored in the table PRINTER_TONER. This is achieved
by way of

* We will store tonerModel and tonerLifetime in the table PRINTER_TONER. This is achieved by
using <field table="PRINTER_TONER">

* The table PRINTER_TONER will use a primary key column called PRINTER_REFID. This is
achieved by using <join table="PRINTER_TONER" column="PRINTER_REFID"/>

This results in the following database tables :-

PRINTER PRINTER_TONER

+PRINTER_ID +PRINTER_REFID
MAKE MODEL
MODEL LIFETIME

So we now have our primary and secondary database tables. The primary key of the PRINTER_TONER
table serves as a foreign key to the primary class. Whenever we persist a Printer object a row will be
inserted into both of these tables.

Specifying the primary key

You saw above how we defined the column name that will be the primary key of the secondary table (the
PRINTER_REFID column). What we didn't show is how to specify the name of the primary key
constraint to be generated. To do this you change the MetaData to

<class name="Printer" identity-type="datastore" tabl e="PRI NTER'>
<join tabl e="PRI NTER_TONER' col um="PRI NTER_REFI D' >
<pri mary-key name="TONER_PK"/ >
</join>

<field nane="id" primary-key="true">
<col um nane="PRI NTER_I D'/ >

</field>

<field nane="nmake" >

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.5 SECONDARY TABLES 184

<col um nanme="MAKE"/ >

</field>

<field nane="nodel ">
<col um nane="MODEL"/ >

</field>

<field nane="t oner Mbdel " tabl e=" PRI NTER_TONER" >
<col um nane="MODEL"/ >

</field>

<field nane="tonerLifetinme" tabl e="PRI NTER_ TONER'>
<col um nane="LI FETI ME"/ >

</field>

</ cl ass>

So this will create the primary key constraint with the name "TONER_PK".

See also :-

* MetaData reference for <primary-key> element
* MetaData reference for <join> element
* Annotations reference for @PrimaryKey

* Annotations reference for @Join

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.6 EMBEDDED OBJECTS 185

Embedded Objects

JDO Embedded Objects
JDO2

The JDO persistence strategy typically involves persisting the fields of any class into its own table, and
representing any relationships from the fields of that class across to other tables. There are occasions
when this is undesirable, maybe due to an existing datastore schema, or because a more convenient
datastore model is required. JDO allows the persistence of fields as embedded typically into the same
table as the "owning" class.

One important decision when defining objects of a type to be embedded into another type is whether
objects of that type will ever be persisted in their own right into their own table, and have an identity.
JDO2 provides a MetaData attribute that you can use to signal this.

<j do>
<package nane="com nydonai n. sanpl es. enbedded" >
<cl ass nane="Md ass" enbedded-onl y="true">

</ cl ass>
</ package>
</jdo>

With the above MetaData (using the embedded-only attribute), in our application any objects of the class
MyClass cannot be persisted in their own right. They can only be embedded into other objects.

JDO2's definition of embedding encompasses several types of fields. These ate desctibed below
* Embedded PersistenceCapable objects - where you have a 1-1 relationship and you want to embed
the other PersistenceCapable into the same table as the your object.

* Embedded Nested PersistenceCapable objects - like the first example except that the otehr object
also has another PersistenceCapable object that also should be embedded

* Embedded Collection elements - where you want to embed the elements of a collection into a join
table (instead of persisting them into their own table)

* Embedded Map keys/values - where you want to embed the keys/values of a map into a join table
(instead of persisting them into their own table)

Embedding PersistenceCapable objects

In a typical 1-1 relationship between 2 classes, the 2 classes in the relationship are persisted to their own
table, and a foreign key is managed between them. With JDO2 and DataNucleus you can persist the
related PersistenceCapable object as embedded into the same table. This results in a single table in the
datastore rather than one for each of the 2 classes.

Let's take an example. We are modelling a Computer, and in out simple model our Computer has a
graphics card and a sound card. So we model these cards using a ComputerCard class. So our classes

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.6 EMBEDDED OBJECTS

become

public class Conputer

{
private String operatingSystem
private ConputerCard graphi csCard;
private ConputerCard soundCard;
public Conputer(String osNane,
Conput er Card graphi cs,
Conput er Card sound)
{
t hi s. operati ngSystem = osNane;
t hi s. graphi csCard = graphics;
this.soundCard = sound;
}
}
public class ConputerCard
{
public static final int | SA CARD = 0;
public static final int PCl_CARD = 1;
public static final int AGP_CARD = 2;
private String manufacturer;
private int type;
public ConputerCard(String manufacturer,
int type)
{
thi s. manuf acturer = manufacturer;
this.type = type;
}
}

186

The traditional (default) way of persisting these classes would be to have a table to represent each class.

So our datastore will look like this

COMPUTER

+COMPUTER_ID
05_NAME

#GRAPHICSCARD ID

#SOUNDCARD_ID

However we decide that we want to persist Computer objects into a table called COMPUTER and we

COMPUTERCARD

+COMPUTERCARD ID
MANUFACTURER
TYPE

also want to persist the PC cards into the same table. We define our MetaData like this

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.6 EMBEDDED OBJECTS 187

<j do>
<package nane="com nydonai n. sanpl es. enbedded" >
<cl ass nane="Conputer" identity-type="datastore" tabl e="COWUTER' >
<field nane="operatingSysten>
<col um nane="0S_NAME" | engt h="40" j dbc-type="CHAR"'/>
</field>
<field name="graphi csCard" persistence-nodifier="persistent">
<enbedded nul | -i ndi cat or - col um=" GRAPHI CS_MANUFACTURER" >
<field name="manufacturer" col um="GRAPH CS_MANUFACTURER'/ >
<field nane="type" col um="CRAPH CS_TYPE"/ >
</ enbedded>
</field>
<field nane="soundCard" persistence-nodifier="persistent">
<enbedded nul | -i ndi cat or - col um="SOUND_MANUFACTURER" >
<field name="nmanufacturer” col um="SOUND_MANUFACTURER'/ >
<field nane="type" col um="SOUND TYPE"/ >
</ enbedded>
</field>
</ cl ass>

<cl ass nane="Conput er Card" t abl e=" COWPUTER_CARD" >
<field name="manufacturer"/>
<field nane="type"/>
</cl ass>
</ package>
</j do>

So here we will end up with a TABLE called "COMPUTER" with columns "COMPUTER_ID",
"OS_NAME", "GRAPHICS_MANUFACTURER", "GRAPHICS_TYPE",
"SOUND_MANUFACTURER", "SOUND_TYPE". If we call makePersistent() on any objects of type
Computer, they will be persisted into this table.

COMPUTER

+COMPUTER_ID
05_NAME
GRAPHICS MANUFACTURER
GRAPHICS TYPE
SOUND_MANUFACTURER
SOUND_TYPE

You will notice in the MetaData our use of the attribute null-indicator-column. This is used when

retrieving objects from the datastore and detecting if it is a NULL embedded object. In the case we have
here, if the column GRAPHICS_MANUFACTURER is null at retrieval, then the embedded
"graphicsCard" field will be set as null. Similarly for the "soundCard" field when
SOUND_MANUFACTURER is null.

If the ComputerCard class above has a reference back to the related Computer, JDO2 defines a
mechanism whereby this will be populated. You would add the XML element owner-field to the
<embedded> tag defining the field within ComputerCard that represents the Computer it relates to.
When this is specified DataNucleus will populate it automatically, so that when you retrieve the

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.6 EMBEDDED OBJECTS 188

Computer and access the ComputerCard objects within it, they will have the link in place.

It should be noted that in this latter (embedded) case we can still persist objects of type ComputerCard
into their own table - the MetaData definition for ComputerCard is used for the table definition in this
case.

Please note that if, instead of specifying the <embedded> block we had specified embedded in the field
element we would have ended up with the same thing, just that the fields and columns would have been
mapped using their default mappings, and that the <embedded> provides control over how they are
mapped.

DataNucleus supports embedded PC objects with the following proviso :-

* Embedded PC objects cannot have inheritance (this restriction will hopefully be removed in the
future, allowing a discriminator).

See also :-

¢ MetaData reference for <embedded> element

* Annotations reference for @Embedded

Embedding Nested PersistenceCapable objects

In the above example we had an embedded PersistenceCapable object within a persisted object. What if
our embedded PersistenceCapable object also contain another PersistenceCapable object. So, using the
above example what if ComputerCard contains an object of type Connector ?

public class ConputerCard

{
Connect or connector;
public ConputerCard(String manufacturer,
int type,
Connect or conn)
{
thi s. manuf acturer = manufacturer;
this.type = type;
this.connector = conn;
}
}
public class Connector
{
int type;
}

Well we want to store all of these objects into the same record in the COMPUTER table.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.6 EMBEDDED OBJECTS

<j do>
<package nane="com nydonai n. sanpl es. enbedded" >
<cl ass nane="Conputer" identity-type="datastore" tabl e="COWUTER' >
<field name="operatingSysteni>
<col um nane="0S_NAME" | engt h="40" jdbc-type="CHAR"'/>
</field>
<field nane="graphi csCard" persistence-nodifier="persistent">
<enbedded nul | -i ndi cat or - col um=" GRAPHI CS_MANUFACTURER" >
<field nanme="nmanuf acturer"” col um="GRAPH CS_MANUFACTURER'/ >
<field nane="type" col um="CRAPH CS_TYPE"/ >
<field nane="connector">
<enbedded>
<field nane="type" col um="GRAPH CS_CONNECTOR TYPE"/ >
</ enbedded>
</field>
</ enbedded>
</field>
<field nane="soundCard" persistence-nodifier="persistent">
<enbedded nul | -i ndi cat or - col utm="SOUND_MANUFACTURER' >
<field nane="manuf acturer” col um="SOUND_MANUFACTURER'/ >
<field nane="type" col um="SOUND TYPE"/>
<field nane="connector">
<enbedded>
<field name="type" col umm="SOUND_CONNECTOR TYPE"/ >
</ enbedded>
</field>
</ enbedded>
</field>
</ cl ass>

<cl ass nane="Conput er Card" tabl e=" COWPUTER_CARD' >
<field name="manufacturer"/>
<field nane="type"/>

</ cl ass>

<cl ass nane="Connector" enbedded-onl y="true">
<field nane="type"/>
</cl ass>
</ package>
</jdo>

189

So we simply nest the embedded definition of the Connector objects within the embedded definition of
the ComputerCard definitions for Computer. JDO2 supports this to as many levels as you require! The

Connector objects will be persisted into the GRAPHICS_CONNECTOR_TYPE, and
SOUND_CONNECTOR_TYPE columns in the COMPUTER table.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.6 EMBEDDED OBJECTS 190

COMPUTER

+COMPUTER_ID
05 NAME
GRAPHICS MANUFACTURER
GRAPHICS TYPE
GRAPHICS CONNECTOR TYPE
SOUND MANUFACTURER
SOUND TYPE
SOUND CONNECTOR TYPE

Embedding Collection Elements

In a typical 1-N relationship between 2 classes, the 2 classes in the relationship are persisted to their own
table, and either a join table or a foreign key is used to relate them. With JDO2 and DataNucleus you
have a variation on the join table relation where you can persist the objects of the "N" side into the join
table itself so that they don't have their own identity, and aren't stored in the table for that class. This is
supported in DataNucleus with the following provisos

* Embedded elements cannot have inheritance (this may be allowed in the future)

* When retrieving embedded elements, all fields are retrieved in one call. That is, fetch plans are not
utilised. This is because the embedded element has no identity so we have to retrieve all initially.

It should be noted that whete the collection "element" is not PersistenceCapable ot of a "reference” type
(Interface or Object) it will always be embedded, and this functionality here applies to PersistenceCapable
elements only. DataNucleus doesn't support the embedding of reference type objects currently.

Let's take an example. We are modelling a Network, and in our simple model our Network has collection
of Devices. So we define our classes as

public class Network

{ private String nang;
private Collection devices = new HashSet();
public Network(String nane)
{ thi s. name = naneg;
}
}

public class Device
{
private String naneg;

private String i pAddress;

public Device(String nane,
String addr)

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.6 EMBEDDED OBJECTS 191

t hi s. nane = nane;
this.ipAddress = addr;

We decide that instead of Device having its own table, we want to persist them into the join table of its
relationship with the Network since they are only used by the network itself. We define our MetaData like
this

<j do>
<package nane="com nydonai n. sanpl es. enbedded" >
<cl ass nane="Network" identity-type="datastore" tabl e="NETWORK">
<field name="nane">
<col um nane="NAME" | engt h="40" j dbc-type="VARCHAR'/ >
</field>
<field nane="devi ces" persistence-nodifier="persistent”
t abl e=" NETWORK_DEVI CES" >
<col l ection el enent-type="com nydonai n. sanpl es. enbedded. Devi ce"/ >

<j oi n>
<col um nane="NETWORK_| D'/ >
</j oi n>
<el enent >
<enbedded>
<field name="nane">
<col um nanme="DEVI CE_NAME" al | ows-nul | ="true"/>
</field>
<field nane="i pAddress" >
<col um nane="DEVI CE_| P_ADDR"' al |l ows-nul | ="true"/>
</field>

</ enbedded>
</ el enent >
</field>
</ cl ass>

<cl ass nane="Device" tabl e="DEVICE' enbedded-onl y="true">
<field name="nane">
<col um nane="NAME"/ >
</field>
<field name="i pAddress">
<col um nane="| P_ADDRESS"/ >
</field>
</ cl ass>
</ package>
</jdo>

So here we will end up with a table called "NETWORK" with columns "NETWORK_ID", and
"NAME", and a table called "NETWORK_DEVICES" with columns "NETWORK_ID",
"ADPT_PK_IDX", "DEVICE_NAME", "DEVICE_IP_ADDR". When we persist a Network object,
any devices are persisted into the NETWORK_DEVICES table.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.6 EMBEDDED OBJECTS 192

NETWORK NETWORK _DEVICES

+NETWORK_ID +NETWORK_ID
NAME +ADPT PK_IDX

DEVICE NAME

DEVICE IP ADDR

Please note that if, instead of specifying the <embedded> block we had specified embedded-element in
the collection element we would have ended up with the same thing, just that the fields and columns
would be mapped using their default mappings, and that the <embedded> provides control over how
they are mapped.

You note that in our example above DataNucleus has added an extra column "ADPT_PK_IDX" to
provide the primary key of the join table now that we're storing the elements as embedded. A variation
on this would have been if we wanted to maybe use the "DEVICE_IP_ADDR" as the other part of the
primary key, in which case the "ADPT_PK_IDX" would not be needed. You would specify this as
follows

<field nane="devi ces" persistence-nodifier="persistent"
t abl e=" NETWORK_DEVI CES" >
<col I ection el enent-type="com nydonai n. sanpl es. enbedded. Devi ce"/ >
<j oi n>
<pri mary- key name="NETWORK_DEV_PK" >
<col um nanme="NETWORK | D'/ >
<col um nane="DEVI CE_| P_ADDR'/ >
</ primary-key>
<col um nane="NETWORK_I D'/ >

</j oi n>
<el enent >
<enbedded>
<field nane="nane">
<col um nane="DEVI CE_NAME" al |l ows-nul | ="true"/>
</field>
<field nane="i pAddress">
<col um nane="DEVI CE_| P_ADDR"' al | ows-nul | ="true"/>
</field>

</ enbedded>
</ el enent >
</field>

This results in the join table only having the columns "NETWORIK_ID", "DEVICE_IP_ADDR", and
"DEVICE_NAME", and having a primary key as the composite of "NETWORK_ID" and
"DEVICE_IP_ADDR".

See also :-

¢ MetaData reference for <embedded> element
¢ MetaData reference for <element> element
* MetaData reference for <join> element

* Annotations reference for @Embedded

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.6 EMBEDDED OBJECTS 193

* Annotations reference for @FElement

Embedding Map Keys/Values

In a typical 1-N map relationship between classes, the classes in the relationship are persisted to their own
table, and a join table forms the map linkage. With JDO2 amd DataNucleus you have a variation on the
join table relation where you can persist either the key class or the value class, or both key class and value
class into the join table. This is supported in DataNucleus with the following provisos

* Embedded keys/values cannot have inheritance (this may be allowed in the future)

* When retrieving embedded keys/values, all fields are retrieved in one call. That is, fetch plans are not
utilised. This is because the embedded key/value has no identity so we have to retrieve all initially.

It should be noted that where the map "key"/"value" is not PersistenceCapable ot of a "reference" type
(Interface or Object) it will always be embedded, and this functionality here applies to PersistenceCapable
keys/values only. DataNucleus doesn't support embedding reference type elements currently.

Let's take an example. We are modelling a FilmLibrary, and in our simple model our FilmLibrary has map
of Films, keyed by a String alias. So we define our classes as

public class Filnlibrary

{ private String owner;
private Map filnms = new HashMap();
public FilnLibrary(String owner)
{ this. owner = owner;
}
}
public class Film
{ private String nane;
private String director;
public Filn(String name, String director)
{ thi s. name = nane;
this.director = director;
}
}

We decide that instead of Film having its own table, we want to persist them into the join table of its map
relationship with the FilmLibrary since they are only used by the library itself. We define our MetaData
like this

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.6 EMBEDDED OBJECTS

<j do>

<package nane="com nydonai n. sanpl es. enbedded" >

<class name="Fil nLi brary" identity-type="datastore" table="FlILM LI BRARY">

<field nanme="owner">

<col um nane="OMER' | engt h="40" j dbc-type="VARCHAR'/ >

</field>

<field nane="fil ns" persistence-nodifier="persistent"

t abl e="FI LM LI BRARY_FI LM5" >
<map key-type="java.lang. String"

val ue-type="com nydonai n. sanpl es. enbedded. Fi | n{'/ >

<j oi n>

<col um nane="FI LM LI BRARY_I D'/ >

</j oi n>
<key>
<col um nanme="FI LM ALI AS"/ >
</ key>
<val ue>
<enbedded>
<field name="nane">

<col um nane="FI LM_NAME"/ >

</field>
<field name="director">
<col um nanme="FI LM DI RECTOR" al |l ows-nul | ="true"/>
</field>
</ enbedded>
</ val ue>
</field>
</cl ass>

<cl ass nanme="Fi | n enbedded- onl y="true">
<field name="nane"/ >
<field name="director"/>
</ cl ass>
</ package>
</jdo>

So here we will end up with a table called "FILM_LIBRARY" with columns "FILM_LIBRARY_ID",
and "OWNER", and a table called "FILM_LIBRARY_FILMS" with columns "FILM_LIBRARY_ID",

"FILM_ALIAS", "FILM_NAME", "FILM_DIRECTOR". When we petsist a FilmLibrary object, any

films are persisted into the FILM_LIBRARY_FILMS table.

FILM _LIBRARY
+FILM LIBRARY ID

194

FILM LIBRARY FILMS

OWNER

+FILM LIBRARY ID
+FILM ALIAS

FILM NAME

FILM DIRECTOR

Please note that if, instead of specifying the <embedded> block we had specified embedded-key of

embedded-value in the map element we would have ended up with the same thing, just that the fields

and columns would be mapped using their default mappings, and that the <embedded> provides control

over how they are mapped.

See also :-

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.6 EMBEDDED OBJECTS 195

* MetaData reference for <embedded> element
* MetaData reference for <key> element

* MetaData reference for <value> element

* MetaData reference for <join> element

* Annotations reference for @Embedded

* Annotations reference for @Key

* Annotations reference for (@Value

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.7

4.7 SERIALISED OBJECTS 196

Serialised Objects

JDO Serialising Objects
JDO2

JDO2 provides a way for users to specify that a field will be persisted serialised. This is of use, for example,
to collections/maps/arrays which typically are stored using join tables or foreign-keys to other records.
By specifying that a field is serialised a column will be added to store that field and the field will be
serialised into it.

JDO2's definition of serialising encompasses several types of fields. These are described below

* Serialised Array fields - where you want to serialise the array into a single BLOB column.
* Serialised Collection fields - where you want to serialise the collection into a single BLOB column.

* Serialised Collection elements - where you want to serialise the collection elements into a single
column in a join table.

* Serialised Map fields - where you want to serialise the map into a single BLOB column

* Serialised Map keys/values - where you want to serialise the map keys and/or values into single
column(s) in a join table.

* Serialised PersistenceCapable fields - where you want to serialise a PC object into a single BLOB
column.

* Serialised Reference (Interface/Object) fields - where you want to serialise a reference field into a
single BLOB column.

Perhaps the most important thing to bear in mind when deciding to serialise a field is that that object
must implement java.io.Serializable.

Serialised Collections

Collections are usually persisted by way of either a join table, or by use of a foreign-key in the element table.
In some situations it is required to store the whole collection in a single column in the table of the class
being persisted. This prohibits the querying of such a collection, but will persist the collection in a single
statement. Let's take an example. We have the following classes

Farm Animal
name =_> name
animals: Collection type

and we want the animals collection to be serialised into a single column in the table storing the Farm class,
so we define our MetaData like this

<cl ass nane="Farnl' tabl e="FARM >
<dat astore-identity colum="ID"/>
<field nanme="nanme" col um="NAME"/>

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.7 SERIALISED OBJECTS 197

<field nane="ani nal s" serialized="true">
<col l ection el enent-type="Aninml"/>
<col um nane="AN MALS"/ >
</field>
</ cl ass>
<cl ass nane="Ani mal ">
<field name="nane"/>
<field name="type"/>
</ cl ass>

So we make use of the serialized attribute of <field>. This specification results in a table like this

FARM

+ID
NAME
ANTMALS

Provisos to bear in mind are

* Queries cannot be performed on collections stored as setialised.

There are some other combinations of MetaData tags that result in serialising of the whole collection in
the same way. These are as follows

* Collection of non-PersistenceCapable elements, and no <join> is specified. Since the elements
don't have a table of their own, the only option is to setialise the whole collection and it appears as a
single BLOB field in the table of the main class.

* Collection of PersistenceCapable elements, with "embedded-element" set to true and no
<join> is specified. Since the elements are embedded and there is no join table, then the whole
collection is serialised as above.

See also :-

* MetaData reference for <field> element
* Annotations reference for (@Persistent

* Annotations reference for (@Serialized

Serialised Collection Elements

Collections are usually persisted by way of either a join table, or by use of a foreign-key in the element table.
In some situations you may want to serialise the element into a single column in the join table. Let's take
an example. We have the same classes as in the previous case and we want the anzmals collection to be
stored in a join table, and the element serialised into a single column storing the "Animal" object. We
define our MetaData like this

<cl ass nane="Farnt tabl e="FARM >
<datastore-identity colum="1D"/>
<field name="nane">
<col um nane="NAME"/ >

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.7 SERIALISED OBJECTS 198

</field>
<field name="ani mal s" tabl e="FARM ANI MALS" >
<col lection elenment-type="Animal" serialised-element="true"/>
<join colum="FARM ID Q D'/ >
</field>
</ cl ass>
<cl ass nanme="Ani nal ">
<field name="nane"/>
<field nane="type"/>
</ cl ass>

So we make use of the serialized-element attribute of <collection>. This specification results in tables like
this

FARM FARM_ANIMALS

+1D +FARM ID 0ID
NAME +ADPT PK_IDX
ANIMAL

Provisos to bear in mind are

* Queries cannot be performed on collection elements stored as serialised.

See also :-

¢ MetaData reference for <collection> element
* MetaData reference for <join> element

* Annotations reference for @Element

Serialised Maps

Maps are usually persisted by way of a join table, or very occasionaly using a foreign-key in the value table. In
some situations it is required to store the whole map in a single column in the table of the class being
petsisted. This prohibits the quetying of such a map, but will persist the map in a single statement. Let's
take an example. We have the following classes

ClassRoom Child

level = name
children: Map<String, Child=

and we want the children map to be serialised into a single column in the table storing the ClassRoom
class, so we define our MetaData like this

<cl ass nane="d assRoont >
<field nane="1evel ">
<col um nane="LEVEL"/ >
</field>
<field nane="children" serialized="true">

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.7 SERIALISED OBJECTS 199

<map key-type="java.lang. String" val ue-type="Child"/>
<col um nane="CH LDREN'/ >
</field>
</cl ass>
<cl ass nane="Child"/>

So we make use of the serialized attribute of <field>. This specification results in a table like this

CLASSROOM

+ID
LEVEL
CHILDREN

Provisos to bear in mind are

* Queries cannot be performed on maps stored as serialised.

There are some other combinations of MetaData tags that result in serialising of the whole map in the
same way. These are as follows

* Map<non-PersistenceCapable, non-PersistenceCapable>, and no <join> is specified. Since
the keys/values don't have a table of their own, the only option is to setialise the whole map and it
appears as a single BLOB field in the table of the main class.

* Map<non-PersistenceCapable, PersistenceCapable>, with "embedded-value" set to true and
no <join> is specified. Since the keys/values are embedded and there is no join table, then the
whole map is serialised as above.

See also :-

* MetaData reference for <map> element
* Annotations reference for @Key
* Annotations reference for (@Value

* Annotations reference for @Serialized

Serialised Map Keys/Values

Maps are usually persisted by way of a join fable, or very occasionaly using a foreign-key in the value table. In
the join table case you have the option of serialising the keys and/or the values each into a single (BLOB)
column in the join table. This is performed in a similar way to serialised elements for collections, but this
time using the "serialized-key", "setialized-value" attributes. We take the example in the previous section,
with "a classtoom of children" and the children stored in a map field. This time we want to serialise the

child object into the join table of the map

<cl ass nane="C assRoont >
<field nane="1evel ">
<col um nane="LEVEL"/ >
</field>
<field nane="children" tabl e="CLASS_CH LDREN'>

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.7 SERIALISED OBJECTS 200

<map key-type="java.lang. String" val ue-type="Child"
serialized-val ue="true"/>
<join col um="CLASSROOM | D'/ >
<key col um="AL| AS"/ >
<val ue colum="CHI LD"'/ >
</field>
</cl ass>
<cl ass nanme="Child"/>

So we make use of the serialized-value attribute of <map>. This results in a schema like this

CLASSROOM CLASS_CHILDREN

+1ID +CLAS5R00M ID
LEVEL +ALIAS
CHILD

Provisos to bear in mind are

* Queries cannot be performed on map keys/values stored as serialised.

See also :-

* MetaData reference for <map> element
* MetaData reference for <join> element
* MetaData reference for <key> element

e MetaData reference for <value> element
* Annotations reference for @Key

* Annotations reference for (@Value

Serialised PersistenceCapable Fields

A field that is a PersistenceCapable object is typically stored as a foreign-key relation between the
container object and the contained object. In some situations it is not necessary that the contained object
has an identity of its own, and for efficiency of access the contained object is required to be stored in a
BLOB column in the containing object's datastore table. Let's take an example. We have the following
classes

ClassRoom Teacher
level title
teacher: Teacher sUrname

and we want the feacher object to be serialised into a single column in the table storing the ClassRoom
class, so we define our MetaData like this

<cl ass nane="d assRoont >

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.7 SERIALISED OBJECTS 201

<field nane="1evel ">
<col um nane="LEVEL"/ >
</field>
<field nane="teacher" serialized="true">
<col um nane="TEACHER'/ >
</field>
</cl ass>

So we make use of the serialized attribute of <field>. This specification results in a table like this

CLASSROOM

+ID
LEVEL
TEACHER

Provisos to bear in mind are

* Queries cannot be performed on PersistenceCapable objects stored as serialised.

Serialised Reference (Interface/Object) Fields

A reference (Interface/Object) field is typically stored as a foreign-key relation between the container
object and the contained implementation of the reference. In some situations it is not necessary that the
contained object has an identity of its own, and for efficiency of access the contained object is required to
be stored in a BLOB column in the containing object's datastore table. Let's take an example using an
interface field. We have the following classes

ClassRoom Person

level
teacher: Person i:i

Teacher

title
surname

and we want the feacher object to be serialised into a single column in the table storing the ClassRoom
class, so we define our MetaData like this

<cl ass nane="d assRoont >
<field nane="1evel ">
<col um nane="LEVEL"/ >
</field>
<field nane="teacher" serialized="true">

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.7 SERIALISED OBJECTS 202

<col um nane="TEACHER'/ >
</field>
</ cl ass>
<cl ass nane="Teacher">
</ cl ass>

So we make use of the serialized attribute of <field>. This specification results in a table like this

CLASSROOM

+ID
LEVEL
TEACHER

Provisos to bear in mind are

* Queries cannot be performed on Reference (Interface/Object) fields stored as serialised.

See also :-

* MetaData reference for <implements> element

* Annotations reference for @Serialized

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.8 CONSTRAINTS 203

48 Constraints

Constraints

A datastore often provides ways of constraining the storage of data to maintain relationships and improve
performance. These are known as constraints and they come in various forms. These are :-

* Indexes - these are used to mark fields that are referenced often as indexes so that when they are used
the performance is optimised.

* Unique constraints - these are placed on fields that should have a unique value. That is only one
object will have a particular value.

* Foreign-Keys - these are used to interrelate objects, and allow the datastore to keep the integrity of
the data in the datastore.

* Primary-Keys - allow the PK to be set, and also to have a name.

Indexes

The majority of datastores provide the ability to have indexes defined to give performance benefits. With
RDBMS the indexes are specified on the table and the indexes to the rows are stored separately. In the
same way an ODBMS typically allows indexes to be specified on the fields of the class, and these are
managed by the datastore. JDO 2 provides a mechanism for defining indexes, and hence if a developer
knows that a particular field is going to be highly used for querying, they can select that field to be
indexed in their (JDO) petsistence solution. Let's take an example class, and show how to specify this

public class Booki ng

{
private int bookingType;

We decide that our bookingType is going to be highly used and we want to index this in the persistence
tool. To do this we define the Meta-Data for our class as

<cl ass nane="Booki ng" >
<field nane="booki ngType" >
<i ndex name="BOOKI NG TYPE_I NDEX"/ >
</field>
</ cl ass>

This will mean that DataNucleus will create an index in the datastore for the field and the index will have
the name BOOKING_TYPE_INDEX (for datastores that support using named indexes). If we had
wanted the index to provide uniqueness, we could have made this

<i ndex nane="BOCKI NG _TYPE_| NDEX" uni que="true"/>

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.8 CONSTRAINTS 204

This has demonstrated indexing the fields of a class. The above example will index together all columns
for that field. In certain circumstances you want to be able to index from the column point of view. So
we are thinking more from a database perspective. Here we define our indexes at the <class> level, like
this

<cl ass nane="Booki ng" >
<i ndex nanme="MY_BOOKI NG_| NDEX" >
<col umm nane="BOXKI NG'/ >
</ i ndex>

</cl ass>

This creates an index for the specified column (where the datastore supports columns i.e RDBMS).

See also :-

¢ MetaData reference for <index> element
* Annotations reference for @Index

* Annotations reference for @Index (class level)

Unique constraints

Relational Databases (RDBMS) provide the ability to have unique constraints defined on tables to give
extra control over data integrity. JDO 2 provides a mechanism for defining such unique constraints. Lets
take the previous class, and show how to specify this

<cl ass nane="Booki ng" >
<field nane="booki ngType" >
<uni que nane="BOOKI NG_TYPE_CONSTRAI NT"/ >
</field>
</cl ass>

So in an identical way to the specification of an index. This example specification will result in the
column(s) for "bookingType" being enforced as unique in the datastore. In the same way you can specify
unique constraints directly to columns - see the example above for indexes.

Again, as for index, you can also specify unique constraints at "class" level in the MetaData file. This is
useful to specify where the composite of 2 or more columns or fields are unique. So with this example

<cl ass nane="Booki ng" >
<uni que nane="UNI QUE_PERF" >
<field nane="performanceDate"/>
<field name="startTinme"/>
</ uni que>

<field nane="performanceDate"/>

<field name="startTi ne"/>
</ cl ass>

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.8 CONSTRAINTS 205

The table for Booking has a unique constraint on the columns for the fields performanceDate and
startTime

See also :-

* MetaData reference for <unique> element
* Annotations reference for @Unique

* Annotations reference for @Unique (class level)

Foreign Keys

When objects have relationships with one object containing, for example, a Collection of another object,
it is common to store a foreign key in the datastore representation to link the two associated tables.
Moreover, it is common to define behaviour about what happens to the dependent object when the
owning object is deleted. Should the deletion of the owner cause the deletion of the dependent object
maybe ? Lets take an example

public class Hotel

{ private Set roons;

}

public class Room

{ private int number Of Beds;
}

We now want to control the relationship so that it is linked by a named foreign key, and that we cascade
delete the Room object when we delete the Hotel. We define the Meta-Data like this

<cl ass name="Hotel ">
<field name="roons">
<col I ecti on el ement-type="com nydomai n. sanpl es. hot el . Roont'/ >
<f orei gn- key name="HOTEL_ROOVMS_FK" del et e-acti on="cascade"/ >
</field>
</cl ass>

So we now have given the datastore control over the cascade deletion strategy for objects stored in these
tables. Please be aware that JDO2 provides Dependent Fields as a way of allowing cascade deletion. The
difference here is that Dependent Fields is controlled by DataNucleus, whereas foreign key delete actions
are controlled by the datastore (assuming the datastore supports it even)

‘. Extensicn

DataNucleus provides an extension that can give significant benefit to users. This is provided via the
PersistenceManagerFactory datanucleus.rdbms.constraintCreateMode. This property has 2 values. The
default is DataNucleus which will automatically decide which foreign keys are required to satisty the

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.8 CONSTRAINTS 206

relationships that have been specified, whilst utilising the information provided in the MetaData for
foreign keys. The other option is JDO2 which will simply create foreign keys that have been specified in
the MetaData file(s).

Note that the foreign-4¢y for a 1-N FK relation can be specified as above, or under the e/ement element.
Note that the foreign-key for a 1-N JoinTable relation is specified under fie/d for the FK from owner to join
table, and is specified under element for the FK from join table to element table.

In the special case of application-identity and inheritance there is a foreign-key from subclass to
superclass. You can define this as follows

<cl ass nane="M/Subd ass" >
<i nheritance>
<j oi n>
<forei gn-key name="1D_FK"/>
</j oi n>
</inheritance>
</ cl ass>

See also :-

* MetaData reference for <foreignkey> element
* Annotations reference for (@ForeignKey

* Deletion of related objects using FK constraints

Primary Keys

In RDBMS datastores, it is accepted as good practice to have a primary key on all tables. You specify in
other parts of the MetaData which fields are part of the primary key (if using applicatioin identity), or you
define the name of the column DataNucleus should use for the primary key (if using datastore identity).
What these other parts of the MetaData don't allow is specifying the constraint name for the primary key.
You can specify this if you wish, like this

<cl ass nane="Booki ng" >
<pri mary- key nanme="BOOKI NG PK"/ >

<l cl ass>
When the schema is generated for this table, the primary key will be given the specified name, and will
use the column(s) specified by the identity type in use.

In the case where you have a 1-N/M-N relation using a join table you can specify the name of the
primary key constraint used as follows

<cl ass nanme="Hotel ">
<field name="roons">
<col |l ection el ement-type="com nydomai n. sanpl es. hot el . Roont'/ >

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.8 CONSTRAINTS 207

<j oi n>
<pri mary- key nanme="HOTEL_ROOM PK"/ >
</join>
</field>
</ cl ass>

This creates a PK constraint with name "HOTEIL_ROOM_PK".

See also :-

* MetaData reference for <primary-key> element
* Annotations reference for @PrimaryKey

* Annotations reference for @PrimaryKey (class level)

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.9

4.9 INHERITANCE 208

Inheritance

JDO Inheritance Strategies

JDO2

In Java it is a normal situation to have inheritance between classes. With JDO you have choices to make
as to how you want to persist your classes for the inheritance tree. For each class you select how you
want to persist that classes information. You have the following choices.

1. The first and simplest to understand option is where each class has its own table in the datastore. In
JDO2 this is referred to as new-table.

2. The second way is to select a class to have its fields persisted in the table of its subclass. In JDO2 this
is referred to as subclass-table

3. The third way is to select a class to have its fields persisted in the table of its superclass. In JDO2 this
is known as superclass-table.

4. A DataNucleus extension way is to have all classes in an inheritance tree with their own table
containing all fields. This is known as complete-table and is enabled by setting the inheritance strategy
of the root class to use this.

In order to demonstrate the various inheritance strategies we need an example. Here are a few simple
classes representing products in a (online) store. We have an abstract base class, extending this to to
provide something that we can represent any product by. We then provide a few specialisations for
typical products. We will use these classes later when defining how to persistent these objects in the
different inheritance strategies.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.9 INHERITANCE

AbstractProduct

#id: long
#name: String

Fdescription: 5tring

JA

Product

Fprice: double

JaY

Book

Fisbn: int
Fauthor: 5tring
Ftitle: 5tring

TravelGuide

Foountry: String

JDO2 imposes a "default" inheritance strategy if none is specified for a class. If the class is a base class
and no inheritance strategy is specified then it will be set to new-table for that class. If the class has a

CompactDisc

#Fartist: 5tring
Ftitle: 5tring

209

superclass and no inheritance strategy is specified then it will be set to superclass-table. This means that,

when no strategy is set for the classes in an inheritance tree, they will default to using a single table

managed by the base class.

You can control the "default” strategy chosen by way of a -. Extensicn - 1 his is specified by way of a

PMF property datanucleus.defaultInheritanceStrategy. The default is JDO2 which will give the above
JDO 2 default behaviour for all classes that have no strategy specified. The other option is
TABLE_PER_CLASS which will use "new-table" for all classes which have no strategy specified

See also :-

¢ MetaData reference for <inheritance> element

¢ MetaData reference for <discriminator> element

* Annotations reference for @Inheritance

* Annotations reference for @Discriminator

©2008-2009, DataNucle

us « ALL RIGHTS RESERVED

4.9 INHERITANCE 210

New Table

Here we want to have a separate table for each class. This has the advantage of being the most
normalised data definition. It also has the disadvantage of being slower in performance since multiple
tables will need to be accessed to retrieve an object of a sub type. Let's try an example using the simplest
to understand strategy new-table. We have the classes defined above, and we want to persist our classes
each in their own table. We define the Meta-Data for our classes like this

<cl ass nane="Abstract Product">
<i nheritance strategy="newtable"/>
<field nane="id" primary-key="true">
<col um nane="PRODUCT_| D'/ >
</field>
<field name="nane" >
<col um nanme="NAME"/ >
</field>
<field name="description">
<col um nane="DESCRI PTI ON'/ >
</field>
</cl ass>
<cl ass nanme="Product ">
<i nheritance strategy="newtable"/>
<field name="price">
<col um nane="PRI CE"/ >
</field>
</cl ass>
<cl ass nane="Book" >
<inheritance strategy="newtable"/>
<field name="i sbn">
<col um nane="1SBN'/ >
</field>
<field nane="aut hor">
<col um nane="AUTHOR'/ >
</field>
<field name="title">
<col um nane="TI TLE"/ >
</field>
</ cl ass>
<cl ass nane="Travel Gui de" >
<i nheritance strategy="newtable"/>
<field nane="country">
<col um nane=" COUNTRY"/ >
</field>
</ cl ass>
<cl ass nane="Conpact Di sc" >
<i nheritance strategy="newtable"/>
<field nane="artist">
<col um nane="ARTI ST"/ >
</field>
<field name="title">
<col um nane="TI TLE"/ >
</field>
</ cl ass>

We use the inheritance element to define the persistence of the inherited classes.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.9 INHERITANCE 211

In the datastore, each class in an inheritance tree is represented in its own datastore table (tables
ABSTRACTPRODUCT, PRODUCT, BOOK, TRAVELGUIDE, and COMPACTDISC), with the
subclasses tables' having foreign keys between the primary key and the primary key of the supetclass'
table.

ABSTRACTPRODUCT
+PRODUCT_ID
NAME
DESCRIPTION
PRODUCT
r' +PRODUCT_ID B
PRICE |
BOOK COMPACTDISC
+PRODUCT _ID +PRODUCT _ID
ISBN ARTIST
AUTHOR TITLE
TITLE
TRAVELGUIDE
+PRODUCT _ID
| COUNTRY

In the above example, when we insert a TravelGuide object into the datastore, a row will be inserted into
ABSTRACTPRODUCT, PRODUCT, BOOK, and TRAVELGUIDE.

Subclass table

DataNucleus supports persistence of classes in the tables of subclasses where this is required. This is
typically used whete you have an abstract base class and it doesn't make sense having a sepatate table for
that class. In our example we have no real interest in having a separate table for the AbstractProduct
class. So in this case we change one thing in the Meta-Data quoted above. We now change the definition
of AbstractProduct as follows

<cl ass nane="Abstract Product">

<i nheritance strategy="subcl ass-table"/>

<field nane="id" primry-key="true">
<col um nanme="PRODUCT_I D'/ >

</field>

<field name="nane">
<col um nane="NAME"/ >

</field>

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.9 INHERITANCE 212

<field name="description">
<col um nane="DESCRI PTI ON'/ >
</field>
</ cl ass>

This subtle change of use the inheritance element has the effect of using the PRODUCT table for both
the Product and AbstractProduct classes, containing the fields of both classes.

PRODUCT
+PRODUCT _ID
f PRICE ‘I
NAME
BOOK | DESCRIPTION | COMPACTDISC
+PRODUCT _ID +PRODUCT _ID
AUTHOR ARTIST
TITLE TITLE
TRAVELGUIDE
+PRODUCT _ID
| COUNTRY

In the above example, when we insert a TravelGuide object into the datastore, a row will be inserted into
PRODUCT, BOOK, and TRAVELGUIDE.

DataNucleus doesn't currently support the use of classes defined with subclass-table strategy as having
relationships where there are more than a single subclass that has a table. If the class has a single subclass
with its own table then there should be no problem.

Superclass table

DataNucleus supports persistence of classes in the tables of superclasses where this is required. This has
the advantage that retrieval of an object is a single SQL call to a single table. It also has the disadvantage
that the single table can have a very large number of columns, and database readability and performance
can suffer, and additionally that a discriminator column is required. In our example, lets ignore the
AbstractProduct class for a moment and assume that Product is the base class. We have no real interest
in having separate tables for the Book and CompactDisc classes and want everything stored in a single
table PRODUCT. We change our MetaData as follows

<cl ass nanme="Product">
<inheritance strategy="newtable">
<di scri m nator strategy="cl ass-nane">
<col um nane="PRODUCT_TYPE"/ >
</ di scri m nat or >
</inheritance>

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.9 INHERITANCE 213

<field name="id" primary-key="true">
<col um nane="PRODUCT_I D'/ >
</field>
<field name="price">
<col um nane="PRI CE"/ >
</field>
</cl ass>
<cl ass nanme="Book" >
<i nheritance strategy="superclass-table"/>
<field name="i sbn">
<col um nane="1SBN'/ >
</field>
<field nanme="aut hor">
<col um nane=" AUTHOR'/ >
</field>
<field nane="title">
<col um nane="TI TLE"/ >
</field>
</ cl ass>
<cl ass nanme="Travel Qui de" >
<i nheritance strategy="supercl ass-table"/>
<field nane="country">
<col um nane=" COUNTRY"/ >
</field>
</ cl ass>
<cl ass nane="Conpact Di sc" >
<i nheritance strategy="supercl ass-table"/>
<field nanme="artist">
<col um nane="ARTI ST"/ >
</field>
<field nane="title">
<col um nane="DI SCTI TLE"/ >
</field>
</ cl ass>

This change of use of the inheritance element has the effect of using the PRODUCT table for all classes,
containing the fields of Product, Book, CompactDisc, and TravelGuide. You will also note that we used a
discriminator element for the Product class. The specification above will result in an extra column (called
PRODUCT_TYPE) being added to the PRODUCT table, and containing the class name of the object
stored. So for a Book it will have "com.mydomain.samples.store.Book" in that column. This column is
used in discriminating which row in the database is of which type. The final thing to note is that in our
classes Book and CompactDisc we have a field that is identically named. With CompactDisc we have
defined that its column will be called DISCTITLE since both of these fields will be persisted into the
same table and would have had identical names otherwise - this gets around the problem.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.9 INHERITANCE 214

PRODUCT
+PRODUCT ID
PRICE
NAME
DESCRIPTION
AUTHOR
TITLE
COUNTRY
ARTIST
DISCTITLE
PRODUCT TYPE_

In the above example, when we insert a TravelGuide object into the datastore, a row will be inserted into
the PRODUCT table only.

JDO 2 allows two types of discriminators. The example above used a discriminator strategy of
class-name. This inserts the class name into the discriminator column so that we know what the class of
the object really is. The second option is to use a discriminator strategy of value-map. With this we will
define a "value" to be stored in this column for each of our classes. The only thing here is that we have to
define the "value" in the MetaData for ALL classes that use that strategy. So to give the equivalent

example :-

<cl ass nane="Product" >
<i nheritance strategy="newtable">
<di scri m nator strategy="val ue-map" val ue="PRODUCT" >
<col um nane="PRODUCT_TYPE"/ >
</ di scrim nator>
</inheritance>
<field name="id" primary-key="true">
<col um nane="PRODUCT_I D'/ >
</field>
<field name="price">
<col um nane="PRI CE"/ >
</field>
</ cl ass>
<cl ass nanme="Book" >
<i nheritance strategy="supercl ass-table">
<di scri m nator val ue="BOX"/ >
</inheritance>
<field nanme="isbn">
<col um nane="1SBN'/ >
</field>
<field nanme="aut hor">
<col um nanme=" AUTHOR'/ >
</field>
<field nane="title">
<col um nane="TI TLE"/ >
</field>
</ cl ass>
<cl ass nanme="Travel Qui de" >
<inheritance strategy="superclass-table">

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.9 INHERITANCE 215

<di scri m nat or val ue="TRAVELCUI DE"/ >
</inheritance>
<field name="country">
<col um nane=" COUNTRY"/ >
</field>
</cl ass>
<cl ass nane="Conpact Di sc" >
<inheritance strategy="superclass-table">
<di scri m nat or val ue="COVPACTDI SC'/ >
</inheritance>
<field nane="artist">
<col um nane="ARTI ST"/ >
</field>
<field name="title">
<col um nane="DI SCTI TLE"/ >
</field>
</ cl ass>

As you can see from the MetaData DTD it is possible to specify the column details for the discriminator.
DataNucleus supports this, but only currently supports the following values of jdbe-type : VARCHAR,
CHAR, INTEGER, BIGINT, NUMERIC. The default column type will be a VARCHAR.

Complete table

‘ Extensicn

With "complete-table" we define the strategy on the root class of the inheritance tree and it applies to all
subclasses. Each class is persisted into its own table, having columns for all fields (of the class in question
plus all fields of superclasses). So taking the same classes as used above

<cl ass nane="Product">
<i nheritance strategy="conplete-table"/>
<field nane="id" primry-key="true">
<col um nanme="PRODUCT_I D'/ >
</field>
<field nane="price">
<col um nane="PRI CE"/ >
</field>
</ cl ass>
<cl ass nane="Book" >
<field name="isbn">
<col um nanme="1SBN'/ >
</field>
<field nanme="aut hor">
<col um nane=" AUTHOR'/ >
</field>
<field name="title">
<col um nane="TI TLE"/ >
</field>
</ cl ass>
<cl ass nane="Travel Gui de" >
<field name="country">
<col um nane=" COUNTRY"/ >
</field>
</cl ass>

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

216

4.9 INHERITANCE

<cl ass nane="Conpact Di sc">
<field nane="artist">
<col um nane="ARTI ST"/ >
</field>
<field name="title">
<col um nane="DI SCTI TLE"/ >
</field>
</ cl ass>

So the key thing is the specification of inheritance strategy at the root only. This then implies a datastore

schema as follows

PRODUCT BOOK COMPACTDISC TRAVELGUIDE
+PRODUCT ID +PRODUCT ID +PRODUCT ID +FRODUCT_ID

NAME NAME NAME NAME
DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION

ISBN ARTIST ISBEN

AUTHOR TITLE AUTHOR

TITLE TITLE

COUNTRY

So any object of explicit type Book is persisted into the table "BOOK". Similarly any TravelGuide is
petsisted into the table "TRAVELGUIDE". In addition if any class in the inheritance tree is abstract then
it won't have a table since there cannot be any instances of that type. DataNucleus currently has
limitations when using a class using this inheritance as the element of a collection.

Retrieval of inherited objects

JDO provides particular mechanisms for retrieving inheritance trees. These are accessed via the
Extent/Query interface. Taking our example above, we can then do

t x. begin();
Ext ent e = pm get Ext ent (com nmydonai n. sanpl es. store. Product . cl ass, true);

Query g = pm newQuery(e);
Col I ection c=(Col |l ection)qg.execute();
tx.commit();

The second parameter passed to pm.getExtent relates to whether to return subclasses. So if we pass in
the root of the inheritance tree (Product in our case) we get all objects in this inheritance tree returned.
You can, of course, use far more elaborate queries using JDOQL, and SQL but this is just to highlight

the method of retrieval of subclasses.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.10 INTERFACES 217

210 |Interfaces

Interfaces

JDO requires that implementations support the persistence of interfaces as first class objects (FCO's).
DataNucleus provides this capability. It follows the same general process as for java.lang.Object since
both interfaces and java.langObject are basically references to some persistable object.

To demonstrate interface handling lets introduce some classes. Let's suppose you have an interface with a
selection of classes implementing the interface something like this

Shape

+getAreal)

A

Circle Rectangle Square
radius width length
length

You then have a class that contains an object of this interface type

public class ShapeHol der
{

protect ed Shape shape=nul | ;

JDO doesn't define how an interface is persisted in the datastore. Obviously there can be many
implementations and so no obvious solution. DataNucleus allows the following

* per-implementation : a FK is created for each implementation so that the datastore can provide
referential integrity. The other advantage is that since there are FKs then querying can be performed.
The disadvantage is that if there are many implementations then the table can become large with
many columns not used

* identity : a single column is added and this stores the class name of the implementation stored, as
well as the identity of the object. The disadvantages are that no querying can be performed, and that
there is no referential integrity.

* xcalia : a slight variation on "identity" whereby there is a single column yet the contents of that
column are consistent with what Xcalia XIC JDO implementation stored there.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.10 INTERFACES 218

The user controls which one of these is to be used by specifying the extension mapping-strategy on the
field containing the interface. The default is "pet-implementation”

1-1

JDO2

To allow persistence of this interface field with DataNucleus you have 2 levels of control. The first level
is global control. Since all of our Square, Circle, Rectangle classes implements Shape then we just define
them in the MetaData as we would normally.

<package nanme="com nydonai n. sanpl es. shape" >
<cl ass nane="Square" >

</cl ass>
<cl ass nanme="Circle">
</ cl ass>
<cl ass nane="Rect angl e" >
</ cl ass>
</ package>

The global way means that when mapping that field DataNucleus will look at all PersistenceCapable
classes it knows about that implement the specified interface.

JDO2 also allows users to specify a list of classes implementing the interface on a field-by-field basis,
defining which of these implementations are accepted for a particular interface field. To do this you
define the Meta-Data like this

<package nane="com nydonai n. sanpl es. shape" >
<cl ass nane="ShapeHol der" >
<field nane="shape" persistence-nodifier="persistent"
field-type="com nydonai n. sanpl es. shape. Circle,
com nydomai n. sanpl es. shape. Rect angl e,
com nydomai n. sanpl es. shape. Square"/ >
</ cl ass>

That is, for any interface object in a class to be persisted, you define the possible implementation classes
that can be stored there. DataNucleus interprets this information and will map the above example classes
to the following in the database

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.10 INTERFACES

SHAPEHOLDER

+SHAPEHOLDER_ID
#5HAPE_CIRCLE_ID
#5HAPE_RECTANGLE_ID

#SHAPE_SQUARE_ID
__/
'd R
| 1
CIRCLE SQUARE RECTANGLE
+CIRCLE_ID +50UARE_ID +RECTANGLE ID
RADIUS LENGTH WIDTH
LENGTH

219

So DataNucleus adds foreign keys from the containers table to all of the possible implementation tables

for the shape field.

If we use mapping-strategy of "identity" then we get a different datastore schema.

<cl ass nane="ShapeHol der" >
<field nane="shape" persistence-nodifier="persistent">

and the datastore schema becomes

CIRCLE

+CIRCLE_ID

©2008-2009, DataNucleus

RADIUS

<ext ensi on vendor - nanme="dat anucl eus" key="mappi ng-strat egy"
val ue="identity"/>
</field>
</cl ass>

SHAPEHOLDER
+SHAPEHOLDER_ID
SHAPE
SQUARE RECTANGLE
+50UARE_ID +RECTANGLE ID
LENGTH WIDTH
LENGTH

« ALL RIGHTS RESERVED

4.10 INTERFACES 220

and the column "SHAPE" will contain strings such as com.mydomain.samples.shape. Circle:1 allowing retrieval
of the related implementation object.

1-N

You can have a Collection/Map containing elements of an interface type. You specify this in the same
way as you would any Collection/Map. You can have a Collection of interfaces as long as you use a
join table relation and it is unidirectional. The "unidirectional" restriction is that the interface is not
persistent on its own and so cannot store the reference back to the owner object. You need to use a
DataNucleus extension tag "implementation-classes" if you want to restrict the collection to only contain
particular implementations of an interface. Use the 1-N relationship guides for the metadata definition to
use.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.11 OBJECTS 221

211 Objects

JDO Objects

JDO requires that implementations support the persistence of java.lang.Object as first class objects
(FCO's). DataNucleus provides this capability and also provides that java.lang.Object can be stored as
serialised. It follows the same general process as for Interfaces since both interfaces and java.lang.Object
are basically references to some persistable object.

JDO doesn't define how an object FCO is petsisted in the datastore. Obviously there can be many
"implementations" and so no obvious solution. DataNucleus allows the following

* pet-implementation : a FK is created for each "implementation" so that the datastore can provide
referential integrity. The other advantage is that since there are FKs then querying can be performed.
The disadvantage is that if there are many implementations then the table can become large with
many columns not used

* identity : a single column is added and this stores the class name of the "implementation" stored, as
well as the identity of the object. The disadvantages are that no querying can be performed, and that
there is no referential integrity.

* xcalia : a slight variation on "identity" whereby there is a single column yet the contents of that
column are consistent with what Xcalia XIC JDO implementation stored there.

The user controls which one of these is to be used by specifying the extension mapping-strategy on the
field containing the interface. The default is "per-implementation”

FCO
JDO2

Let's suppose you have a field in a class and you have a selection of possible persistable class that could
be stored there, so you decide to make the field a java./ang. Object. So let's take an example. We have the
following class

public class ParkingSpace

{
String | ocation;
Ohj ect occupi er;

So we have a space in a car park, and in that space we have an occupier of the space. We have some
legacy data and so can't make the type of this "occupier" an interface type, so we just use java.lang. Object.
Now we know that we can only have particular types of objects stored there (since there are only a few
types of vehicle that can enter the car park). So we define our MetaData like this

<package nane="com nydonai n. sanpl es. obj ect" >
<cl ass nane="Par ki ngSpace" >
<field name="location"/>

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.11 OBJECTS 222

<field name="occupi er" persistence-nodifier="persistent"
fiel d-type="com nydonai n. sanpl es. vehi cl es. Car,
com nydomai n. sanpl es. vehi cl es. Mot or bi ke"/ >
</field>
</ cl ass>

This will result in the following database schema.

PARKING SPACE

+PARKING SPACE ID
LOCATION

#0CCUPIER CAR ID
#0CCUPIER MOTOREIKE ID

L

CAR MOTORBIKE
+CAR_ID +MOTORBIKE ID

So DataNucleus adds foreign keys from the ParkingSpace table to all of the possible implementation
tables for the occupier field.

In conclusion, when using "petr-implementation" mapping for any java.lang.Object field in a class to be
persisted (as non-serialised), you must define the possible "implementation" classes that can be stored

there.

If we use mapping-strategy of "identity" then we get a different datastore schema.

<cl ass nane="Par ki ngSpace" >
<field name="|ocation"/>
<field nane="occupi er" persistence-nodifier="persistent">
<ext ensi on vendor - nane="dat anucl eus" key="nappi ng-strat egy"
val ue="identity"/>
</field>
</cl ass>

and the datastore schema becomes

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.11 OBJECTS 223

PARKING SPACE

+PARKING SPACE ID
LOCATION

OCCUPTER

CAR MOTORBIKE
+CAR ID HMOTORBIKE ID

and the column "OCCUPIER" will contain strings such as com.mydomain.samples.object. Car:1 allowing
retrieval of the related implementation object.

Collections of Objects

You can have a Collection/Map containing elements of java.lang.Object. You specify this in the same
way as you would any Collection/Map. DataNucleus supports having a Collection of references with
multiple implementation types as long as you use a join table relation.

Serialised Objects

By default a field of type java.lang.Object is stored as an instance of the undetlying PersistenceCapable in
the table of that object. If either your Object field represents non-PersistenceCapable objects or you
simply wish to serialise the Object into the same table as the owning object, you need to specify the
"serialized" attribute, like this

<cl ass nane="MWd ass" >
<field nane="nyCbject" serialized="true"/>
</ cl ass>

Similarly, where you have a collection of Objects using a join table, the objects are, by default, stored in
the table of the PersistenceCapable instance. If instead you want them to occupy a single BLOB column
of the join table, you should specify the "embedded-element" attribute of <collection> like this

<cl ass nane="Md ass" >
<field name="nyCol | ecti on">
<col l ection el ement-type="java.lang. Object" serialized-element="true"/>
<join/>
</field>
</cl ass>

Please refer to the serialised fields guide for more details of storing objects in this way.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.11 OBJECTS 224

©2008-2009, DataNucleus » ALL RIGHTS RESERVED

4.12 ARRAYS 225

412 Arrays

JDO Arrays
D02

JDO allows implementations to optionally support the persistence of arrays. DataNucleus provides full
support for arrays in similar ways that collections are supported, but with the proviso that any changes in
an array cannot be detected by DataNucleus, and so the whole array field needs updating. DataNucleus
supports persisting arrays as

* Single Column - the array is byte-streamed into a single column in the table of the containing object.
* Serialised - the array is serialised into single column in the table of the containing object.

* Using a Join Table - where the array relation is persisted into the join table, with foreign-key links to
an element table where the elements of the array are PersistenceCapable

* Using a Foreign-Key in the element - only available where the array is of a PersistenceCapable type

Single Column Arrays

Let's suppose you have a class something like this

Account

firstName: 5tring
lastName: String
permissions: byte[]

So we have an Account and it has a number of permissions, each expressed as a byte. We want to persist
the permissions in a single-column into the table of the account (but we don't want them serialised). We
then define MetaData something like this

<cl ass nane="Account" identity-type="datastore">
<field nane="firstName">
<col um nane="Fl RST_NAME" | engt h="100" j dbc-type="VARCHAR'/ >
</field>
<field nane="1| ast Name" >
<col um col um="LAST_NAME" | engt h="100" j dbc-type="VARCHAR'/ >

</field>
<field nane="perm ssions" col um="PERM SSI ONS"/ >
</ cl ass>

You could have added <array> to be explicit but the type of the field is an array, and the type declaration
also defines the component type so nothing more is needed. This results in a datastore schema as follows

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.12 ARRAYS

ACCOUNT

+ACCOUNT _ID
FIRST NAME
LAST NAME
PERMISSIONS

226

DataNucleus supports persistence of the following array types in this way : boolean/], byte[], char/], doublef],
float(], intl], long]], short/], Boolean|], Byte[], Character|], Double[], Float/], Integer(], Long/], Short/], BigDecimall],

Biglnteger/]
See also :-

* MetaData reference for <array> element

* Annotations reference for @Element

Serialised Arrays

Let's suppose you have a class something like this

Account

firstName: 5tring
lastName: String
permissions: byte[]

So we have an Account and it has a number of permissions, each expressed as a byte. We want to persist
the permissions as serialised into the table of the account. We then define MetaData something like this

<cl ass nane="Account" identity-type="datastore">
<field name="firstNanme">
<col um nanme="FI RST_NAME" | engt h="100" j dbc-type="VARCHAR"'/ >
</field>
<field name="| ast Name" >
<col um col um="LAST_NAME" | engt h="100" j dbc-type="VARCHAR'/ >

</field>
<field nane="perni ssions" serialized="true" colum="PERM SSI ONS"/ >
</cl ass>

That is, you define the field as serialized. To define arrays of short, long, int, or indeed any other
supported array type you would do the same as above. This results in a datastore schema as follows

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.12 ARRAYS 227

ACCOUNT

+ACCOUNT _ID
FIRST NAME
LAST NAME
PERMISSIONS

DataNucleus supports persistence of many array types in this way, including : boolean|], byte[], char/],
donble[], float|], int[], long/], short[], Boolean|], Byte[], Character(], Double[], Float/], Integer/], Long/], Short/],
BigDecimall], Biglnteger]], String/], java.util. Date[], java.util.Localef]

See also :-

* MetaData reference for <field> element
* MetaData reference for <array> element
* Annotations reference for (@Persistent

* Annotations reference for @Element

* Annotations reference for @Serialized

Arrays persisted into Join Tables

DataNucleus will support arrays persisted into a join table. Let's take the example above and make the
"permission” a class in its own right, so we have

Account Permission

firstName: 5tring name
lastName: String
permissions: Permission(]

So an Account has an array of Permissions, and both of these objects are PersistenceCapable. We want to
persist the relationship using a join table. We define the MetaData as follows

<cl ass nane="Account" tabl e=" ACCOUNT" >
<field nane="first Nanme">
<col um nane="FI RST_NAME" | engt h="100" j dbc-type="VARCHAR"'/ >
</field>
<field nane="1| ast Nane" >
<col um col um="LAST_NAME" | engt h="100" j dbc-type="VARCHAR'/ >

</field>
<field name="perm ssions" tabl e=" ACCOUNT_PERM SSI ONS" >
<array/ >

<join col um="ACCOUNT_I| D'/ >
<el enent col utm="PERM SSION_|I D'/ >
<order col um="PERM SSI ON_ORDER | DX"/ >
</field>
</cl ass>
<cl ass nane="Per m ssi on" tabl e="PERM SS| ON' >
<field nane="nane"/>

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.12 ARRAYS 228

</ cl ass>

This results in a datastore schema as follows

ACCOUNT ACCOUNT_PERMISSIONS PERMISSION
+ACCOUNT ID +ACCOUNT 1D +PERMISSION ID
FIRST_MAME #PERMISSION_ID MAME
LAST NAME +PERMISSION ORDER_IDX
See also :-

* MetaData reference for <array> element

¢ MetaData reference for <element> element
* MetaData reference for <join> element

e MetaData reference for <order> element

* Annotations reference for @Flement

* Annotations reference for @Order

Arrays persisted using Foreign-Keys

DataNucleus will support arrays persisted via a foreign-key in the element table. This is only applicable
when the array is of a PersistenceCapable type. Let's take the same example above. So we have

Account Permission
firstName: 5tring name
lastName: String

permissions: Permission(]

So an Account has an array of Permissions, and both of these objects are PersistenceCapable. We want to
persist the relationship using a foreign-key in the table for the Permission class. We define the MetaData
as follows

<cl ass nane="Account" tabl e=" ACCOUNT" >
<field nane="first Nane">
<col um nane="FI RST_NAME" | engt h="100" j dbc-type="VARCHAR"'/ >
</field>
<field nane="1| ast Nane" >
<col um col um="LAST_NAME" | engt h="100" j dbc-type="VARCHAR'/ >

</field>
<field name="perm ssi ons">
<array/ >

<el ement col um="ACCOUNT_I| D'/ >
<order col um="ACCOUNT_PERM SS|I ON_ORDER_| DX"/ >
</field>
</cl ass>
<cl ass nanme="Perm ssion" tabl e="PERM SSI ON'>

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.12 ARRAYS

<field nane="nane"/>
</cl ass>

This results in a datastore schema as follows

ACCOUNT
+ACCOUNT ID

229

PERMISSION

FIRST MWAME
LAST NAME
See also :-

* MetaData reference for <array> element

* MetaData reference for <element> element
* MetaData reference for <order> element

* Annotations reference for @Flement

* Annotations reference for @Order

+PERMISSION ID
NAME
#ACCOUNT _ID
ACCOUNT PERMISSION ORDER IDX

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.13

4.13 VERSIONING 230

Versioning

JDO Versioning

JDO2 allows objects of classes to be versioned. The version is typically used as a way of detecting if the
object has been updated by another thread or PersistenceManager since retrieval using the current
PersistenceManager - for use by Optimistic Transactions. JDO defines several "strategies" for generating
the version of an object. The strategy has the following possible values

* none stores a number like the version-number but will not perform any optimistic checks.

* version-number stores a number (starting at 1) representing the version of the object.

* date-time stores a Timestamp representing the time at which the object was last updated. Noze that
not all RDBMS store milliseconds in a Timestamp!

* state-image stores a Long value being the hash code of all fields of the object. DataNucleus
doesnt currently support this option

Versioning using a surrogate column

JDO2

JDO2s mechanism for versioning of objects in RDBMS datastores is via a surrogate column in the table
of the class. In the MetaData you specify the details of the surrogate column and the strategy to be used.
For example

<package nane="nydomai n">
<cl ass nane="User" tabl e="USER"'>
<version strategy="version-nunber" col um="VERS|I ON'/ >
<field nane="name" col um="NAME"/>

</ cl ass>

</ package>

alternatively using annotations

@er si st enceCapabl e
@l/er si on(strategy="versi on-nunber"”, col um="VERSI ON"')
public class My ass

{
}

The specification above will create a table with an additional column called "VERSION" that will store
the version of the object.

Versioning using a field of the class

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

4.13 VERSIONING 231

‘. Extensicn

DataNucleus provides a valuable extension to JDO whereby you can have a field of your class store the
version of the object. This equates to JPA's versioning process wheteby you have to have a field present.

To do this lets take a class

public class User

{

String nane;

| ong nyVersion;

and we want to stote the vetsion of the object in the field "myVersion". So we specify the metadata as

follows

<package nane="nydomai n">
<cl ass nanme="User" tabl e="USER'>
<versi on strategy="version-nunber">
<ext ensi on vendor - nane="dat anucl eus" key="fi el d- name"
val ue="nyVersi on"/ >
</ versi on>
<field nane="name" col um="NAME"/>

<field name="nyVersion" col um="VERS|I ON'/ >
</ cl ass>
</ package>

alternatively using annotations

@er si st enceCapabl e
@ler si on(strategy="versi on-nunber", col um="VERSI ON',
ext ensi ons={ @xt ensi on(vendor Nane="dat anucl eus", key="fi el d-nane",
val ue="nmyVersion")})
public class Myd ass

{

protected | ong nyVersion;

and so now objects of our class will have access to the vetsion via the "myVersion" field.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.1 MANAGING RELATIONSHIPS 232

5. Managing Relationships

Relationships

The power of a Java persistence solution like DataNucleus is demonstrated when persisting relationships
between objects. There are many types of relationships.

* 1-1 relationships - this is where you have an object A relates to a second object B. The relation can be
unidirectional where A knows about B, but B doesnt know about A. The relation can be bidirectional
where A knows about B and B knows about A.

* 1-N relationships - this is where you have an object A that has a collection of other objects of type B.
The relation can be wnidirectional where A knows about the objects B but the Bs dont know about A.
The relation can be bidirectional where A knows about the objects B and the Bs know about A

* N-1 relationships - this is where you have an object B1 that relates to an object A, and an object B2
that relates to A also etc. The relation can be unidirectional where the A doesnt know about the Bs. The
relation can be bidirectional where the A has a collection of the Bs. [i.e a 1-N relationship but from the
point of view of the element]

* M-N relationships - this is where you have objects of type A that have a collection of objects of type
B and the objects of type B also have a collection of objects of type A. The relation is always
bidirectional by definition

* Compound Identity relationships when you have a relation and part of the primary key of the related
object is the other persistent object. This is only available in JDO

Assigning Relationships

When the relation is wnidirectional you simply set the related field to refer to the other object. For example
we have classes A and B and the class A has a field of type B. So we set it like this

Aa new A();
B b new B();
a.setB(b); // "a" knows about "b"

When the relation is bidirectional you have to set both sides of the relation. For example, we have classes
A and B and the class A has a collection of elements of type B, and B has a field of type A. So we set it
like this

A a = new A();

B bl = new B();

a. addEl ement (b1); // "a" knows about "bl"
bl.setA(a); // "bl" knows about "a"

So it is really simple, with only 1 general rule. With a bidirectional relation you should set both sides
of the relation

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.1 MANAGING RELATIONSHIPS 233

Managed Relationships

As previously mentioned, users should really set both sides of a bidirectional relation. DataNucleus
provides a good level of managed relations in that it will attempt to correct any missing information in
relations to make both sides consistent. This is defined below

For a 1-1 bidirectional relation, at persist you should set one side of the relation and the other side will
be set to make it consistent. If the respective sides are set to inconsistent objects then an exception will
be thrown at persist. At update of owner/non-owner side the other side will also be updated to make
them consistent.

For a 1-N bidirectional relation and you only specify the element owner then the collection must be
Set-based since DataNucleus cannot generate indexing information for you in that situation (you must
position the elements). At update of element or owner the other side will also be updated to make them
consistent. At delete of element the owner collection will also be updated to make them consistent. If
you are using a List you MUST set both sides of the relation

For an M-N bidirectional relation, at persist you MUST set the one side and the other side will be
populated at commit/flush to make them consistent.

This management of relations can be turned on/off using a PMF propetty datanucleus.manageRelationships.
If you always set both sides of a relation at persist or update then you could safely turn it off.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.2 CASCADING 234

52 Cascading

Cascading Operations

JDO2

When defining your objects to be persisted and the relationships between them, it is often required to
define dependencies between these related objects. What should happen when persisting an object and it
relates to another object? What should happen to a related object when an object is deleted? You can
define what happens with JDO2 and with DataNucleus. Let's take an example

public class Oaner

{
private DrivingLicense |icense;
private Col |l ection cars;

}

public class Drivinglicense

{
private String serial Nunber;

}

public class Car

{
private String registrationNunber;
private Oaner owner;

}

So we have an Owner of a collection of vintage Car's (1-N), and the Owner has a Drivinglicense (1-1). We
want to define lifecycle dependencies to match the relationships that we have between these objects.
Firstly lets look at the basic Meta-Data for the objects.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE j do SYSTEM "file:/javax/jdo/jdo.dtd">
<j do>
<package nane="com nmydonai n. sanpl es. cars">
<cl ass nane="Owner" >
<field name="license" persistence-nodifier="persistent"/>
<field name="cars">
<col l ection el enent-type="com nydomnai n. sanpl es. cars. Car"
mapped- by="owner"/ >
</field>
</ cl ass>

<cl ass name="Drivi ngLi cense">

<field nane="seri al Nunber"/>
</ cl ass>

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.2 CASCADING 235

<cl ass nanme="Car">
<field nane="registrati onNunber"/>
<field name="owner" persistence-nodifier="persistent"/>
</ cl ass>
</ package>
</jdo>

Persistence

JDO?2 defines a concept called persistence-by-reachability. This means that when you persist an object
and it has a related persistable object then this other object is also persisted. So using our example if we
do

Omner bob = new Omner ("Bob Smth");

DrivinglLi cense |license = new DrivingLi cense("011234BX4J");
bob. set Li cense(license);

pm nakePer si st ent (bob); // "bob" knows about "license"

This results in both the Owner and the Drivingl icense objects being made persistent since the Owner is
passed to the PM operation and it has a field referring to the unpersisted Drivingl icense object. So
"reachability" will persist the license.

‘. Exlensicn

With DataNucleus you can actually turn off persistence-by-reachability for particular fields, by specifying in
the MetaData a DataNucleus extension tag, as follows

<cl ass nane="Owner" >

<field nane="1icense" persistence-nodifier="persistent">
<ext ensi on vendor - nanme="dat anucl eus" key="cascade-persist" value="fal se"/>
</field>
</cl ass>

So with this specification when we call makePersistent() with an object of type Owner then the field "license”

will not be persisted at that time.

Update

As mentioned above JDO2 defines a concept called persistence-by-reachability. This applies not just
to persist but also to update of objects, so when you update an object and its updated field has a
persistable object then that will be persisted. So using our example if we do

Omnner bob = (Owner)pm get Obj ect Byl d(i d);
DrivinglLi cense |icense2 = new DrivingLi cense("233424BX4J");

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.2 CASCADING 236

bob. set Li cense(license2); // "bob" knows about "license2"

So when this field is updated the new Drivingl icense object will be made persistent since it is reachable
from the persistent Owner object.

‘. Extensicn

With DataNucleus you can actually turn off update-by-reachability for particular fields, by specifying in the
MetaData a DataNucleus extension tag, as follows

<cl ass nanme="Oaner" >

<field nane="1icense" persistence-nodifier="persistent">
<ext ensi on vendor - nane="dat anucl eus" key="cascade-update" val ue="fal se"/>
</field>
</cl ass>

So with this specification when we call makePersistent() to update an object of type Owner then the field
"license" will not be updated at that time.

Deletion, using Dependent Field

So we have an inverse 1-N relationship (no join table) between our Owner and his precious Car's, and a
1-1 relationship between the Owner and his Drivingl icense, because without his license he wouldn't be able
to drive the cars :-0. What will happen to the /Zcense and the cars when the owner dies ? Well in this
particular case we want to define that the when the owneris deleted, then his Zcense will also be deleted
(since it is for him only), but that his crs will continue to exist, because his daughter will inherit them. In
JDO2 this is called Dependent Fields. To utilise this concept to achieve our end goal we change the
Meta-Data to be

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE j do SYSTEM "file:/javax/jdo/jdo.dtd">
<j do>
<package nane="com nydonai n. sanpl es. cars">
<cl ass nane="Owner" >
<field nane="1icense" persistence-nodifier="persistent"
dependent ="true"/>
<field name="cars">
<col |l ection el ement-type="com nydomai n. sanpl es. cars. Car"
mapped- by="owner"
dependent - el enent ="f al se"/ >
</field>
</ cl ass>

<cl ass nane="Dri vi ngLi cense" >
<field name="seri al Nunber"/ >

</ cl ass>

<cl ass nanme="Car">
<field nane="registrati onNunber"/>

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.2 CASCADING 237

<field name="owner" persistence-nodifier="persistent"
dependent ="f al se"/ >
</cl ass>
</ package>
</jdo>

So it was as simple as just adding dependent and dependent-element attributes to our related fields.
Notice that we also added one to the other end of the Owner-Car relationship, so that when a Car comes
to the end of its life, the Owner will not die with it. It may be the case that the owner dies driving the car
and they both die at the same time, but their deaths are independent!!

Dependent Fields is utilised in the following situations
* An object is deleted (using deletePersistent()) and that object has relations to other objects. If the other
objects (either 1-1, 1-N, or M-N) are dependent then they are also deleted.

* An object has a 1-1 relation with another object, but the other object relation is nulled out. If the
other object is dependent then it is deleted when the relation is nulled.

* An object has a 1-N collection relation with other objects and the element is removed from the
collection. If the element is dependent then it will be deleted when removed from the collection. The
same happens when the collections is cleared.

* An object has a 1-N map relation with other objects and the key is removed from the map. If the key
or value are dependent and they are not present in the map more than once they will be deleted when
they are removed. The same happens when the map is cleared.

Deletion, using Foreign Keys (RDBMS)

With JDO2 you can use "dependent-field" as shown above. As an alternative, when using RDBMS, you
can use the datastore-defined foreign keys and let the datastore built-in "referential integrity” look after
such deletions. DataNucleus provides a PMF property datanuclens.deletionPolicy allowing enabling of this
mode of operation.

The default setting of datanuclens.deletionPolicy is "JDO2" which petforms deletion of related objects as
follows

1. If dependent-field is true then use that to define the related objects to be deleted.

2. Else, if the column of the foreign-key field is NULLable then NULL it and leave the related object

alone

3. Else deleted the related object (and throw exceptions if this fails for whatever datastore-related
reason)

The other setting of datanucleus.deletionPolicy is "DataNucleus" which performs deletion of related objects
as follows
1. If dependent-field is true then use that to define the related objects to be deleted.

2. If a foreign-key 1s specified (in MetaData) for the relation field then leave any deletion to the datastore
to perform (or throw exceptions as necessary)

3. Else, if the column of the foreign-key field is NULLable then NULL it and leave the related object

alone

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.2 CASCADING 238

4. Else deleted the related object (and throw exceptions if this fails for whatever datastore-related
reason)

So, as you can see, with the second option you have the ability to utilise datastore "referential integrity"
checking using your MetaData-specified <foreign-key> elements.

Persisting Relationships - Reachability At Commit

One further complication is that with JDO there is also a process called persistence-by-reachability at
commit. When objects are persisted, other objects are persisted with them. If some relations are changed
before commit and some of these related objects are no longer required to be persistent then they will not
be persisted. For example, using our classes above

Onner bob = new Oaner ("Bob Snith");

DrivinglLi cense |icense = new DrivingLi cense("233424BX4J3");
bob. set Li cense(license); // "bob" knows about "license"
pm makePer si st ent (bob) ;

DrivingLicense |icense2 = new DrivingLi cense("344566A99XH") ;
bob. setLi cense(license2); // "bob" doesnt know about "license" now. It knows about
"license2" now.

/1 "bob" and "license2" will be persisted but "license" wont be since not persisted
explicitly

/1 and at commit it is no |onger reachable froma persisted object

tx.commt();

With DataNucleus you can turn off persistence-by-reachability at commit by setting the
PersistenceManagerFactory property datanuclens.persistenceByReachability.AtCommit to false.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.3

5.3 1-TO-1 239

JDO 1-1 Relationships
JDO2

You have a 1-to-1 relationship when an object of a class has an associated object of another class (only
one associated object). It could also be between an object of a class and another object of the same class
(obviously). You can create the relationship in 2 ways depending on whether the 2 classes know about
each other (bidirectional), or whether only one of the classes knows about the other class (unidirectional).
These are described below.

The various possible relationships are described below.

* 1-1 Unidirectional (where only 1 object is aware of the other)
* 1-1 Bidirectional (where both objects are aware of each other)

* 1-1 Unidirectional "Compound Identity" (object as part of PK in other object)

Unidirectional

For this case you could have 2 classes, User and Account, as below.
so the Account class knows about the User class, but not vice-versa. If you define the Meta-Data for
these classes as follows

<package nanme="nydomai n">
<cl ass nanme="User" tabl e="USER'>
<field name="id" primary-key="true">
<col um nane="USER | D'/ >
</field>
<field nane="1ogin">
<col um nane="LOd N' | engt h="20" j dbc-type="VARCHAR'/ >
</field>
</ cl ass>

<cl ass name="Account" tabl e=" ACCOUNT" >
<field name="id" primary-key="true">
<col um nane="ACCOUNT_I D'/ >
</field>
<field nane="first Nanme">
<col um nane="Fl RSTNAME" | engt h="50" j dbc-type="VARCHAR'/ >
</field>
<field name="secondNane" >
<col um nane="SECONDNAME" | engt h="50" j dbc-type="VARCHAR"'/ >
</field>
<field nane="user" persistence-nodifier="persistent">
<col um nane="USER | D'/ >
</field>
</ cl ass>
</ package>

This will create 2 tables in the database, one for User (with name USER), and one for Account (with

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.3 1-TO-1 240

name ACCOUNT and a column USER_ID), as shown below.
Things to note :-

* Account has the object reference (and so owns the relation) to User and so its table holds the
foreign-key

* If you call PM.deletePersistent() on the end of a 1-1 unidirectional relation without the relation and
that object is related to another object, an exception will typically be thrown (assuming the RDBMS
supportts foreign keys). To delete this record you should remove the other objects association first.

Bidirectional

For this case you could have 2 classes, User and Account again, but this time as below. Here the Account
class knows about the User class, and also vice-versa.

Here we create the 1-1 relationship with a single foreign-key. To do this you define the MetaData as

<package nane="nydomai n">
<cl ass nane="User" tabl e="USER">
<field nanme="id" prinmary-key="true">
<col um nane="USER | D'/ >
</field>
<field nane="1ogin">
<col um nane="LOd N' | engt h="20" j dbc-type="VARCHAR'/ >
</field>
<field name="account" persistence-nodifier="persistent" mapped-by="user">
</field>
</cl ass>

<cl ass name="Account" tabl e=" ACCOUNT" >
<field nane="id" primary-key="true">
<col um nane="ACCOUNT_I D'/ >
</field>
<field name="firstNanme">
<col um nanme="FI RSTNAME" | engt h="50" j dbc-type="VARCHAR'/ >
</field>
<field name="secondNane" >
<col um nane="SECONDNAME" | engt h="50" j dbc-type="VARCHAR'/ >
</field>
<field nane="user" persistence-nodifier="persistent">
<col um nane="USER | D'/ >
</field>
</cl ass>
</ package>

The difference is that we added mapped-by to the field of User. This will create 2 tables in the database,
one for User (with name USER), and one for Account (with name ACCOUNT including a USER_ID).
The fact that we specified the mapped-by on the User class means that the foreign-key is created in the

ACCOUNT table.

Things to note :-

* The "mapped-by" is specified on User (the non-owning side) and so the foreign-key is held by the
table of Account (the owner of the relation)

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.3 1-TO-1 241

* When forming the relation please make sure that you set the relation at BOTH sides since
DataNucleus would have no way of knowing which end is correct if you only set one end.

Embedded

The above 2 relationship types assume that both classes in the 1-1 relation will have their own table. You
can, of course, embed the elements of one class into the table of the other. This is described in

Embedded PC Objects.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.4

5.4 1-TO-N 242

JDO 1-N Relationships
JDO2

You have a 1-N (one to many) when you have one object of a class that has a Collection/Map of objects
of another class. In the java.util package there are an assortment of possible collection/map classes and
they all have subtly different behaviour with respect to allowing nulls, allowing duplicates, providing
ordering, etc. There are two ways in which you can represent a collection or map in a datastore : Join
Table (where a join table is used to provide the relationship mapping between the objects), and
Foreign-Key (where a foreign key is placed in the table of the object contained in the collection or map.

We split our documentation based on what type of collection/map you are using.

* 1-N using Collection types
* 1-N using Set types
* 1-N using List type
* 1-N using Map type

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

541

5.4.1 1-TO-N (COLLECTION) 243

1-to-N (Collection)

JDO 1-N/N-1 Relationships with Collections
JDO2

You have a 1-N (one to many) or N-1 (many to one) when you have one object of a class that has a
Collection of objects of another class. Please note that Collections allow duplicates, and so the
persistence process reflects this with the choice of primary keys. There are two ways in which you can
represent this in a datastore : Join Table (where a join table is used to provide the relationship mapping
between the objects), and Foreign-Key (where a foreign key is placed in the table of the object contained
in the Collection.

The various possible relationships are described below:.

* 1-N Unidirectional using Join Table

* 1-N Unidirectional using Foreign-Key

* 1-N Bidirectional using Join Table

* 1-N Bidirectional using Foreign-Key

* 1-N Unidirectional of non-PC using Join Table

* 1-N embedded elements using Join Table

* 1-N Serialised collection

* 1-N using shared join table

* 1-N using shared foreign key

* 1-N Bidirectional "Compound Identity" (owner object as part of PK in element)

Important : If you declate a field as a Collection, you can instantiate it as either Set-based or as List-based.
With a List an "ordering" column is requited, whereas with a Set it isn't. Consequently DataNucleus
needs to know if you plan on using it as Set-based or List-based. You do this by adding an "order"
element to the field if it is to be instantiated as a List-based collection. If there is no "order" element, then
it will be assumed to be Set-based.

1-N Collection Unidirectional

We have 2 sample classes Account and Address. These are related in such a way as Account contains a
Collection of objects of type Address, yet each Address knows nothing about the Account objects that it
relates to. Like this

#id: long #id: long
Ffirsthame: 5tring y - #rity: String
#Flasthame: 5tring #street: String
Faddresses: Collection

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.4.1 1-TO-N (COLLECTION)

There are 2 ways that we can persist this relationship. These are shown below

Using Join Table

If you define the Meta-Data for these classes as follows

<package nane="com nydomai n">
<cl ass nanme="Account ">
<field name="id" primary-key="true">
<col um nane="ACCOUNT_I D'/ >
</field>
<field nane="first Name" >

<col um nane="FI RSTNAME" | engt h="100" j dbc-type="VARCHAR"'/ >

</field>
<field nane="1 ast Nane" >

<col um nane="LASTNAME" | engt h="100" j dbc-type="VARCHAR'/ >

</field>
<field nane="addresses" persistence-nodifier="persistent"
t abl e=" ACCOUNT _ADDRESSES" >

<col | ection el ement-type="com nydomnai n. Addr ess"/ >
<j oin colum="ACCOUNT_ID O D'/ >
<el enent col um="ADDRESS | D EID'/>

</field>

</ cl ass>

<cl ass nane="Address">
<field nane="id" primary-key="true">
<col um nane="ADDRESS_| D'/ >
</field>
<field name="city">
<col um nanme="CI TY" | engt h="50" jdbc-type="VARCHAR"'/>
</field>
<field name="street">
<col um nane="STREET" | engt h="50" j dbc-type="VARCHAR'/ >
</field>
</ cl ass>
</ package>

244

The crucial part is the join element on the field element - this signals to JDO to use a join table. This will

create 3 tables in the database, one for Address, one for Account, and a join table, as shown below.

The join table is used to link the 2 classes via foreign keys to their primary key. This is useful where you

want to retain the independence of one class from the other class.

If you wish to fully define the schema table and column names etc, follow these tips

* To specify the name of the table where a class is stored, specify the table attribute on the class

element

* To specify the names of the columns where the fields of a class are stored, specify the column

attribute on the field element.

* To specify the name of the join table, specify the table attribute on the field element with the

collection.

* To specify the names of the join table columns, use the column attribute of join, element elements.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.4.1 1-TO-N (COLLECTION) 245

* To specify the foreign-key between container table and join table, specify <foreign-key> below the
<join> element.

* To specify the foreign-key between join table and element table, specify <foreign-key> below either
the <field> element or the <element> element.

* If you wish to share the join table with another relation then use the DataNucleus "shared join table"
extension

* The join table will, by default, be given a primary key. If you want to omit this then you can turn it off
using the DataNucleus metadata extension "primary-key" (within <join>) set to false.

* The column "ADPT_PK_IDX" is added by DataNucleus so that duplicates can be stored. You can
control this by adding an <order> element and specifying the column name for the order column, or
you can override the default naming of this column by specifying the DataNucleus extension
"adapter-column-name" (within <field>).

* If you want the set to include nulls, you can turn on this behaviour by adding the DataNucleus
extension metadata "allows-null" to the <field> set to true

Using Foreign-Key

In this relationship, the Account class has a List of Address objects, yet the Address knows nothing about
the Account. In this case we don't have a field in the Address to link back to the Account and so

DataNucleus has to use columns in the datastore representation of the Address class. So we define the
MetaData like this

<package nane="com nydonai n">
<cl ass nane="Account ">
<field nane="id" primary-key="true">
<col um nanme="ACCOUNT_I D'/ >
</field>
<field name="firstNanme">
<col um nane="FI RSTNAME" | engt h="100" j dbc-type="VARCHAR"'/ >
</field>
<field nane="1ast Nane" >
<col um nane="LASTNAME" | engt h="100" j dbc-type="VARCHAR'/>
</field>
<field name="addresses" persistence-nodifier="persistent">
<col l ection el enment-type="com nydonai n. Addr ess"/ >
<el ement col um="ACCOUNT_I| D'/ >
</field>
</cl ass>

<cl ass nane="Address">
<field name="id" primary-key="true">
<col um nane="ADDRESS | D'/ >
</field>
<field name="city">
<col um nane="CI TY" | ength="50" jdbc-type="VARCHAR"'/>
</field>
<field nanme="street">
<col um nane="STREET" | engt h="50" j dbc-type="VARCHAR'/>
</field>
</ cl ass>
</ package>

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.4.1 1-TO-N (COLLECTION) 246

Again there will be 2 tables, one for Address, and one for Account. Note that we have no "mapped-by"
attribute specified, and also no "join" element. If you wish to specify the names of the columns used in
the schema for the foreign key in the Address table you should use the element element within the field
of the collection.

In terms of operation within your classes of assigning the objects in the relationship. You have to take
your Account object and add the Address to the Account collection field since the Address knows
nothing about the Account.

If you wish to fully define the schema table and column names etc, follow these tips

* To specify the name of the table where a class is stored, specify the table attribute on the class
element

* To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the field element.

* To specify the foreign-key between container table and element table, specify <foreign-key> below
either the <field> element or the <element> element.

Limitation : Since each Address object can have at most one owner (due to the "Foreign Key") this mode
of persistence will not allow duplicate values in the Collection. If you want to allow duplicate Collection
entties, then use the "Join Table" variant above.

1-N Collection Bidirectional

We have 2 sample classes Account and Address. These are related in such a way as Account contains a
Collection of objects of type Address, and each Address has a reference to the Account object that it
relates to. Like this

Account Address
#id: long #id: long
#firstName: String | #oity: String
#Flasthame: 5tring #street: String
Faddresses: Collection faccount: Account

There are 2 ways that we can persist this relationship. These are shown below

Using Join Table

If you define the Meta-Data for these classes as follows

<package nane="com nmydonai n">
<cl ass nanme="Account">
<field nane="id" prinmary-key="true">
<col um nane="ACCOUNT_I D'/ >
</field>
<field nane="first Name" >
<col um nane="FI RSTNAME" | engt h="100" j dbc-type="VARCHAR"'/ >

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.4.1 1-TO-N (COLLECTION) 247

</field>
<field nane="1| ast Name" >
<col um nane="LASTNAME" | engt h="100" j dbc-type="VARCHAR'/ >
</field>
<field nane="addresses" persistence-nodifier="persistent"
mapped- by="account ">
<col | ection el ement-type="com nydonai n. Addr ess"/ >
<join/>
</field>
</cl ass>

<cl ass nane="Address">
<field nane="id" primary-key="true">
<col um nane="ADDRESS_| D'/ >
</field>
<field name="city">
<col um nane="CI TY" | engt h="50" jdbc-type="VARCHAR"'/>
</field>
<field name="street">
<col um nane="STREET" | engt h="50" j dbc-type="VARCHAR'/ >
</field>
<field nane="account" persistence-nodifier="persistent">
</field>
</cl ass>
</ package>

The crucial part is the join element on the field element - this signals to JDO to use a join table. This will
create 3 tables in the database, one for Address, one for Account, and a join table, as shown below.

The join table is used to link the 2 classes via foreign keys to their primary key. This is useful where you
want to retain the independence of one class from the other class.

If you wish to fully define the schema table and column names etc, follow these tips

* To specify the name of the table where a class is stored, specify the table attribute on the class
element

* To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the field element.

* To specify the name of the join table, specify the table attribute on the field element with the
collection.

* To specify the names of the join table columns, use the column attribute of join, element elements.

* To specify the foreign-key between container table and join table, specify <foreign-key> below the
<join> element.

* To specify the foreign-key between join table and element table, specity <foreign-key> below either
the <field> element or the <element> element.

* If you wish to share the join table with another relation then use the DataNucleus "shared join table"
extension

* The join table will, by default, be given a primary key. If you want to omit this then you can turn it off
using the DataNucleus metadata extension "primary-key" (within <join>) set to false.

* The column "ADPT_PK_IDX" is added by DataNucleus so that duplicates can be stored. You can

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.4.1 1-TO-N (COLLECTION) 248

control this by adding an <order> element and specifying the column name for the order column, or
you can override the default naming of this column by specifying the DataNucleus extension
"adapter-column-name" (within <field>).

* When forming the relation please make sure that you set the relation at BOTH sides since
DataNucleus would have no way of knowing which end is correct if you only set one end.

* If you want the set to include nulls, you can turn on this behaviour by adding the extension metadata
"allows-null" to the <field> set to true

Using Foreign-Key
Here we have the 2 classes with both knowing about the relationship with the other.

If you define the Meta-Data for these classes as follows

<package nane="com nydonai n">
<cl ass nane="Account ">
<field name="id" primary-key="true">
<col um nane="ACCOUNT_I D'/ >
</field>
<field nane="first Name">
<col um nane="Fl RSTNAME" | engt h="100" j dbc-type="VARCHAR'/ >
</field>
<field nane="1| ast Name" >
<col um nane="LASTNAME" | engt h="100" j dbc-type="VARCHAR'/ >
</field>
<field nane="addresses" persistence-nodifier="persistent"
mapped- by="account ">
<col l ection el ement-type="com nydonai n. Addr ess"/ >
</field>
</cl ass>

<cl ass nanme="Address">
<field nane="id" primary-key="true">
<col um nane="ADDRESS_| D'/ >
</field>
<field name="city">
<col um nanme="CI TY" | engt h="50" jdbc-type="VARCHAR"'/>
</field>
<field name="street">
<col um nane="STREET" | engt h="50" j dbc-type="VARCHAR'/ >
</field>
<field nane="account" persistence-nodifier="persistent">
<col um nanme="ACCOUNT_I D'/ >
</field>
</cl ass>
</ package>

The crucial part is the mapped-by attribute of the field on the "1" side of the relationship. This tells the
JDO implementation to look for a field called account on the Address class. This will create 2 tables in
the database, one for Address (including an ACCOUNT_ID to link to the ACCOUNT table), and one
for Account. Notice the subtle difference to this set-up to that of the Join Table relationship earlier.

If you wish to fully define the schema table and column names etc, follow these tips

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.4.1 1-TO-N (COLLECTION) 249

* To specify the name of the table where a class is stored, specify the table attribute on the class
element

* To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the field element.

* To specify the foreign-key between container table and element table, specify <foreign-key> below
either the <field> element or the <element> element.

* When forming the relation please make sure that you set the relation at BOTH sides since
DataNucleus would have no way of knowing which end is correct if you only set one end.

Limitation : Since each Address object can have at most one owner (due to the "Foreign Key") this mode
of persistence will not allow duplicate values in the Collection. If you want to allow duplicate Collection
entties, then use the "Join Table" variant above.

1-N Collection of non-PersistenceCapable objects

All of the examples above show a 1-N relationship between 2 PersistenceCapable classes. DataNucleus
can also cater for a Collection of primitive or Object types. For example, when you have a Collection of
Strings. This will be persisted in the same way as the "Join Table" examples above. A join table is created
to hold the collection elements. Let's take our example. We have an Account that stores a Collection of
addresses. These addresses are simply Strings. We define the Meta-Data like this

<package nane="com nmydonai n">
<cl ass nane="Account">
<field name="id" primary-key="true">
<col um nanme="ACCOUNT_I D'/ >
</field>
<field name="firstName">
<col um nane="Fl RSTNAME" | engt h="100" j dbc-type="VARCHAR'/ >
</field>
<field nane="1ast Nane" >
<col um nane="LASTNAME" | engt h="100" j dbc-type="VARCHAR'/>
</field>
<field nane="addresses" persistence-nodifier="persistent">
<coll ection el ement-type="java.lang. String"/>
<join/>
<el enent col utm="ADDRESS"/ >
</field>
</ cl ass>

In the datastore the following is created

The ACCOUNT table is as before, but this time we only have the "join table". In our MetaData we used
the <element> tag to specify the column name to use for the actual address String.

Please note that the column ADPT_PK_IDX is added by DataNucleus so that duplicates can be stored.
You can override the default naming of this column by specifying the DataNucleus extension
"adapter-column-name" within the <field> for the Collection.

Embedded into a Join Table

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.4.1 1-TO-N (COLLECTION) 250

The above relationship types assume that both classes in the 1-N relation will have their own table. A
variation on this is where you have a join table but you embed the elements of the collection into this join
table. To do this you use the embedded-element attribute on the collection MetaData element. This is
described in Embedded Collection Elements.

Serialised into a Join Table

The above relationship types assume that both classes in the 1-N relation will have their own table. A
variation on this is where you have a join table but you serialise the elements of the collection into this
join table in a single column. To do this you use the serialised-element attribute on the collection
MetaData element. This is described in Serialised Collection Elements

Shared Join Tables

‘. Extensicn

The relationships using join tables shown above rely on the join table relating to the relation in question.
DataNucleus allows the possibility of sharing a join table between relations. The example below
demonstrates this. We take the example as show above (1-N Unidirectional Join table relation), and
extend Account to have 2 collections of Address records. One for home addresses and one for work
addresses, like this

Account Address
-firstName: 5tring < -city: String
-lastName: String -street: String
-homefddresses: Collection

-workfddresses: Collection

We now change the metadata we had earlier to allow for 2 collections, but sharing the join table

<package nane="com nydonai n">
<cl ass nanme="Account ">
<field name="id" primary-key="true">
<col um nane="ACCOUNT_I D'/ >
</field>
<field nane="first Name">
<col um nane="Fl RSTNAME" | engt h="100" j dbc-type="VARCHAR'/ >
</field>
<field name="| ast Nane" >
<col um nane="LASTNAME" | engt h="100" j dbc-type="VARCHAR'/ >
</field>
<field nane="wor kAddr esses" persi stence-nodifier="persistent"
t abl e=" ACCOUNT_ADDRESSES" >
<col | ection el ement-type="com nydonai n. Addr ess"/ >
<join colum="ACCOUNT_ID QO D'/ >
<el enent col um="ADDRESS | D EID'/ >
<ext ensi on vendor - nane="dat anucl eus" key="rel ati on-di scri m nat or-col um"
val ue=" ADDRESS_TYPE"/ >
<ext ensi on vendor - name="dat anucl eus" key="rel ati on-di scri m nat or - pk"

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.4.1 1-TO-N (COLLECTION) 251

val ue="true"/>
<ext ensi on vendor - nane="dat anucl eus" key="rel ati on-di scri m nator-val ue"
val ue="work"/ >
</field>
<field nane="honmeAddr esses" persi stence-nodifier="persistent"
t abl e=" ACCOUNT_ADDRESSES" >
<col | ection el ement-type="com nydonai n. Addr ess"/ >
<join colum="ACCOUNT_ID QO D'/ >
<el ement col um="ADDRESS_| D_EI D'/ >
<ext ensi on vendor - nane="dat anucl eus" key="rel ati on-di scri m nat or-col um"
val ue=" ADDRESS_TYPE"/ >
<ext ensi on vendor - name="dat anucl eus" key="rel ati on-di scri m nat or - pk"
val ue="true"/>
<ext ensi on vendor - nane="dat anucl eus" key="rel ati on-di scri m nator-val ue"
val ue="hone"/ >
</field>
</cl ass>

<cl ass nanme="Address">
<field nane="id" primary-key="true">
<col um nane="ADDRESS_| D'/ >
</field>
<field name="city">
<col um nanme="CI TY" | engt h="50" jdbc-type="VARCHAR"'/>
</field>
<field name="street">
<col um nane="STREET" | engt h="50" j dbc-type="VARCHAR'/ >
</field>
</ cl ass>
</ package>

So we have defined the same join table for the 2 collections "ACCOUNT_ADDRESSES", and the same
columns in the join table, meaning that we will be sharing the same join table to represent both relations.
The important step is then to define the 3 DataNucleus extension tags. These define a column in the join
table (the same for both relations), and the value that will be populated when a row of that collection is
inserted into the join table. In our case, all "home" addresses will have a value of "home" inserted into
this column, and all "work" addresses will have "work" inserted. This means we can now identify easily
which join table entry represents which relation field.

This results in the following database schema

ACCOUNT ACCOUNT_ADDRESSES ADDRESS

+ACCOUNT ID +ACCOUNT ID 0ID +ADDRESS ID
FIRSTHAME +ADDRESS ID EID STREET
LASTHAME +ADDRESS TYPE CITY

Shared Foreign Key

‘. Extensicn

The relationships using foreign keys shown above rely on the foreign key relating to the relation in
question. DataNucleus allows the possibility of sharing a foreign key between relations between the same
classes. The example below demonstrates this. We take the example as show above (1-N Unidirectional

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.4.1 1-TO-N (COLLECTION) 252

Foreign Key relation), and extend Account to have 2 collections of Address records. One for home
addresses and one for work addresses, like this

Account Address
-firstName: 5tring < -city: String
-lastName: 5tring -street: 5tring
-homefddresses: Collection

-workfddresses: Collection

We now change the metadata we had earlier to allow for 2 collections, but sharing the join table

<package nane="com nydonmai n">
<cl ass nanme="Account ">
<field name="id" primary-key="true">
<col um nane="ACCOUNT_I D'/ >
</field>
<field nane="first Name">
<col um nane="Fl RSTNAME" | engt h="100" j dbc-type="VARCHAR'/ >
</field>
<field name="| ast Nane" >
<col um nane="LASTNAME" | engt h="100" j dbc-type="VARCHAR'/ >
</field>
<field nanme="wor kAddr esses" persi stence-nodifier="persistent">
<col I ection el ement-type="com nydomnai n. Addr ess"/ >
<el enent colum="ACCOUNT_ID O D'/ >
<ext ensi on vendor - nane="dat anucl eus"” key="rel ati on-di scri m nator-col um"
val ue=" ADDRESS_TYPE"/ >
<ext ensi on vendor - nane="dat anucl eus" key="rel ati on-di scri m nator-val ue"
val ue="work"/ >
</field>
<field nane="homeAddr esses" persi stence-nodifier="persistent">
<col | ection el ement-type="com nydomai n. Addr ess"/ >
<el enent col um="ACCOUNT_ID QO D'/ >
<ext ensi on vendor - nane="dat anucl eus" key="rel ati on-di scri m nat or-col um"
val ue=" ADDRESS_TYPE"/ >
<ext ensi on vendor - nane="dat anucl eus" key="rel ati on-di scri m nator-val ue"
val ue="hone"/ >
</field>
</ cl ass>

<cl ass nanme="Address">
<field nanme="id" prinmary-key="true">
<col um nane="ADDRESS | D'/ >
</field>
<field name="city">
<col um nane="ClI TY" | engt h="50" jdbc-type="VARCHAR"'/ >
</field>
<field name="street">
<col um nane="STREET" | ength="50" jdbc-type="VARCHAR'/ >
</field>
</ cl ass>
</ package>

So we have defined the same foreign key for the 2 collections "TACCOUNT_ID_OID", The important

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.4.1 1-TO-N (COLLECTION) 253

step is then to define the 2 DataNucleus extension tags. These define a column in the element table (the
same for both relations), and the value that will be populated when a row of that collection is inserted
into the element table. In our case, all "home" addresses will have a value of "home" inserted into this
column, and all "work" addresses will have "work" inserted. This means we can now identify easily which
clement table entry represents which relation field.

This results in the following database schema

ACCOUNT ADDRESS
FACCOUNT ID +ADDRESS 1D
FIRSTNAME STREET
LASTNAME CITY
FACCOUNT ID 0ID
-ADDRESS TYPE

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

54.2

5.4.2 1-TO-N (SET) 254

1-to-N (Set)

JDO 1-N/N-1 Relationships with Sets
JDO2

You have a 1-N (one to many) or N-1 (many to one) when you have one object of a class that has a Set
of objects of another class. Please note that Sets do not allow duplicates, and so the persistence process
reflects this with the choice of primary keys. There are two ways in which you can represent this in a
datastore : Join Table (where e join table is used to provide the relationship mapping between the
objects), and Foreign-Key (where a foreign key is placed in the table of the object contained in the Set.

The various possible relationships are described below.

* 1-N Unidirectional using Join Table

* 1-N Unidirectional using Foreign-Key

* 1-N Bidirectional using Join Table

* 1-N Bidirectional using Foreign-Key

* 1-N Unidirectional of non-PC using Join Table

* 1-N embedded elements using Join Table

* 1-N Serialised Set

* 1-N using shared join table

* 1-N using shared foreign key

* 1-N Bidirectional "Compound Identity" (owner object as part of PK in element)

This page is aimed at Set fields and so applies to fields of Java type java.util. HashSet, java.util.LinkedHashSet,
Java.util.Set, java.util.SortedSet, java.util. TreeSet

1-N Set Unidirectional

We have 2 sample classes Account and Address. These are related in such a way as Account contains a
Set of objects of type Address, yet each Address knows nothing about the Account objects that it relates
to. Like this

Account
#Fid: Long
Ffirsthame: String fe>=

#FlastName: 5tring
#Faddresses: Set

Address
#Fid: long
#Fcity: 5tring
#Fstreet: 5tring

There are 2 ways that we can persist this relationship. These are shown below

Using Join Table

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.4.2 1-TO-N (SET) 255

If you define the Meta-Data for these classes as follows

<package nane="com nydomai n">
<cl ass nane="Account ">
<field name="id" primary-key="true">
<col um nane="ACCOUNT_I D'/ >
</field>
<field nane="first Nanme">
<col um nane="FI RSTNAME" | engt h="100" j dbc-type="VARCHAR"'/>
</field>
<field name="| ast Nane" >
<col umm nane="LASTNAME" | engt h="100" j dbc-type="VARCHAR'/ >
</field>
<field name="addresses" persistence-nodifier="persistent">
<col l ection el ement-type="com nydomai n. Addr ess"/ >
<j oi n/ >
</field>
</ cl ass>

<cl ass nanme="Address">
<field name="id" primary-key="true">
<col um nane="ADDRESS | D'/ >
</field>
<field name="city">
<col um nanme="Cl TY" | ength="50" jdbc-type="VARCHAR'/ >
</field>
<field name="street">
<col um nane="STREET" | engt h="50" j dbc-type="VARCHAR'/ >
</field>
</ cl ass>
</ package>

The crucial part is the join element on the field element - this signals to JDO to use a join table. This will
create 3 tables in the database, one for Address, one for Account, and a join table, as shown below.

The join table is used to link the 2 classes via foreign keys to their primary key. This is useful where you
want to retain the independence of one class from the other class.

If you wish to fully define the schema table and column names etc, follow these tips

To specify the name of the table where a class is stored, specify the table attribute on the class
element

To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the field element.

To specity the name of the join table, specify the table attribute on the field element with the
collection.

To specify the names of the join table columns, use the column attribute of join, element elements.

To specity the foreign-key between container table and join table, specify <foreign-key> below the
<join> element.

To specify the foreign-key between join table and element table, specify <foreign-key> below either
the <field> element or the <element> element.

If you wish to share the join table with another relation then use the DataNucleus "shared join table"

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.4.2 1-TO-N (SET) 256

extension

* The join table will, by default, be given a primary key. If you want to omit this then you can turn it off
using the DataNucleus metadata extension "primary-key" (within <join>) set to false.

* If you want the set to include nulls, you can turn on this behaviour by adding the extension metadata
"allows-null" to the <field> set to true

Using Foreign-Key

In this relationship, the Account class has a List of Address objects, yet the Address knows nothing about
the Account. In this case we don't have a field in the Address to link back to the Account and so
DataNucleus has to use columns in the datastore representation of the Address class. So we define the
MetaData like this

<package nanme="com nmydonai n">
<cl ass nane="Account ">
<field name="id" primary-key="true">
<col um nanme="ACCOUNT_I D'/ >
</field>
<field name="firstName">
<col um nane="Fl RSTNAME" | engt h="100" j dbc-type="VARCHAR'/ >
</field>
<field nane="1ast Nane" >
<col um nane="LASTNAME" | engt h="100" j dbc-type="VARCHAR'/>
</field>
<field nane="addresses" persistence-nodifier="persistent">
<col l ection el ement-type="com nydonai n. Addr ess"/ >
<el ement col um="ACCOUNT_I| D'/ >
</field>
</ cl ass>

<cl ass nane="Address">
<field name="id" primary-key="true">
<col um nane="ADDRESS | D'/ >
</field>
<field name="city">
<col um nane="CI TY" | engt h="50" jdbc-type="VARCHAR"'/ >
</field>
<field nane="street">
<col um nane="STREET" | ength="50" jdbc-type="VARCHAR'/ >
</field>
</ cl ass>
</ package>

Again there will be 2 tables, one for Address, and one for Account. Note that we have no "mapped-by"
attribute specified, and also no "join" element. If you wish to specify the names of the columns used in
the schema for the foreign key in the Address table you should use the element element within the field
of the collection.

In terms of operation within your classes of assigning the objects in the relationship. You have to take
your Account object and add the Address to the Account collection field since the Address knows
nothing about the Account. Also be aware that each Address object can have only one owner, since it has
a single foreign key to the Account. If you wish to have an Address assigned to multiple Accounts then

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.4.2 1-TO-N (SET) 257

you should use the "Join Table" relationship above.
If you wish to fully define the schema table and column names etc, follow these tips
* To specify the name of the table where a class is stored, specify the table attribute on the class

element

* To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the field element.

* To specify the foreign-key between container table and element table, specify <foreign-key> below
cither the <field> element or the <element> element.

1-N Set Bidirectional

We have 2 sample classes Account and Address. These are related in such a way as Account contains a
Set of objects of type Address, and each Address has a reference to the Account object that it relates to.
Like this

Account Address
#id: Llong #Fid: long
#firstName: 5tring | S #city: String
#Flasthame: 5tring #street: String
#Faddresses: Set #Faccount: Account

There are 2 ways that we can persist this relationship. These are shown below

Using Join Table

If you define the Meta-Data for these classes as follows

<package nane="com nydonmai n">
<cl ass nanme="Account ">
<field name="id" primary-key="true">
<col um nane="ACCOUNT_I D'/ >
</field>
<field nane="first Name">
<col um nane="Fl RSTNAME" | engt h="100" j dbc-type="VARCHAR'/ >
</field>
<field nane="1| ast Name" >
<col um nane="LASTNAME" | engt h="100" j dbc-type="VARCHAR'/ >
</field>
<field nane="addresses" persistence-nodifier="persistent"
mapped- by="account ">
<col l ection el ement-type="com nydonai n. Addr ess"/ >
<join/>
</field>
</cl ass>

<cl ass nane="Address">
<field nanme="id" primary-key="true">

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.4.2 1-TO-N (SET) 258

<col um nanme="ADDRESS | D'/ >
</field>
<field name="city">
<col um nane="CI TY" | engt h="50" jdbc-type="VARCHAR"'/>
</field>
<field nanme="street">
<col um nane="STREET" | engt h="50" j dbc-type="VARCHAR'/>
</field>
<field nane="account" persistence-nodifier="persistent">
</field>
</ cl ass>
</ package>

The crucial part is the join element on the field element - this signals to JDO to use a join table. This will

create 3 tables in the database, one for Address, one for Account, and a join table, as shown below.

The join table is used to link the 2 classes via foreign keys to their primary key. This is useful where you

want to retain the independence of one class from the other class.

If you wish to fully define the schema table and column names etc, follow these tips

To specity the name of the table where a class is stored, specify the table attribute on the class
element

To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the field element.

To specify the name of the join table, specify the table attribute on the field element with the
collection.

To specity the names of the join table columns, use the column attribute of join, element elements.

To specity the foreign-key between container table and join table, specify <foreign-key> below the
<join> element.

To specity the foreign-key between join table and element table, specify <foreign-key> below either
the <field> element or the <element> element.

If you wish to share the join table with another relation then use the DataNucleus "shared join table"
extension

The join table will, by default, be given a primary key. If you want to omit this then you can turn it off
using the DataNucleus metadata extension "primary-key" (within <join>) set to false.

When forming the relation please make sure that you set the relation at BOTH sides since
DataNucleus would have no way of knowing which end is correct if you only set one end.

If you want the set to include nulls, you can turn on this behaviour by adding the extension metadata
"allows-null" to the <field> set to true

Using Foreign-Key

Here we have the 2 classes with both knowing about the relationship with the other.

If you define the Meta-Data for these classes as follows

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.4.2 1-TO-N (SET) 259

<package nane="com nydomai n">
<cl ass nane="Account ">
<field name="id" primary-key="true">
<col um name="ACCOUNT_I| D'/ >
</field>
<field name="firstName">
<col um nane="FI RSTNAME" | engt h="100" j dbc-type="VARCHAR"'/>
</field>
<field nane="1| ast Name" >
<col umm nane="LASTNAME" | engt h="100" j dbc-type="VARCHAR'/ >
</field>
<field nane="addresses" persistence-nodifier="persistent"
mapped- by="account " >
<col I ection el ement-type="com nydomnai n. Addr ess"/ >
</field>
</cl ass>

<cl ass nane="Address">
<field name="id" primary-key="true">
<col um nane="ADDRESS_| D'/ >
</field>
<field name="city">
<col um nanme="Cl TY" | ength="50" jdbc-type="VARCHAR'/ >
</field>
<field name="street">
<col um nane="STREET" | engt h="50" j dbc-type="VARCHAR'/ >
</field>
<field nane="account" persistence-nodifier="persistent">
<col um nane="ACCOUNT_I D'/ >
</field>
</ cl ass>
</ package>

The crucial part is the mapped-by attribute of the field on the "1" side of the relationship. This tells the
JDO implementation to look for a field called account on the Address class. This will create 2 tables in
the database, one for Address (including an ACCOUNT_ID to link to the ACCOUNT table), and one
for Account. Notice the subtle difference to this set-up to that of the Join Table relationship earlier.

If you wish to fully define the schema table and column names etc, follow these tips

* To specify the name of the table where a class is stored, specify the table attribute on the class
element

* To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the field element.

* To specify the foreign-key between container table and element table, specify <foreign-key> below
either the <field> element or the <element> element.

* When forming the relation please make sure that you set the relation at BOTH sides since
DataNucleus would have no way of knowing which end is correct if you only set one end.

1-N Set of non-PersistenceCapable objects

All of the examples above show a 1-N relationship between 2 PersistenceCapable classes. DataNucleus
can also cater for a Collection of primitive or Object types. For example, when you have a Collection of

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.4.2 1-TO-N (SET) 260

Strings. This will be persisted in the same way as the "Join Table" examples above. A join table is created
to hold the collection elements. Let's take our example. We have an Account that stores a Collection of
addresses. These addresses are simply Strings. We define the Meta-Data like this

<package nane="com nmydonai n">
<cl ass nane="Account ">
<field name="id" primary-key="true">
<col um nanme="ACCOUNT_I D'/ >
</field>
<field name="firstName">
<col um nane="F|l RSTNAME" | engt h="100" j dbc-type="VARCHAR'/ >
</field>
<field nane="1ast Nane" >
<col um nane="LASTNAME" | engt h="100" j dbc-type="VARCHAR'/>
</field>
<field nane="addresses" persistence-nodifier="persistent">
<col l ection el ement-type="java.lang. String"/>
<join/>
<el enent col utm="ADDRESS"/ >
</field>
</ cl ass>

In the datastore the following is created

The ACCOUNT table is as before, but this time we only have the "join table". In our MetaData we used
the <element> tag to specify the column name to use for the actual address String.

Please note that the column ADPT_PK_IDX is added by DataNucleus when the column type of the
element is not valid to be part of a primary key (with the RDBMS being used). If the column type of your
element is acceptable for use as part of a primary key then you will not have this "ADPT_PK_IDX"
column. You can override the default naming of this column by specifying the DataNucleus extension
"adapter-column-name" within the <field> for the Collection.

Embedded into a Join Table

The above relationship types assume that both classes in the 1-N relation will have their own table. A
variation on this is where you have a join table but you embed the elements of the collection into this join
table. To do this you use the embedded-element attribute on the collection MetaData element. This is
described in Embedded Collection Elements.

Serialised into a Join Table

The above relationship types assume that both classes in the 1-N relation will have their own table. A
variation on this is where you have a join table but you serialise the elements of the collection into this
join table in a single column. To do this you use the serialised-element attribute on the collection
MetaData element. This is described in Serialised Collection Elements

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

543

5.4.3 1-TO-N (LIST) 261

1-to-N (List)

JDO 1-N/N-1 Relationships with Lists
JDO2

You have a 1-N (one to many) or N-1 (many to one) when you have one object of a class that has a List
of objects of another class. There are two ways in which you can represent this in a datastore. Join Table
(where a join table is used to provide the relationship mapping between the objects), and Foreign-Key
(where a foreign key is placed in the table of the object contained in the List.

The various possible relationships are described below.

* 1-N Unidirectional using Join Table

* 1-N Unidirectional using Foreign-Key

* 1-N Ordered List using Foreign-Key

* 1-N Bidirectional using Join Table

* 1-N Bidirectional using Foreign-Key

* 1-N Unidirectional of non-PC using Join Table
* 1-N embedded elements using Join Table

* 1-N Serialised List

* 1-N using shared join table

* 1-N using shared foreign key

* 1-N Bidirectional "Compound Identity" (owner object as part of PK in element)

This page is aimed at List fields and so applies to fields of Java type java.util. Arraylist, java.util.Linkedl ist,
Java.util.List, java.util.Stack, java.util.) ector

1-N List Unidirectional

We have 2 sample classes Account and Address. These are related in such a way as Account contains a
List of objects of type Address, yet each Address knows nothing about the Account objects that it relates
to. Like this

Account Address
-firsthame: String <> -city: String
-lasthName: S5tring -street: String
-addresses: List

There are 2 ways that we can persist this relationship. These are shown below

Using Join Table

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.4.3 1-TO-N (LIST) 262

If you define the Meta-Data for these classes as follows

<package nane="com nydomai n">
<cl ass nane="Account" identity-type="datastore">
<field nane="first Name" persistence-nodifier="persistent">
<col um | engt h="100" j dbc-type="VARCHAR'/ >
</field>
<field nane="1ast Name" persi stence-nodifier="persistent">
<col umm | engt h="100" j dbc-type="VARCHAR'/ >
</field>
<field name="addresses" persistence-nodifier="persistent">
<col l ection el enent-type="com nydonai n. Addr ess"/ >
<join/>
</field>
</ cl ass>

<cl ass nane="Address" identity-type="datastore">
<field name="city" persistence-nodifier="persistent">
<col um | engt h="50" j dbc-type="VARCHAR'/ >
</field>
<field nane="street" persistence-nodifier="persistent">
<col um | engt h="50" j dbc-type="VARCHAR'/ >
</field>
</ cl ass>
</ package>

The crucial part is the join element on the field element - this signals to JDO to use a join table. There
will be 3 tables, one for Address, one for Account, and the join table. The difference from Set is in the
contents of the join table. An index column INTEGER_IDX) is added to keep track of the position of
objects in the List. The name of this column can be controlled using the <order> MetaData element.

The join table is used to link the 2 classes via foreign keys to their primary key. This is useful where you
want to retain the independence of one class from the other class.

If you wish to fully define the schema table and column names etc, follow these tips

* To specify the name of the table where a class is stored, specify the table attribute on the class
clement

* To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the field element.

* To specify the name of the join table, specify the table attribute on the field element with the
collection.

* To specify the names of the join table columns, use the column attribute of join, element and order
elements.

* To specify the foreign-key between container table and join table, specify <foreign-key> below the
<join> element.

* To specify the foreign-key between join table and element table, specify <foreign-key> below either
the <field> element or the <element> element.

* If you wish to share the join table with another relation then use the DataNucleus "shared join table"
extension

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.4.3 1-TO-N (LIST) 263

* The join table will, by default, be given a primary key. If you want to omit this then you can turn it off
using the DataNucleus metadata extension "primary-key" (within <join>) set to false.

* The column "ADPT_PK_IDX" is added by DataNucleus so that duplicates can be stored. You can
control this by adding an <order> element and specifying the column name for the order column, or
you can override the default naming of this column by specifying the DataNucleus extension
"adapter-column-name" (within <field>).

* If you want the set to include nulls, you can turn on this behaviour by adding the extension metadata
"allow-nulls" to the <field> set to true

Using Foreign-Key

In this relationship, the Account class has a List of Address objects, yet the Address knows nothing about
the Account. In this case we don't have a field in the Address to link back to the Account and so
DataNucleus has to use columns in the datastore representation of the Address class. So we define the
MetaData like this

<package nanme="com nmydonai n">
<cl ass nane="Account" identity-type="datastore">
<field name="firstName" persistence-nodifier="persistent">
<col umm | engt h="100" j dbc-type="VARCHAR'/ >
</field>
<field nane="1ast Name" persi stence-nodifier="persistent">
<col umm | engt h="100" j dbc-type="VARCHAR'/ >
</field>
<field nane="addresses" persistence-nodifier="persistent">
<col | ection el ement-type="com nydomnai n. Addr ess"/ >
<el enent col utm="ACCOUNT_I D'/ >
</field>
</cl ass>

<cl ass nane="Address" identity-type="datastore">
<field nane="city" persistence-nodifier="persistent">
<col um | engt h="50" j dbc-type="VARCHAR'/ >
</field>
<field name="street" persistence-nodifier="persistent">
<col um | engt h="50" j dbc-type="VARCHAR'/ >
</field>
</cl ass>
</ package>

Again there will be 2 tables, one for Address, and one for Account. Note that we have no "mapped-by"
attribute specified, and also no "join" element. If you wish to specify the names of the columns used in
the schema for the foreign key in the Address table you should use the element element within the field
of the collection.

In terms of operation within your classes of assigning the objects in the relationship. With DataNucleus
and List-based containers you have to take your Account object and add the Address to the Account
collection field since the Address knows nothing about the Account.

If you wish to fully define the schema table and column names etc, follow these tips

* To specify the name of the table where a class is stored, specify the table attribute on the class

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.4.3 1-TO-N (LIST) 264

element

* To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the field element.

* To specify the foreign-key between container table and element table, specify <foreign-key> below
either the <field> element or the <element> element.

Limitations

* Since each Address object can have at most one owner (due to the "Foreign Key") this mode of
persistence will not allow duplicate values in the List. If you want to allow duplicate List entries, then
use the "Join Table" variant above.

1-N Ordered List using Foreign-Key

‘. Extensicn

This is the same as the case above except that we don't want an indexing column adding to the element
and instead we define an "ordering" criteria. This is a DataNucleus extension to JDO. So we define the
MetaData like this

<package nane="com nydonai n">
<cl ass nane="Account" identity-type="datastore">

<field nane="first Name" persistence-nodifier="persistent">
<col um | engt h="100" j dbc-type="VARCHAR'/ >

</field>

<field name="| ast Nanme" persistence-nodifier="persistent">
<col um | engt h="100" j dbc-type="VARCHAR'/ >

</field>

<field nane="addresses" persistence-nodifier="persistent">
<col l ection el ement-type="com nydomai n. Addr ess"/ >

<or der >
<ext ensi on vendor - nane="dat anucl eus" key="list-ordering" value="city
ASC'/ >
</ or der >
</field>
</cl ass>

<cl ass nane="Address" identity-type="datastore">
<field nane="city" persistence-nodifier="persistent">
<col um | engt h="50" j dbc-type="VARCHAR'/ >
</field>
<field nane="street" persistence-nodifier="persistent">
<col um | engt h="50" j dbc-type="VARCHAR'/ >
</field>
</ cl ass>
</ package>

As above there will be 2 tables, one for Address, and one for Account. We have no indexing column, but
instead we will order the elements using the "city" field in ascending order.

In terms of operation within your classes of assigning the objects in the relationship. With DataNucleus
and List-based containers you have to take your Account object and add the Address to the Account
collection field since the Address knows nothing about the Account.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.4.3 1-TO-N (LIST) 265

Limitations

* Otrdered lists are only ordered in the defined way when retrieved from the datastore.

1-N List Bidirectional

We have 2 sample classes Account and Address. These are related in such a way as Account contains a
List of objects of type Address, and each Address has a reference to the Account object that it relates to.
Like this

Account Address
-firstName: String <> -city: String
-lastName: String -street: String
-addresses: List -account: Account

There are 2 ways that we can persist this relationship. These are shown below

Using Join Table

If you define the Meta-Data for these classes as follows

<package nane="com nydonai n">
<cl ass nane="Account" identity-type="datastore">
<field nane="first Name" persistence-nodifier="persistent">
<col um | engt h="100" j dbc-type="VARCHAR'/ >
</field>
<field name="| ast Nanme" persistence-nodifier="persistent">
<col umm | engt h="100" j dbc-type="VARCHAR'/ >
</field>
<field nane="addresses" persistence-nodifier="persistent"
mapped- by="account " >
<col l ection el ement-type="com nydomai n. Addr ess"/ >
<j oi n/ >
</field>
</cl ass>

<cl ass nane="Address" identity-type="datastore">
<field nane="city" persistence-nodifier="persistent">
<col um | engt h="50" j dbc-type="VARCHAR'/ >
</field>
<field nane="street" persistence-nodifier="persistent">
<col umm | engt h="50" j dbc-type="VARCHAR'/ >
</field>
<field nane="account" persistence-nodifier="persistent">
</field>
</ cl ass>
</ package>

The crucial part is the join element on the field element - this signals to JDO to use a join table. There
will be 3 tables, one for Address, one for Account, and the join table. The difference from Set is in the

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.4.3 1-TO-N (LIST) 266

contents of the join table. An index column INTEGER_IDX)) is added to keep track of the position of
objects in the List. The name of this column can be controlled using the <order> MetaData element.

The join table is used to link the 2 classes via foreign keys to their primary key. This is useful where you
want to retain the independence of one class from the other class.

If you wish to fully define the schema table and column names etc, follow these tips

* To specify the name of the table where a class is stored, specify the table attribute on the class
element

* To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the field element.

* To specify the name of the join table, specify the table attribute on the field element with the
collection.

* To specify the names of the join table columns, use the column attribute of join, element and order
elements.

* To specify the foreign-key between container table and join table, specify <foreign-key> below the
<join> element.

* To specify the foreign-key between join table and element table, specify <foreign-key> below ecither
the <field> element or the <element> element.

* If you wish to share the join table with another relation then use the DataNucleus "shared join table"
extension

* The join table will, by default, be given a primary key. If you want to omit this then you can turn it off
using the DataNucleus metadata extension "primary-key" (within <join>) set to false.

* The column "ADPT_PK_IDX" is added by DataNucleus so that duplicates can be stored. You can
control this by adding an <order> element and specifying the column name for the order column, or
you can override the default naming of this column by specifying the DataNucleus extension
"adapter-column-name" (within <field>).

* When forming the relation please make sure that you set the relation at BOTH sides since
DataNucleus would have no way of knowing which end is correct if you only set one end.

* If you want the set to include nulls, you can turn on this behaviour by adding the extension metadata
"allow-nulls" to the <field> set to true

Using Foreign-Key

Here we have the 2 classes with both knowing about the relationship with the other.

Please note that an Foreign-Key List will NOT, by default, allow duplicates. This is because it
stores the element position in the element table. If you need a List with duplicates we
recommend that you use the Join Table List implementation above. If you have an application
identity element class then you could in principle add the element position to the primary key to allow
duplicates, but this would imply changing your element class identity.

If you define the Meta-Data for these classes as follows

<package nane="com nydomai n">

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.4.3 1-TO-N (LIST) 267

<cl ass nanme="Account" identity-type="datastore">
<field nane="first Nanme" persistence-nodifier="persistent">
<col um | engt h="100" j dbc-type="VARCHAR'/ >
</field>
<field nane="1ast Name" persistence-nodifier="persistent">
<col um | engt h="100" j dbc-type="VARCHAR'/ >
</field>
<field name="addresses" persistence-nodifier="persistent"
mapped- by="account ">
<col l ection el ement-type="com nydonai n. Addr ess"/ >
</field>
</ cl ass>

<cl ass nane="Address" identity-type="datastore">
<field name="city" persistence-nodifier="persistent">
<col umm | engt h="50" j dbc-type="VARCHAR'/ >
</field>
<field nane="street" persistence-nodifier="persistent">
<columm | engt h="50" j dbc-type="VARCHAR'/ >
</field>
<field nane="account" persistence-nodifier="persistent">
<col um nane="ACCOUNT_I| D'/ >
</field>
</cl ass>
</ package>

The crucial part is the mapped-by attribute of the field on the "1" side of the relationship. This tells the
JDO implementation to look for a field called account on the Address class. Again there will be 2 tables,
one for Address, and one for Account. The difference from the Set example is that the List index is
placed in the table for Address whereas for a Set this is not needed.

In terms of operation within your classes of assigning the objects in the relationship. With DataNucleus
and List-based containers you have to take your Account object and add the Address to the Account
collection field (you can't just take the Address object and set its Account field since the position of the
Address in the List needs setting, and this is done by adding the Address to the Account). In addition, if
you are removing an object from a List, you cannot simply set the owner on the element to "null". You
have to remove it from the List end of the relationship.

If you wish to fully define the schema table and column names etc, follow these tips

* To specify the name of the table where a class is stored, specify the table attribute on the class
element

* To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the field element.

* To specify the foreign-key between container table and element table, specify <foreign-key> below
either the <field> element or the <element> element.

* When forming the relation please make sutre that you set the relation at BOTH sides since
DataNucleus would have no way of knowing which end is correct if you only set one end.

Limitation : Since each Addtess object can have at most one owner (due to the "Foreign Key") this mode
of persistence will not allow duplicate values in the List. If you want to allow duplicate List entries, then
use the "Join Table" variant above.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.4.3 1-TO-N (LIST) 268

1-N List of non-PersistenceCapable objects

All of the examples above show a 1-N relationship between 2 PersistenceCapable classes. DataNucleus
can also cater for a List of primitive or Object types. For example, when you have a List of Strings. This
will be persisted in the same way as the "Join Table" examples above. A join table is created to hold the
list elements. Let's take our example. We have an Account that stores a List of addresses. These addresses
are simply Strings. We define the Meta-Data like this

<package nane="com nydomai n">
<cl ass nane="Account" identity-type="datastore">
<field nane="first Name" persistence-nodifier="persistent">
<col umm | engt h="100" j dbc-type="VARCHAR'/ >
</field>
<field nane="1ast Name" persi stence-nodifier="persistent">
<col um | engt h="100" j dbc-type="VARCHAR'/ >
</field>
<field nane="addresses" persistence-nodifier="persistent">
<col l ection el ement-type="java.lang. String"/>
<join/>
<el enent col utm="ADDRESS"/ >
</field>
</ cl ass>

In the datastore the following is created

The ACCOUNT table is as before, but this time we only have the "join table". In our MetaData we used
the <element> tag to specify the column name to use for the actual address String. In addition we have
an additional index column to form part of the primary key (along with the FK back to the ACCOUNT
table). You can override the default naming of this column by specifying the <order> tag,

Embedded into a Join Table

The above relationship types assume that both classes in the 1-N relation will have their own table. A
variation on this is where you have a join table but you embed the elements of the collection into this join
table. To do this you use the embedded-element attribute on the collection MetaData element. This is
described in Embedded Collection Elements.

Serialised into a Join Table

The above relationship types assume that both classes in the 1-N relation will have their own table. A
variation on this is where you have a join table but you serialise the elements of the collection into this
join table in a single column. To do this you use the serialised-element attribute on the collection
MetaData element. This is described in Serialised Collection Elements

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

54.4

5.4.4 1-TO-N (MAP) 269

1-to-N (Map)

JDO 1-N/N-1 Relationships with Maps
JDO2

You have a 1-N (one to many) or N-1 (many to one) when you have one object of a class that has a Map
of objects of another class. There are two general ways in which you can represent this in a datastore. Join
Table (where a join table is used to provide the relationship mapping between the objects), and
Foreign-Key (where a foreign key is placed in the table of the object contained in the Map.

The various possible relationships are described below.
* Map|PC, PC] using join table
* Map|Simple, PC] using join table
* Map|PC, Simple| using join table
* Map|Simple, Simple| using join table
* 1-N Bidirectional using Foreign-Key (key stored in the value class)
* 1-N Unidirectional using Foreign-Key (key stored in the value class)
* 1-N Unidirectional using Foreign-Key (value stored in the key class)
* 1-N embedded keys/values using Join Table
* 1-N Serialised map
* 1-N Bidirectional "Compound Identity" (owner object as part of PK in value)

This page is aimed at Map fields and so applies to fields of Java type java.util. HashMap, java.util. Hashtable,
Java.util. LinkedHashMap, java.util Map, java.util.SortedMap, java.util. TreeMap, java.ntil. Properties

1-N Map using Join Table

We have a class Account that contains a Map. With a Map we store values using keys. As a result we have
3 main combinations of key and value, bearing in mind whether the key or value is PersistenceCapable.

Map[PC, PC]

Here both the keys and the values are PersistenceCapable. Like this

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.4.4 1-TO-N (MAP) 270

Account Name
-firstName: String o

-lastName: String
-addresses: Map<Name, Address=

Address

-city: String
-street: String

If you define the Meta-Data for these classes as follows

<package nane="com nmydonai n">
<cl ass nane="Account" identity-type="datastore">
<field name="firstnanme" persistence-nodifier="persistent">
<col um | engt h="100" j dbc-type="VARCHAR'/ >
</field>
<field name="| astname" persistence-nodifier="persistent">
<col um | engt h="100" j dbc-type="VARCHAR'/ >
</field>
<field nane="addresses" persistence-nodifier="persistent">
<map key-type="com nydomai n. Nanme" val ue-type="com nydonai n. Addr ess"/ >
<j oin/>
</field>
</cl ass>

<cl ass nane="Address" identity-type="datastore">
<field nane="city" persistence-nodifier="persistent">
<col um | engt h="50" j dbc-type="VARCHAR'/ >
</field>
<field nane="street" persistence-nodifier="persistent">
<col um | engt h="50" j dbc-type="VARCHAR'/ >
</field>
</ cl ass>

<cl ass nane="Nanme" identity-type="datastore">
</cl ass>
</ package>

This will create 4 tables in the datastore, one for Account, one for Address, one for Name and a join
table containing foreign keys to the key/value tables.

If you want to configure the names of the columns in the "join" table you would use the <key> and
<value> subelements of <field>, something like this

<field nane="addresses" persistence-nodifier="persistent"
t abl e=" ACCOUNT_ADDRESS" >
<map key-type="com nydomai n. Name" val ue-type="com nydonai n. Addr ess"/ >
<j oi n>
<col um nane="ACCOUNT_I D'/ >
</j oi n>

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.4.4 1-TO-N (MAP)

<key>
<col um nane="NAME_I| D'/ >
</ key>
<val ue>
<col um nane="ADDRESS_| D'/ >
</ val ue>
</field>

If you wish to fully define the schema table and column names etc, follow these tips

* To specify the name of the table where a class is stored, specify the table attribute on the class

element

* To specify the names of the columns where the fields of a class are stored, specify the column

attribute on the field element.

* To specify the name of the join table, specify the table attribute on the field element.

271

* To specify the foreign-key between container table and join table, specify <foreign-key> below the

<join> element.

* To specify the foreign-key between join table and key table, specify <foreign-key> below the <key>

element.

* To specify the foreign-key between join table and value table, specify <foreign-key> below the

<value> element.

Which changes the names of the join table to ACCOUNT_ADDRESS from ACCOUNT_ADDRESSES

and the names of the columns in the join table from ACCOUNT_ID_OID to ACCOUNT_ID, from

NAME_ID_KID to NAME_ID, and from ADDRESS_ID_VID to ADDRESS_ID.

Map[Simple, PC]

Here our key is a simple type (in this case a String) and the values are PersistenceCapable. Like this

Account

-firstName: String
-lastName: String
-addresses: Map=5tring, Address=

Address

o

-city: String
-street: S5tring

If you define the Meta-Data for these classes as follows

<package nanme="com nydomai n">

<cl ass nane="Account" identity-type="datastore">
<field nane="firstnanme" persistence-nodifier="persistent">
<col um | engt h="100" j dbc-type="VARCHAR'/ >

</field>

<field nane="1ast name" persistence-nodifier="persistent">
<col um | engt h="100" j dbc-type="VARCHAR'/ >

</field>

<field name="addresses" persistence-nodifier="persistent">
<map key-type="java.lang. String" val ue-type="com nydonai n. Addr ess"/ >

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.4.4 1-TO-N (MAP) 272

<join/>
</field>
</cl ass>

<cl ass nane="Address" identity-type="datastore">
<field nane="city" persistence-nodifier="persistent">
<col um | engt h="50" j dbc-type="VARCHAR'/ >
</field>
<field nane="street" persistence-nodifier="persistent">
<col um | engt h="50" j dbc-type="VARCHAR'/ >
</field>
</ cl ass>
</ package>

This will create 3 tables in the datastore, one for Account, one for Address and a join table also
containing the key.

If you want to configure the names of the columns in the "join" table you would use the <key> and
<value> subelements of <field> as shown above.

Please note that the column ADPT_PK_IDX is added by DataNucleus when the column type of the key
is not valid to be part of a primary key (with the RDBMS being used). If the column type of your key is
acceptable for use as part of a primary key then you will not have this "ADPT_PK_IDX" column.

Map[PC, Simple]

This operates exactly the same as "Map|[Simple, PC]" except that the additional table is for the key instead
of the value.

Map[Simple, Simple]

Here our keys and values are of simple types (in this case a String). Like this

Account

-firstName: String
-lastName: String
-addresses: Map<String, String=

If you define the Meta-Data for these classes as follows

<package nanme="com nydomai n">
<cl ass nane="Account" identity-type="datastore">

<field nane="firstnanme" persistence-nodifier="persistent">
<col umm | engt h="100" j dbc-type="VARCHAR'/ >

</field>

<field nane="1ast name" persistence-nodifier="persistent">
<col um | engt h="100" j dbc-type="VARCHAR'/ >

</field>

<field name="addresses" persistence-nodifier="persistent">

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.4.4 1-TO-N (MAP) 273

<map key-type="java.lang. String" val ue-type="java.lang. String"/>
<join/>
</field>
</cl ass>
</ package>

This results in just 2 tables. The "join" table contains both the key AND the value.

If you want to configure the names of the columns in the "join" table you would use the <key> and
<value> subelements of <field> as shown above.

Please note that the column ADPT_PK_IDX is added by DataNucleus when the column type of the key
is not valid to be part of a primary key (with the RDBMS being used). If the column type of your key is
acceptable for use as part of a primary key then you will not have this "ADPT_PK_IDX" column.

Embedded

The above relationship types assume that all PersistenceCapable classes in the 1-N relation will have their
own table. A variation on this is where you have a join table but you embed the keys, the values, or the
keys and the values of the map into this join table. This is described in Embedded Maps.

1-N Map using Foreign-Key

1-N Foreign-Key Bidirectional (key stored in value)

In this case we have an object with a Map of objects and we're associating the objects using a foreign-key
in the table of the value.

With these classes we want to store a foreign-key in the value table (ADDRESS), and we want to use the
"alias" field in the Address class as the key to the map. If you define the Meta-Data for these classes as
follows

<package nanme="com nmydonai n">
<cl ass nanme="Account" identity-type="datastore">
<field name="firstnanme" persistence-nodifier="persistent">
<col umm | engt h="100" j dbc-type="VARCHAR'/ >
</field>
<field name="|astname" persistence-nodifier="persistent">
<col um | engt h="100" j dbc-type="VARCHAR'/ >
</field>
<field nane="addresses" persistence-nodifier="persistent"
mapped- by="account " >
<map key-type="java.lang. String" val ue-type="com nydonai n. Addr ess"/ >
<key mapped-by="alias"/>
</field>
</ cl ass>

<cl ass nane="Address" identity-type="datastore">
<field name="city" persistence-nodifier="persistent">
<col umm | engt h="50" j dbc-type="VARCHAR'/ >
</field>

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.4.4 1-TO-N (MAP) 274

<field name="street" persistence-nodifier="persistent">
<col um | engt h="50" j dbc-type="VARCHAR'/ >
</field>
<field name="account" persistence-nodifier="persistent">
</field>
<field nane="alias" null-val ue="exception">
<col um nane="KEY" | engt h="20" jdbc-type="VARCHAR"'/>
</field>

</ cl ass>
</ package>

This will create 2 tables in the datastore. One for Account, and one for Address. The table for Address
will contain the key field as well as an index to the Account record (notated by the mapped-by tag).

1-N Foreign-Key Unidirectional (key stored in value)

n this case we have an object with a Map of objects and we're associatin: e objects using a foreign-ke
In th h bject with a Map of objects and we' ting the object g a foreign-key

in the table of the value. As in the case of the biditectional relation above we're using a field (a/as) in the
Address class as the key of the map.

In this relationship, the Account class has a Map of Address objects, yet the Address knows nothing
about the Account. In this case we don't have a field in the Address to link back to the Account and so
DataNucleus has to use columns in the datastore representation of the Address class. So we define the
MetaData like this

<package nane="com nydonai n">
<cl ass nane="Account" identity-type="datastore">

<field nane="firstnanme" persistence-nodifier="persistent">
<col umm | engt h="100" j dbc-type="VARCHAR'/ >

</field>

<field name="| ast nanme" persistence-nodifier="persistent">
<col um | engt h="100" j dbc-type="VARCHAR'/ >

</field>

<field nane="addresses" persistence-nodifier="persistent">
<map key-type="java.lang. String" val ue-type="com nydomai n. Addr ess"/ >
<key mapped-by="alias"/>
<val ue col um="ACCOUNT_ID Q D'/ >

</field>

</ cl ass>

<cl ass nane="Address" identity-type="datastore">

<field nane="city" persistence-nodifier="persistent">
<col um | engt h="50" j dbc-type="VARCHAR'/ >

</field>

<field name="street" persistence-nodifier="persistent">
<col um | engt h="50" j dbc-type="VARCHAR'/ >

</field>

<field name="alias" null-val ue="exception">
<col um nane="KEY" | engt h="20" jdbc-type="VARCHAR"'/>

</field>

</ cl ass>
</ package>

©2008-20009,

DataNucleus « ALL RIGHTS RESERVED

5.4.4 1-TO-N (MAP) 275

Again there will be 2 tables, one for Address, and one for Account. Note that we have no "mapped-by"
attribute specified on the "field" element, and also no "join" element. If you wish to specify the names of
the columns used in the schema for the foreign key in the Address table you should use the value element
within the field of the map.

In terms of operation within your classes of assigning the objects in the relationship. You have to take
your Account object and add the Address to the Account map field since the Address knows nothing
about the Account. Also be aware that each Address object can have only one owner, since it has a single
foreign key to the Account. If you wish to have an Address assigned to multiple Accounts then you
should use the "Join Table" relationship above.

1-N Foreign-Key Unidirectional (value stored in key)

In this case we have an object with a Map of objects and we'te associating the objects using a foreign-key
in the table of the key. We're using a field (businessAddress) in the Address class as the value of the map.

In this relationship, the Account class has a Map of Address objects, yet the Address knows nothing
about the Account. We don't have a field in the Address to link back to the Account and so DataNucleus

has to use columns in the datastore representation of the Address class. So we define the MetaData like
this

<package nane="com nydomai n">
<cl ass nane="Account" identity-type="datastore">
<field nane="firstnanme" persistence-nodifier="persistent">
<col umm | engt h="100" j dbc-type="VARCHAR'/ >
</field>
<field nane="|ast nanme" persistence-nodifier="persistent">
<col um | engt h="100" j dbc-type="VARCHAR'/ >
</field>
<fi el d nane="phoneNunbers" persistence-nodifier="persistent">
<map key-type="com nydonmai n. Addr ess" val ue-type="java.lang. String"/>
<key col um="ACCOUNT_I D O D'/ >
<val ue mapped- by="busi nessPhoneNunber"/ >
</field>
</ cl ass>

<cl ass nanme="Address" identity-type="datastore">
<field nane="city" persistence-nodifier="persistent">
<col um | engt h="50" j dbc-type="VARCHAR'/ >
</field>
<field nane="street" persistence-nodifier="persistent">
<col um | engt h="50" j dbc-type="VARCHAR'/ >
</field>
<field name="busi nessPhoneNunber" nul | -val ue="excepti on">
<col um nanme="BUS_PHONE" | engt h="20" jdbc-type="VARCHAR'/ >
</field>
</ cl ass>
</ package>

There will be 2 tables, one for Address, and one for Account. The key thing here is that we have specified
a "mapped-by" on the "value" element. Note that we have no "mapped-by" attribute specified on the
"field" element, and also no "join" element. If you wish to specify the names of the columns used in the

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.4.4 1-TO-N (MAP) 276

schema for the foreign key in the Address table you should use the key element within the field of the
map.

In terms of operation within your classes of assigning the objects in the relationship. You have to take
your Account object and add the Address to the Account map field since the Address knows nothing
about the Account. Also be aware that each Address object can have only one owner, since it has a single
foreign key to the Account. If you wish to have an Address assigned to multiple Accounts then you
should use the "Join Table" relationship above.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

55

5.5 N-TO-1 277

JDO N-1 Relationships
JDO2

You have a N-to-1 relationship when an object of a class has an associated object of another class (only
one associated object) and several of this type of object can be linked to the same associated object. From
the other end of the relationship it is effectively a 1-N, but from the point of view of the object in
question, it is N-1. You can create the relationship in 2 ways depending on whether the 2 classes know
about each other (biditectional), or whether only the "N" side knows about the other class
(unidirectional). These are described below.

Unidirectional

For this case you could have 2 classes, User and Account, as below.
so the Account class ("N" side) knows about the User class ("1" side), but not vice-versa. A particular
user could be related to several accounts. If you define the Meta-Data for these classes as follows

<package nane="nydomai n">
<cl ass nane="User" identity-type="datastore">
<field nane="1ogi n" persistence-nodifier="persistent">
<col um | engt h="20" j dbc-type="VARCHAR'/ >
</field>
</cl ass>

<cl ass nane="Account" identity-type="datastore">
<field nane="first Name" persistence-nodifier="persistent">
<col um | engt h="50" j dbc-type="VARCHAR'/ >
</field>
<field name="secondNane" persistence-nodifier="persistent">
<col um | engt h="50" j dbc-type="VARCHAR'/ >
</field>
<field nane="user" persistence-nodifier="persistent">
</field>
</ cl ass>
</ package>

This will create 2 tables in the database, one for User (with name USER), and one for Account (with
name ACCOUNT and a column USER_ID), as shown below.

Things to note :-

* If you wish to specify the names of the database tables and columns for these classes, you can use the
attribute table (on the class element) and the attribute name (on the column element)

* If you call PM.deletePersistent() on the end of a 1-1 unidirectional relation without the relation and
that object is related to another object, an exception will typically be thrown (assuming the RDBMS
supports foreign keys). To delete this record you should remove the other objects association first.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.5 N-TO-1 278

Bidirectional

This relationship is described in the guide for 1-N relationships. In particular there are 2 ways to define
the relationship. The first uses a Join Table to hold the relationship. The second uses a Foreign Key in
the "N" object to hold the relationship. Please refer to the 1-N relationships bidirectional relations since
they show this exact relationship.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.6

5.6 M-TO-N 279

JDO M-N Relationships
JDO2

You have a M-to-N (or Many-to-Many) relationship if an object of a class A has associated objects of
class B, and class B has associated objects of class A. This relationship may be achieved through Java Set,
Map, List or subclasses of these, although the only one that supports a true M-N is for a Set/Collection.

With DataNucleus this can be set up as described in this section, using what is called a Join Table
relationship. Let's take the following example and describe how to model it with the different types of
collection classes. We have 2 classes, Product and Supplier as below.

Here the Product class knows about the Supplier class. In addition the Supplier knows about the Product
class, however with DataNucleus (as with the majority of JDO implementations) these relationships are
independent.

Using Set

If you define the Meta-Data for these classes as follows

<package nane="nydomai n">
<cl ass nane="Product" identity-type="datastore">
<field nane="nanme" persistence-nodifier="persistent">
<col um | engt h="50" j dbc-type="VARCHAR'/ >
</field>
<field nane="price" persistence-nodifier="persistent">
</field>
<field nane="suppliers" persistence-nodifier="persistent"
t abl e=" PRODUCTS_SUPPLI ERS" >
<col l ection el enent-type="nmydonai n. Supplier"/>
<j oi n>
<col um nanme="PRODUCT_I D'/ >
</join>
<el ement >
<col um nanme="SUPPLI ER_| D'/ >
</ el ement >
</field>
</ cl ass>

<cl ass name="Supplier" identity-type="datastore">
<field nane="nane" persistence-nodifier="persistent">
<col umm | engt h="100" j dbc-type="VARCHAR'/ >
</field>
<field nane="products" persistence-nodifier="persistent"
mapped- by="suppl i ers">
<col | ecti on el ement -type="mnydonai n. Product"/>
</field>
</cl ass>
</ package>

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.6 M-TO-N 280

Note how we have specified the information only once regarding join table name, and join column names
as well as the <join>. This is the JDO standard way of specification, and results in a single join table.

See also :-

* M-N Worked Example
* M-N with Attributes Worked Example

Using List

Firstly a true M-N relation with Lists is impossible since there are two lists, and it is undefined
as to which one applies to which side etc. What is shown below is two independent 1-N
unidirectional join table relations. If you define the Meta-Data for these classes as follows

<package nane="nydomai n">
<cl ass nane="Product" identity-type="datastore">
<field nane="nanme" persistence-nodifier="persistent">
<col um | engt h="50" j dbc-type="VARCHAR'/ >
</field>
<field name="price" persistence-nodifier="persistent"/>
<field nanme="suppliers" persistence-nodifier="persistent">
<col l ection el enent-type="nydonai n. Supplier"/>
<join/>
</field>
</ cl ass>

<cl ass name="Supplier" identity-type="datastore">
<field name="nanme" persistence-nodifier="persistent">
<col um | engt h="100" jdbc-type="VARCHAR'/ >
</field>
<field nane="products" persistence-nodifier="persistent">
<col l ection el ement -type="mnydonai n. Product"/>
<j oi n/ >
</field>
</cl ass>
</ package>

There will be 4 tables, one for Product, one for Supplier, and the join tables. The difference from the Set
example is in the contents of the join tables. An index column is added to keep track of the position of
objects in the Lists.

In the case of a List at both ends it doesn't make sense to use a single join table because the ordering can
only be defined at one side, so you have to have 2 join tables.

Using Map

If you define the Meta-Data for these classes as follows

<package nanme="nydomai n">
<cl ass nane="Product" identity-type="datastore">
<field nane="nane" persistence-nodifier="persistent">

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.6 M-TO-N 281

<col umm | engt h="50" j dbc-type="VARCHAR'/ >

</field>
<field nane="price" persistence-nodifier="persistent">

</field>
<field nane="suppliers" persistence-nodifier="persistent">
<map key-type="java.lang. String" val ue-type="mnmydonmai n. Supplier"/>
<j oi n/ >
</field>
</cl ass>

<cl ass nane="Supplier" identity-type="datastore">
<field nane="nane" persistence-nodifier="persistent">
<col um | engt h="100" j dbc-type="VARCHAR'/ >
</field>
<field name="products" persistence-nodifier="persistent">
<map key-type="java.lang. String" val ue-type="nydomai n. Product"/ >
<join/>
</field>
</cl ass>
</ package>

This will create 4 tables in the datastore, one for Product, one for Supplier, and the join tables which also

contains the keys to the Maps (a String).

Relationship Behaviour

Please be aware of the following.
* To add an object to an M-N relationship you need to set it at both ends of the relation since the
relation is bidirectional and without such information the JDO implementation won't know which
end of the relation is correct.

* If you want to delete an object from one end of a M-N relationship you will have to remove it first
from the other objects relationship. If you don't you will get an error message that the object to be
deleted has links to other objects and so cannot be deleted.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.7

5.7 COMPOUND IDENTITY RELATION 282

Compound Identity Relation

JDO Compound Identity Relationships
JDO2

An identifying relationship (or "compound identity relationship" in JDO) is a relationship between two
objects of two classes in which the child object must coexist with the parent object and where the
primary key of the child includes the PersistenceCapable object of the parent. So effectively the key
aspect of this type of relationship is that the primary key of one of the classes includes a
PersistenceCapable field (hence why is is referred to as Compound Identity). This type of relation is
available in the following forms

* 1-1 unidirectional
* 1-N collection bidirectional using ForeignKey

* 1-N map bidirectional using ForeignKey (key stored in value)

1-1 Relationship

Lets take the same classes as we have in the 1-1 Relationships. In the 1-1 relationships guide we note that
in the datastore representation of the User and Account the ACCOUNT table has a primary key as well
as a foreign-key to USER. In our example here we want to just have a primary key that is also a
foreign-key to USER. To do this we need to modity the classes slightly and add primary-key fields and
use "application-identity”.

In addition we need to define primary key classes for our User and Account classes

public class User

{
long id;

. (remai nder of User cl ass)

/**

* Inner class representing Primary Key

*/
public static class PK inplenents Serializable
{
public long id;
public PK()
{
}
public PK(String s)
{

this.id = Long. val ueX (s).longVal ue();
}

public String toString()
{

return "" + id;

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.7 COMPOUND IDENTITY RELATION 283

}
public int hashCode()
{
return (int)id;
}
publ i c bool ean equal s(Obj ect ot her)
{
if (other !'= null && (other instanceof PK))
{
PK ot her PK = (PK) ot her;
return otherPK id == this.id;
}
return fal se;
}

}

public class Account

{

User user;

(remai nder of Account cl ass)

/**

* Inner class representing Primary Key

*/
public static class PK inplenments Serializable
{
public User.PK user; // Use sanme nane as the real field above
public PK()
{
}
public PK(String s)
{
StringTokeni zer token = new StringTokenizer(s,"::");
this.user = new User. PK(token. next Token());
}
public String toString()
{
return "" + this.user.toString();
}
public int hashCode()
{
return user. hashCode();
}
publ i ¢ bool ean equal s(Obj ect other)
{
if (other !'= null && (other instanceof PK))
{
PK ot her PK = (PK) ot her;
return this.user.equal s(otherPK. user);
}
return fal se;
}

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.7 COMPOUND IDENTITY RELATION 284

To achieve what we want with the datastore schema we define the MetaData like this

<package nane="nmydomai n">
<cl ass name="User" identity-type="application" objectid-class="User$PK">
<field name="id" primary-key="true"/>
<field nane="1ogi n" persistence-nodifier="persistent">
<col um | engt h="20" j dbc-type="VARCHAR'/ >
</field>
</ cl ass>

<cl ass nanme="Account" identity-type="application" objectid-class="Account $PK">
<field name="user" persistence-nodifier="persistent" primry-key="true">
<col um nane="USER | D'/ >
</field>
<field nane="first Nanme" persistence-nodifier="persistent">
<col um | engt h="50" j dbc-type="VARCHAR'/ >
</field>
<field nane="secondNanme" persistence-nodifier="persistent">
<col um | engt h="50" j dbc-type="VARCHAR'/ >
</field>
</cl ass>
</ package>

So now we have the following datastore schema
Things to note :-

* You must use "application-identity" in both parent and child classes

* In the child Primary Key class, you must have a field with the same name as the relationship in the
child class, and the field in the child Primary Key class must be the same type as the Primary Key
class of the parent

* See also the general instructions for Primary Key classes

* You can only have one "Account" object linked to a particular "Uset" object since the FK to the
"User" is now the primary key of "Account". To remove this restriction you could also add a "long
id" to "Account" and make the "Account.PK" a composite primary-key

1-N Collection Relationship

Lets take the same classes as we have in the 1-N Relationships (FK). In the 1-N relationships guide we
note that in the datastore representation of the Account and Address classes the ADDRESS table has a
primary key as well as a foreign-key to ACCOUNT. In our example here we want to have the
primary-key to ACCOUNT to znelude the foreign-key. To do this we need to modify the classes slightly,
adding primary-key fields to both classes, and use "application-identity" for both.

In addition we need to define primary key classes for our Account and Address classes

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.7 COMPOUND IDENTITY RELATION 285

public class Account

{
long id; // PK field

Set addresses = new HashSet ();

(renmmi nder of Account cl ass)

/**

* Inner class representing Primary Key

*/

public static class PK inplenents Serializable

{
public long id;

public PK()
{
}

public PK(String s)
{

}

this.id = Long. val ued (s).longVal ue();

public String toString()
{

return "" + id;

}

public int hashCode()
{

}

return (int)id,

publ i c bool ean equal s(Obj ect other)

{
if (other != null && (other instanceof PK))

{
PK ot her PK = (PK) ot her;

return otherPK. id == this.id;
}

return fal se;

}

public class Address

{
long id,;
Account account;

(renmi nder of Address cl ass)

/**

* Inner class representing Primary Key

*/

public static class PK inplenments Serializable
{

public long id; // Same nanme as real field above
public Account.PK account; // Same nanme as the real field above

public PK()

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.7 COMPOUND IDENTITY RELATION 286

{

}

public PK(String s)

{
StringTokeni zer token = new StringTokenizer(s,"::");
this.id = Long. val ue (t oken. next Token()) .| ongVal ue();
this.account = new Account. PK(token. next Token());

}

public String toString()

{
return "" +id + "::" + this.account.toString();

}

public int hashCode()

{
return (int)id ~ account.hashCode();

}

publ i c bool ean equal s(Obj ect other)
{
if (other !'= null && (other instanceof PK))
{
PK ot her PK = (PK) ot her;
return otherPK.id == this.id &
t hi s. account. equal s(ot her PK. account);

}

return fal se;

"To achieve what we want with the datastore schema we define the MetaData like this

<package nane="nydomai n">
<cl ass nanme="Account" identity-type="application" objectid-class="Account $PK">
<field name="id" primary-key="true"/>
<field name="firstName" persistence-nodifier="persistent">
<col um | engt h="50" j dbc-type="VARCHAR'/ >
</field>
<field nane="secondNanme" persistence-nodifier="persistent">
<col um | engt h="50" j dbc-type="VARCHAR'/ >
</field>
<field name="addresses" persistence-nodifier="persistent"
mapped- by="account ">
<col l ection el ement-type="Address"/>
</field>
</ cl ass>

<cl ass nanme="Address" identity-type="application" objectid-class="Address$PK">

<field name="id" primary-key="true"/>

<field name="account" persistence-nodifier="persistent" primry-key="true">
<col um nane="ACCOUNT_I D'/ >

</field>

<field nane="city" persistence-nodifier="persistent">
<col um | engt h="50" j dbc-type="VARCHAR'/ >

</field>

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.7 COMPOUND IDENTITY RELATION 287

<field name="street" persistence-nodifier="persistent">
<col um | engt h="50" j dbc-type="VARCHAR'/ >
</field>
</cl ass>
</ package>

So now we have the following datastore schema

Things to note :-

* You must use "application-identity" in both parent and child classes

* In the child Primary Key class, you must have a field with the same name as the relationship in the
child class, and the field in the child Primary Key class must be the same type as the Primary Key
class of the parent

* See also the general instructions for Primary Key classes

* If we had omitted the "id" field from "Address" it would have only been possible to have one
"Address" in the "Account" "
the "id" field too.

addresses" collection due to PK constraints. For that reason we have

1-N Map Relationship

Lets take the same classes as we have in the 1-N Relationships (FK). In this guide we note that in the
datastore representation of the Account and Address classes the ADDRESS table has a primary key as
well as a foreign-key to ACCOUNT. In our example here we want to have the primary-key to
ACCOUNT to inciude the foreign-key. To do this we need to modify the classes slightly, adding
primary-key fields to both classes, and use "application-identity" for both.

In addition we need to define primary key classes for our Account and Address classes

public class Account

{
long id; // PK field

Set addresses = new HashSet ();

(remai nder of Account class)

/**

* Inner class representing Primary Key

*/

public static class PK inplenments Serializable

{
public long id;
public PK()
{
}
public PK(String s)
{
this.id = Long. val ueX (s).longVal ue();
}

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.7 COMPOUND IDENTITY RELATION 288

public String toString()

{
return "" + id,
}
public int hashCode()
{
return (int)id;
}
publ i c bool ean equal s(Obj ect other)
{
if (other != null && (other instanceof PK))
{
PK ot her PK = (PK) ot her;
return otherPK. id == this.id,
}
return fal se;
}

}

public class Address

{
String alias;
Account account;

(renmai nder of Address cl ass)

/**
* Inner class representing Primary Key
*/
public static class PK inplenments Serializable
{
public String alias; // Same name as real field above
public Account.PK account; // Same nanme as the real field above

public PK()

{

}

public PK(String s)

{
StringTokeni zer token = new StringTokenizer(s,"::");
this.alias = Long. val ue (t oken. next Token()). | ongVal ue();
this.account = new Account. PK(token. next Token());

}

public String toString()

{
return alias + "::" + this.account.toString();

}

public int hashCode()

{
return alias. hashCode() ~ account.hashCode();

}

public bool ean equal s(bj ect ot her)

{
if (other !'= null && (other instanceof PK))

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.7 COMPOUND IDENTITY RELATION 289

PK ot her PK = (PK) ot her;
return otherPK alias.equal s(this.alias) &
t hi s. account. equal s(ot her PK. account);

}

return fal se;

To achieve what we want with the datastore schema we define the MetaData like this

<package nanme="com nmydonai n">
<cl ass name="Account" objectid-cl ass="Account $PK" >
<field name="id" primary-key="true"/>
<field nanme="firstnane" persistence-nodifier="persistent">
<col umm | engt h="100" j dbc-type="VARCHAR'/ >
</field>
<field nane="1ast nane" persistence-nodifier="persistent">
<col um | engt h="100" j dbc-type="VARCHAR'/ >
</field>
<field name="addresses" persistence-nodifier="persistent"
mapped- by="account " >
<map key-type="java.lang. String" val ue-type="com nydonai n. Addr ess"/ >
<key mapped-by="alias"/>
</field>
</ cl ass>

<cl ass nanme="Address" objectid-cl ass="Addr ess$PK>
<field name="account" persistence-nodifier="persistent" primry-key="true"/>
<field nane="alias" null-val ue="exception" prinmary-key="true">
<col um nane="KEY" | engt h="20" jdbc-type="VARCHAR"'/>
</field>
<field nane="city" persistence-nodifier="persistent">
<col um | engt h="50" j dbc-type="VARCHAR'/ >
</field>
<field name="street" persistence-nodifier="persistent">
<col umm | engt h="50" j dbc-type="VARCHAR'/ >
</field>
</cl ass>
</ package>

So now we have the following datastore schema
Things to note :-

* You must use "application-identity" in both parent and child classes

* In the child Primary Key class, you must have a field with the same name as the relationship in the
child class, and the field in the child Primary Key class must be the same type as the Primary Key
class of the parent

* See also the general instructions for Primary Key classes

* If we had omitted the "alias" field from "Address" it would have only been possible to have one
"Address" in the "Account" "addresses" collection due to PK constraints. For that reason we have

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

5.7 COMPOUND IDENTITY RELATION 290

the "alias" field too as part of the PK.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

6.1

6.1 JPA CLASS MAPPING 291

JPA Class Mapping

JPA Class Mapping
JPAA

When persisting a class you need to decide how it is to be mapped to the datastore. By this we mean
which fields of the class are persisted. DataNucleus knows how to persist certain Java types and so you
bear this list in mind when deciding which fields to persist. Also please note that JPA cannot persist
static or final fields. Let's take a sample class as an example

public class Hotel

{
private long id; // identity
private String nane;
private String address;
private String tel ephoneNunber;
private int number Of Roons;
private String hotel N cknane;
private Set rooms = new HashSet();
private Manager nanager;

We have a series of fields and we want to persist all fields apart from hoze/Nickname which is of no real use
in our system. In addition, we want our Hoze/ class to be detachable, meaning that we can detach objects
of that type update them in a different part of our system, and the attach them again.

We can define this basic persistence information in 3 ways - with XML MetaData, with JDK1.5
Annotations or with a mix of MetaData and Annotations. We show all ways here.

MetaData

'To achieve the above aim we define our Meta-Data like this

<entity class="org.datanucl eus.test. Hotel ">
<attributes>
<id name="id"/>
<basi ¢ nane="nane"/>
<basi ¢ nane="address"/>
<basi ¢ name="t el ephoneNunber"/ >
<basi ¢ nanme="nunber Of Roons"/ >
<transi ent name="hotel Ni ckname"/ >
<one-to-many nane="roons" target-entity="org.datanucl eus.test.Roon'/>
<one-to0-one name="manager" target-entity="org.datanucl eus.test. Manager"/>
</attributes>
</entity>

Note the following

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

6.1 JPA CLASS MAPPING

So it is really very simple. This first step is to define the basic persistence of a class. If you are using a

292

We have identified our 7 field as the identity. We didnt bother specifying an Primary key class since

we only have a single PK field

We have included all fields in the MetaData, although if you look at the Types Guide you see the

column "Persistent?". All "simple" types like String, int are by default persistent and so we could have

omitted these since they are by default going to be persisted.
We have used transient for the hotelNickname field to make it non-persistent.

Our Set field we have identified as "1-N" and the type of the element that it contains. This is
compulsory for collection and map fields (unless using JDK1.5 generics).

We have identified our manager field as "1-1"

datastore (such as RDBMS) that requires detailed mapping information then you now need to proceed to

the JPA Schema Mapping Guide. If however you are using a datastore that doesn't need such information

(such as DB4O) then you have defined the persistence of your class.

See also :-

* JPA MetaData reference

Annotations

Here we are using JDK1.5 or higher and we annotate the class directly using JPA Annotations We

annotate the class like this

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

@ntity
public class Hotel

{

@d

private long id;

@Basi c
private String nane;

@Basi c

private String address;

@Basi c
private String tel ephoneNunber;

@Basi c
private int nunmber Of Roons;

@r ansi ent
private String hotel N cknane;

@neToMany(t ar get =" Roont')
private Set rooms = new HashSet();

@neToOne(t ar get =" Manager)
private Manager nanager;

6.1 JPA CLASS MAPPING 293

See also :-

* JPA Annotations reference

Annotations + MetaData

If we are using JDK 1.5+ we can take advantage of Annotations, but we want to take into account the
disadvantage of Annotations, namely that we may want to deploy our application to multiple datastores.
This means that we would be extremely unwise to specify ORM information in Annotations. With this in
mind we decide that we will specify just the basic persistence information (which classes/fields are
persisted etc) using Annotations, and the remainder will go in MetaData.

The order of precedence for persistence information is
* JPA MetaData definition
¢ Annotations definition

So anything specified in MetaData will override all Annotations.

Persistence Aware

With JPA you cannot access public fields of classes. DataNucleus allows an extension to permit this, but
such classes need special enhancement. To allow this you need to

* Annotate the class that will access these public fields (assuming it isn't an Entity) with the
DataNucleus extension annotation (@PersistenceAware

* At runtime set the persistence property datanucleus.jpa.level to DatalNuclens

You perform the annotation of the class as follows

@er si st enceAwar e
public class MyC assThat AccessesPubl i cFi el ds

{
}

See also :-

* Annotations reference for @PersistenceAwate

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

6.2

6.2 JAVA TYPES 294

Java Types

JPA : Persistable Java Types

When persisting a class, a persistence solution needs to know how to persist the types of each field in the
class. Clearly a persistence solution can only support a finite number of Java types; it cannot know how to
petsist every possible type creatable. The JPA specification define lists of types that are required to be
supported by all implementations of those specifications. This support can be conveniently split into two
parts

First-Class (FCO) Types

An obiject that can be referred fo (object reference, providing a relation) and that has an "identity" is termed
a First Class Object (FCO). DataNucleus supports the following Java types as FCO

* persistable : any class marked for persistence (annotations or XML) can be persisted with its own
identity in the datastore

* interface where the field represents a persistable object

* java.lang.Object where the field represents a persistable object

Supported Second-Class (SCO) Types

An object that does not have an "identity" is termed a Second Class Object (SCO). This is something
like a String or Date field in a class, or alternatively a Collection (that contains other objects). The table
below shows the currently supported SCO java types in DataNucleus. The table shows
* Extension? : whether the type is JPA standard, or is a DataNucleus extension
* default-fetch-group (DFG) : whether the field is retrieved by default when retrieving the object
itself

* persistence-modifier : whether the field is persisted by default, or whether the user has to mark the
field as persistent in XML/annotations to persist it

* proxied : whether the field is represented by a "proxy" that intercepts any operations to detect
whether it has changed internally.

* primary-key : whether the field can be used as part of the primary-key

Java Type Extension? DFG? Persistent? Proxied? PK?
boolean 1 1 1
byte 1 1
&b & o &
char 1 1
&b &b Q &b
double 1 a a

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

6.2 JAVA TYPES 295

Java Type Extension? DFG? Persistent? Proxied? PK?
float o i
&b & Q Q

©2008-2009, DataNucleus » ALL RIGHTS RESERVED

6.2 JAVA TYPES 296

o
A
-~

Java Type Extension? Persistent? Proxied?

java.lang.Boolean[] -
.. Extension

:;,

java.lang.Byte[]

2

java.lang.Character[]

:;,

e

java.lang.Double[] -
‘ Extensicn

:;,

java.lang.Float[] i
.. Extension

java.lang.Integer(] -
.. Extensicn

e

java.lang.Long]] -
‘ Exwtensicn

e

java.lang.Short[] -
‘ Extension

2

java.lang.Number [4] i
‘ Exwtensicn

©O 0 0 0 0 0 00606 O

java.lang.Object -
‘ Extension

java.lang.String

&
O 000 0 00 0 0 0 0 0 0 0600 O

java.lang.StringBuffer - . *
3] ‘ Extension Y Y
java.lang.String[] i)

‘ Extension Sl ﬂ
java.math.BigDecimal . E
java.math.Biginteger))
java.math.BigDecimal[] - .

‘ Extension Py ﬂ
java.math.Biginteger[] i)

‘ Extension Sl ﬂ
java.sql.Date * L
java.sql.Time

java.sgl.Timestamp

000 0OCPFP OOCPF OF 000606 00606 07
©

00
S <
o

2

©2008-2009, DataNucleus » ALL RIGHTS RESERVED

6.2 JAVA TYPES

Java Type Extension?

Persistent?

Proxied?

297

java.util. ArrayList

o)
T
@
N

E

L

©

[71

[5]

[6]

java.util.List
java.util.Locale

Extensicn
java.util.Locale[]

Extensicn
java.util.Map

Q

E

©

©2008-2009, DataNucleus » ALL RIGHTS RESERVED

6.2 JAVA TYPES

Java Type Extension?

Persistent?

Proxied?

o
A
-~

298

java.util.Queue

..E:tta-rrsinn

java.util.Set

java.util. SortedMap i

2 ‘ Extension

java.util.SortedSet [1] -
.. Extensicn

java.util.Stack i
‘ Extension

java.util. TimeZone
java.util. TreeMap [2]

java.util. TreeSet [1]

java.util.UUID -
‘ Extension

java.util.Vector

java.awt.Color

java.awt.Point -
.. Ertension

java.awt.image.Buffered i
.. Extension

java.net.URI -
.. Ertension

java.net. URL i
‘ Extension

java.io.Serializable

persistable

persistable[] -
.. Extensicn

java.lang.Enum

java.lang.Enum[]

OPb 000 0 0 0 0 00 0000 © 0 00O O

P 000 0 0 0 0 0P OO OO 0P O

OO0 000 © 060 P OO0 OCPPFOPF P BFP P

P OO P P OO OO0 POOEP OO0 0O O

©2008-2009, DataNucleus » ALL RIGHTS RESERVED

6.2 JAVA TYPES 299

* [1] - java.util.SortedSet, java.util. TreeSet allow the specification of comparators via the
"comparator-name" DataNucleus extension MetaData element (within <collection>). The headSet,
tailSet, subSet methods are only supported when using cached collections.

* [2] - java.util. SortedMap, java.util. TreeMap allow the specification of comparators via the
"comparator-name" DataNucleus extension MetaData element (within <map>). The headMap,
tailMap, subMap methods are only supported when using cached containers.

* [3] - java.lang.StringBuffer dirty check mechanism is limited to immutable mode, it means, if you
change a StringBuffer object field, you must reassign it to the owner object field to make sure changes
are propagated to the database.

* [4] - java.lang.Number will be stored in a column capable of storing a BigDecimal, and will store to
the precision of the object to be persisted. On reading back the object will be returned typically as a
BigDecimal since there is no mechanism for determing the type of the object that was stored.

* [5] - java.util. LinkedHashMap treated as a Map currently. No List-ordering is supported.
* [0] - java.util. LinkedHashSet treated as a Set currently. No List-ordering is supported.

* [7] - java.util.Calendar can be stored into two columns (millisecs, Timezone) or into a single column
(Timestamp). The single column option is not guaranteed to preserve the TimeZone of the input
Calendar.

Note that support is available for persisting other types depending on the datastore to which you are
persisting
* RDBMS GeoSpatial types via the DataNucleus RDBMS Spatial plugin

If you have support for any additional types and would either like to contribute them, or have them listed
here, let us know

; Flugm DataNucleus allows you the luxury of being able to provide SCO supportt for your own
Java types when using RDBMS datastores

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

6.3

6.3 APPLICATION IDENTITY 300

Application Identity

Application Identity
JPAA

With application identity you are taking control of the specification of id's to DataNucleus. Application
identity requires a primary key class (unless using SingleFieldIdentity, where one is provided for you), and
each persistent capable class may define a different class for its primary key, and different persistent
capable classes can use the same primary key class, as appropriate. With application identity the field(s) of
the primary key will be present as field(s) of the class itself. To specify that a class is to use application
identity, you add the following to the MetaData for the class.

<entity class="org. nydomai n. \yCl ass" >
<id-class class="org. nydomai n. Wyl dCl ass"/ >
<attributes>
<id name="nyPri maryKeyFi el d"/ >
</attributes>
</entity>

For JPA1 we specify the id field and id-class. Alternatively, if we are using annotations

@ntity
@ dd ass(cl ass=MyI dd ass. cl ass)
public class Myd ass

{
@d
private | ong nyPrimaryKeyFi el d;

When you have an inheritance hierarchy, you should specify the identity type and any primary-key fields
in the base class for the inheritance tree. This is then used for all persistent classes in the tree.

See also :-

¢ MetaData reference for <id> element

* Annotations reference for @Id

Primary Key

Using application identity requires the use of a Primary Key class.With JPA when you have a single-field
you don't need to provide a primary key class. Where the class has multiple fields that form the primary
key a Primary Key class must be provided. In JPA1 when there is a single primary key field you dont need
to specify the primary key class. If there are more than 1 "id" fields then you define the id-class.

See also :-

* Primary Key Guide - user-defined and built-in primary keys

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

6.3 APPLICATION IDENTITY 301

Generating identities

By choosing application identity you are controlling the process of identity generation for this class. This
does not mean that you have a lot of work to do for this. JPA1 defines many ways of generating these
identities and DataNucleus supports all of these and provides some more of its own besides.

See also :-

* Identity Generation Guide - strategies for generating ids

Changing Identities

JPA doesn't define what happens if you change the identity (an identity field) of an object once petsistent.
DataNucleus doesn't currently support changes to identities.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

6.4 PRIMARY KEYS 302

Primary Keys

Primary Key Classes

As has been described in the application identity guide, when you choose application identity you are
defining which fields of the class are part of the primary key, and you are taking control of the
specification of id's to DataNucleus. Application identity requires a primary key (PK) class, and each
persistent capable class may define a different class for its primary key, and different persistent capable
classes can use the same primary key class, as appropriate. You specify the primary key class like this

<entity class="MdCd ass">
<id-class class="MW/Idd ass"/>

</entity>

or using annotations

@ntity
@ dd ass(cl ass=M/I dd ass. cl ass)
public class My ass

{
}

You now need to define the PK class to use. This is simplified for you because if you have only one PK
field then you dont need to define a PK class and you only define it when you have a composite PK.

An important thing to note is that the PK can only be made up of fields of the following Java types
* Primitives : boolean, byte, char, int, long, short
* javalang : Boolean, Byte, Character, Integer, Long, Short, String, Enum, StringBuffer
* java.math : BigInteger
* java.sql : Date, Time, Timestamp
* java.util : Date, Currency, Locale, TimeZone, UUID
* java.net : URI, URL

* javax.jdo.spi : PersistenceCapable

Note that the types in bold are JPA standard types. Any others are DataNucleus extensions and, as
always, check the specific datastore docs to see what is supported for your datastore.

Single primary-key field
JPA1

The simplest way of using application identity is where you have a single PK field, and in this case you

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

6.4 PRIMARY KEYS 303

use an inbuilt primary key class that DataNucleus provides, so you don't need to specify the

objectid-class. Let's take an example

public class Myd ass

{

long id;

String nane;

String description;
}

<entity class="Md ass">
<attributes>
<id name="id"/>
<basi ¢ nanme="nane"/ >
<basi ¢ nane="description"/>
</attributes>
</entity>

So we didnt specify the JPA "id-class". You will, of coutse, have to give the field a value before petsisting

the object, either by setting it yourself, or by using a value-strategy on that field.

Rules for User-Defined Primary Key classes

If you wish to use application identity and don't want to use the "SingleFieldIdentity" builtin PK classes
then you must define a Primary Key class of your own. You can't use classes like java.lang.String, or

javalang.Long directly. You must follow these rules when defining your primary key class.

the Primary Key class must be public
the Primary Key class must implement Serializable
the Primary Key class must have a public no-arg constructor, which might be the default constructor

the field types of all non-static fields in the Primary Key class must be serializable, and are
recommended to be primitive, String, Date, or Number types

all serializable non-static fields in the Primary Key class must be public

the names of the non-static fields in the Primary Key class must include the names of the primary key
fields in the JDO class, and the types of the common fields must be identical

the equals() and hashCode() methods of the Primary Key class must use the value(s) of all the fields
corresponding to the primary key fields in the JDO class

if the Primary Key class is an inner class, it must be static

the Primary Key class must override the toString() method defined in Object, and return a String that
can be used as the parameter of a constructor

the Primary Key class must provide a String constructor that returns an instance that compares equal
to an instance that returned that String by the toString() method.

the Primary Key class must be only used within a single inheritence tree.

Primary Key Example - Multiple Field

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

6.4 PRIMARY KEYS 304

Here's an example of a composite (multiple field) primary key class

public class Conposedl dKey inplenments Serializable

{
public String fieldl;
public String field2;

/**
* Default constructor.
*/

publ i c Conposedl dKey ()

{
}

/**

* String constructor.

*/
publ i ¢ Conposedl dKey(String val ue)
{
StringTokeni zer token = new StringTokeni zer (value, "::");
/I cl assName
t oken. next Token ();
//fieldl
this.fieldl = token.next Token ();
//field2
this.field2 = token. next Token ();
}
/**

* I npl enentati on of equal s nethod.

*/
publ i c bool ean equal s(Obj ect obj)
{
if (obj == this)
{
return true;
}
if (!(obj instanceof Conposedl dKey))
{
return false;
}
Conposedl dkey ¢ = (Conposedl dKey) obj ;
return fieldl. equal s(c.fieldl) & field2.equals(c.field2);
}
/**

* | nplementation of hashCode nethod that supports the
* equal s-hashCode contract.

*/
public int hashCode ()
{
return this.fieldl. hashCode() ™ this.field2. hashCode();
}
/**
* Inplenentation of toString that outputs this object id s PK val ues.
*/
public String toString ()
{

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

6.4 PRIMARY KEYS 305

return this.getC ass().getNanme() + "::" + this.fieldl + "::" + this.field2;

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

6.5

6.5 FIELDS/PROPERTIES 306

Fields/Properties

Persistent Fields or Properties

JPA1

There are two distinct modes of persistence definition. The most common uses fields, whereas an
alternative uses properties.

Persistent Fields

The most common form of persistence is where you have a field in a class and want to persist it to the
datastore. With this mode of operation DataNucleus will persist the values stored in the fields into the
datastore, and will set the values of the fields when extracting it from the datastore.

Requirement : you have a field in the class. This can be public, protected, private or package
access, but cannot be static or final.

An example of how to define the persistence of a field is shown below

@ntity
public class My ass
{

@Basi c

Dat e birthday;

So, using annotations, we have marked this class as persistent, and the field also as persistent. Using XML
MetaData we would have done

<entity nane="nydonmai n. MyCl ass" >
<attributes>
<basi ¢ nane="birt hday"/>
</attributes>
</entity>

Persistent Properties

A second mode of operation is where you have Java Bean-style getter/setter for a property. In this
situation you want to persist the output from ge£ZXXX to the datastore, and use the se£2XXX to load up the
value into the object when extracting it from the datastore.

Requitement : you have a property in the class with Java Bean getter/setter methods. These
methods can be public, protected, private or package access, but cannot be static. The class
must have BOTH getter AND setter methods.

An example of how to define the persistence of a property is shown below

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

6.5 FIELDS/PROPERTIES 307

@ntity
public class Myd ass

{
@Basi ¢
Dat e getBirthday()

{
}

voi d setBirthday(Date date)
{

}

So, using annotations, we have marked this class as persistent, and the getter is marked as persistent.
Using XML MetaData we would have done

JPA:
<entity name="nydomai n. \yCl ass" >
<attributes>
<basi ¢ nane="birt hday"/>
</attributes>
</entity>

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

6.6

6.6 VALUE GENERATION 308

Value Generation

Value generation

Fields of a class can either have the values set by you the user, or you can set DataNucleus to generate
them for you. This is of particular importance with identity fields where you want unique identities. You
can use this value generation process with the identity field(s) in JPA. There are many different
"strategies" for generating values, as defined by the JPA specification. Some strategies are specific to a
particular datastore, and some are generic. You should choose the strategy that best suits your target
datastore. The available strategies are :-

* auto - this is the default and allows DataNucleus to choose the most suitable for the datastore

* sequence - this uses a datastore sequence (if supported by the datastore
q q pPp y

* identity - these use autoincrement/identity/serial features in the datastore (if supported by the
datastore)

* table - this is datastore neutral and increments a sequence value using a table.

See also :-

* JPA MetaData reference for <generated-value>

* JPA Annotation reference for @GeneratedValue

auto

JPA1

With this strategy DataNucleus will choose the most appropriate strategy for the datastore being used. If
you also specify the 'sequence' name attribute and the datastore supports sequences then "sequence”
strategy would be used. Otherwise it will always choose "increment"” strategy.

sequence

JPA1

A sequence is a user-defined database function that generates a sequence of unique numeric ids. The
unique identifier value returned from the database is translated to a java type: java.lang.Long.
DataNucleus supports sequences for the following datastores:

* Oracle

* PostgreSQL
* SAP DB

« DB2

* Firebird

* DB40O

To configure a class to use either of these generation methods using application identity you would add
the following to the class' Meta-Data

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

6.6 VALUE GENERATION 309

<entity class="Md ass">
<attributes>
<id name="nyl d">
<gener at ed- val ue strategy="sequence"/>
</id>
</attributes>
</entity>

or using annotations

@ntity
public class MO ass
{

@d

@zener at edVal ue(strat egy=CGener ati onType. SEQUENCE)
private long nyfield;

If the sequence does not yet exist in the database at the time DataNucleus needs a new unique identifier,
a new sequence is created in the database based on the JPA Meta-Data configuration. Additional
properties for configuring sequences are set in the JPA Meta-Data, see the available properties below.
Unsupported properties by a database are silently ignored by DataNucleus.

Property Description Required

key-cache-size number of unique identifiers to cache in the No. Defaults to 1.
PersistenceManagerFactory instance. Notes:
1. This setting SHOULD match the
key-start-with setting value if key-start-with
is provided, otherwise it can cause
duplicate keys errors when inserting new
objects into the database.

2. The keys are pre-allocated, cached and
used on demand. If key-cache-size is
greater than 1, it may generate holes in
the object keys in the database, if not all
keys are used.

key-min-value determines the minimum value a sequence No
can generate

key-max-value determines the maximum value a sequence No
can generate

key-start-with the initial value for the sequence No
key-increment-by specifies which value is added to the current ~ No
sequence value to create a new value. default
isl
key-database-cache-size specifies how many sequence numbers are to No

be preallocated and stored in memory for
faster access. This is an optimization feature
provided by the database

sequence-catalog-name Name of the catalog where the sequence is. No.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

6.6 VALUE GENERATION 310

Property Description Required

sequence-schema-name Name of the schema where the sequenceis. No.

This value generator will generate values unique across different JVMs

identity
JPA1

Auto-increment/identity/serial are primary key columns that ate populated when a row is inserted in the
table. These use the databases own keywords on table creation and so rely on having the table structure
cither created by DataNucleus or having the column with the necessary keyword.

DataNucleus supports auto-increment/identity/setial keys for many databases including :
* DB2 (IDENTITY)

* MySQL (AUTOINCREMENT)
* MSSQL (IDENTITY)

* Sybase IDENTITY)

* HSQLDB (IDENTITY)

* H2 (IDENTITY)

* PostgreSQL (SERIAL)

This generation strategy should only be used if there is a single '"root" table for the inheritance
tree. If you have more than 1 root table (e.g using subclass-table inheritance) then you should
choose a different generation strategy

For a class using application identity you need to set the zalue-strategy attribute on the primary key field.
You can configure the Meta-Data for the class something like this

<entity class="MdCd ass">
<attributes>
<id name="nyl d">
<gener at ed-val ue strategy="identity"/>
</id>
</attributes>
</entity>

Please be aware that if you have an inheritance tree with the base class defined as using "identity" then
the column definition for the PK of the base table will be defined as "AUTO_INCREMENT" or
"IDENTITY" or "SERIAL" (dependent on the RDBMS) and all subtables will NOT have this identifier
added to their PK column definitions. This is because the identities are assigned in the base table (since
all objects will have an entry in the base table).

This value generator will generate values unique across different JVMs

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

6.6 VALUE GENERATION

table

JPA1

311

This method is database neutral and uses a sequence table that holds an incrementing sequence value.
The unique identifier value returned from the database is translated to a java type: java.lang.Long. This

strategy will work with any datastore. This method require a sequence table in the database and creates

one if doesn't exist.

To configure an application identity class to use this generation method you simply add this to the class'

Meta-Data. If your class is in an inheritance tree you should define this for the base class only.

<entity class="MdCd ass">
<attributes>
<id name="nyl d">

<gener at ed-val ue strategy="table"/>

</id>
</attributes>
</entity>

Additional properties for configuring this generator are set in the JPA Meta-Data, see the available

properties below. Unsupported properties are silently ignored by DataNucleus.

Property

Description

Required

key-initial-value

key-cache-size

sequence-table-basis

sequence-name

sequence-table-name
sequence-catalog-name
sequence-schema-name

sequence-name-column-name

sequence-nextval-column-name

©2008-20009,

First value to be allocated.

number of unique identifiers to cache. The
keys are pre-allocated, cached and used on
demand. If key-cache-size is greater than 1, it
may generate holes in the object keys in the
database, if not all keys are used.

Whether to define uniqueness on the base
class name or the base table name. Since
there is no "base table name" when the root
class has "subclass-table" this should be set
to "class" when the root class has
"subclass-table" inheritance

name for the sequence (overriding the
"sequence-table-basis" above). The row in
the table will use this in the PK column

Table name for storing the sequence.
Name of the catalog where the table is.
Name of the schema where the table is.

Name for the column that represent sequence
names.

Name for the column that represent
incremeting sequence values.

DataNucleus « ALL RIGHTS RESERVED

No. Defaults to 1

No. Defaults to 5

No. Defaults to class, but the other option is
table

No

No. Defaults to SEQUENCE_TABLE
No.
No.

No. Defaults to SEQUENCE_NAME

No. Defaults to NEXT_VAL

6.6 VALUE GENERATION

Property

Description Required

312

table-name

column-name

Name of the table whose column we are No.
generating the value for (used when we have

no previous sequence value and want a start

point.

Name of the column we are generating the No.
value for (used when we have no previous
sequence value and want a start point.

This value generator will generate values unique across different JVMs

©2008-20009,

DataNucleus

« ALL RIGHTS RESERVED

6.7

6.7 JPA METADATA 313

JPA MetaData

JPA Metadata Overview

JPA requires the persistence of classes to be defined via Metadata. This Metadata can be provided in the
following forms

* XML : the traditional mechanism, with XML files containing information for each class to be
persisted.

* Annotations : using JDK1.5+ annotations in the classes to be persisted

Metadata priority

JPA defines the priority order for metadata as being
* JPA XML Metadata
* Annotations

If a class has annotations and JPA XML Metadata then the XML Metadata will take precedence over the
annotations (or rather be merged on top of the annotations).

XML Metadata validation

By default any XML Metadata will be validated for accuracy when loading it. Obviously XML is defined
by a DTD or XSD schema and so should follow that. You can turn off such validations by setting the
persistence property datanucleus.metadata.validate to false when creating your PMFE Note that this
only turns off the XML strictness validation, and #of the checks on inconsistency of specification of
relations etc.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

6.7.1 JPA XML METADATA 314

671 JPA XML MetaData

JPA XML Meta-Data Reference

JPA1
JPA XML MetaData has the following format. Please refer to the JPA ORM XSD for precise details.
What follows provides a reference guide to MetaData elements.
* entity-mappings
* description
* persistence-unit-metadata
* xml-mapping-metadata-complete
* package
* schema
* catalog
* access
* sequence-generator
* table-generator
* named-query
* query
* named-native-query
* quety
* sql-result-set-mapping
* entity-result
* field-result
* column-result
* mapped-superclass
* description
¢ id-class
* exclude-default-listeners
* exclude-superclass-listeners

* entity-listeners
* entity-listener
* pre-persist

* post-persist

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

http://java.sun.com/xml/ns/persistence/orm_1_0.xsd

6.7.1 JPA XML METADATA 315

* pre-remove
* post-remove
* pre-update
* post-update

* post-load

* pre-persist
* post-persist
* pre-remove
* post-remove
* pre-update
* post-update
* post-load

e attributes

* Same elements as under <entity>-><attributes>

* entity
* description
* table
* unique-constraint

¢ column-name

* secondary-table
* primary-key-join-column
* unique-constraint

¢ column-name

* primary-key-join-column
* id-class

¢ inheritance

¢ discriminator-value

* discriminator-column

* sequence-generator

* table-generator

* named-query
* query
* named-native-query

* query

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

6.7.1 JPA XML METADATA 316

* sgl-result-set-mapping
* entity-result
* field-result
* column-result

* exclude-default-listeners
* exclude-superclass-listeners
* entity-listeners
* entity-listener

* pre-persist

* post-persist

* pre-remove

* post-remove

* pre-update

* post-update

* post-load

* pre-persist
* post-persist
* ptre-remove
* post-remove
* pre-update
* post-update
* post-load
* attribute-overtide
* column
* association-override
* join-column
* attributes
e id
* column
* generated-value
* sequence-generator

* table-generator

* embedded-id

* basic

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

6.7.1 JPA XML METADATA

e column
e lob
* temporal

* enumerated
* version
e column
* many-to-one
* join-column
* join-table

* join-column

* inverse-join-column

* unique-constraint

¢ column-name

e cascade

* cascade-all

* cascade-persist
* cascade-merge

* cascade-remove

e cascade-refresh

* onec-to-many
* order-by
* order-column
* map-key
* join-table

* join-column

* inverse-join-column

* unique-constraint

¢ column-name

* join-column

e cascade
e cascade-all
* cascade-persist
* cascade-merge

¢ cascade-remove

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

317

6.7.1 JPA XML METADATA

¢ cascade-refresh

* one-to-one
* join-column
* join-table
* join-column
* inverse-join-column
* unique-constraint

¢ column-name

e cascade
e cascade-all
* cascade-persist
* cascade-merge
¢ cascade-remove

¢ cascade-refresh

* many-to-many

* order-by

* order-column

* map-key

* join-table
* join-column
* inverse-join-column
* unique-constraint

¢ column-name

e cascade

¢ cascade-all

* cascade-persist
* cascade-merge

e cascade-remove

¢ cascade-refresh
e transient

¢ embeddable
¢ embeddable-attributes

* basic

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

318

6.7.1 JPA XML METADATA 319

* transient

Metadata for description tag

The <description> element (<entity-mappings>) contains the text describing all classes (and hence
entities) defined in this file. It serves no useful purpose other than descriptive.

Metadata for xml-mapping-metadata-complete tag

The <xml-mapping-metadata-complete> element (under <persistence-unit-metadata>) when specified
defines that the classes in this file are fully specified with just their metadata and that any annotations
should be ignored.

Metadata for package tag

The <package> element (under <entity-mappings>) contains the text defining the package into which all
classes in this file belong.

Metadata for schema tag

The <schema> element (under <entity-mappings>) contains the default schema for all classes in this file.

Metadata for catalog tag

The <catalog> element (under <entity-mappings>) contains the default catalog for all classes in this file.

Metadata for access tag

The <access> element (under <entity-mappings>) contains the setting for how to access the persistent
fields/properties. This can be set to either "FIELD" or "PROPERTY".

Metadata for sequence-generator tag

The <sequence-generator> element (under <entity-mappings>, or <entity> or <id>) defines a generator
of sequence values, for use elsewhere in this persistence-unit.

Attribute Description Values
name Name of the generator (required)

sequence-name Name of the sequence

initial-value Initial value for the sequence 1
allocation-size Number of values that the sequence allocates 50

when needed

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

6.7.1 JPA XML METADATA 320

Metadata for table-generator tag

The <table-generator> element (under <entity-mappings>, or <entity> or <id>) defines a generator of

sequence values using a datastore table, for use elsewhere in this persistence-unit.

Attribute Description Values

name Name of the generator (required)

table name of the table to use for sequences SEQUENCE_TABLE
catalog Catalog to store the sequence table

schema Schema to store the sequence table

pk-column-name
value-column-name

pk-column-value

initial-value

allocation-size

Name of the primary-key column in the table
Name of the value column in the table

Name of the value to use in the primary key
column (for this row)

Initial value to use in the table

Number of values to allocate when needed

SEQUENCE_NAME
NEXT_VAL

{name of the class}

50

Metadata for named-query tag

The <named-query> element (under <entity-mappings> or under <entity>) defines a JPQL query that
will be accessible at runtime via the name. The element itself will contain the text of the query. It has the

following attributes

Attribute

Description

Values

name

Name of the query

Metadata for named-native-query tag

The <named-native-query> element (under <entity-mappings> or under <entity>) defines an SQL
query that will be accessible at runtime via the name. The element itself will contain the text of the query.

It has the following attributes

Attribute

Description

Values

name

Name of the query

Metadata for sql-result-set-mapping tag

The <sqgl-result-set-mapping> element (under <entity-mappings> or under <entity>) defines how the
results of the SQL query are output to the user per row of the result set. It will contain sub-elements. It

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

6.7.1 JPA XML METADATA 321

has the following attributes

Attribute Description Values

Name of the SQL result-set mapping

name
(referenced by native queries)

Metadata for entity-result tag

The <entity-result> element (under <sgl-result-set-mapping>) defines an entity that is output from an
SQL query per row of the result set. It can contain sub-elements of type <field-result>. It has the

following attributes

Attribute Description Values
entity-class Class of the entity
discriminator-column Column containing any discriminator (so

subclasses of the entity type can be

distinguished)

Metadata for field-result tag

The <field-result> element (under <entity-result>) defines a field of an entity and the column
representing it in an SQL query. It has the following attributes

Attribute Description Values
name Name of the entity field
column Name of the SQL column

Metadata for column-result tag

The <column-result> element (under <sql-result-set-mapping>) defines a column that is output directly
from an SQL query per row of the result set. It has the following attributes

Attribute Description Values

name Name of the SQL column

Metadata for mapped-superclass tag

These are attributes within the <mapped-superclass> tag (under <entity-mappings>). This is used to
define the persistence definition for a class that has no table but is mapped.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

6.7.1 JPA XML METADATA 322

Attribute Description Values
class Name of the class (required)
metadata-complete Whether the definition of persistence of this true | false

class is complete with this MetaData
definition. That is, should any annotations be
ignored.

Metadata for entity tag

These are attributes within the <entity> tag (under <entity-mappings>). This is used to define the
persistence definition for this class.

Attribute Description Values
class Name of the class (required)

name Name of the entity. Used by JPQL queries
metadata-complete Whether the definition of persistence of this true | false

class is complete with this MetaData
definition. That is, should any annotations be
ignored.

Metadata for description tag

The <description> element (under <entity>) contains the text describing the class being persisted. It
serves no useful purpose other than descriptive.

Metadata for table tag

These are attributes within the <table> tag (under <entity>). This is used to define the table where this
class will be persisted.

Attribute Description Values
name Name of the table

catalog Catalog where the table is stored

schema Schema where the table is stored

Metadata for secondary-table tag

These are attributes within the <secondary-table> tag (under <entity>). This is used to define the join of
a secondary table back to the primary table where this class will be persisted.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

6.7.1 JPA XML METADATA

323

Attribute Description Values
name Name of the table

catalog Catalog where the table is stored

schema Schema where the table is stored

Metadata for join-table tag

These are attributes within the <join-table> tag (under <one-to-one>, <one-to-many>>,
<many-to-many>). This is used to define the join table where a collection/maps relationship will be

persisted.
Attribute Description Values
name Name of the join table
catalog Catalog where the join table is stored
schema Schema where the join table is stored

Metadata for unique-constraint tag

This element is specified under the <table>, <secondary-table> or <join-table> tags. This is used to

define a unique constraint on the table. No attributes ate provided, just sub-element(s) "column-name"

Metadata for column tag

These are attributes within the <column> tag (under <basic>). This is used to define the column where

the data will be stored.

Attribute Description Values
name Name of the column
unique Whether the column is unique true | false
nullable Whether the column is nullable true | false
insertable Whether the column is insertable true | false
updatable Whether the column is updatable true | false
column-definition Some vague JPA term that you put anything

in and get any unexpected results from
table Table for the column ?
length Length for the column (when string type) 255
precision Precision for the column (when numeric type) 0

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

6.7.1 JPA XML METADATA 324

Attribute Description Values

scale Scale for the column (when numeric type) 0

Metadata for primary-key-join-column tag

These are attributes within the <primary-join-key-column> tag (under <secondary-table> or <entity>).
This is used to define the join of PK columns between secondary and primary tables, or between table of
subclass and table of base class.

Attribute Description Values
name Name of the column
referenced-column-name Name of column in primary table

Metadata for join-column tag

These are attributes within the <join-column> tag (under <join-table>). This is used to define the join

column.
Attribute Description Values
name Name of the column
referenced-column-name Name of the column at the other side of the
relation that this is a FK to
unique Whether the column is unique true | false
nullable Whether the column is nullable true | false
insertable Whether the column is insertable true | false
updatable Whether the column is updatable true | false
column-definition Some vague JPA term that you put anything
in and get any unexpected results from. Not
supported by DataNucleus.
table Table for the column ?

Metadata for inverse-join-column tag

These are attributes within the <inverse-join-column> tag (under <join-table>). This is used to define
the join column to the element.

Attribute Description Values

name Name of the column

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

6.7.1 JPA XML METADATA 325

Attribute Description Values

referenced-column-name Name of the column at the other side of the
relation that this is a FK to

unique Whether the column is unique true | false
nullable Whether the column is nullable true | false
insertable Whether the column is insertable true | false
updatable Whether the column is updatable true | false
column-definition Some vague JPA term that you put anything

in and get any unexpected results from. Not
supported by DataNucleus.

table Table for the column ?

Metadata for id-class tag

These are attributes within the <id-class> tag (under <entity>). This defines a identity class to be used
for this entity.

Attribute Description Values

class Name of the identity class (required)

Metadata for inheritance tag

These are attributes within the <inheritance> tag (under <entity>). This defines the inheritance of the

class.
Attribute Description Values
strategy Strategy for inheritance in terms of storing SINGLE_TABLE | JOINED |

this class TABLE_PER_CLASS

Metadata for discriminator-value tag

These are attributes within the <discriminator-value> tag (under <entity>). This defines the value used in
a discriminator. The value is contained in the element. Specification of the value will result in a
"value-map" discriminator strategy being adopted. If no discriminator-value is present, but
discriminator-column is then "class-name" discriminator strategy is used.

Metadata for discriminator-column tag

These are attributes within the <discriminator-column> tag (under <entity>). This defines the column
used for a discriminator.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

6.7.1 JPA XML METADATA 326

Attribute Description Values
name Name of the discriminator column DTYPE
discriminator-type Type of data stored in the discriminator STRING | CHAR | INTEGER

column

length Length of the discriminator column

Metadata for id tag

These are attributes within the <id> tag (under <attributes>). This is used to define the field used to be
the identity of the class.

Attribute Description Values

name Name of the field (required)

Metadata for generated-value tag

These are attributes within the <generated-value> tag (under <id>). This is used to define how to
generate the value for the identity field.

Attribute Description Values

Generation strategy. Please refer to the auto | identity | sequence | table

strategy
Identity Generation Guide

Name of the generator to use if wanting to
override the default DataNucleus generator
for the specified strategy. Please refer to the
<sequence-generator> and <table-generator>

generator

Metadata for embedded-id tag

These are attributes within the <embedded-id> tag (under <attributes>). This is used to define the field
used to be the (embedded) identity of the class.

Attribute Description Values

name Name of the field (required)

Metadata for version tag

These are attributes within the <version> tag (under <attributes>). This is used to define the field used

to be hold the version of the class.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

6.7.1 JPA XML METADATA 327

Attribute Description Values

name Name of the field (required)

Metadata for basic tag

These are attributes within the <basic> tag (under <attributes>). This is used to define the persistence

information for the field.

Attribute Description Values

name Name of the field (required)

fetch Fetch type for this field LAZY | EAGER
optional Whether this field may be null and may be true | false

used in schema generation

Metadata for temporal tag

These are attributes within the <temporal> tag (under <basic>). This is used to define the details of
persistence as a temporal type. The contents of the element can be one of DATE, TIME, TIMESTAMP.

Metadata for enumerated tag

These are attributes within the <enumerated> tag (under <basic>). This is used to define the details of
persistence as an enum type. The contents of the element can be one of ORDINAL or STRING to
represent whether the enum is persisted as an integer-based or the actual string.

Metadata for one-to-one tag

These are attributes within the <one-to-one> tag (under <attributes>). This is used to define that the
field is part of a 1-1 relation.

Attribute Description Values

name Name of the field (required)

target-entity Class name of the related entity

fetch Whether the field should be fetched EAGER | LAZY
immediately

optional Whether the field can store nulls. true | false

mapped-by Name of the field that owns the relation

(specified on the inverse side)

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

6.7.1 JPA XML METADATA 328

Metadata for many-to-one tag

These are attributes within the <many-to-one> tag (under <attributes>). This is used to define that the
field is part of a N-1 relation.

Attribute Description Values

name Name of the field (required)

target-entity Class name of the related entity

fetch Whether the field should be fetched EAGER | LAZY
immediately

optional Whether the field can store nulls. true | false

Metadata for one-to-many tag

These are attributes within the <one-to-many> tag (under <attributes>). This is used to define that the
tield is part of a 1-N relation.

Attribute Description Values

name Name of the field (required)

target-entity Class name of the related entity

fetch Whether the field should be fetched EAGER | LAZY
immediately

mapped-by Name of the field that owns the relation

(specified on the inverse side)

Metadata for many-to-many tag

These are attributes within the <many-to-many> tag (under <attributes>). This is used to define that the
field is part of a M-N relation.

Attribute Description Values

name Name of the field (required)

target-entity Class name of the related entity

fetch Whether the field should be fetched EAGER | LAZY
immediately

mapped-by Name of the field on the non-owning side that
completes the relation. Specified on the
owner side

Metadata for order-by tag

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

6.7.1 JPA XML METADATA 329

This element is specified under <one-to-many> or <many-to-many>. It is used to define the field(s) of
the element class that is used for ordering the elements when they are retrieved from the datastore. It has
no attributes and the ordering is specified within the element itself. It should be a comma-separated list
of field names (of the element) with optional "ASC" or "DESC" to signify ascending or descending

Metadata for order-column tag

This element is specified under <one-to-many> or <many-to-many>. It is used to define that the List
will be ordered with the ordering stored in a surrogate column in the other table.

Attribute Description Values

name Name of the column {fieldName}_ORDER
nullable Whether the column is nullable true | false
insertable Whether the column is insertable true | false
updatable Whether the column is updatable true | false
column-definition Some vague JPA term that you put anything

in and get any unexpected results from

base Origin of the ordering (value for the first 0
element)

Metadata for map-key tag

These are attributes within the <map-key> tag (under <one-to-many> or <many-to-many>). This is
used to define the field of the value class that is the key of a Map.

Attribute Description Values

name Name of the field (required)

Metadata for transient tag

These are attributes within the <transient> tag (under <attributes>). This is used to define that the field
is not to be persisted.

Attribute Description Values

name Name of the field (required)

Metadata for exclude-default-listeners tag

This element is specified under <mapped-superclass> or <entity> and is used to denote that any default
listeners defined in this file will be ignored.

©2008-2009, DataNucleus « ALL RIGHTS RESERVED

6.7.1 JPA XML METADATA 330

Metadata for exclude-superclass-listeners tag

This element is specified under <mapped-superclass> or <entity> and is used to denote that any

listeners of superclasses will be ignored.

Metadata for entity-listener tag

These are attributes within the <entity-listener> tag (under <entity-listeners>). This is used to an
EntityListener class and the methods it uses

Attribute Description Values

class Name of the EntityListener class that receives
the callbacks for this Entity

Metadata for pre-persist tag

These are attributes within the <pre-persist> tag (under <entity>). This is used to define any "PrePersist"
method callback.

Attribute Description Values

method-name Name of the method (required)

Metadata for post-persist tag

These are attributes within the <post-persist> tag (under <entity>). This is used to define any
"PostPersist" method callback.

Attribute Description Values

method-name Name of the method (required)

Metadata for pre-remov