

Schalung für Beton

Zement-Merkblatt Hochbau

Bauberatung Zement

Aufgabe der Schalung ist es, dem Beton die geplante Form zu geben. Sie ist das "Negativ" des fertigen Betonteiles. Daher ist genaue Maßhaltigkeit während des Einbaus der Bewehrung, dem Einbringen und Verdichten des Betons sowie nach Abschluß der Betonierarbeiten notwendig. Schalungen müssen den Frischbetondruck sicher aufzunehmen. Die Schalungskonstruktionen müssen standfest sein und ausreichend steif ausgebildet werden, um Verformungen zu verhindern. Hinzu kommen die gestalterischen Aspekte der gewünschten Oberflächenausbildung des fertigen Bauteiles sowie die Strukturierung der Bauwerksflächen durch die Anordnung der notwendigen Fugen und Schalungsanker.

Schalungssysteme

Nach Bauaufgabe, Anwendung und Funktion lassen sich die zu verwendenden Schalungen in drei Hauptgruppen unterteilen:

- Feste Schalungen oder Standschalungen, z.B. Fundament-, Wand-, Stützen-, Balken- und Deckenschalungen
- 2. Bewegliche Schalungen, z.B. Kletter-, Gleit- und Ziehschalungen
- Sonderschalungen, z.B. Vakuum- und aufblasbare Schalungen

Schalungselemente

Entsprechend ihren speziellen Aufgaben im jeweiligen Schalungssystem bestehen alle Schalungskonstruktionen aus unterschiedlichen Elementen:

- der eigentlichen Schalhaut mit der Aufgabe, der Betonoberfläche die gewünschte Form und Struktur zu geben,
- der Unterstützungskonstruktion, die die auftretenden statischen und dynamischen Kräfte auf einen tragfähige Untergrund ableiten sollen,
- der Aussteifungskonstruktion, die die gesamte Schalungskonstruktion in ihrer vorgesehenen Lage festhält,
- den Verbindungsmitteln, bestehend aus Nägeln, Nagelschrauben, Holzschrauben, Rödeldraht, Schalungsschlössern, Spannungsketten und Schalungsankern sowie
- dem Zubehör, das zum einwandfreien Schalen gehört, wie z.B. Abstandhalter, oder durch spezielle Schalungskonstruktionen notwendig wird, wie z.B. Spindeln, Hülsen und Streben.

In Bild 1 ist die Benennung der Teile einer Deckenschalung beispielhaft angegeben.

Schalungsarten

Das Erhärten des Betons ist ein chemischer Vorgang. Dieser Prozeß darf das verwendete Schalungsmaterial nicht beeinflussen oder von diesem beeinflußt werden, wenn das

fertige Bauteil nach dem Ausschalen in Qualität und Aussehen den Vorstellungen und Festlegungen entsprechen soll. Diese Anforderungen werden von Holz in seinen verschiedenen Anwendungsformen sowie von Stahl und Kunststoff weitgehend erfüllt. In Tafel 1 sind die verschiedenen Schalungsarten und ihre wesentlichsten Anwendungsbereiche zusammengestellt.

Frischbetondruck

Um die Schalungskonstruktionen richtig bemessen zu können, ist neben der Beachtung der verschiedenen Anforderungen an die Schalung vor allem der beim Einbringen des Frischbeton von ihm auf die Schalung ausgeübte hydraulische Druck zu berücksichtigen.

Der Frischbetondruck ist u.a. abhängig von:

- der Einbaugeschwindigkeit,
- der Konsistenz.
- der Frischbetonrohdichte,
- der Erstarrungszeit,
- der Art der Verdichtung und
- der Rütteltiefe und -dauer.

In Bild 2 sind die Zusammenhänge zwischen dem Frischbetondruck auf die Schalung, der Steiggeschwindigkeit beim Einbringen und der Konsistenz der Betonmischung nach DIN 18 218 dargestellt.

Anforderungen an die Schalung

Schalungen für Beton sollen standfest, maßgenau, sauber und dicht sein. Die einzelnen Schalungselemente müssen so dicht zusammengefügt und gegenseitig so ausgesteift sein, daß beim Einbringen des Betons und beim Verdichten kein Durchdringen der Betonmischung und kein Verschieben der Konstruktionselemente möglich ist.

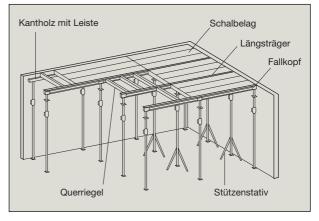
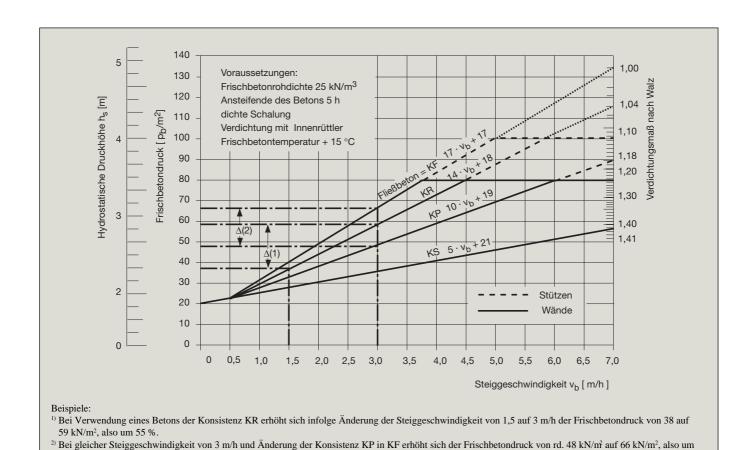



Bild 1: System einer Deckenschalung, Beispiel: NOE Formdeck mit "Wendekopf" für freie Wahl der Schalhaut [5]

Tafel 1: Anwendungsbereiche und Einsatzhäufigkeit verschiedener Schalungsarten [1]

Schalungsart	Schalungsmaterial	Einsatzbereich	Richtwerte über Einsatz- häufigkeit bei geeigneter Vorbehandlung		
Schwarten	Tanne bzw. Fichte mit Borkenkante und Astverharzung	Sichtbeton	2 bis 3		
Brettschalung, rauh	Tanne bzw. Fichte mit sägerauher Oberfläche	Beton ohne besondere Anforderung an seine Sichtfläche	4 bis 5		
Brettschalung, einseitig profiliert	Tanne bzw. Fichte mit einseitig sandgestrahlter oder abgeflammter Oberfläche	Sichtbeton mit Holzstruktur	bis 10		
Brett-Plattenschalung (Schaltafeln)	Tanne bzw. Fichte imprägniert mit Standardmaß 150 x 50 cm	Beton ohne besondere Anforderung an seine Sichtfläche	bis 50		
Sperrholz, beharzt	Tischlerplatte beharzt aus Nadelholz (Stab- oder Stäbchenmittellage)	Beton ohne besondere Anforderung an seine Sichtfläche, Tapezier- und Streichbeton	bis 30		
Sperrholz, befilmt	Tischlerplatte aus Nadelholz (Stab- oder Stäbchen- mittellage) mit Natron- oder Kraftpapier				
Sperrholz, polyester- beschichtet	Tischlerplatte aus Nadelholz (Stäbchenmittellage) mit Polyesterbeschichtung	Glatter Beton	bis 100		
Schichtstoffplatten	Melamin- bzw. Phenolbeschichtung auf Stab- bzw. Stäbchenmittellage		80 bis 100		
Polysulfid-Schalung	Polysulfid	Strukturierter Sichtbeton	30 bis 50		
Gummischalung	Polypropylen-Silikonkautschuk	Strukturierter Sichtbeton (Gummimatrizen); (aufblasbare Schalung), Rohrherstellung	bis 50		
Polystyrol-Schalung	Polystyrol-Hartschaum	Strukturierter Sichtbeton, Verdrängungskörper für Systemdecken und Aussparungen	1 bis 5		
Stahlschalung	Stahl	Beton ohne besondere Anforderung an seine Sichtfläche	bis 500		
Stahlblechwickelrohre	Bandstahl mit spiralförmig verlaufenden Falznähten	Sichtbeton, Streich-, Tapezierbeton	1		

 $Bild\ 2:\ Bestimmung\ des\ Frischbetondrucks\ p_{_b}\ in\ Abhängigkeit\ von\ der\ Steiggeschwindigkeit\ v_{_b}\ und\ der\ Konsistenz\ nach\ DIN\ 1048$

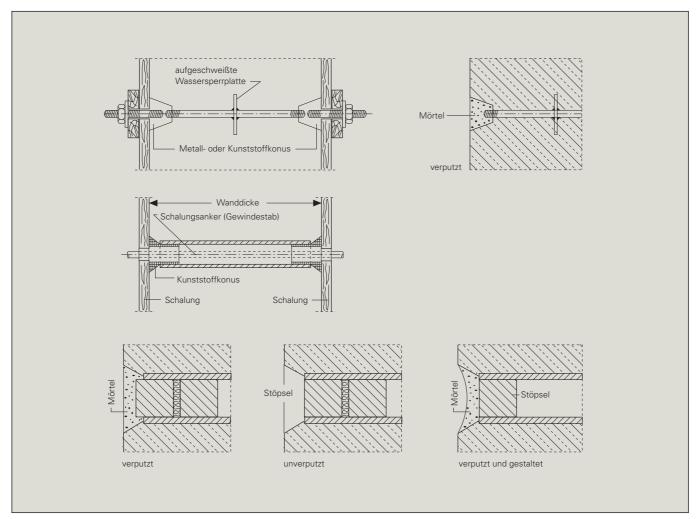


Bild 3: Schalungsanker mit und ohne Hülse (Rohrspreize) [1]

Spanndrähte, die bis zur Oberfläche durchgehen, dürfen auf keinen Fall im Beton verbleiben. Weil ein Abstemmen unter der Oberfläche zu unschönen Beschädigungen der Betonoberfläche führt, sollte man, wie in Bild 3 dargestellt, z.B. Spannsysteme mit Konen verwenden. Die Spannanker sind dann möglichst re-

gelmäßig anzuordnen, so daß ihre Lage bewußt in die Struktur der Oberfläche mit einbezogen werden kann. Die Schalungsanker müssen den Anforderungen der DIN 18 216 entsprechen. Stören Schalungsanker in der Sichtfläche eines Bauteiles oder Bauwerkes, so muß mit Hilfe von senkrecht gestellten Decken-

Tafel 2: Ebenheitstoleranzen nach DIN 18 202

Spalte	1	2	3	4	5	6
Zeile	Bauteile/Funktion	Stichmaße als Grenzwerte in mm bei Abstand der Meßpunkte bis		ßpunkte bis		
		0,1 m	1 m*)	4 m*)	10 m*)	15 m*)
1	Nicht flächenfertige Oberseiten von Decken, Unterbeton und Unterböden	10	15	20	25	30
2	Nichtflächenfertige Oberseiten von Decken, Unterbeton und Unterböden mit erhöhten Anforderungen, z.B. zur Aufnahme von schwimmenden Estrichen, Industrieböden, Fliesen- und Plattenbelägen, Verbundestrichen – fertige Oberflächen für untergeordnete Zwecke, z.B. in Lagerräumen, Kellern	5	8	12	15	20
3	Flächenfertige Böden, z.B. Estriche als Nutzestriche, Estriche zur Aufnahme von Bodenbelägen, Bodenbeläge, Fliesenbeläge, gespachtelte und geklebte Beläge		4	10	12	15
4	Flächenfertige Böden mit erhöhten Anforderungen, z.B. mit selbstverlaufenden Spachtelmassen	1	3	9	12	15
5	Nichtflächenfertige Wände und Unterseiten von Rohdecken	5	10	15	25	30
6	Flächenfertige Wände und Unterseiten von Decken, z.B. geputzte Wände, Wandbekleidungen, untergehängte Decken	3	5	10	20	25
7	wie Zeile 6, jedoch mit erhöhten Anforderungen	2	3	8	15	20

^{*)} Zwischenwerte sind geradlinig einzuschalten und auf mm zu runden (siehe Bilder 4 und 5)

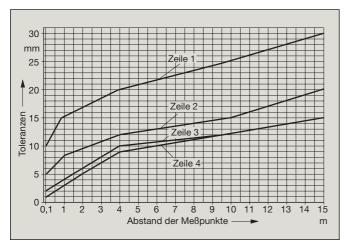


Bild 4: Ebenheitstoleranzen von Oberseiten von Decken, Estrichen und Fußböden nach DIN 18 202, Angabe der Zeilen nach Tafel 2

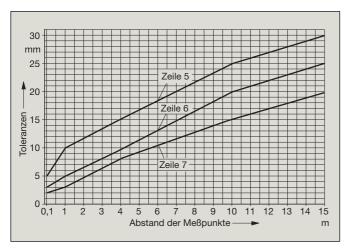


Bild 5: Ebenheitstoleranzen von Wandflächen und Unterseiten von Decken nach DIN 18 202, Angabe der Zeilen nach Tafel 2

trägern der Betondruck auf das Fundament, bzw. auf die Verankerung oberhalb der Sichtbetonfläche, übertragen werden. Bei der Herstellung von wasserundurchlässigen Betonbauteilen sind besondere, hierfür vorgeschriebene und geeignete Schalungsanker zu verwenden.

Für die Maßgenauigkeit gibt DIN 18 202, Teil 5, entsprechende Hinweise, die in Tafel 2 sowie den Bildern 4 und 5 angegeben sind.

Auf die Sauberkeit der Schalhaut ist größter Wert zu legen, wenn hohe Ansprüche an die Betonsichtfläche gestellt werden.

Tafel 3: Arten und Auswirkungen verschiedener Brettspundungen [1]

Art	der Spundung	Auswirkung		
	Wechselfalzspundung	Nasenbildung möglich		
	Nut und Federspundung	Dichte Schalung, schwierige Wiederverwendung (Federn brechen leicht ab)		
	Dreieck- oder Schweinsrückenspundung	Nasenbildung möglich		
	untergefügte Keilspundung	Dichte Schalung, leichte Wiederverwendung		
	keine	Nasenbildung möglich		

Besonders waagerechte Flächen müssen von Staub sowie Holzund Bindedrahtabfällen (letzteres z.B. mit Magnet) gereinigt werden. Staub in Verbindung mit Schalöl ergibt Flecke und Verfärbungen auf der Unterseite von Betondecken. Bindedrahtabfälle sind nach dem Ausschalen nicht sofort erkennbar. Durch die Luftfeuchtigkeit und die fehlende bzw. nur geringe Betonüberdeckung rosten sie jedoch schnell und sind bereits nach einigen Wochen auf der Betonfläche sichtbar. Für Reinigungsarbeiten an vertikalen Schalungen, z.B. Stützen und Wänden, sind Reinigungsöffnungen vorzusehen, die vor dem Betonieren sorgfältig zu schließen sind.

Eine dichte Schalung verhindert das Abfließen des Zementleimes. Hierdurch wird die Gefahr von Verfärbungen durch unterschiedliche w/z-Werte an der Betonoberfläche, des Absandens durch ausgewaschenen Zementanteil der Betonmischung sowie der Schlierenbildung durch abfließendes Wasser und unregelmäßige Feinststoffverteilung herabgesetzt. Deshalb sollte bereits in der Ausschreibung auch die Spundungsart der für die Schalung zu verwendenden Bretter festgelegt werden. Tafel 3 gibt eine Übersicht über die gängigen Brettspundungen für Holzschalungen und die Auswirkungen ihrer Anwendung.

Da es sich bei den Holz- und Brettschalungen um sogenannte "saugende" bzw. wasseraufnehmende Schalungen handelt, ist vor dem Betoniervorgang ein sechs- bis zwölfstündiges Wässern notwendig. Durch die Wasseraufnahme quillt das Schalungsmaterial auf, Undichtigkeiten der Brett- oder Schaltafelstöße werden beseitigt und dem eingebrachten Frischbeton wird weniger Wasser entzogen. Das Quellen muß jedoch beim Herstellen der Scha-lung berücksichtigt werden, da andernfalls durch die zu hohen Druckspannungen im Schalungsmaterial ein Verwerfen der Bretter möglich ist.

Arbeitsfugen und Aussparungen

Arbeitsfugen sind bei Betonierabschnitten, bei denen eine längere Unterbrechung des Betoniervorganges vorgesehen ist, anzuordnen. Sie müssen aus konstruktiven Gründen mit dem Tragwerksplaner und wegen der gestalterischen Aspekte mit dem Architekten abgestimmt und festgelegt werden. Arbeitsfugen im Betoniervorgang sollten bei glatten Sichtbetonflächen möglichst vermieden werden. Ist dies nicht möglich, sind diese Fugen entweder markant auszubilden und durch Dreiecks- oder Trapezleisten zu zeigen oder sie sind möglichst geschickt zu "verstekken", indem man sie z.B. in Gebäudeecken oder in den Schattenzonen entsprechend strukturierter Abschnitte der Betonsichtflächen anordnet.

Auf jeden Fall ist nach dem Umsetzen der Schalung eine Abdichtung nach unten notwendig, z.B. durch Schaumstoff, weil sonst unschöne Verunreinigungen der bereits fertigen Betonsichtflächen durch auslaufenden Zementleim möglich sind.

Bei der Ausbildung der Fugen ist vor allem auch auf die Lage der Bewehrung zu achten. Die geforderte Betonüberdeckung ist, wie in Bild 6 dargestellt, zwischen den Dreiecks- oder Trapezleisten und der Bewehrung sicherzustellen.

Aussparungen werden durch hölzerne Aussparungskästen oder massive Schalungskörper aus Schaumstoff (Polystyrol, Polyurethan) geschalt. Mehrfach verwendbare Aussparungskörper bestehen zumeist aus Stahlblech oder Glasfaserkunstharz (GFK).

Trennmittel

Aufgabe der Trennmittel ist es, das einwandfreie Lösen der Schalung von der Betonoberfläche sicherzustellen. Durch diese Mittel können Schäden, die oft beim Ausschalen gerade von anspruchsvoll gestalteten Sichtbetonflächen vor allem an den Kanten und Ecken entstehen, weitgehend vermieden werden. Das Aussehen der Betonflächen wird verbessert und unschöne Nachbesserungen entfallen. Die Trennmittel dienen außerdem als Schutz für die Schalung selbst und das verwendete Schalungsmaterial. Bei mehrfachem Schalungseinsatz ist dies besonders wichtig.

In Tafel 4 werden die Anwendungsmöglichkeiten von verschiedenen Trennmitteln bei unterschiedlichem Schalungsmaterial angegeben.

Fleckenbildungen sowie unterschiedliche Grautönungen auf Sichtbetonflächen sind häufig auf unsachgemäßes Auftragen der Trennmittel zurückzuführen. So kann das Auftragen von Hand bei Wachsen und Pasten, die wegen der flüchtigen Lösungsmittel nachträglich erhärten, zu einer Abzeichnung von Wischspuren auf der Betonfläche führen. Daher ist es in diesem Fall vorteilhafter, mechanische Hilfen, wie z.B. Bohnergeräte oder Polierscheiben, zu verwenden. Bei flüssigen Trennmitteln werden i.d.R. Sprühgeräte vorteilhaft eingesetzt.

Die Angaben der jeweiligen Schalungshersteller über geeignete Trennmittel und ihre Anwendung sind grundsätzlich zu beachten. Die Hinweise der Trennmittelhersteller zur Verarbeitung ihrer Produkte müssen auf der Baustelle bekannt sein und eingehalten werden.

Lagerung des Schalungsmaterials

Sichtbetonflächen werden aus gestalterischen Gründen am Bauwerk vorgesehen. Sie sollen daher optisch ansprechend und möglichst farbkonstant sein sowie eine gleichmäßige Oberflächenstruktur besitzen.

Nicht nur die Frischbetonqualität, der Einbau des Frischbetons und seine Nachbehandlung haben direkten Einfluß auf die Oberflächenbeschaffenheit der Betonsichtfläche, sondern auch das Schalungsmaterial. Durch Witterungseinflüsse können Holzinhaltsstoffe, wie z.B. Holzzucker, Phenole und Gerbsäure, aus dem verwendeten Schalungsholz heraustreten und verzögernd auf die Hydratation des Zementes in der Kontaktfläche Schalhaut/Beton einwirken. Die Auswirkungen auf die Betonoberfläche zeigen sich durch Abmehlen und unterschiedliche Farbtönungen der betreffenden Bereiche.

Neues Schalholz, das der Witterung ausgesetzt wird, schädigt weit mehr die Betonoberfläche als schon verwendetes Schalholz. Durch künstliches Altern, bei dem die Schalflächen mit Zementleim (w/z=0.8 - 1.0) bestrichen werden, schließen sich die Poren des Holzes teilweise und eine gleichmäßigere Betonsichtfläche kann später entstehen. Kurz nach dem Zementleimauftrag ist dieser jedoch mit Wasser oder mechanisch, durch Abbürsten, wieder zu entfernen, damit diese Schicht später nicht an der Betonoberfläche haftet. Die Schalhaut muß anschließend, wie angegeben, mit Trennmittel behandelt werden.

Ausrüsten und Ausschalen

Kein Bauteil darf ausgerüstet oder ausgeschalt werden, bevor der Beton ausreichend erhärtet ist. Dies ist dann der Fall, wenn die Festigkeit des Bauteiles so weit angestiegen ist, daß alle zur Zeit des Ausrüstens oder Ausschalens auftretenden und angreifenden Lasten mit Sicherheit aufgenommen werden können.

Die Anordnung für das Ausrüsten und Ausschalen gibt der Bauleiter, nachdem er sich von der ausreichenden Betonfestigkeit überzeugt hat, ggf. auch in Abstimmung mit dem Fachingenieur. Im Normalfall, wenn die Betontemperatur seit dem Einbringen immer über + 5 °C gelegen hat, gelten die in der Tafel 5 genannten Anhaltswerte für Ausschalfristen nach DIN 1045. Tritt während des Erhärtens Frost auf, so sind die Ausschalfri-

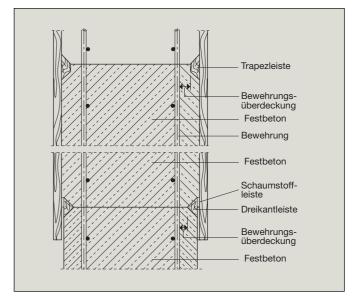


Bild 6: Ausbildung von Arbeitsfugen mit Dreikant- und Trapezleisten [3]

sten mindestens um die Frostdauer zu verlängern. Im Zweifelsfall müssen Erhärtungsprüfungen vorgenommen werden.

Um besonders bei frühzeitigem Ausschalen von Decken und Balken Schäden durch zu große Durchbiegung, Risse oder sogar den möglichen Einsturz zu vermeiden, müssen nach dem Aus-

Tafel 4: Anwendung von Trennmitteln bei verschiedenen Schalungsarten [1]

#1 een [-1					
Art, Typ Grund- material	Mögliche Einflüsse auf den Beton	Abnutzung	Haupt- sächlicher Einsatz	Empfohlene Trennmittel	
Holz - roh - gehobelt - imprägniert	Wasseraufnahme aus dem Beton, evtl. Abbinde- hemmung durch Holzinhaltsstoffe	stark stark mittel	Ortbeton Sichtbeton Decken	A, B (bei ersten Ein- sätzen), D (bei späte- ren Einsätzen), E	
Stahl	evtl. Rostflecken- übertragung	keine	Vorfertigung, Serienbau	A, D, F	
Aluminium	keine	Chemische Korrosion ist möglich	Serienbau in Ortbeton	A, C, F	
Kunststoff – auf Holz – Platten – Matrizen	keine – bei Matrizen evtl. größere Frühschwind- risse	wenig	Großbauten in Ortbeton, Tiefbau, Stützmauern, Vorfertigung	B, D, E, F	
A Mineralöl ohne Zusätze B Mineralöle mit Zusätzen C Emulsion Wasser in Öl D Emulsion Öl in Wasser E Schalungslacke, Wachse F Chemische Trennmittel				r	

Tafel 5: Anhaltswerte für Ausschalfristen nach DIN 1045

Zement- festigkeitsklasse	Für die seitliche Schalung der Balken und für die Schalung der Wände und Stützen [Tage]	Für die Schalung der Deckenplatten [Tage]	Für die Rüstung (Stützung) der Balken, Rahmen und weitge- spannten Platten [Tage]	
32,5	3	8	20	
32,5 R und 42,5	2	5	10	
42,5 R, 52,5 und 52,5 R	1	3	6	

schalen Hilfsstützen unter den betreffenden Bauteilen belassen oder aufgestellt werden. Sie sollten in den einzelnen Stockwerken übereinanderstehen und möglicht lange beim weiteren Baufortschritt ungehindert stehenbleiben können. Um Lastkumulationen beim Betonieren nachfolgender Geschosse zu vermeiden, sind alle Stützen nach dem Ausschalen zu entspannen [2]. Der Abstand von Hilfsstützen sollte 4 m nicht überschreiten. Bei Stützweiten bis etwa 8 m genügt daher eine Hilfsstütze in Feldmitte und bei größeren Stützweiten sind mehrere Hilfsstützen erforderlich. Bei Platten mit weniger als 3 m Stützweite sind sie i.d.R. entbehrlich, wenn diese Felder nicht zusätzlich belastet werden.

Normen, Richtlinien und Merkblätter

DIN 4070	Nadelholz Teil 1, Querschnittsmaße und statische Werte für Schnittholz, Vorratskantholz und Dachlatten
DIN 4071	Ungehobelte Bretter und Bohlen aus Nadelholz Teil 1, Maße
DIN 4073	Gehobelte Bretter und Bohlen aus Nadelholz Teil 1, Maße
DIN 18 201	Toleranzen im Bauwesen
DIN 18 202	Toleranzen im Hochbau Teil 5, Bauwerke
DIN 18 203	Toleranzen im Hochbau Teil 1, Vorgefertigte Teile aus Beton und Stahlbeton
DIN 18 215	Schalungsplatten aus Holz für Beton- und Stahlbetonbauten
DIN 18 216	Schalungsanker für Betonschalungen
DIN 18 217	Betonflächen und Schalungshaut
DIN 18 218	Frischbetondruck auf lotrechte Schalung

DIN 18 540 Abdichten von Außenwandfugen zwischen
Beton- und Stahlbetonfertigteilen im Hochbau mit
Fugendichtungsmassen
Teil 1, Konstruktive Ausbildung der Fugen

DIN 68 705 Bau-Furniersperrholz aus Buche

DIN 68 791 Großflächen-Schalungsplatten aus Stab- und Stäbchensperrholz für Beton und Stahlbeton

DIN 68 792 Großflächen-Schalungsplatten aus Furnierholz für Beton und Stahlbeton

Merkblatt Abstandhalter, Deutscher Beton-Verein E.V.

Merkblatt Toleranzen im Hochbau nach DIN 18 201 und

18 202, Zentralverband des Deutschen Baugewer-

bes u.a.

Richtlinie Trennmittel für Betonschalungen und -formen,

Deutscher Beton-Verein E.V.

Richtlinie für die Lieferung, Anwendung und Prüfung von

Trennmitteln für Betonschalungen und -formen,

Deutscher Beton-Verein E.V.

Sichtbeton Merkblatt für Ausschreibung, Herstellung und

Abnahme von Beton mit gestalteten Ansichtsflächen, Deutscher Beton-Verein E.V., Bundesverband der Deutschen Zementindustrie e.V.

Schrifttum

- Bayer, E.; Kampen, R.; Moritz, H.: Beton-Praxis. Ein Leitfaden für die Baustelle. Beton-Verlag GmbH, Düsseldorf 1995
- [2] Hertle, R.: Ausschalfristen von Stahlbetondecken. Hoch- und Tiefbau 4/1996
- [3] Kind-Barkauskas, F.; Kauhsen, B.; Polónyi, S.; Brandt, J.: Beton-Atlas. Beton-Verlag GmbH 1995
- [4] Leitfaden Betonarbeiten. 4. Auflage 1992, Fa. Heitkamp, Abt. Qualitäts technik 1995
- [5] NOE Schaltechnik. NOE-Informations-Dienst, Süssen, 1996

Bauberatung Zement

Wir beraten Sie in allen Fragen der Betonanwendung

Bauberatung Zement Bayern	Rosenheimer Str. 145 g	816/1	Munchen	Tel. 089/45098490	Fax: 45098498	eMail:BB_Muenchen@BDZement.de
Bauberatung Zement Bayern	Bucher Straße 3	90419	Nürnberg	Tel. 0911/933870	Fax: 9338733	eMail:BB_Nuernberg@BDZement.de
Bauberatung Zement Beckum	Annastraße 3	59269	Beckum	Tel. 02521/873020	Fax: 873029	eMail:BB_Beckum@BDZement.de
Bauberatung Zement Düsseldorf	Schadowstraße 44	40212	Düsseldorf	Tel. 0211/353001	Fax: 353002	eMail:BB_Duesseldorf@BDZement.de
Bauberatung Zement Hamburg	Immenhof 2	22087	Hamburg	Tel. 040/2276878	Fax: 224621	eMail:BB_Hamburg@BDZement.de
Bauberatung Zement Hannover	Hannoversche Str. 21	31319	Sehnde-Höver	Tel. 05132/6015	Fax: 6075	eMail:BB_Hannover@BDZement.de
Bauberatung Zement Ost	Ahornstraße 25	12163	Berlin	Tel. 030/7912278	Fax: 7914727	eMail:BB_Berlin@BDZement.de
Bauberatung Zement Ost	Kieler Straße 67	04357	Leipzig	Tel. 0341/6010201	Fax: 6010290	eMail:BB_Leipzig@BDZement.de
Bauberatung Zement Stuttgart	Leonberger Straße 45	71229	Leonberg	Tel. 07152/71081	Fax: 9792960	eMail:BB_Stuttgart@BDZement.de
Bauberatung Zement Wiesbaden	Friedrich-Bergius-Str. 7	65203	Wiesbaden	Tel. 0611/1821170	Fax: 182117-16	eMail:BB_Wiesbaden@BDZement.de

Bundesverband der Deutschen Zementindustrie e.V. · Postfach 510566 · 50941 Köln · http://www.BDZement.de · eMail:Bauberatung@BDZement.de

