HIGHLIGHTS OF PRESCRIBING INFORMATION
These highlights do not include all the information needed to use REYATAZ safely and effectively. See full prescribing information for REYATAZ.
REYATAZ ${ }^{\circledR}$ (atazanavir sulfate) Capsules
Initial U.S. Approval: 2003

Indications and Usage (1)	$03 / 2008$
Dosage and Administration	
\quad Recommended Adult Dosage (2.1)	$09 / 2008$
\quad Recommended Pediatric Dosage (2.2)	$03 / 2008$
\quad Renal Impairment (2.3)	$12 / 2007$
Contraindications (4)	$08 / 2008$
Warnings and Precautions	
\quad Cardiac Conduction Abnormalities (5.2)	$02 / 2008$

REYATAZ is a protease inhibitor indicated for use in combination with other antiretroviral agents for the treatment of HIV-1 infection. (1)

DOSAGE AND ADMINISTRATION

- Treatment-naive patients: REYATAZ 300 mg with ritonavir 100 mg once daily with food or REYATAZ 400 mg once daily with food. When coadministered with tenofovir, the recommended dose is REYATAZ 300 mg with ritonavir 100 mg . (2.1)
- Treatment-experienced patients: REYATAZ 300 mg with ritonavir 100 mg once daily with food. (2.1)
- Pediatric patients (6 to less than 18 years of age): Dosage is based on body weight not to exceed the adult dose. (2.2)
- Concomitant therapy: Dosing modifications may be required. (2.1, 7)
- Renal impairment: Dosing modifications may be required. (2.3)
- Hepatic impairment: Dosing modifications may be required. (2.4)
------------- DOSAGE FORMS AND STRENGTHS
- Capsules: $100 \mathrm{mg}, 150 \mathrm{mg}, 200 \mathrm{mg}, 300 \mathrm{mg}$. $(3,16)$
------------------CONTRAINDICATIONS --------------------
- REYATAZ is contraindicated in patients with previously demonstrated hypersensitivity (eg, Stevens-Johnson syndrome, erythema multiforme, or toxic skin eruptions) to any of the components of this product. (4)
- Coadministration with triazolam, orally administered midazolam, ergot derivatives, rifampin, irinotecan, lovastatin, simvastatin, indinavir, cisapride, pimozide, and St. John's wort. (4)

- Cardiac conduction abnormalities: PR interval prolongation may occur in some patients. Use with caution in patients with preexisting conduction system disease or when administered with other drugs that may prolong the PR interval. (5.2, 6.4, 7.3, 12.2, 17.3)
- Rash: Discontinue if severe rash develops. (5.3, 6.4, 17.4)
- Hyperbilirubinemia: Most patients experience asymptomatic increases in indirect bilirubin, which is reversible upon discontinuation. Do not dose reduce. If a concomitant transaminase increase occurs, evaluate for alternative etiologies. (5.4, 6.2)
- Hepatotoxicity: Patients with hepatitis B or C are at risk of increased transaminases or hepatic decompensation. Monitor liver function tests prior to therapy and during treatment. (2.4, 5.5, 6.3, 6.4, 8.8)
- Nephrolithiasis has been reported. Consider temporary interruption or discontinuation. (5.6, 6.4)
- Patients receiving REYATAZ (atazanavir sulfate) may develop new onset or exacerbations of diabetes mellitus/hyperglycemia (5.7, 6.4), immune reconstitution syndrome (5.8), and redistribution/accumulation of body fat. (5.9)
- Hemophilia: Spontaneous bleeding may occur and additional factor VIII may be required. (5.10)
------------------ADVERSE REACTIONS
Most common adverse reactions ($\geq 2 \%$) are nausea, jaundice/scleral icterus, rash, headache, abdominal pain, vomiting, insomnia, peripheral neurologic symptoms, dizziness, myalgia, diarrhea, depression, and fever. (6.1, 6.2)
To report SUSPECTED ADVERSE REACTIONS, contact Bristol-Myers Squibb at 1-800-721-5072 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch

DRUG INTERACTIONS

Coadministration of REYATAZ can alter the concentration of other drugs and other drugs may alter the concentration of atazanavir. The potential drug-drug interactions must be considered prior to and during therapy. (4, 5.1, 7, 12.3)
----------------USE IN SPECIFIC POPULATIONS -------------------

- Pregnancy: Use only if the potential benefit justifies the potential risk to the fetus. Physicians are encouraged to register patients in the Antiretroviral Pregnancy Registry by calling 1-800-258-4263. (8.1)
- Nursing mothers should be instructed not to breast-feed due to the potential for postnatal HIV transmission. (8.3)
- Hepatitis B or C co-infection: Monitor liver enzymes. $(5.5,6.3)$
- Renal impairment: Do not use in treatment experienced patients with end stage renal disease managed with hemodialysis. $(2.3,8.7)$
- Hepatic impairment: Do not use REYATAZ in patients with severe hepatic impairment. REYATAZ/ritonavir is not recommended. (2.4, 8.8)
See 17 for PATIENT COUNSELING INFORMATION and FDA-approved patient labeling
Revised: 09/2008
FULL PRESCRIBING INFORMATION: CONTENTS*
INDICATIONS AND USAGE
2 DOSAGE AND ADMINISTRATION
2.1 Recommended Adult Dosage
2.2 Recommended Pediatric Dosage
2.3 Renal Impairment
2.4 Hepatic Impairment
3 DOSAGE FORMS AND STRENGTH
4 CONTRAINDICATIONS
5 WARNINGS AND PRECAUTIONS
5.1 Drug Interactions
5.2 Cardiac Conduction Abnormalities
5.3 Rash
5.4 Hyperbilirubinemi
5.5 Hepatotoxicity
5.6 Nephrolithiasis
5.7 Diabetes Mellitus/Hyperglycemia
5.8 Immune Reconstitution Syndrome
5.9 Fat Redistribution
5.10 Hemophilia
5.11 Resistance/Cross-Resistance
6 ADVERSE REACTIONS
6.1 Clinical Trial Experience in Adults
6.2 Clinical Trial Experience in Pediatric Patients
6.3 Patients Co-infected With Hepatitis B and/or Hepatitis C Virus
6.4 Postmarketing Experience
7 DRUG INTERACTIONS
7.1 Potential for REYATAZ to Affect Other Drugs
7.2 Potential for Other Drugs to Affect Atazanavir
7.3 Established and Other Potentially Significant Drug Interactions

8 USE IN SPECIFIC POPULATIONS
8.1 Pregnancy
8.3 Nursing Mothers
8.4 Pediatric Use
8.5 Geriatric Use
8.6 Age/Gender
8.7 Impaired Renal Function
8.8 Impaired Hepatic Function

10 OVERDOSAGE
11 DESCRIPTION
12 CLINICAL PHARMACOLOGY
12.1 Mechanism of Action
12.2 Pharmacodynamics
12.3 Pharmacokinetics
12.4 Microbiology

13 NONCLINICAL TOXICOLOGY
13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility
13.2 Reproductive Toxicology Studies

14 CLINICAL STUDIES
14.1 Adult Patients Without Prior Antiretroviral Therapy
14.2 Adult Patients With Prior Antiretroviral Therapy
14.3 Pediatric Patients

16 HOW SUPPLIED/STORAGE AND HANDLING
17 PATIENT COUNSELING INFORMATION
17.1 Dosing Instructions
17.2 Drug Interactions
17.3 Cardiac Conduction Abnormalities
17.4 Rash
17.5 Hyperbilirubinemia
17.6 Fat Redistribution
17.7 FDA-Approved Patient Labeling

[^0]
FULL PRESCRIBING INFORMATION

1 INDICATIONS AND USAGE

REYATAZ ${ }^{\circledR}$ (atazanavir sulfate) is indicated in combination with other antiretroviral agents for the treatment of HIV-1 infection. This indication is based on analyses of plasma HIV-1 RNA levels and CD4+ cell counts from controlled studies of 48 weeks duration in antiretroviral-naive and antiretroviral-treatment-experienced adult and pediatric patients at least 6 years of age.
The following points should be considered when initiating therapy with REYATAZ:

- In Study Al424-045 REYATAZ/ritonavir and lopinavir/ritonavir were similar for the primary efficacy outcome measure of time-averaged difference in change from baseline in HIV RNA level. This study was not large enough to reach a definitive conclusion that REYATAZ/ritonavir and lopinavir/ ritonavir are equivalent on the secondary efficacy outcome measure of proportions below the HIV RNA lower limit of detection [see Clinical Studies (14.2).
- The number of baseline primary protease inhibitor mutations affects the virologic response to REYATAZ/ritonavir [see Clinical Pharmacology (12.4).

2 DOSAGE AND ADMINISTRATION

General Dosing Recommendations:

- REYATAZ Capsules must be taken with food.
- The recommended oral dosage of REYATAZ depends on the treatment history of the patient and the use of other coadministered drugs. When coadministered with H_{2}-receptor antagonists or proton-pump inhibitors, dose separation may be required [see Dosage and Administration (2.1)].
- When coadministered with didanosine buffered or enteric-coated formulations REYATAZ should be given (with food) 2 hours before or 1 hour after didanosine.
- REYATAZ without ritonavir is not recommended for treatment-experienced patients with prior virologic failure [see Clinical Studies (14)].
- Efficacy and safety of REYATAZ with ritonavir in doses greater than 100 mg once daily have not been established. The use of higher ritonavir doses might alter the safety profile of atazanavir (cardiac effects, hyperbilirubinemia) and, therefore, is not recommended. Prescribers should consult the complete prescribing information for NORVIR ${ }^{\circledR}$ (ritonavir) when using this agent.

2.1 Recommended Adult Dosage

Dose Recommendations for Therapy-Naive Patients

- For treatment-naive patients, the recommended dosage is REYATAZ 300 mg with ritonavir 100 mg once daily (all as a single dose with food).

```
OR
```

- For treatment-naive patients who are unable to tolerate ritonavir, the recommended dosage is REYATAZ 400 mg (without ritonavir) once daily taken with food.
Concomitant Therapy:
- REYATAZ 300 mg with ritonavir 100 mg once daily (all as a single dose with food) if combined with any of the following:
- tenofovir
- H_{2}-receptor antagonist: The H_{2}-receptor antagonist dose should not exceed a dose comparable to famotidine 40 mg twice daily. REYATAZ 300 mg and ritonavir 100 mg should be administered simultaneously with, and/or at least 10 hours after, the dose of the H_{2}-receptor antagonist. For patients unable to tolerate ritonavir, REYATAZ 400 mg once daily with food should be administered at least 2 hours before and at least 10 hours after the H_{2}-receptor antagonist. For these patients, no single dose of the H_{2}-receptor antagonist should exceed a dose comparable to famotidine 20 mg , and the total daily dose should not exceed a dose comparable to famotidine 40 mg .
- proton-pump inhibitors: The proton-pump inhibitor dose should not exceed a dose comparable to omeprazole 20 mg and must be taken approximately 12 hours prior to the REYATAZ 300 mg and ritonavir 100 mg dose.
- If REYATAZ is combined with efavirenz, REYATAZ 400 mg (two $200-\mathrm{mg}$ capsules) with ritonavir 100 mg should be administered once daily all as a single dose with food, and efavirenz should be administered on an empty stomach, preferably at bedtime.

Dose Recommendations for Therapy-Experienced Patients

REYATAZ 300 mg with ritonavir 100 mg once daily (all as a single dose with food).
Concomitant Therapy:

- Whenever an H_{2}-receptor antagonist is given to a patient receiving REYATAZ with ritonavir, the H_{2}-receptor antagonist dose should not exceed a dose comparable to famotidine 20 mg twice daily, and the REYATAZ and ritonavir doses should be administered simultaneously with, and/or at least 10 hours after, the dose of the H_{2}-receptor antagonist.
- REYATAZ 300 mg with ritonavir 100 mg once daily (all as a single dose with food) if taken with an H_{2}-receptor antagonist.
- REYATAZ (atazanavir sulfate) 400 mg (two $200-\mathrm{mg}$ capsules) with ritonavir 100 mg once daily (all as a single dose with food) if taken with both tenofovir and an H_{2}-receptor antagonist.
- Proton-pump inhibitors should not be used in treatment-experienced patients receiving REYATAZ.
- Efavirenz: Do not coadminister REYATAZ with efavirenz in treatment-experienced patients due to decreased atazanavir exposure.
[For these drugs and other antiretroviral agents for which dosing modification may be appropriate, see Drug Interactions (7).]

2.2 Recommended Pediatric Dosage

The recommended dosage of REYATAZ for pediatric patients (6 to less than 18 years of age) is based on body weight and should not exceed the recommended adult dosage. REYATAZ Capsules must be taken with food. The data are insufficient to recommend dosing of REYATAZ for any of the following: (1) patients less than 6 years of age, (2) without ritonavir in patients less than 13 years of age, and (3) treatmentexperienced pediatric patients with body weight less than 25 kg .

Therapy-Naive Pediatric Patients

The recommended dosage of REYATAZ with ritonavir in treatment-naive patients at least 6 years of age is shown in Table 1.
For treatment-naive patients at least 13 years of age and at least 39 kg , who are unable to tolerate ritonavir, the recommended dose is REYATAZ 400 mg (without ritonavir) once daily with food.

Table 1: Dosage for Treatment-Naive Pediatric Patients (6 to less than 18 years of age) for REYATAZ Capsules with ritonavir

Body Weight		REYATAZ dose ${ }^{\mathrm{a}, \mathrm{b}}$ (mg)	ritonavir dose ${ }^{\text {b }}$ (mg)
(kg)	(lbs)		
15 to less than 25	33 to less than 55	150	$80^{\text {c }}$
25 to less than 32	55 to less than 70	200	$100{ }^{\text {d }}$
32 to less than 39	70 to less than 86	250	$100{ }^{\text {d }}$
at least 39	at least 86	300	$100{ }^{\text {d }}$

${ }^{\text {a }}$ The recommended dosage of REYATAZ can be achieved using a combination of commercially available capsule strengths.
${ }^{\text {b }}$ The dosage of REYATAZ and ritonavir was calculated as follows:

- 15 kg to less than 20 kg : REYATAZ $8.5 \mathrm{mg} / \mathrm{kg}$ with ritonavir $4 \mathrm{mg} / \mathrm{kg}$ once daily with food.
- at least 20 kg : REYATAZ $7 \mathrm{mg} / \mathrm{kg}$ with ritonavir $4 \mathrm{mg} / \mathrm{kg}$ once daily with food not to exceed REYATAZ 300 mg and ritonavir 100 mg .
${ }^{\text {c }}$ Ritonavir liquid.
${ }^{\mathrm{a}}$ Ritonavir capsule or liquid.

Therapy-Experienced Pediatric Patients

The recommended dosage of REYATAZ with ritonavir in treatment-experienced patients at least 6 years of age is shown in Table 2.

Table 2: Dosage for Treatment-Experienced Pediatric Patients (6 to less than 18 years of age) for REYATAZ Capsules with ritonavir

Body Weight		REYATAZ dose ${ }^{\mathrm{a}, \mathrm{b}}$ (mg)	ritonavir dose ${ }^{b}$ (mg)
(kg)	(lbs)		
25 to less than 32	55 to less than 70	200	$100{ }^{\text {c }}$
32 to less than 39	70 to less than 86	250	$100^{\text {c }}$
at least 39	at least 86	300	$100^{\text {c }}$

${ }^{\text {a }}$ The recommended dosage of REYATAZ can be achieved using a combination of commercially available capsule strengths.
${ }^{\mathrm{b}}$ The dosage was calculated as REYATAZ $7 \mathrm{mg} / \mathrm{kg}$ with ritonavir $4 \mathrm{mg} / \mathrm{kg}$ once daily with food not to exceed REYATAZ 300 mg and ritonavir 100 mg .
${ }^{\text {c }}$ Ritonavir capsule or liquid.

2.3 Renal Impairment

For patients with renal impairment, including those with severe renal impairment who are not managed with hemodialysis, no dose adjustment is required for REYATAZ. Treatment-naive patients with end stage renal disease managed with hemodialysis should receive REYATAZ 300 mg with ritonavir 100 mg . REYATAZ should not be administered to HIV-treatment-experienced patients with end stage renal disease managed with hemodialysis. [See Use in Specific Populations (8.7).]

2.4 Hepatic Impairment

REYATAZ should be used with caution in patients with mild-to-moderate hepatic impairment. For patients with moderate hepatic impairment (Child-Pugh Class B) who have not experienced prior virologic failure, a dose reduction to 300 mg once daily should be considered. REYATAZ should not be used in patients with severe hepatic impairment (Child-Pugh Class C). REYATAZ/ritonavir has not been studied in subjects with hepatic impairment and is not recommended. [See Warnings and Precautions (5.5) and Use in Specific Populations (8.8).]

3 DOSAGE FORMS AND STRENGTHS

- 100 mg capsule with blue cap and white body, printed with white ink "BMS 100 mg " on the cap and with blue ink " 3623 " on the body.
- 150 mg capsule with blue cap and powder blue body, printed with white ink "BMS 150 mg " on the cap and with blue ink "3624" on the body.
- $\quad 200 \mathrm{mg}$ capsule with blue cap and blue body, printed with white ink "BMS 200 mg " on the cap and with white ink "3631" on the body.
- $\quad 300 \mathrm{mg}$ capsule with red cap and blue body, printed with white ink "BMS 300 mg " on the cap and with white ink "3622" on the body.

4 CONTRAINDICATIONS

REYATAZ (atazanavir sulfate) is contraindicated:

- in patients with previously demonstrated clinically significant hypersensitivity (eg, Stevens-Johnson syndrome, erythema multiforme, or toxic skin eruptions) to any of the components of this product.
- when coadministered with drugs that are highly dependent on CYP3A or UGT1A1 for clearance, and for which elevated plasma concentrations are associated with serious and/or life-threatening events. These and other contraindicated drugs are listed in Table 3.

Table 3: Drugs That Are Contraindicated with REYATAZ

Drug Class	Drugs within class that are contraindicated with REYATAZ	Clinical Comment
Antimycobacterials	Rifampin	Rifampin substantially decreases plasma concentrations of atazanavir, which may result in loss of therapeutic effect and development of resistance.
Antineoplastics	Irinotecan	Atazanavir inhibits UGT1A1 and may interfere with the metabolism of irinotecan, resulting in increased irinotecan toxicities.
Benzodiazepines	Triazolam, orally administered midazolam ${ }^{\text {a }}$	Triazolam and orally administered midazolam are extensively metabolized by CYP3A4. Coadministration of triazolam or orally administered midazolam with REYATAZ may cause large increases in the concentration of these benzodiazepines. Potential for serious and/or life-threatening events such as prolonged or increased sedation or respiratory depression.
Ergot Derivatives	Dihydroergotamine, ergotamine, ergonovine, methylergonovine	Potential for serious and/or life-threatening events such as acute ergot toxicity characterized by peripheral vasospasm and ischemia of the extremities and other tissues.
GI Motility Agent	Cisapride	Potential for serious and/or life-threatening reactions such as cardiac arrhythmias.
Herbal Products	St. John's wort (Hypericum perforatum)	Patients taking REYATAZ should not use products containing St. John's wort because coadministration may be expected to reduce plasma concentrations of atazanavir. This may result in loss of therapeutic effect and development of resistance.
HMG-CoA Reductase Inhibitors	Lovastatin, simvastatin	Potential for serious reactions such as myopathy including rhabdomyolysis.
Neuroleptic	Pimozide	Potential for serious and/or life-threatening reactions such as cardiac arrhythmias.
Protease Inhibitors	Indinavir	Both REYATAZ and indinavir are associated with indirect (unconjugated) hyperbilirubinemia.

${ }^{\text {a }}$ See Drug Interactions, Table 13 (7) for parenterally administered midazolam.

5 WARNINGS AND PRECAUTIONS

5.1 Drug Interactions

See Table 3 for a listing of drugs that are contraindicated for use with REYATAZ due to potentially life-threatening adverse events, significant drug interactions, or loss of virologic activity. [See Contraindications (4).] Please refer to Table 13 for established and other potentially significant drug interactions [see Drug Interactions (7.3)].

5.2 Cardiac Conduction Abnormalities

Atazanavir has been shown to prolong the PR interval of the electrocardiogram in some patients. In healthy volunteers and in patients, abnormalities in atrioventricular (AV) conduction were asymptomatic and generally limited to first-degree AV block. There have been rare reports of second-degree AV block and other conduction abnormalities [see Adverse Reactions (6.4) and Overdosage (10)]. In clinical trials that included electrocardiograms, asymptomatic first-degree AV block was observed in 5.9\% of atazanavir-treated patients ($\mathrm{n}=920$), 5.2% of lopinavir/ritonavir-treated patients ($n=252$), 10.4\% of nelfinavir-treated patients ($n=48$), and 3.0% of efavirenztreated patients ($\mathrm{n}=329$). In Study Al424-045, asymptomatic first-degree AV block was observed in 5\% (6/118) of atazanavir/ritonavir-treated patients and 5\% (6/116) of lopinavir/ritonavir-treated patients who had on-study electrocardiogram
measurements. Because of limited clinical experience in patients with preexisting conduction system disease (eg, marked first-degree AV block or second- or thirddegree AV block), atazanavir should be used with caution in these patients. [See Clinical Pharmacology (12.2).]

Atazanavir in combination with diltiazem increased diltiazem plasma concentration by 2 -fold with an additive effect on the PR interval. When used in combination with atazanavir, a dose reduction of diltiazem by one half should be considered and ECG monitoring is recommended. In a pharmacokinetic study between atazanavir 400 mg once daily and atenolol 50 mg once daily, no clinically significant additive effect of atazanavir and atenolol on the PR interval was observed. Dose adjustment of atenolol is not required when used in combination with atazanavir. [See Drug Interactions (7) and Clinical Pharmacology (12.2).] Pharmacokinetic studies between atazanavir and other drugs that prolong the PR interval including beta blockers [other than atenolol, see Drug Interactions (7)], verapamil, and digoxin have not been performed. An additive effect of atazanavir and these drugs cannot be excluded; therefore, caution should be exercised when atazanavir is given concurrently with these drugs, especially those that are metabolized by CYP3A (eg, verapamil).

5.3 Rash

In controlled clinical trials, rash (all grades, regardless of causality) occurred in approximately 20% of patients treated with REYATAZ (atazanavir sulfate). The median time to onset of rash in clinical studies was 7.1 weeks and the median duration of rash was 1.3 weeks. Rashes were generally mild-to-moderate maculopapular skin eruptions. Treatment-emergent adverse reactions of moderate or severe rash (occurring at a rate of $\geq 2 \%$) are presented for the individual clinical studies [see Adverse Reactions (6.1)]. Dosing with REYATAZ was often continued without interruption in patients who developed rash. The discontinuation rate for rash in clinical trials was $<1 \%$. REYATAZ should be discontinued if severe rash develops. Cases of Stevens-Johnson syndrome, erythema multiforme, and toxic skin eruptions have been reported in patients receiving REYATAZ. [See Contraindications (4).]

5.4 Hyperbilirubinemia

Most patients taking REYATAZ experience asymptomatic elevations in indirect (unconjugated) bilirubin related to inhibition of UDP-glucuronosyl transferase (UGT). This hyperbilirubinemia is reversible upon discontinuation of REYATAZ. Hepatic transaminase elevations that occur with hyperbilirubinemia should be evaluated for alternative etiologies. No long-term safety data are available for patients experiencing persistent elevations in total bilirubin >5 times ULN. Alternative antiretroviral therapy to REYATAZ may be considered if jaundice or scleral icterus associated with bilirubin elevations presents cosmetic concerns for patients. Dose reduction of atazanavir is not recommended since long-term efficacy of reduced doses has not been established. [See Adverse Reactions (6.1, 6.2).]

5.5 Hepatotoxicity

Caution should be exercised when administering REYATAZ to patients with hepatic impairment because atazanavir concentrations may be increased. [See Dosage and Administration (2.4).] Patients with underlying hepatitis B or C viral infections or marked elevations in transaminases before treatment may be at increased risk for developing further transaminase elevations or hepatic decompensation. In these patients, appropriate laboratory testing should be conducted prior to initiating therapy with REYATAZ and these patients should be monitored during treatment. [See Adverse Reactions (6.3) and Use in Specific Populations (8.8).]

5.6 Nephrolithiasis

Cases of nephrolithiasis were reported during postmarketing surveillance in HIVinfected patients receiving REYATAZ therapy. Because these events were reported voluntarily during clinical practice, estimates of frequency cannot be made. If signs or symptoms of nephrolithiasis occur, temporary interruption or discontinuation of therapy may be considered. [See Adverse Reactions (6.4).]

5.7 Diabetes Mellitus/Hyperglycemia

New-onset diabetes mellitus, exacerbation of preexisting diabetes mellitus, and hyperglycemia have been reported during postmarketing surveillance in HIV-infected patients receiving protease inhibitor therapy. Some patients required either initiation or dose adjustments of insulin or oral hypoglycemic agents for treatment of these events. In some cases, diabetic ketoacidosis has occurred. In those patients who discontinued protease inhibitor therapy, hyperglycemia persisted in some cases. Because these events have been reported voluntarily during clinical practice, estimates of frequency cannot be made and a causal relationship between protease inhibitor therapy and these events has not been established. [See Adverse Reactions (6.4).]

5.8 Immune Reconstitution Syndrome

Immune reconstitution syndrome has been reported in patients treated with combination antiretroviral therapy, including REYATAZ. During the initial phase of combination antiretroviral treatment, patients whose immune system responds may develop an inflammatory response to indolent or residual opportunistic infections (such as Mycobacterium avium infection, cytomegalovirus, Pneumocystis jiroveci pneumonia, or tuberculosis), which may necessitate further evaluation and treatment.

5.9 Fat Redistribution

Redistribution/accumulation of body fat including central obesity, dorsocervical fat enlargement (buffalo hump), peripheral wasting, facial wasting, breast enlargement, and "cushingoid appearance" have been observed in patients receiving antiretroviral therapy. The mechanism and long-term consequences of these events are currently unknown. A causal relationship has not been established.

There have been reports of increased bleeding, including spontaneous skin hematomas and hemarthrosis, in patients with hemophilia type A and B treated with protease inhibitors. In some patients additional factor VIII was given. In more than half of the reported cases, treatment with protease inhibitors was continued or reintroduced. A causal relationship between protease inhibitor therapy and these events has not been established.

5.11 Resistance/Cross-Resistance

Various degrees of cross-resistance among protease inhibitors have been observed. Resistance to atazanavir may not preclude the subsequent use of other protease inhibitors. [See Clinical Pharmacology (12.4).]

6 ADVERSE REACTIONS

The following adverse reactions are discussed in greater detail in other sections of the labeling:

- cardiac conduction abnormalities [see Warnings and Precautions (5.2]
- rash [see Warnings and Precautions (5.3)]
- hyperbilirubinemia [see Warnings and Precautions (5.4)]
- nephrolithiasis [see Warnings and Precautions (5.6)]

Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.

6.1 Clinical Trial Experience in Adults

Treatment-Emergent Adverse Reactions in Treatment-Naive Patients

The safety profile of REYATAZ (atazanavir sulfate) in treatment-naive adults is based on 1625 HIV-1 infected patients in clinical trials. 536 patients received REYATAZ 300 mg with ritonavir 100 mg and 1089 patients received REYATAZ 400 mg or higher (without ritonavir).
The most common adverse reactions are nausea, jaundice/scleral icterus, and rash.
Selected clinical adverse reactions of moderate or severe intensity reported in $\geq 2 \%$ of treatment-naive patients receiving combination therapy including REYATAZ 300 mg with ritonavir 100 mg and REYATAZ 400 mg (without ritonavir) are presented in Tables 4 and 5 , respectively.

Table 4: \quad Selected Treatment-Emergent Adverse Reactions ${ }^{\text {a }}$ of Moderate or Severe Intensity Reported in $\mathbf{\geq 2} \%$ of Adult Treatment-Naive Patients, ${ }^{\text {b }}$ Study A1424-138

	48 weeks $^{\mathrm{c}}$ REYATAZ 300 mg with ritonavir 100 mg (once daily) and tenofovir with emtricitabine	48 weeks ${ }^{\mathrm{d}}$ $(\mathrm{n}=441)$
lopinavir 400 mg with ritonavir 100 mg (twice daily) and tenofovir with emtricitabine ${ }^{\text {d }}$ $(\mathrm{n}=437)$		
Digestive System	4%	
Nausea	4%	8%
Jaundice/scleral icterus	2%	11%
Diarrhea	3%	2%
Skin and Appendages		
Rash		

* None reported in this treatment arm.
a Includes events of possible, probable, certain, or unknown relationship to treatment regimen.
${ }^{\mathrm{b}}$ Based on the regimen containing REYATAZ.
${ }^{\mathrm{C}}$ Median time on therapy.
${ }^{\text {d }}$ As a fixed-dose combination: 300 mg tenofovir, 200 mg emtricitabine once daily.

Table 5: \quad Selected Treatment-Emergent Adverse Reactions ${ }^{\text {a }}$ of Moderate or Severe Intensity Reported in $\mathbf{2} \mathbf{2 \%}$ of Adult Treatment-Naive Patients, ${ }^{\text {b }}$ Studies A1424-034, AI424-007, and A1424-008

	Study A1424-034		Studies A1424-007, -008	
	64 weeks $^{\text {© }}$ REYATAZ 400 mg once daily + lamivudine + zidovudine e $(n=404)$	64 weeks ${ }^{\text {c }}$ efavirenz 600 mg once daily + lamivudine + zidovudine e ($\mathrm{n}=401$)	120 weeks ${ }^{\text {c,d }}$ REYATAZ 400 mg once daily + stavudine + lamivudine or didanosine ($\mathrm{n}=279$)	$\begin{gathered} 73 \text { weeksc,d } \\ \text { nelfinavir } 750 \mathrm{mg} \\ \text { TID or } 1250 \mathrm{mg} \text { BID } \\ + \text { stavudine } \\ \text { + lamivudine or } \\ \text { didanosine } \\ (\mathrm{n}=191) \end{gathered}$
Body as a Whole Headache	6\%	6\%	1\%	2\%
Digestive System				
Nausea	14\%	12\%	6\%	4\%
Jaundice/scleral icterus	7\%	*	7\%	*
Vomiting	4\%	7\%	3\%	3\%
Abdominal pain	4\%	4\%	4\%	2\%
Diarrhea	1\%	2\%	3\%	16\%

Table 5: \quad Selected Treatment-Emergent Adverse Reactions ${ }^{\text {a }}$ of Moderate or Severe Intensity Reported in $\mathbf{2} \%$ of Adult Treatment-Naive (Continued) Patients, ${ }^{\text {b }}$ Studies AI424-034, A1424-007, and A1424-008

	Study Al424-034		Studies Al424-007, -008	
	64 weeks $^{\text {c }}$ REYATAZ 400 m once daily + lamivudine + zidovudine e ($\mathrm{n}=404$)	64 weeks $^{\text {c }}$ efavirenz 600 mg once daily + lamivudine + zidovudine e ($\mathrm{n}=401$)	120 weeks ${ }^{\mathrm{c}, \mathrm{d}}$ REYATAZ 400 mg once daily + stavudine + lamivudine or didanosine ($\mathrm{n}=279$)	73 weeks ${ }^{\mathrm{c}, \mathrm{d}}$ nelfinavir 750 mg TID or 1250 mg BID + stavudine + lamivudine or didanosine ($\mathrm{n}=191$)
Nervous System				
Insomnia	3\%	3\%	<1\%	*
Dizziness	2\%	7\%	<1\%	
Peripheral neurologic symptoms	<1\%	1\%	4\%	3\%
Skin and Appendages Rash	7\%	10\%	5\%	1\%

* None reported in this treatment arm.
${ }^{\text {a }}$ Includes events of possible, probable, certain, or unknown relationship to treatment regimen.
${ }^{\mathrm{b}}$ Based on regimens containing REYATAZ.
${ }^{\mathrm{c}}$ Median time on therapy.
${ }^{d}$ Includes long-term follow-up.
${ }^{e}$ As a fixed-dose combination: 150 mg lamivudine, 300 mg zidovudine twice daily.
Treatment-Emergent Adverse Reactions in Treatment-Experienced Patients
The safety profile of REYATAZ (atazanavir sulfate) in treatment-experienced adults is based on 119 HIV-1 infected patients in clinical trials.
The most common adverse reactions are jaundice/scleral icterus and myalgia.
Selected clinical adverse reactions of moderate or severe intensity reported in $\geq 2 \%$ of treatment-experienced patients receiving REYATAZ/ritonavir are presented in Table 6.
Table 6: \quad Selected Treatment-Emergent Adverse Reactions ${ }^{\text {a }}$ of Moderate or Severe Intensity Reported in $\mathbf{\geq 2} \%$ of Adult Treatment-Experienced Patients, ${ }^{\text {b }}$ Study A1424-045

	48 weeks $^{\text {c }}$ REYATAZ/ritonavir $300 / 100 \mathrm{mg}$ once daily + tenofovir + NRTI ($\mathrm{n}=119$)	48 weeks ${ }^{\text {c }}$ lopinavir/ritonavir $400 / 100 \mathrm{mg}$ twice daily tenofovir + NRTI $(\mathrm{n}=118)$
Body as a Whole		
Fever	2\%	*
Digestive System		
Jaundice/scleral icterus	9\%	*
Diarrhea	3\%	11\%
Nausea	3\%	2\%
Nervous System		
Depression	2\%	<1\%
Musculoskeletal System		
Myalgia	4\%	*
* None reported in this treatment arm.		
${ }^{\text {a }}$ Includes events of possible, probable, certain, or unknown relationship to treatment regimen. ${ }^{\mathrm{b}}$ Based on the regimen containing REYATAZ.		
${ }^{\text {c }}$ Median time on therapy.		
${ }^{\text {d }}$ As a fixed-dose combination.		

Laboratory Abnormalities in Treatment-Naive Patients
The percentages of adult treatment-naive patients treated with combination therapy including REYATAZ 300 mg with ritonavir 100 mg and REYATAZ 400 mg (without ritonavir) with Grade 3-4 laboratory abnormalities are presented in Tables 7 and 8, respectively.

Table 7: $\begin{aligned} & \text { Grade 3-4 Laboratory Abnormalities Reported in } \geq \mathbf{2 \%} \text { of Adult } \\ & \\ & \text { Treatment-Naive Patients, }{ }^{\text {a }} \text { Study Al424-138 }\end{aligned}$			
Variable	Limit ${ }^{6}$	48 weeks ${ }^{\text {b }}$ REYATAZ 300 mg with ritonavir 100 mg (once daily) and tenofovir with emtricitabine ${ }^{\mathrm{d}}$ ($\mathrm{n}=441$)	48 weeks ${ }^{\text {b }}$ lopinavir 400 mg with ritonavir 100 mg (twice daily) and tenofovir with emtricitabine ${ }^{\mathrm{d}}$ ($\mathrm{n}=437$)
Chemistry	High		
SGOT/AST	$\geq 5.1 \times$ ULN	2\%	<1\%
Total Bilirubin	$\geq 2.6 \times$ ULN	34\%	<1\%
Creatine Kinase	$\geq 5.1 \times$ ULN	5\%	5\%
Total Cholesterol	$\geq 240 \mathrm{mg} / \mathrm{dL}$	7\%	18\%
Hematology	-70w		
Neutrophils	<750 cells $/ \mathrm{mm}^{3}$	3\%	<1\%

[^1]${ }^{\mathrm{b}}$ Median time on therapy.
${ }^{c}$ ULN = upper limit of normal.
${ }^{\mathrm{d}}$ As a fixed-dose combination: 300 mg tenofovir, 200 mg emtricitabine once daily.

Table 8: \quad Grade 3-4 Laboratory Abnormalities Reported in $\geq 2 \%$ of Adult TreatmentNaive Patients, ${ }^{\text {a }}$ Studies A1424-034, Al424-007, and A1424-008

Variable	Limit ${ }^{\text {d }}$	Study Al424-034		Studies Al424-007, -008	
		64 weeks $^{\text {b }}$ REYATAZ 400 mg once daily + lamivudine + zidovudine e $(n=404)$	64 weeks $^{\text {b }}$ efavirenz 600 mg once daily + lamivudine + zidovudine e ($\mathrm{n}=401$)	120 weekk ${ }^{\mathrm{b}, \mathrm{c}}$ REYATAZ 400 mg once daily + stavudine + lamivudine or + stavudine + didanosine ($\mathrm{n}=279)$	73 weeks ${ }^{\mathrm{b}, \mathrm{c}}$ nelfinavir 750 mg TID or 1250 mg BID + stavudine + lamivudine or + stavudine + didanosine ($\mathrm{n}=191$)
Chemistry	High				
SGOT/AST	$\geq 5.1 \times$ ULN	2\%	2\%	7\%	5\%
SGPT/ALT	$\geq 5.1 \times$ ULN	4\%	3\%	9\%	7\%
Total Bilirubin	$\geq 2.6 \times$ ULN	35\%	<1\%	47\%	3\%
Amylase	$\geq 2.1 \times$ ULN	*	*	14\%	10\%
Lipase	$\geq 2.1 \times$ ULN	<1\%	1\%	4\%	5\%
Creatine Kinase	$\geq 5.1 \times$ ULN	6\%	6\%	11\%	9\%
Total Cholesterol	$\geq 240 \mathrm{mg} / \mathrm{dL}$	6\%	24\%	19\%	48\%
Triglycerides	$\geq 751 \mathrm{mg} / \mathrm{dL}$	<1\%	3\%	4\%	2\%
Hematology	Low				
Hemoglobin	$<8.0 \mathrm{~g} / \mathrm{dL}$	5\%	3\%	<1\%	4\%
Neutrophils	<750 cells/mm ${ }^{3}$	7\%	9\%	3\%	7\%

${ }^{*}$ None reported in this treatment arm. ${ }^{\text {a }}$ Based on regimen(s) containing REYATAZ. ${ }^{\mathrm{b}}$ Median
 dose combination: 150 mg lamivudine, 300 mg zidovudine twice daily.

Laboratory Abnormalities in Treatment-Experienced Patients

The percentages of adult treatment-experienced patients treated with combination therapy including REYATAZ (atazanavir sulfate)/ritonavir with Grade 3-4 laboratory abnormalities are presented in Table 9.

Table 9: \quad Grade 3-4 Laboratory Abnormalities Reported in $\geq \mathbf{2 \%}$ of Adult Treatment-Experienced Patients, Study A1424-045a

Variable	Limit ${ }^{\text {c }}$	48 weeks ${ }^{\text {b }}$ REYATAZ/ritonavir $300 / 100 \mathrm{mg}$ once daily + tenofovir + NRTI ($\mathrm{n}=119$)	```48 weeks }\mp@subsup{}{}{b lopinavir/ritonavir 400/100 mg twice dailyd + tenofovir + NRTI (n=118)```
Chemistry	High		
SGOT/AST	$\geq 5.1 \mathrm{x} \mathrm{ULN}$	3\%	3\%
SGPT/ALT	$\geq 5.1 \times$ ULN	4\%	3\%
Total Bilirubin	$\geq 2.6 \times$ ULN	49\%	<1\%
Lipase	$\geq 2.1 \times$ ULN	5\%	6\%
Creatine Kinase	$\geq 5.1 \mathrm{x} \mathrm{ULN}$	8\%	8\%
Total Cholesterol	$\geq 240 \mathrm{mg} / \mathrm{dL}$	25\%	26\%
Triglycerides	$\geq 751 \mathrm{mg} / \mathrm{dL}$	8\%	12\%
Glucose	$\geq 251 \mathrm{mg} / \mathrm{dL}$	5\%	<1\%
Hematology	Low		
Platelets	<50,000 cells/mm ${ }^{3}$	2\%	3\%
Neutrophils	<750 cells/mm ${ }^{3}$	7\%	8\%
a Based on regimen(s) containing REYATAZ. of normal. ${ }^{\mathrm{d}}$ As a fixed-dose combination		${ }^{\text {b }}$ Median time on therapy	y. ${ }^{\text {c }}$ ULN $=$ upper limit

Lipids, Change from Baseline in Treatment-Naive Patients
For Study AI424-138 and Study AI424-034, changes from baseline in LDLcholesterol, HDL-cholesterol, total cholesterol, and triglycerides are shown in Tables 10 and 11, respectively.

Table 10: Lipid Values, Mean Change from Baseline, Study A1424-138

	REYATAZ/ritonavir ${ }^{\text {a,b }}$			lopinavir/ritonavir ${ }^{\text {b,c }}$		
	Baseline $\mathrm{mg} / \mathrm{dL}$ ($\mathrm{n}=428^{\mathrm{e}}$)	Week 48 mg/dL ($\mathrm{n}=372^{\mathrm{e}}$)	Week 48 Change ${ }^{\text {d }}$ ($\mathrm{n}=372^{\mathrm{e}}$)	Baseline $\mathrm{mg} / \mathrm{dL}$ $\left(\mathrm{n}=424^{\mathrm{e}}\right.$)	Week 48 $\mathrm{mg} / \mathrm{dL}$ ($\mathrm{n}=335^{\mathrm{e}}$)	Week 48 Change ${ }^{\text {d }}$ ($\mathrm{n}=335^{\mathrm{e}}$)
LDL-Cholesterof ${ }^{\text {f }}$	92	105	+14\%	93	111	+19\%
HDL-Cholesterol ${ }^{\text {f }}$	37	46	+29\%	36	48	+37\%
Total Cholesterol ${ }^{\text {f }}$	149	169	+13\%	150	187	+25\%
Triglycerides ${ }^{\dagger}$	126	145	+15\%	129	194	+52\%

a REYATAZ 300 mg with ritonavir 100 mg once daily with the fixed-dose combination: 300 mg tenofovir, 200 mg emtricitabine once daily. ${ }^{\text {b }}$ Values obtained after initiation of serum lipidreducing agents were not included in these analyses. At baseline, serum lipid-reducing agents were used in 1\% in the lopinavir/ritonavir treatment arm and 1\% in the REYATAZ/ritonavir arm. Through Week 48, serum lipid-reducing agents were used in 8% in the lopinavir/ritonavir treatment arm and 2% in the REYATAZ/ritonavir arm. " Lopinavir 400 mg with ritonavir 100 mg twice daily with the fixed-dose combination 300 mg tenofovir, 200 mg emtricitabine once daily. ${ }^{\mathrm{d}}$ The change from baseline is the mean of within-patient changes from baseline for patients with both baseline and Week 48 values and is not a simple difference of the baseline and Week 48 mean values. ${ }^{e}$ Number of patients with LDL-cholesterol measured. ${ }^{\mathrm{f}}$ Fasting.

Table 11: Lipid Values, Mean Change from Baseline, Study Al424-034

	REYATAZ ${ }^{\text {a,b }}$			efavirenz ${ }^{\text {b,c }}$		
	Baseline $\mathrm{mg} / \mathrm{dL}$ ($\mathrm{n}=383^{\mathrm{e}}$)	Week 48 $\mathrm{mg} / \mathrm{dL}$ $\left(\mathrm{n}=283^{\mathrm{e}}\right)$	Week 48 Change ${ }^{\text {d }}$ ($\mathrm{n}=272^{\mathrm{e}}$)	Baseline mg/dL $\left(\mathrm{n}=378^{\mathrm{e}}\right)$	Week 48 mg/dL ($\mathrm{n}=264^{\mathrm{e}}$)	Week 48 Change ${ }^{\text {d }}$ ($\mathrm{n}=253^{\mathrm{e}}$)
LDL-Cholesterol ${ }^{\text {f }}$	98	98	+1\%	98	114	+18\%
HDL-Cholesterol	39	43	+13\%	38	46	+24\%
Total Cholesterol	164	168	+2\%	162	195	+21\%
Triglycerides ${ }^{\dagger}$	138	124	-9\%	129	168	+23\%

${ }^{\text {a }}$ REYATAZ 400 mg once daily with the fixed-dose combination: 150 mg lamivudine, 300 mg zidovudine twice daily. ${ }^{\text {b }}$ Values obtained after initiation of serum lipid-reducing agents were not included in these analyses. At baseline, serum lipid-reducing agents were used in 0% in the efavirenz treatment arm and $<1 \%$ in the REYATAZ arm. Through Week 48 serum lipidreducing agents were used in 3% in the efavirenz treatment arm and 1% in the REYATAZ arm. ${ }^{\text {c }}$ Efavirenz 600 mg once daily with the fixed-dose combination: 150 mg lamivudine, 300 mg zidovudine twice daily. ${ }^{\mathrm{d}}$ The change from baseline is the mean of within-patient changes from baseline for patients with both baseline and Week 48 values and is not a simple difference of the baseline and Week 48 mean values. ${ }^{\text {e }}$ Number of patients with LDL-cholesterol measured. ${ }^{\dagger}$ Fasting.

Lipids, Change from Baseline in Treatment-Experienced Patients

For Study Al424-045, changes from baseline in LDL-cholesterol, HDL-cholesterol, total cholesterol, and triglycerides are shown in Table 12. The observed magnitude of dyslipidemia was less with REYATAZ/ritonavir than with lopinavir/ritonavir. However, the clinical impact of such findings has not been demonstrated.
Table 12: Lipid Values, Mean Change from Baseline, Study Al424-045

	REYATAZ/ritonavir ${ }^{\text {a }}$,			lopinavir/ritonavir ${ }^{\text {b,c }}$		
	Baseline $\mathrm{mg} / \mathrm{dL}$ ($\mathrm{n}=111^{\mathrm{e}}$)	Week 48 $\mathrm{mg} / \mathrm{dL}$ ($\mathrm{n}=75^{\mathrm{e}}$)		Baseline $\mathrm{mg} / \mathrm{dL}$ ($\mathrm{n}=108^{\mathrm{e}}$)	Week 48 $\mathrm{mg} / \mathrm{dL}$ ($\mathrm{n}=76^{\mathrm{e}}$)	Week 48 Change ${ }^{\text {d }}$ ($\mathrm{n}=73^{\mathrm{e}}$)
LDL-Cholesterol ${ }^{\text {f }}$	108	98	-10\%	104	103	+1\%
HDL-Cholesterol	40	39	-7\%	39	41	+2\%
Total Cholesterol	188	170	-8\%	181	187	+6\%
Triglycerides ${ }^{\dagger}$	215	161	-4\%	196	224	+30\%

${ }^{\text {a }}$ REYATAZ 300 mg once daily + ritonavir + tenofovir + 1 NRTI. ${ }^{\text {b }}$ Values obtained after initiation of serum lipid-reducing agents were not included in these analyses. At baseline, serum lipid-reducing agents were used in 4% in the lopinavir/ritonavir treatment arm and 4% in the REYATAZ/ritonavir arm. Through Week 48, serum lipid-reducing agents were used in 19\% in the lopinavir/ritonavir treatment arm and 8\% in the REYATAZ/ritonavir arm. ${ }^{\text {c }}$ Lopinavir/ritonavir ($400 / 100 \mathrm{mg}$) BID + tenofovir + 1 NRTI. d The change from baseline is the mean of within-patient changes from baseline for patients with both baseline and Week 48 values and is not a simple difference of the baseline and Week 48 mean values. ${ }^{e}$ Number of patients with LDL-cholesterol measured. ${ }^{\mathrm{f}}$ Fasting.

6.2 Clinical Trial Experience in Pediatric Patients

The safety and tolerability of REYATAZ (atazanavir sulfate) Capsules with and without ritonavir have been established in pediatric patients at least 6 years of age from the open-label, multicenter clinical trial PACTG 1020A. Use of REYATAZ in pediatric patients less than 6 years of age is under investigation.

The safety profile of REYATAZ in pediatric patients (6 to less than 18 years of age) was comparable to that observed in clinical studies of REYATAZ in adults. The most common Grade 2-4 adverse events ($\geq 5 \%$, regardless of causality) reported in pediatric patients were cough (21\%), fever (19\%), rash (14\%), jaundice/scleral icterus (13\%), diarrhea (8\%), vomiting (8\%), headache (7\%), and rhinorrhea (6\%). Asymptomatic second-degree atrioventricular block was reported in 2% of patients. The most common Grade 3-4 laboratory abnormality was elevation of total bilirubin ($\geq 3.2 \mathrm{mg} / \mathrm{dL}$) which occurred in 49% of pediatric patients. All other Grade 3-4 laboratory abnormalities occurred with a frequency of less than 3\%.

6.3 Patients Co-infected With Hepatitis B and/or Hepatitis C Virus

Liver function tests should be monitored in patients with a history of hepatitis B or C . In study Al424-138, 60 patients treated with REYATAZ/ritonavir $300 \mathrm{mg} / 100 \mathrm{mg}$ once daily, and 51 patients treated with lopinavir/ritonavir $400 \mathrm{mg} / 100 \mathrm{mg}$ twice daily, each with fixed dose tenofovir-emtricitabine, were seropositive for hepatitis B and/or C at study entry. ALT levels >5 times ULN developed in $8 \%(5 / 60)$ of the REYATAZ/ ritonavir-treated patients and $6 \%(3 / 50)$ of the lopinavir/ritonavir-treated patients. AST levels >5 times ULN developed in $8 \%(5 / 60)$ of the REYATAZ/ritonavir-treated patients and none $(0 / 50)$ of the lopinavir/ritonavir-treated patients.
In study AI424-045, 20 patients treated with REYATAZ/ritonavir $300 \mathrm{mg} / 100 \mathrm{mg}$ once daily, and 18 patients treated with lopinavir/ritonavir $400 \mathrm{mg} / 100 \mathrm{mg}$ twice daily, were seropositive for hepatitis B and/or C at study entry. ALT levels >5 times ULN
developed in $25 \%(5 / 20)$ of the REYATAZ (atazanavir sulfate)/ritonavir-treated patients and $6 \%(1 / 18)$ of the lopinavir/ritonavir-treated patients. AST levels >5 times ULN developed in $10 \%(2 / 20)$ of the REYATAZ/ritonavir-treated patients and $6 \%(1 / 18)$ of the lopinavir/ritonavir-treated patients.
In studies Al424-008 and Al424-034, 74 patients treated with 400 mg of REYATAZ once daily, 58 who received efavirenz, and 12 who received nelfinavir were seropositive for hepatitis B and/or C at study entry. ALT levels >5 times the upper limit of normal (ULN) developed in 15% of the REYATAZ-treated patients, 14% of the efavirenz-treated patients, and 17% of the nelfinavir-treated patients. AST levels >5 times ULN developed in 9% of the REYATAZ-treated patients, 5% of the efavirenztreated patients, and 17% of the nelfinavir-treated patients. Within atazanavir and control regimens, no difference in frequency of bilirubin elevations was noted between seropositive and seronegative patients. [See Warnings and Precautions (5.5).]

6.4 Postmarketing Experience

The following events have been identified during postmarketing use of REYATAZ. Because these reactions are reported voluntarily from a population of unknown size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

Body as a Whole: edema

Cardiovascular System: second-degree AV block, third-degree AV block, left bundle branch block, QTc prolongation [see Warnings and Precautions (5.2)]

Gastrointestinal System: pancreatitis

Hepatic System: hepatic function abnormalities
Hepatobiliary Disorders: cholelithiasis, cholecystitis, cholestasis
Metabolic System and Nutrition Disorders: diabetes mellitus, hyperglycemia [see Warnings and Precautions (5.7)]
Musculoskeletal System: arthralgia
Renal System: nephrolithiasis [see Warnings and Precautions (5.6)]
Skin and Appendages: alopecia, maculopapular rash [see Contraindications (4) and Warnings and Precautions (5.3), pruritus

7 DRUG INTERACTIONS

See also Contraindications (4) and Clinical Pharmacology (12.3).

7.1 Potential for REYATAZ (atazanavir sulfate) to Affect Other Drugs

Atazanavir is an inhibitor of CYP3A and UGT1A1. Coadministration of REYATAZ and drugs primarily metabolized by CYP3A or UGT1A1 may result in increased plasma concentrations of the other drug that could increase or prolong its therapeutic and adverse effects.
Atazanavir is a weak inhibitor of CYP2C8. Caution should be used when REYATAZ without ritonavir is coadministered with drugs highly dependent on CYP2C8 with narrow therapeutic indices (eg, paclitaxel, repaglinide). When REYATAZ with ritonavir is coadministered with substrates of CYP2C8, clinically significant interactions are not expected. [See Clinical Pharmacology, Table 14 (12.3).]
The magnitude of CYP3A-mediated drug interactions on coadministered drug may change when REYATAZ is coadministered with ritonavir. See the complete prescribing information for NORVIR ${ }^{\circledR}$ (ritonavir) for information on drug interactions with ritonavir.

7.2 Potential for Other Drugs to Affect Atazanavir

Atazanavir is a CYP3A4 substrate; therefore, drugs that induce CYP3A4 may decrease atazanavir plasma concentrations and reduce REYATAZ's therapeutic effect.
Atazanavir solubility decreases as pH increases. Reduced plasma concentrations of atazanavir are expected if proton-pump inhibitors, antacids, buffered medications, or H_{2}-receptor antagonists are administered with atazanavir.

7.3 Established and Other Potentially Significant Drug Interactions

Table 13 provides dosing recommendations as a result of drug interactions with REYATAZ. These recommendations are based on either drug interaction studies or predicted interactions due to the expected magnitude of interaction and potential for serious events or loss of efficacy.

Table 13: Established and Other Potentially Significant Drug Interactions: Alteration in Dose or Regimen May Be Recommended Based on Drug Interaction Studies ${ }^{\text {a }}$ or Predicted Interactions (Information in the table applies to REYATAZ (atazanavir sulfate) with or without ritonavir, unless otherwise indicated)

Concomitant Drug Class: Specific Drugs	Effect on Concentration of Atazanavir or Concomitant Drug	Clinical Comment
HIV Antiviral Agents		
Nucleoside Reverse Transcriptase Inhibitors (NRTIs): didanosine buffered formulations enteric-coated (EC) capsules	\downarrow atazanavir \downarrow didanosine	Coadministration of REYATAZ with didanosine buffered tablets resulted in a marked decrease in atazanavir exposure. It is recommended that REYATAZ be given (with food) 2 h before or 1 h after didanosine buffered formulations. Simultaneous administration of didanosine EC and REYATAZ with food results in a decrease in didanosine exposure. Thus, REYATAZ and didanosine EC should be administered at different times.
Nucleotide Reverse Transcriptase Inhibitors: tenofovir disoproxil fumarate	\downarrow atazanavir \uparrow tenofovir	Tenofovir may decrease the AUC and $C_{\text {min }}$ of atazanavir. When coadministered with tenofovir, it is recommended that REYATAZ 300 mg be given with ritonavir 100 mg and tenofovir 300 mg (all as a single daily dose with food). REYATAZ without ritonavir should not be coadministered with tenofovir. REYATAZ increases tenofovir concentrations. The mechanism of this interaction is unknown. Higher tenofovir concentrations could potentiate tenofovir-associated adverse events, including renal disorders. Patients receiving REYATAZ and tenofovir should be monitored for tenofovirassociated adverse events.
Non-nucleoside Reverse Transcriptase Inhibitors (NNRTIS): efavirenz	\downarrow atazanavir	Efavirenz decreases atazanavir exposure. In treatment-naive patients: If REYATAZ is combined with efavirenz, REYATAZ 400 mg (two 200-mg capsules) with ritonavir 100 mg should be administered once daily all as a single dose with food, and efavirenz 600 mg should be administered once daily on an empty stomach, preferably at bedtime. In treatment-experienced patients: Do not coadminister REYATAZ with efavirenz in treatmentexperienced patients due to decreased atazanavir exposure.
Non-nucleoside Reverse Transcriptase Inhibitors: nevirapine	\downarrow atazanavir \uparrow nevirapine	Do not coadminister REYATAZ with nevirapine because: - Nevirapine substantially decreases atazanavir exposure. - Potential risk for nevirapine associated toxicity due to increased nevirapine exposures.
Protease Inhibitors: saquinavir (soft gelatin capsules)	\uparrow saquinavir	Appropriate dosing recommendations for this combination, with or without ritonavir, with respect to efficacy and safety have not been established. In a clinical study, saquinavir 1200 mg coadministered with REYATAZ 400 mg and tenofovir 300 mg (all given once daily) plus nucleoside analogue reverse transcriptase inhibitors did not provide adequate efficacy [see Clinical Studies (14.2).
Protease Inhibitors: ritonavir	\uparrow atazanavir	If REYATAZ is coadministered with ritonavir, it is recommended that REYATAZ 300 mg once daily be given with ritonavir 100 mg once daily with food. See the complete prescribing information for NORVIR ${ }^{\circledR}$ (ritonavir) for information on drug interactions with ritonavir.
Protease Inhibitors: others	\uparrow other protease inhibitor	REYATAZ/ritonavir: Although not studied, the coadministration of REYATAZ/ritonavir and other protease inhibitors would be expected to increase exposure to the other protease inhibitor. Such coadministration is not recommended.
Other Agents		
Antacids and buffered medications	\downarrow atazanavir	Reduced plasma concentrations of atazanavir are expected if antacids, including buffered medications, are administered with REYATAZ. REYATAZ should be administered 2 hours before or 1 hour after these medications.
Antiarrhythmics: amiodarone, bepridil, lidocaine (systemic), quinidine	\uparrow amiodarone, bepridil, lidocaine (systemic), quinidine	Coadministration with REYATAZ has the potential to produce serious and/or life-threatening adverse events and has not been studied. Caution is warranted and therapeutic concentration monitoring of these drugs is recommended if they are used concomitantly with REYATAZ.
Anticoagulants: warfarin	\uparrow warfarin	Coadministration with REYATAZ has the potential to produce serious and/or life-threatening bleeding and has not been studied. It is recommended that INR (International Normalized Ratio) be monitored.
Antidepressants: tricyclic antidepressants	\uparrow tricyclic antidepressants	Coadministration with REYATAZ has the potential to produce serious and/or life-threatening adverse events and has not been studied. Concentration monitoring of these drugs is recommended if they are used concomitantly with REYATAZ.
trazodone	\uparrow trazodone	Concomitant use of trazodone and REYATAZ with or without ritonavir may increase plasma concentrations of trazodone. Adverse events of nausea, dizziness, hypotension, and syncope have been observed following coadministration of trazodone and ritonavir. If trazodone is used with a CYP3A4 inhibitor such as REYATAZ, the combination should be used with caution and a lower dose of trazodone should be considered.

${ }^{a}$ For magnitude of interactions see Clinical Pharmacology, Tables 16 and 17 (12.3).

Table 13: (Continued)	Established and Other Potentially Significant Drug Interactions: Alteration in Dose or Regimen May Be Recommended Based on Drug Interaction Studies or Predicted Interactions (Information in the table applies to REYATAZ (atazanavir sulfate) with or without ritonavir, unless otherwise indicated)		Table 13: (Continued)	icted Interaction te) with or with	tentially Significant Drug Interactions: Alteration in Recommended Based on Drug Interaction Studies ${ }^{\text {a }}$ or formation in the table applies to REYATAZ (atazanavir itonavir, unless otherwise indicated)		
Concomitant Drug Class: Specific Drugs	Effect on Concentration of Atazanavir or Concomitant Drug	Clinical Comment	Concomitant Drug Class: Specific Drugs	Effect on Concentration of Atazanavir or Concomitant Drug	Clinical Comment		
Other Agents			Other Agents				
Antifungals: ketoconazole, itraconazole	REYATAZ/ ritonavir: \uparrow ketoconazole \uparrow itraconazole	Coadministration of ketoconazole has only been studied with REYATAZ without ritonavir (negligible increase in atazanavir AUC and $C_{\text {max }}$. Due to the effect of ritonavir on ketoconazole, high doses of ketoconazole and itraconazole (>200 mg/day) should be used cautiously with REYATAZ/ritonavir.	Immuno- suppressants: cyclosporin, sirolimus, tacrolimus	\uparrow immunosuppressants	Therapeutic concentration monitoring is recommended for immunosuppressant agents when coadministered with REYATAZ.		
Antifungals: voriconazole	Effect is unknown	Coadministration of voriconazole with REYATAZ, with or without ritonavir, has not been studied. Administration of voriconazole with ritonavir 100 mg every 12 hours decreased voriconazole steady-state AUC by an average of 39%. Voriconazole should not be administered to patients receiving REYATAZ/ritonavir, unless an assessment of the benefitrrisk to the patient justifies the use of voriconazole. Coadministration of voriconazole with REYATAZ (without ritonavir) may increase atazanavir concentrations; however, no data are available.	Inhaled/nasal steroid: fluticasone	REYATAZ \uparrow fluticasone REYATAZ/ritonavir \uparrow fluticasone	Concomitant use of fluticasone propionate and REYATAZ (without ritonavir) may increase plasma concentrations of fluticasone propionate. Use with caution. Consider alternatives to fluticasone propionate, particularly for long-term use. Concomitant use of fluticasone propionate and REYATAZ/ ritonavir may increase plasma concentrations of fluticasone propionate, resulting in significantly reduced serum cortisol concentrations. Systemic corticosteroid effects, including Cushing's syndrome and adrenal suppression, have been reported during postmarketing use in patients receiving ritonavir and inhaled or intranasally administered fluticasone propionate. Coadministration of fluticasone propionate and REYATAZ/ritonavir is not recommended unless the potential benefit to the patient outweighs the risk of systemic corticosteroid side effects [see Warnings and Precautions (5.1)].		
Antimycobacterials: rifabutin	\uparrow rifabutin	A rifabutin dose reduction of up to 75% (eg, 150 mg every other day or 3 times per week) is recommended.					
Benzodiazepines: parenterally administered midazolam ${ }^{b}$	\uparrow midazolam	Concomitant use of parenteral midazolam with REYATAZ may increase plasma concentrations of midazolam. Coadministration should be done in a setting which ensures close clinical monitoring and appropriate medical management in case of respiratory depression and/or prolonged sedation. Dosage reduction for midazolam should be considered, especially if more than a single dose of midazolam is administered. Coadministration of oral midazolam with REYATAZ is CONTRAINDICATED.					
			Macrolide antibiotics: clarithromycin	\uparrow clarithromycin $\downarrow 14$ - OH clarithromycin \uparrow atazanavir	Increased concentrations of clarithromycin may cause QTC prolongations; therefore, a dose reduction of clarithromycin by 50% should be considered when it is coadministered with REYATAZ. In addition, concentrations of the active metabolite $14-\mathrm{OH}$ clarithromycin are significantly reduced; consider alternative therapy for indications other than infections due to Mycobacterium avium complex. Coadministration of REYATAZ/ritonavir with clarithromycin has not been studied.		
Calcium channel blockers. dilitiazem	\uparrow diltiazem and desacetyl-dilitiazem	Caution is warranted. A dose reduction of diltiazem by 50% should be considered. ECG monitoring is recommended. Coadministration of REYATAZ/ritonavir with dilitiazem has not been studied.					
eg, felodipine, nifedipine, nicardipine, and verapamil	\uparrow calcium channel blocker	Caution is warranted. Dose titration of the calcium channel blocker should be considered. ECG monitoring is recommended.	Hormonal contraceptives: ethinyl estradiol and norgestimate or norethindrone	\downarrow ethinyl estradiol \uparrow norgestimate ${ }^{\text {c }}$	Use with caution if coadministration of REYATAZ or REYATAZ/ritonavir with oral contraceptives is considered. If an oral contraceptive is administered with REYATAZ plus ritonavir, it is recommended that the oral contraceptive		
HMG-COA reductase inhibitors: atorvastatin, rosuvastatin	\uparrow atorvastatin \uparrow rosuvastatin	Use the lowest possible dose of atorvastatin or rosuvastatin with careful monitoring, or consider other HMG-COA reductase inhibitors such as pravastatin or fluvastatin in combination with REYATAZ (with or without ritonavir). The risk of myopathy, including rhabdomyolysis, may be increased when HIV protease inhibitors, including REYATAZ, are used in combination with these drugs.		\uparrow ethinyl estradiol \uparrow norethindrone ${ }^{\text {d }}$	Potential safety risks include substantial increases in progesterone exposure. The long-term effects of increases in concentration of the progestational agent are unknown and could increase the risk of insulin resistance, dyslipidemia, and acne. Coadministration of REYATAZ or REYATAZ/ritonavir with other hormonal contraceptives (eg, contraceptive patch, contraceptive vaginal ring, or injectable contraceptives) or oral contraceptives containing progestagens other than norethindrone or norgestimate, or less than 25 mcg of ethinyl estradiol, has not been studied; therefore, alternative methods of contraception are recommended.		
H_{2}-Receptor antagonists	\downarrow atazanavir	Plasma concentrations of atazanavir were substantially decreased when REYATAZ 400 mg once daily was administered simultaneously with famotidine 40 mg twice daily, which may result in loss of therapeutic effect and development of resistance. In treatment-naive patients: REYATAZ 300 mg with ritonavir 100 mg once daily with food should be administered simultaneously with, and or at least 10 hours after, a dose of the H_{2}-receptor antagonist. An H_{2} receptor antagonist dose comparable to famotidine 20 mg once daily up to a dose comparable to famotidine 40 mg twice daily can be used with REYATAZ 300 mg with ritonavir 100 mg in treatment-naive patients. OR For patients unable to tolerate ritonavir, REYATAZ 400 mg once daily with food should be administered at least 2 hours before and at least 10 hours after a dose of the H_{2}-receptor antagonist. No single dose of the H_{2}-receptor antagonist should exceed a dose comparable to famotidine 20 mg , and the total daily dose should not exceed a dose comparable to famotidine 40 mg . In treatment-experienced patients: Whenever an H_{2}-receptor antagonist is given to a patient receiving REYATAZ with ritonavir, the H_{2}-receptor antagonist dose should not exceed a dose comparable to famotidine 20 mg twice daily, and the REYATAZ and ritonavir doses should be administered simultaneously with, and/or at least 10 hours after, the dose of the H_{2}-receptor antagonist. - REYATAZ 300 mg with ritonavir 100 mg once daily (all as a single dose with food) if taken with an H_{2}-receptor antagonist. - REYATAZ 400 mg with ritonavir 100 mg once daily (all as a single dose with food) if taken with both tenofovir and an H_{2}-receptor antagonist.					
			PDE5 inhibitors: sildenafil, tadalafil, vardenafil	\uparrow sildenafil \uparrow tadalafil \uparrow vardenafil	Coadministration with REYATAZ has not been studied but may result in an increase in PDE5 inhibitor-associated adverse events, including hypotension, visual changes, and priapism. Use sildenafil with caution at reduced doses of 25 mg every 48 hours with increased monitoring for adverse events. Use tadalafil with caution at reduced doses of 10 mg every 72 hours with increased monitoring for adverse events. Use vardenafil with caution at reduced doses of no more than 2.5 mg every 72 hours with increased monitoring for adverse events.		
			Proton-pump inhibitors: omeprazole	\downarrow atazanavir	Plasma concentrations of atazanavir were substantially decreased when REYATAZ 400 mg or REYATAZ $300 \mathrm{mg} /$ ritonavir 100 mg once daily was administered with omeprazole 40 mg once daily, which may result in loss of therapeutic effect and development of resistance. In treatment-naive patients: The proton-pump inhibitor dose should not exceed a dose comparable to omeprazole 20 mg and must be taken approximately 12 hours prior to the REYATAZ 300 mg with ritonavir 100 mg dose. In treatment-experienced patients: Proton-pump inhibitors should not be used in treatmentexperienced patients receiving REYATAZ.		
			${ }^{a}$ For magnitude of interactions see Clinical Pharmacology, Tables 16 and 17 (12.3). ${ }^{\text {b }}$ See Contraindications (4), Table 3 for orally administered midazolam. ${ }^{\text {c In combination with atazanavir }}$ 300 mg and ritonavir 100 mg once daily. ${ }^{\text {d }} \mathrm{In}$ combination with atazanavir 400 mg once daily.				
(Continued)							

7.4 Drugs with No Observed or Predicted Interactions with REYATAZ (atazanavir sulfate)

Clinically significant interactions are not expected between atazanavir and substrates of CYP2C19, CYP2C9, CYP2D6, CYP2B6, CYP2A6, CYP1A2, or CYP2E1. Clinically significant interactions are not expected between atazanavir when administered with ritonavir and substrates of CYP2C8. See the complete prescribing information for NORVIR ${ }^{\circledR}$ for information on other potential drug interactions with ritonavir.
Based on known metabolic profiles, clinically significant drug interactions are not expected between REYATAZ and fluvastatin, pravastatin, dapsone, trimethoprim/ sulfamethoxazole, azithromycin, or erythromycin. REYATAZ does not interact with substrates of CYP2D6 (eg, nortriptyline, desipramine, metoprolol). Additionally, no clinically significant drug interactions were observed when REYATAZ was coadministered with methadone, fluconazole, acetaminophen, or atenolol. [See Clinical Pharmacology, Tables 16 and 17 (12.3).]

8 USE IN SPECIFIC POPULATIONS

8.1 Pregnancy

Pregnancy Category B

There are no adequate and well controlled studies of atazanavir use during pregnancy. Cases of lactic acidosis syndrome and symptomatic hyperlactatemia have occurred in pregnant women using REYATAZ in combination with nucleoside analogues. In animal reproduction and pre- and post-natal development studies, there was no evidence of adverse fetal effects or teratogenicity. Because animal reproduction studies are not always predictive of human response, REYATAZ should be used during pregnancy only if clearly needed.
Cases of lactic acidosis syndrome, sometimes fatal, and symptomatic hyperlactatemia have been reported in patients (including pregnant women) receiving REYATAZ in combination with nucleoside analogues. Nucleoside analogues are associated with an increased risk of lactic acidosis syndrome. In addition, hyperbilirubinemia occurred frequently during treatment with REYATAZ. It is not known whether REYATAZ administered during pregnancy will exacerbate physiological hyperbilirubinemia or increase the risk of kernicterus in neonates and young infants. In the prepartum period, additional monitoring and alternative therapy should be considered.
In animal reproduction studies, there was no evidence of teratogenicity in offspring born to animals exposed to atazanavir levels one (in rabbits) to two times (in rats) those observed at the human clinical dose (400 mg once daily). In pre- and post-natal development studies in rats, there were no adverse effects on offspring following maternal exposure to atazanavir levels equivalent to those in humans taking 400 mg once daily. Weight loss and weight gain suppression occurred in pups with maternal atazanavir exposures two times the human exposure at 400 mg once daily; however, maternal toxicity also occurred at this exposure level.
Antiretroviral Pregnancy Registry: To monitor maternal-fetal outcomes of pregnant women exposed to REYATAZ, an Antiretroviral Pregnancy Registry has been established. Physicians are encouraged to register patients by calling 1-800-258-4263.

8.3 Nursing Mothers

The Centers for Disease Control and Prevention recommend that HIV-infected mothers not breast-feed their infants to avoid risking postnatal transmission of HIV. It is not known whether atazanavir is present in human milk. Because of both the potential for HIV transmission and the potential for serious adverse reactions in nursing infants, mothers should be instructed not to breast-feed if they are taking REYATAZ.

8.4 Pediatric Use

REYATAZ should not be administered to pediatric patients below the age of 3 months due to the risk of kernicterus.
The safety, activity, and pharmacokinetic profiles of REYATAZ in pediatric patients ages 3 months to less than 6 years have not been established.
The safety, pharmacokinetic profile, and virologic response of REYATAZ were evaluated in pediatric patients in an open-label, multicenter clinical trial PACTG 1020A [see Clinical Pharmacology (12.3) and Clinical Studies (14.3)]. The safety profile in pediatric patients was comparable to that observed in adults [see Adverse Reactions (6.2)]. Please see Dosage and Administration (2.2) for dosing recommendations for pediatric patients 6 years of age and older.

8.5 Geriatric Use

Clinical studies of REYATAZ did not include sufficient numbers of patients aged 65 and over to determine whether they respond differently from younger patients. Based on a comparison of mean single-dose pharmacokinetic values for $\mathrm{C}_{\text {max }}$ and AUC, a dose adjustment based upon age is not recommended. In general, appropriate caution should be exercised in the administration and monitoring of REYATAZ in elderly patients reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy.

8.6 Age/Gender

A study of the pharmacokinetics of atazanavir was performed in young ($\mathrm{n}=29$; $18-40$ years) and elderly ($\mathrm{n}=30 ; \geq 65$ years) healthy subjects. There were no clinically important pharmacokinetic differences observed due to age or gender.

8.7 Impaired Renal Function

In healthy subjects, the renal elimination of unchanged atazanavir was approximately 7% of the administered dose. REYATAZ has been studied in adult subjects with severe renal impairment ($\mathrm{n}=20$), including those on hemodialysis, at multiple doses of 400 mg once daily. The mean atazanavir $\mathrm{C}_{\max }$ was 9% lower, AUC was 19% higher,
and $\mathrm{C}_{\text {min }}$ was 96% higher in subjects with severe renal impairment not undergoing hemodialysis ($\mathrm{n}=10$), than in age, weight, and gender matched subjects with normal renal function. Atazanavir was not appreciably cleared during hemodialysis. In a 4-hour dialysis session, 2.1% of the administered dose was removed. When atazanavir was administered either prior to, or following hemodialysis ($n=10$), the geometric means for $C_{\max }$, AUC, and $C_{\text {min }}$ were approximately 25 to 43% lower compared to subjects with normal renal function. The mechanism of this decrease is unknown. REYATAZ (atazanavir sulfate) should not be administered to HIV-treatment experienced patients with end stage renal disease managed with hemodialysis. [See Dosage and Administration (2.3).]

8.8 Impaired Hepatic Function

Atazanavir is metabolized and eliminated primarily by the liver. REYATAZ has been studied in adult subjects with moderate to severe hepatic impairment (14 Child-Pugh B and 2 Child-Pugh C subjects) after a single $400-\mathrm{mg}$ dose. The mean $\mathrm{AUC}_{(0-\infty)}$ was 42% greater in subjects with impaired hepatic function than in healthy volunteers. The mean half-life of atazanavir in hepatically impaired subjects was 12.1 hours compared to 6.4 hours in healthy volunteers. Increased concentrations of atazanavir are expected in patients with moderately or severely impaired hepatic function. The pharmacokinetics of REYATAZ in combination with ritonavir have not been studied in subjects with hepatic impairment. REYATAZ should not be administered to patients with severe hepatic impairment. REYATAZ/ritonavir is not recommended for use in patients with hepatic impairment. [See Dosage and Administration (2.4) and Warnings and Precautions (5.5).]

10 OVERDOSAGE

Human experience of acute overdose with REYATAZ is limited. Single doses up to 1200 mg have been taken by healthy volunteers without symptomatic untoward effects. A single self-administered overdose of 29.2 g of REYATAZ in an HIVinfected patient (73 times the $400-\mathrm{mg}$ recommended dose) was associated with asymptomatic bifascicular block and PR interval prolongation. These events resolved spontaneously. At high doses that lead to high drug exposures, jaundice due to indirect (unconjugated) hyperbilirubinemia (without associated liver function test changes) or PR interval prolongation may be observed. [See Warnings and Precautions $(5.2,5.4)$ and Clinical Pharmacology (12.2).]
Treatment of overdosage with REYATAZ should consist of general supportive measures, including monitoring of vital signs and ECG, and observations of the patient's clinical status. If indicated, elimination of unabsorbed atazanavir should be achieved by emesis or gastric lavage. Administration of activated charcoal may also be used to aid removal of unabsorbed drug. There is no specific antidote for overdose with REYATAZ. Since atazanavir is extensively metabolized by the liver and is highly protein bound, dialysis is unlikely to be beneficial in significant removal of this medicine.

11 DESCRIPTION

REYATAZ ${ }^{\circledR}$ (atazanavir sulfate) is an azapeptide inhibitor of HIV-1 protease.
The chemical name for atazanavir sulfate is $(3 S, 8 S, 9 S, 12 S)-3,12-\operatorname{Bis}(1,1-$ dimethylethyl)-8-hydroxy-4,11-dioxo-9-(phenylmethyl)-6-[[4-(2-pyridinyl)phenyl]methyl]-2,5,6,10,13-pentaazatetradecanedioic acid dimethyl ester, sulfate ($1: 1$). Its molecular formula is $\mathrm{C}_{38} \mathrm{H}_{52} \mathrm{~N}_{6} \mathrm{O}_{7} \bullet \mathrm{H}_{2} \mathrm{SO}_{4}$, which corresponds to a molecular weight of 802.9 (sulfuric acid salt). The free base molecular weight is 704.9. Atazanavir sulfate has the following structural formula:

Atazanavir sulfate is a white to pale yellow crystalline powder. It is slightly soluble in water ($4-5 \mathrm{mg} / \mathrm{mL}$, free base equivalent) with the pH of a saturated solution in water being about 1.9 at $24 \pm 3^{\circ} \mathrm{C}$.

REYATAZ Capsules are available for oral administration in strengths containing the equivalent of $100 \mathrm{mg}, 150 \mathrm{mg}, 200 \mathrm{mg}$, or 300 mg of atazanavir as atazanavir sulfate and the following inactive ingredients: crospovidone, lactose monohydrate, and magnesium stearate. The capsule shells contain the following inactive ingredients: gelatin, FD\&C Blue \#2, titanium dioxide, black iron oxide, red iron oxide, and yellow iron oxide. The capsules are printed with ink containing shellac, titanium dioxide, FD\&C Blue \#2, isopropyl alcohol, ammonium hydroxide, propylene glycol, n-butyl alcohol, simethicone, and dehydrated alcohol.

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

Atazanavir is an antiviral drug [see Clinical Pharmacology (12.4)].

12.2 Pharmacodynamics

Effects on Electrocardiogram

Concentration- and dose-dependent prolongation of the PR interval in the electrocardiogram has been observed in healthy volunteers receiving atazanavir.

In a placebo-controlled study (Al424-076), the mean (\pm SD) maximum change in PR interval from the predose value was $24(\pm 15) \mathrm{msec}$ following oral dosing with 400 mg of atazanavir ($\mathrm{n}=65$) compared to $13(\pm 11) \mathrm{msec}$ following dosing with placebo ($n=67$). The PR interval prolongations in this study were asymptomatic. There is limited information on the potential for a pharmacodynamic interaction in humans between atazanavir and other drugs that prolong the PR interval of the electrocardiogram. [See Warnings and Precautions (5.2).]

Electrocardiographic effects of atazanavir were determined in a clinical pharmacology study of 72 healthy subjects. Oral doses of 400 mg and 800 mg were compared with placebo; there was no concentration-dependent effect of atazanavir on the QTc interval (using Fridericia's correction). In 1793 HIV-infected patients receiving antiretroviral regimens, QTC prolongation was comparable in the atazanavir and comparator regimens. No atazanavir-treated healthy subject or HIV-infected patient in clinical trials had a QTc interval >500 msec. [See Warnings and Precautions (5.2).]

In a pharmacokinetic study between atazanavir 400 mg once daily and diltiazem 180 mg once daily, a CYP3A substrate, there was a 2-fold increase in the diltiazem plasma concentration and an additive effect on the PR interval. In a pharmacokinetic study between atazanavir 400 mg once daily and atenolol 50 mg once daily, there was no substantial additive effect of atazanavir and atenolol on the PR interval. [See Warnings and Precautions (5.2).]

12.3 Pharmacokinetics

The pharmacokinetics of atazanavir were evaluated in healthy adult volunteers and in HIV-infected patients after administration of REYATAZ (atazanavir sulfate) 400 mg once daily and after administration of REYATAZ 300 mg with ritonavir 100 mg once daily (see Table 14).

Steady-State Pharmacokinetics of Atazanavir in Healthy Subjects or HIV-Infected Patients in the Fed State				
	400 mg once daily		300 mg with ritonavir 100 mg once daily	
Parameter	Healthy Subjects ($\mathrm{n}=14$)	HIV-Infected Patients ($\mathrm{n}=13$)	Healthy Subjects ($\mathrm{n}=28$)	HIV-Infected Patients ($\mathrm{n}=10$)
$\begin{aligned} & \mathrm{C}_{\max }(\mathrm{ng} / \mathrm{mL}) \\ & \text { Geometric mean (CV\%) } \\ & \text { Mean (SD) } \end{aligned}$	$\begin{gathered} 5199(26) \\ 5358(1371) \end{gathered}$	$\begin{gathered} 2298 \text { (71) } \\ 3152(2231) \end{gathered}$	$\begin{gathered} 6129(31) \\ 6450(2031) \end{gathered}$	$\begin{gathered} 4422(58) \\ 5233(3033) \end{gathered}$
$\mathrm{T}_{\text {max }}(\mathrm{h})$ Median	2.5	2.0	2.7	3.0
AUC ($\mathrm{ng} \bullet \mathrm{h} / \mathrm{mL}$) Geometric mean (CV\%) Mean (SD)	$\begin{gathered} 28132(28) \\ 29303(8263) \end{gathered}$	$\begin{gathered} 14874(91) \\ 22262(20159) \end{gathered}$	$\begin{gathered} 57039(37) \\ 61435(22911) \end{gathered}$	$\begin{array}{\|c\|} \hline 46073(66) \\ 53761(35294) \end{array}$
T-half (h) Mean (SD)	7.9 (2.9)	6.5 (2.6)	18.1 (6.2) ${ }^{\text {a }}$	8.6 (2.3)
$\mathrm{C}_{\text {min }}(\mathrm{ng} / \mathrm{mL})$ Geometric mean (CV\%) Mean (SD)	159 (88) 218 (191)	$120(109)$ 273 (298) ${ }^{\text {b }}$	$\begin{gathered} 1227 \text { (53) } \\ 1441 \text { (757) } \end{gathered}$	$\begin{gathered} 636 \text { (97) } \\ 862 \text { (838) } \end{gathered}$

Figure 1 displays the mean plasma concentrations of atazanavir at steady state after REYATAZ 400 mg once daily (as two 200-mg capsules) with a light meal and after REYATAZ 300 mg (as two 150-mg capsules) with ritonavir 100 mg once daily with a light meal in HIV-infected adult patients.
Figure 1: Mean (SD) Steady-State Plasma Concentrations of Atazanavir 400 mg ($\mathrm{n}=13$) and 300 mg with Ritonavir ($\mathrm{n}=10$) for HIV-Infected Adult Patients

Absorption

Atazanavir is rapidly absorbed with a $\mathrm{T}_{\max }$ of approximately 2.5 hours. Atazanavir demonstrates nonlinear pharmacokinetics with greater than dose-proportional increases in AUC and $\mathrm{C}_{\text {max }}$ values over the dose range of $200-800 \mathrm{mg}$ once daily. Steady-state is achieved between Days 4 and 8, with an accumulation of approximately 2.3 -fold.

Food Effect

Administration of REYATAZ (atazanavir sulfate) with food enhances bioavailability and reduces pharmacokinetic variability. Administration of a single $400-\mathrm{mg}$ dose of REYATAZ with a light meal ($357 \mathrm{kcal}, 8.2 \mathrm{~g}$ fat, 10.6 g protein) resulted in a 70% increase in AUC and 57% increase in $C_{\text {max }}$ relative to the fasting state. Administration of a single $400-\mathrm{mg}$ dose of REYATAZ with a high-fat meal ($721 \mathrm{kcal}, 37.3 \mathrm{~g}$ fat, 29.4 g protein) resulted in a mean increase in AUC of 35% with no change in $\mathrm{C}_{\text {max }}$ relative to the fasting state. Administration of REYATAZ with either a light meal or high-fat meal decreased the coefficient of variation of $A U C$ and $\mathrm{C}_{\text {max }}$ by approximately one half compared to the fasting state.
Coadministration of a single $300-\mathrm{mg}$ dose of REYATAZ and a $100-\mathrm{mg}$ dose of ritonavir with a light meal ($336 \mathrm{kcal}, 5.1 \mathrm{~g}$ fat, 9.3 g protein) resulted in a 33% increase in the AUC and a 40% increase in both the $C_{\text {max }}$ and the 24-hour concentration of atazanavir relative to the fasting state.
Coadministration with a high-fat meal ($951 \mathrm{kcal}, 54.7 \mathrm{~g}$ fat, 35.9 g protein) did not affect the AUC of atazanavir relative to fasting conditions and the $\mathrm{C}_{\text {max }}$ was within 11% of fasting values. The 24 -hour concentration following a high-fat meal was increased by approximately 33% due to delayed absorption; the median $\mathrm{T}_{\text {max }}$ increased from 2.0 to 5.0 hours. Coadministration of REYATAZ with ritonavir with either a light or a highfat meal decreased the coefficient of variation of AUC and $\mathrm{C}_{\max }$ by approximately 25% compared to the fasting state.

Distribution

Atazanavir is 86% bound to human serum proteins and protein binding is independent of concentration. Atazanavir binds to both alpha-1-acid glycoprotein (AAG) and albumin to a similar extent (89% and 86%, respectively). In a multiple-dose study in HIV-infected patients dosed with REYATAZ 400 mg once daily with a light meal for 12 weeks, atazanavir was detected in the cerebrospinal fluid and semen. The cerebrospinal fluid/plasma ratio for atazanavir ($n=4$) ranged between 0.0021 and 0.0226 and seminal fluid/plasma ratio $(n=5)$ ranged between 0.11 and 4.42.

Metabolism

Atazanavir is extensively metabolized in humans. The major biotransformation pathways of atazanavir in humans consisted of monooxygenation and dioxygenation. Other minor biotransformation pathways for atazanavir or its metabolites consisted of glucuronidation, N -dealkylation, hydrolysis, and oxygenation with dehydrogenation. Two minor metabolites of atazanavir in plasma have been characterized. Neither metabolite demonstrated in vitro antiviral activity. In vitro studies using human liver microsomes suggested that atazanavir is metabolized by CYP3A.

Elimination

Following a single $400-\mathrm{mg}$ dose of ${ }^{14} \mathrm{C}$-atazanavir, 79% and 13% of the total radioactivity was recovered in the feces and urine, respectively. Unchanged drug accounted for approximately 20% and 7% of the administered dose in the feces and urine, respectively. The mean elimination half-life of atazanavir in healthy volunteers ($\mathrm{n}=214$) and HIV-infected adult patients ($\mathrm{n}=13$) was approximately 7 hours at steady state following a dose of 400 mg daily with a light meal.

Special Populations

Pediatrics

The pharmacokinetic data from pediatric patients receiving REYATAZ Capsules with ritonavir based on body surface area are presented in Table 15.
Table 15: \quad Steady-State Pharmacokinetics of Atazanavir with ritonavir in HIV-Infected Pediatric Patients (6 to less than 18 years of age) in the Fed State

	$205 \mathrm{mg} / \mathrm{m}^{2}$ atazanavir with $100 \mathrm{mg} / \mathrm{m}^{2}$ ritonavir once daily Age Range (years)	
	at least 6 to 13 ($\mathrm{n}=17$)	at least 13 to 18 ($\mathrm{n}=10$)
Dose $m g$ Median [min-max]	$\begin{gathered} 200 \\ {[150-400]} \end{gathered}$	$\begin{gathered} 400 \\ {[250-500]} \end{gathered}$
$C_{\text {max }} \mathrm{ng} / \mathrm{mL}$ Geometric mean (CV\%)	4451 (33)	3711 (46)
AUC ng•h/mL Geometric mean (CV\%)	42503 (36)	44970 (34)
$\begin{aligned} & \mathrm{C}_{\text {min }} \mathrm{ng} / \mathrm{mL} \\ & \text { Geometric mean (CV\%) } \end{aligned}$	535 (62)	1090 (60)

Drug Interaction Data

Atazanavir is a metabolism-dependent CYP3A inhibitor, with a $\mathrm{K}_{\text {inact }}$ value of 0.05 to $0.06 \mathrm{~min}^{-1}$ and K_{i} value of 0.84 to $1.0 \mu \mathrm{M}$. Atazanavir is also a direct inhibitor for UGT1A1 ($\mathrm{K}_{\mathrm{i}}=1.9 \mu \mathrm{M}$) and CYP2C8 ($\mathrm{K}_{\mathrm{i}}=2.1 \mu \mathrm{M}$).
Atazanavir has been shown in vivo not to induce its own metabolism, nor to increase the biotransformation of some drugs metabolized by CYP3A. In a multiple-dose study, REYATAZ decreased the urinary ratio of endogenous $6 \beta-0 \mathrm{H}$ cortisol to cortisol versus baseline, indicating that CYP3A production was not induced.
Drug interaction studies were performed with REYATAZ and other drugs likely to be coadministered and some drugs commonly used as probes for pharmacokinetic interactions. The effects of coadministration of REYATAZ on the AUC, $\mathrm{C}_{\text {max }}$, and $\mathrm{C}_{\text {min }}$ are summarized in Tables 16 and 17. For information regarding clinical recommendations, see Drug Interactions (7).

Table 16:	Drug Interactions: Pharmacokinetic Parameters for Atazanavir in the Presence of Coadministered Drugs ${ }^{\text {a }}$					Table 16: (Continued)	Drug Interactions: Pharmacokinetic Parameters for Atazanavir in the Presence of Coadministered Drugs ${ }^{\text {a }}$									
Coadministered Drug	$\begin{aligned} & \text { Coadministered } \\ & \text { Drug } \\ & \text { Dose/Schedule } \end{aligned}$	REYATAZ (atazanavir sulfate) Dose/Schedule	Ratio (90\% Confidence Interval) of Atazanavir Pharmacokinetic Parameters with/without Coadministered Drug; No Effect $=1.00$			Coadministered Drug	$\begin{aligned} & \text { Coadministered } \\ & \text { Drug } \\ & \text { Dose/Schedule } \end{aligned}$	REYATAZ (atazanavir sulfate) Dose/Schedule	Ratio (90\% Confidence Interval) of Atazanavir Pharmacokinetic Parameters with/without Coadministered Drug; No Effect $=1.00$							
			$\mathrm{C}_{\text {max }}$	AUC	$\mathrm{C}_{\text {min }}$				C	AUC	$\mathrm{C}_{\text {min }}$					
atenolol	$\begin{array}{\|c\|} \hline 50 \mathrm{mg} \text { QD, d } 7-11 \\ (\mathrm{n}=19) \text { and d 19-23 } \\ \hline \end{array}$	$\begin{gathered} 400 \mathrm{mg} \text { QD, d } 1-11 \\ (\mathrm{n}=19) \end{gathered}$	$\begin{array}{\|c\|} \hline \text { max } \\ \hline(0.89,1.12) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 0.93 \\ (0.85,1.01) \\ \hline \end{array}$	$\begin{gathered} 0_{\min } \\ 0.74 \\ (0.65,0.86) \\ \hline \end{gathered}$	fluconazole	$\underset{(\mathrm{n}=29)}{200 \mathrm{mg} \text { QD, } \mathrm{d} 11-20}$	$\begin{gathered} 300 \mathrm{mg} \text { QD/ } \\ \text { ritonavir } 100 \mathrm{mg} \text { QD, } \\ \text { d } 1-10(\mathrm{n}=19), \text { d } 11-20 \\ (\mathrm{n}=29) \end{gathered}$	$\begin{gathered} \hline 1.03 \\ (0.95,1.11) \end{gathered}$	$\begin{gathered} 1.04 \\ (0.95,1.13) \end{gathered}$	$\begin{gathered} 0.98 \\ (0.85,1.13) \end{gathered}$					
clarithromycin	$\begin{aligned} & 500 \mathrm{mg} \text { BID, d } 7-10 \\ & (\mathrm{n}=29) \text { and d 18-21 } \end{aligned}$	$\begin{gathered} 400 \mathrm{mg} \text { QD, d } 1-10 \\ (\mathrm{n}=29) \end{gathered}$	$\begin{array}{c\|} \hline 1.06 \\ (0.93,1.20) \\ \hline \end{array}$	$\begin{gathered} \hline 1.28 \\ (1.16,1.43) \end{gathered}$	$\begin{gathered} 1.91 \\ (1.66,2.21) \end{gathered}$											
didanosine (ddl) (buffered tablets)	ddl: 200 mg x 1 dose,	$400 \mathrm{mg} x 1$ dose simultaneously with	$\begin{array}{\|c\|} \hline(0.00,1 . c u) \\ \hline 0.11 \\ \hline \end{array}$	0.13	0.16	ketoconazo	$\underset{\substack{200 \mathrm{mg} \text { QD, } \mathrm{d} \\(\mathrm{n}=14)}}{ }$	$400 \underset{\substack{\mathrm{mg}=14)}}{\mathrm{mg}, \mathrm{~d}} 1-13$	$\begin{gathered} 0.99 \\ (0.77,1.28) \end{gathered}$	$\begin{array}{c\|} \hline 1.10 \\ (0.89,1.37) \end{array}$	$\begin{gathered} \hline 1.03 \\ (0.53,2.01) \\ \hline \end{gathered}$					
plus stavudine $(d 4 T)^{b}$	d4T: 40 mg x 1 dose ($\mathrm{n}=31$)	ddl and d4T $(n=31)$				nevirapineg, ${ }^{\text {h }}$	$\begin{gathered} 200 \mathrm{mg} \text { BID, } \\ \mathrm{d} 1-23 \\ (\mathrm{n}=23) \end{gathered}$	300 mg QD/ ritonavir 100 mg QD, d 4-13, then 400 mg QD/ ritonavir 100 mg QD, d 14-23 ($n=23)^{\prime}$	0.72 $(0.60,0.86)$ 1.02 $(0.85,1.24)$	0.58$(0.48,0.71)$0.81$(0.65,1.02)$	$\begin{gathered} \hline 0.28 \\ (0.20,0.40) \\ 0.41 \\ (0.27,0.60) \end{gathered}$					
	ddl: 200 mg x 1 dose,	$400 \mathrm{mg} x 1$ dose 1 h after ddl +d 4 T	$\begin{gathered} 1.12 \\ (0.67,1.18) \end{gathered}$	$\begin{gathered} 1.03 \\ (0.64,1.67) \end{gathered}$	$\begin{gathered} 1.03 \\ (0.61,1.73) \end{gathered}$											
	$\underset{(n=32)}{\mathrm{d} 4 \mathrm{~T}: 40 \mathrm{mg} x} 1 \text { dose }$					omeprazole	$\underset{\substack{(n=16 j)}}{ } 40 \mathrm{mg} \text { QD, } \mathrm{d} 7-12$	$\begin{gathered} 400 \mathrm{mg} \text { QD, d 1-6 } \\ (\mathrm{n}=48), \mathrm{d} 7-12(\mathrm{n}=16) \end{gathered}$	$\begin{array}{c\|} \hline 0.04 \\ (0.04,0.05) \end{array}$	$\begin{array}{c\|} \hline 0.06 \\ (0.05,0.07) \end{array}$	$\begin{gathered} 0.05 \\ (0.03,0.07) \end{gathered}$					
dd (enteric-coated EC] capouselc	$400 \underset{(\mathrm{n}=34)}{\mathrm{mg} \mathrm{~d}} 8 \text { (fed) }$	$400 \underset{(\mathrm{n}=34)}{\mathrm{mg} \text { QD, d } 2-8}$	$\begin{array}{c\|} \hline 1.03 \\ (0.93,1.14) \end{array}$	$\begin{array}{c\|} \hline 0.99 \\ (0.91,1.08) \end{array}$	$\begin{gathered} \hline 0.98 \\ (0.89,1.08) \end{gathered}$		$\underset{(\mathrm{n}=15)^{\mathrm{j}}}{40 \mathrm{mg} \text { QD, d } 11-20}$	300 mg QD/ ritonavir 100 mg QD, d 1-20 ($n=15$)	$\begin{gathered} 0.28 \\ (0.24,0.32) \end{gathered}$	$\begin{gathered} 0.24 \\ (0.21,0.27) \end{gathered}$	$\begin{gathered} 0.22 \\ (0.19,0.26) \end{gathered}$					
(EC) Capsules)	400 mg d 19 (fed) ($\mathrm{n}=31$)	$\begin{gathered} 300 \mathrm{mg} / \text { ritonavir } \\ 100 \mathrm{mg} \text { QD, } \mathrm{d} 9-19(\mathrm{n}=31) \end{gathered}$	$\left\|\begin{array}{c} 1.04 \\ (1.01,1.07) \end{array}\right\|$	$\left\lvert\, \begin{gathered} 1.00 \\ (0.96,1.03) \end{gathered}\right.$	$\begin{gathered} 0.87 \\ (0.82,0.92) \end{gathered}$				$\begin{gathered} 0.61 \\ (0.46,0.81) \end{gathered}$	$\begin{gathered} 0.58 \\ (0.44,0.75) \end{gathered}$						
dilitiazem	$\begin{array}{\|l\|} \hline 180 \mathrm{mg} \text { QD, d } 7-11 \\ (\mathrm{n}=30) \text { and d 19-23 } \\ \hline \end{array}$	$\underset{(\mathrm{n}=30)}{400 \mathrm{mg} \text { QD, d 1-11 }}$	$\begin{array}{\|c\|} 1.04 \\ (0.96,1.11) \\ \hline \end{array}$	$\begin{array}{c\|} 1.00 \\ (0.95,1.05) \\ \hline \end{array}$	$\begin{gathered} 0.98 \\ (0.90,1.07) \\ \hline \end{gathered}$		$\begin{gathered} 20 \mathrm{mg} \text { QD, } \\ \mathrm{d} 17-23 \text { (am) } \\ (\mathrm{n}=13) \end{gathered}$	300 mg QD/ ritonavir 100 mg QD, d7-16 (pm) (n=27), d 17-23 (pm) ($\mathrm{n}=13)^{\mathrm{k}} \mathrm{k}^{\mathrm{l}}$			$\begin{gathered} 0.54 \\ (0.41,0.71) \end{gathered}$					
efavirenz	$\begin{gathered} 600 \mathrm{mg} \text { QD, d } 7-20 \\ (\mathrm{n}=27) \\ 600 \mathrm{mg} \text { QD, d } 7-20 \\ (\mathrm{n}=13) \end{gathered}$	$\begin{gathered} 400 \mathrm{mg} \text { QD, d 1-20 } \\ (\mathrm{n}=27) \end{gathered}$	$\begin{array}{c\|} \hline 0.41 \\ (0.33,0.51) \end{array}$	$\begin{array}{\|c\|} \hline 0.26 \\ (0.22,0.32) \\ 1.39 \\ (1.02,1.88) \end{array}$	$\begin{gathered} 0.07 \\ (0.05,0.10) \\ 1.48 \\ (1.24,1.76) \end{gathered}$		$\begin{gathered} 20 \mathrm{mg} \text { QD, } \\ \mathrm{d} 17-23 \text { (am) } \\ (\mathrm{n}=14) \end{gathered}$	300 mg QD/ ritonavir 100 mg QD, d 7-16 (am) (n=27), then 400 mg QD/ ritonavir 100 mg QD, d 17-23 (am) (n=14) m, ${ }^{\text {n }}$	$\left\lvert\, \begin{gathered} 0.69 \\ (0.58,0.83) \end{gathered}\right.$	$\begin{gathered} 0.70 \\ (0.57,0.86) \end{gathered}$	$\begin{gathered} 0.69 \\ (0.54,0.88) \end{gathered}$					
		400 mg QD, d 1-6 $(\mathrm{n}=23)$ then $300 \mathrm{mg} /$ ritonavir 100 mg QD, 2 h before efavirenz,	$\begin{array}{c\|} 1.14 \\ (0.83,1.58) \end{array}$													
	$\begin{gathered} 600 \mathrm{mg} \text { QD, } \\ \mathrm{d} 11-24 \text { (pm) } \\ (\mathrm{n}=14) \end{gathered}$	$\begin{gathered} \mathrm{d} 7-20(\mathrm{n}=13) \\ 300 \mathrm{mg} \text { QD/ } \end{gathered}$	$\begin{gathered} 1.17 \\ (1.08,1.27) \end{gathered}$	$\begin{gathered} 1.00 \\ (0.91,1.10) \end{gathered}$	$\begin{gathered} 0.58 \\ (0.49,0.69) \end{gathered}$	rifabutin	$\begin{array}{\|c\|} \hline 150 \mathrm{mg} \text { QD, d 15-28 } \\ (\mathrm{n}=7) \end{array}$	$400 \mathrm{mg} \text { QD, d } 1-28$	$\begin{array}{\|c\|} \hline 1.34 \\ (1.14,1.59) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1.15 \\ \hline(0.98,1.34) \\ \hline \end{array}$	$\begin{gathered} \hline 1.13 \\ (0.68,1.87) \\ \hline \end{gathered}$					
		ritonavir 100 mg QD, d 1-10 (pm) ($\mathrm{n}=22$), then 400 mg QD/ ritonavir 100 mg QD, d 11-24 (pm)				rifampin	$\underset{(n=16)}{600 \mathrm{mg} \text { QD, d 17-26 }}$	$\begin{gathered} 300 \mathrm{mg} \text { QD/ } \\ \text { ritonavir } 100 \mathrm{mg} \text { QD, } \\ \mathrm{d} 7-16(\mathrm{n}=48), \mathrm{d} 17-26 \\ (\mathrm{n}=16) \end{gathered}$	$\begin{gathered} 0.47 \\ (0.41,0.53) \end{gathered}$	$\begin{array}{c\|} \hline 0.28 \\ (0.25,0.32) \end{array}$	$\begin{gathered} 0.02 \\ (0.02,0.03) \end{gathered}$					
		(simultaneous with efavirenz) $(n=14)$				ritonavir ${ }^{\text {0 }}$		$\begin{gathered} 300 \mathrm{mg} \text { QD, d 1-20 } \\ (\mathrm{n}=28) \end{gathered}$	$\left\lvert\, \begin{gathered} 1.86 \\ (1.69,2.05) \end{gathered}\right.$	$\begin{gathered} 3.38 \\ (3.13,3.63) \end{gathered}$	$\begin{gathered} 11.89 \\ (10.23,13.82) \\ \hline \end{gathered}$					
famotidine	$40 \underset{(n=15)}{\mathrm{mg} \text { BID, } \mathrm{d} 7-12}$	$\begin{gathered} 400 \mathrm{mg} \text { QD, d } 1-6 \\ (\mathrm{n}=45), \\ \mathrm{d} 7-12(\text { simultaneous } \\ \text { administration) } \\ (\mathrm{n}=15) \end{gathered}$	$\begin{array}{\|c\|} \hline 0.53 \\ (0.34,0.82) \end{array}$	$\begin{array}{c\|} 0.59 \\ (0.40,0.87) \end{array}$	$\begin{gathered} \hline 0.58 \\ (0.37,0.89) \end{gathered}$	tenofovir ${ }^{\text {p }}$	$\underset{\substack{300 \mathrm{mg} \text { QD, } \mathrm{d}=34) \\ 300 \mathrm{mg} \text { QD, } \mathrm{d} \\(\mathrm{n}=15)}}{ }$	$\begin{gathered} 400 \mathrm{mg} \text { QD, d 2-16 } \\ (\mathrm{n}=34) \\ 300 \mathrm{mg} / \\ \text { ritonavir } 100 \mathrm{mg} \text { QD, } \\ \text { d 1-42 }(\mathrm{n}=10) \end{gathered}$	$\begin{array}{c\|} \hline 0.79 \\ (0.73,0.86) \\ 0.72^{q} \\ (0.50,1.05) \end{array}$	$\begin{gathered} \hline 0.75 \\ (0.70,0.81) \\ 0.759 \\ (0.58,0.97) \end{gathered}$	$\begin{gathered} 0.60 \\ (0.52,0.68) \\ 0.779 \\ (0.54,1.10) \end{gathered}$					
	$40 \underset{(n=14)}{\operatorname{mg} \operatorname{BID}, d 7-12}$	$\begin{gathered} 400 \mathrm{mg} \text { QD (pm), } \\ \mathrm{d} 1-6(\mathrm{n}=14), \mathrm{d} 7-12 \\ (10 \mathrm{hafter}, 2 \mathrm{~h} \text { before } \\ \text { famotidine) } \\ (\mathrm{n}=14) \end{gathered}$	$\begin{gathered} 1.08 \\ (0.82,1.41) \end{gathered}$	$\begin{array}{c\|} 0.95 \\ (0.74,1.21) \end{array}$	$\begin{gathered} 0.79 \\ (0.60,1.04) \end{gathered}$	${ }^{\text {a }}$ Data provided are under fed conditions unless otherwise noted. ${ }^{\mathrm{b}}$ All drugs were given under fasted conditions. c 400 mg ddl EC and REYATAZ were administered together with food on Days 8 and 19. ${ }^{\text {d }}$ REYATAZ 300 mg plus ritonavir 100 mg once daily coadministered with famotidine 40 mg twice daily										
	$40 \mathrm{mg} \underset{\substack{(n \mid D, 14)^{d}}}{ }$	300 mg QD/ritonavir 100 mg QD, d 1-10 ($\mathrm{n}=46$), d 11-20 ${ }^{\text {(simultaneous }}$ administration) ($\mathrm{n}=14$)	$\begin{gathered} 0.86 \\ (0.79,0.94) \end{gathered}$	$\begin{gathered} 0.82 \\ (0.75,0.89) \end{gathered}$	$\begin{gathered} 0.72 \\ (0.64,0.81) \end{gathered}$	resulted in atazanavir geometric mean $\mathrm{C}_{\text {max }}$ that was similar and AuC and $\mathrm{C}_{\text {min }}$ values that were 1.79- and 4.46 -fold higher relative to REYATAZ 400 mg once daily alone. ${ }^{\text {e }}$ Similar results were noted when famotidine 20 mg BID was administered 2 hours after and 10 hours before atazanavir 300 mg and ritonavir 100 mg plus tenofovir 300 mg . ${ }^{\dagger}$ Atazanavir/ritonavir/tenofovir was administered after a light meal. ${ }^{9}$ Study was conducted in HIV-infected individuals. ${ }^{\mathrm{h}}$ Compared with atazanavir 400 mg historical data without nevirapine $(n=13$), the ratio of geometric										
	$20 \mathrm{mg} \underset{\substack{\mathrm{n}=18) \\(\mathrm{n}=18)}}{\mathrm{d} 11-17}$	300 mg QD/ritonavir 100 mg QD/tenofovir 300 mg QD, d 1-10 (am) ($\mathrm{n}=39$), d 11-17 (am) (simultaneous administration with am famotidine) ($n=18)^{\text {e,f }}$	$\left\lvert\, \begin{gathered} 0.91 \\ (0.84,0.99) \end{gathered}\right.$	$\begin{gathered} 0.90 \\ (0.82,0.98) \end{gathered}$	$\begin{gathered} 0.81 \\ (0.69,0.94) \end{gathered}$	means $\left(90 \%\right.$ confidence intervals) for $\mathrm{C}_{\text {max }}$ AUC, and $\mathrm{C}_{\text {min }}$ were 1.42 ($0.98,2.05$), 1.64 (1.11, 2.42), and 1.25 ($0.66,2.36$), respectively, for atazanavir/ritonavir $300 / 100 \mathrm{mg}$; and 2.02 ($1.42,2.87$), 2.28 ($1.54,3.38$), and 1.80 ($0.94,3.45$), respectively, for atazanavi//ritonavir $400 / 100 \mathrm{mg}$. Parallel group design; $\mathrm{n}=23$ for atazanavir/ritonavir plus nevirapine, $\mathrm{n}=22$ for atazanavir $300 \mathrm{mg} /$ ritonavir 100 mg without nevirapine. Subjects were treated with nevirapine prior to study entry. Omeprazole 40 mg was administered on an empty stomach 2 hours before REYATAZ. k Omeprazole 20 mg was administered 30 minutes prior to a light meal in the morning and REYATAZ 300 mg plus ritonavir 100 mg in the evening after a light meal, separated by 12 hours from omeprazole. REYATAZ 300 mg plus ritonavir 100 mg once daily separated by 12 hours from omeprazole 20 mg daily resulted in increases in atazanavir geometric mean AUC (10%) and $\mathrm{C}_{\min }\left(2.4\right.$-fold), with a decrease in $\mathrm{C}_{\max }$ (29\%) relative to REYATAZ 400 mg once daily in the absence of omeprazole (study days 1-6). ${ }^{m}$ Omeprazole 20 mg was given 30 minutes prior to a light meal in the morning and REYATAZ 400 mg plus ritonavir 100 mg once daily after a light meal, 1 hour after omeprazole. Effects on atazanavir concentrations were similar when REYATAZ 400 mg plus ritonavir 100 mg was separated from omeprazole 20 mg by										
	$\begin{gathered} 40 \mathrm{mg} \text { QD (pm) } \\ \text { d } 18-24 \\ (\mathrm{n}=20) \end{gathered}$	300 mg QD/ritonavir 100 mg QD/tenofovir 300 mg QD, d 1-10 (am) ($\mathrm{n}=39$), d 18-24 (am) (12 h after pm famotidine) $(\mathrm{n}=20)^{\mathrm{t}}$	$\begin{gathered} 0.89 \\ (0.81,0.97) \end{gathered}$	$\begin{gathered} 0.88 \\ (0.80,0.96) \end{gathered}$	$\begin{gathered} 0.77 \\ (0.63,0.93) \end{gathered}$											
	$40 \mathrm{mg} \underset{\substack{\mathrm{BID}, \mathrm{~d}=18)}}{\mathrm{d} 18-24}$	300 mg QD/ritonavir 100 mg QD/tenofovir 300 mg QD, d 1-10 (am) ($\mathrm{n}=39$), d 18-24 (am) (10 h after pm famotidine and 2 h before am famotidine) $(n=18)^{\dagger}$	$\begin{gathered} 0.74 \\ (0.66,0.84) \end{gathered}$	$\begin{gathered} 0.79 \\ (0.70,0.88) \end{gathered}$	$\begin{gathered} 0.72 \\ (0.63,0.83) \end{gathered}$	12 hours. ${ }^{n}$ REYATAZ 400 mg plus ritonavir 100 mg once daily administered with omeprazole 20 mg once daily resulted in increases in atazanavir geometric mean AUC (32%) and $\mathrm{C}_{\text {min }}$ (3.3 -fold), with a decrease in $\mathrm{C}_{\text {max }}(26 \%)$ relative to REYATAZ 400 mg once daily in the absence of omeprazole (study days 1-6). ${ }^{0}$ Compared with atazanavir 400 mg QD historical data, administration of atazanavir//ritonavir $300 / 100 \mathrm{mg}$ QD increased the atazanavir geometric mean values of $\mathrm{C}_{\text {max }}$, $A U C$, and $\mathrm{C}_{\text {min }}$ by $18 \%, 103 \%$, and 671%, respectively. ${ }^{p}$ Note that similar results were observed in studies where administration of tenofovir and REYATAZ was separated by 12 hours. ${ }^{9}$ Ratio of atazanavir plus ritonavir plus tenofovir to atazanavir plus ritonavir. Atazanavir 300 mg plus ritonavir 100 mg results in higher atazanavir exposure than atazanavir 400 mg (see footnote ${ }^{0}$). The geometric mean values of atazanavir pharmacokinetic parameters when coadministered with ritonavir and tenofovir were: $\mathrm{C}_{\text {max }}=3190 \mathrm{ng} / \mathrm{mL}$, AUC $=34459 \mathrm{ng} \bullet \mathrm{h} / \mathrm{mL}$, and $\mathrm{C}_{\text {min }}=491 \mathrm{ng} / \mathrm{mL}$. Study was conducted in HIV-infected individuals.										
	$40 \mathrm{mg} \underset{\substack{\mathrm{BID}, \mathrm{~d} \\ \mathrm{~d} \\ \hline\\)}}{\mathrm{d}} 11-20$	300 mg QD/ritonavir 100 mg QD, d 1-10 (am) ($n=46$), then 400 mg QD/ritonavir 100 mg QD, d 11-20 (am) ($\mathrm{n}=15$)	$\begin{gathered} 1.02 \\ (0.87,1.18) \end{gathered}$	$\begin{gathered} 1.03 \\ (0.86,1.22) \end{gathered}$	$\begin{gathered} 0.86 \\ (0.68,1.08) \end{gathered}$											

Table 17: Drug Interactions: Pharmacokinetic Parameters for Coadministered Drugs in the Presence of REYATAZ (atazanavir sulfate) ${ }^{\text {a }}$

Coadministered Drug		REYATAZ Dose/Schedule	Ratio (90% Confidence Interval) of Coadministered Drug Pharmacokinetic Parameters with/without REYATAZ; № effect $=1.00$		
			$\mathrm{C}_{\text {max }}$	AUC	$\mathrm{C}_{\text {min }}$
acetaminophen	$\begin{gathered} 1 \mathrm{gm} \mathrm{BID}, \\ \mathrm{~d} 1-20 \\ (\mathrm{n}=10) \end{gathered}$	$\begin{array}{\|c\|} \hline 300 \mathrm{mg} \text { QD/ } \\ \text { ritonavir } 100 \mathrm{mg} \\ \mathrm{QD}, \\ \text { d } 11-20 \\ (\mathrm{n}=10) \end{array}$	$\begin{gathered} 0.87 \\ (0.77,0.99) \end{gathered}$	$\begin{gathered} 0.97 \\ (0.91,1.03) \end{gathered}$	$\begin{gathered} 1.26 \\ (1.08,1.46) \end{gathered}$
atenolol	$\begin{gathered} 50 \mathrm{mg} \text { QD, } \\ \mathrm{d} 7-11(\mathrm{n}=19) \\ \text { and d } 19-23 \end{gathered}$	$\begin{gathered} 400 \mathrm{mg} \text { QD, } \\ \mathrm{d} 1-11 \\ (\mathrm{n}=19) \end{gathered}$	$\begin{gathered} 1.34 \\ (1.26,1.42) \end{gathered}$	$\begin{gathered} 1.25 \\ (1.16,1.34) \end{gathered}$	$\begin{gathered} 1.02 \\ (0.88,1.19) \end{gathered}$
clarithromycin	$\begin{gathered} 500 \mathrm{mg} \text { BID, } \\ \mathrm{d} 7-10(\mathrm{n}=21) \\ \text { and } \mathrm{d} 18-21 \end{gathered}$	400 mg QD, d 1-10 ($\mathrm{n}=21$)	$\begin{array}{\|c\|} \hline 1.50 \\ (1.32,1.71) \text { OH- } \\ \text { clarithromycin: } \\ 0.28 \\ (0.24,0.33) \end{array}$	$\begin{array}{\|c\|} \hline 1.94 \\ (1.75,2.16) \text { OH- } \\ \text { clarithromycin: } \\ 0.30 \\ (0.26,0.34) \end{array}$	$\begin{gathered} 2.60 \\ (2.35,2.88) \text { OH- } \\ \text { clarithromycin: } \\ 0.38 \\ (0.34,0.42) \end{gathered}$
didanosine (ddl) (buffered tablets) plus stavudine $(d 4 T)^{b}$	ddl: $200 \mathrm{mg} \times 1$ dose, d4T: $40 \mathrm{mg} \times 1$ dose $(\mathrm{n}=31)$	$400 \mathrm{mg} \times 1$ dose simultaneous with ddl and d4T ($\mathrm{n}=31$)	ddl: 0.92 $(0.84,1.02)$ d4T: 1.08 $(0.96,1.22)$	$\begin{gathered} \hline \text { ddl: } 0.98 \\ (0.92,1.05) \\ \text { d4T: } 1.00 \\ (0.97,1.03) \end{gathered}$	NA d4T: 1.04 $(0.94,1.16)$
ddl (entericcoated [EC] capsules) ${ }^{\text {c }}$	$\begin{gathered} 400 \mathrm{mg} \mathrm{~d} 1 \\ \text { (fasted), d } 8 \text { (fed) } \\ (\mathrm{n}=34) \\ 400 \mathrm{mg} \mathrm{~d} 1 \\ (\text { fasted), d } 19 \text { (fed) } \\ (\mathrm{n}=31) \end{gathered}$	$\begin{array}{\|c\|} \hline 400 \mathrm{mg} \mathrm{QD}, \\ \mathrm{~d} 2-8 \\ (\mathrm{n}=34) \\ 300 \mathrm{mg} \text { QD/ } \\ \text { ritonavir } 100 \mathrm{mg} \text { QD, } \\ \text { d 9-19 } \\ (\mathrm{n}=31) \end{array}$	$\begin{gathered} \hline 0.64 \\ (0.55,0.74) \\ \\ 0.62 \\ (0.52,0.74) \end{gathered}$	$\begin{gathered} 0.66 \\ (0.60,0.74) \\ \\ 0.66 \\ (0.59,0.73) \end{gathered}$	$\begin{gathered} \hline 1.13 \\ (0.91,1.41) \\ 1.25 \\ (0.92,1.69) \end{gathered}$
dilitiazem	$\begin{gathered} 180 \mathrm{mg} \text { QD, } \\ \mathrm{d} 7-11(\mathrm{n}=28) \text { and } \\ \mathrm{d} 19-23 \end{gathered}$	$\begin{gathered} 400 \mathrm{mg} \text { QD, } \\ \mathrm{d} 1-11 \\ (\mathrm{n}=28) \end{gathered}$	$\begin{gathered} \hline 1.98 \\ (1.79,2.19) \\ \text { desacety\|- } \\ \text { diltiazem: } \\ 2.72 \\ (2.44,3.03) \end{gathered}$	2.25 $(2.09,2.16)$ desacetyl- diltiazem: 2.65 $(2.45,2.87)$	$\begin{gathered} \hline 2.42 \\ \text { (2.14, 2.73) } \\ \text { desacety\|- } \\ \text { diltiazem: } \\ 2.21 \\ (2.02,2.42) \end{gathered}$
ethinyl estradiol \& norethindrone ${ }^{d}$	$\begin{gathered} \hline \text { Ortho-Novum }{ }^{\circledR} \\ 7 / 7 / 7 \text { QD, } \\ \text { d 1-29 } \\ (\mathrm{n}=19) \end{gathered}$	400 mg QD, d 16-29 ($\mathrm{n}=19$)	ethinyl estradiol: 1.15 $(0.99,1.32)$ norethindrone: 1.67 $(1.42,1.96)$	ethinyl estradiol: 1.48 (1.31, 1.68$)$ norethindrone: 2.10 $(1.68,2.62)$	ethinyl estradiol: 1.91 $(1.57,2.33)$ norethindrone: 3.62 $(2.57,5.09)$
ethinyl estradiol \& norgestimate ${ }^{e}$		300 mg QD/ ritonavir 100 mg QD, d $29-42$ $(\mathrm{n}=14)$	ethinyl estradiol: 0.84 (0.74, 0.95$)$ 17 -deacetyl norgestimate: 1.68 $(1.51,1.88)$	ethinyl estradiol: 0.81 $(0.75,0.87)$ $17-$ deacetyl norgestimate:9 1.85 $(1.67,2.05)$	ethinyl estradiol: 0.63 $(0.55,0.71)$ 17 -deacetyl norgestimate:9 2.02 $(1.77,2.31)$
fluconazole	200 mg QD, d $1-10(\mathrm{n}=11)$ and 200 mg QD, d $11-20$ $(\mathrm{n}=29)$	300 mg QD/ ritonavir 100 mg QD, d $11-20$ $(\mathrm{n}=29)$	$\begin{gathered} 1.05 \\ (0.99,1.10) \end{gathered}$	$\begin{gathered} \hline 1.08 \\ (1.02,1.15) \end{gathered}$	$\begin{gathered} \hline 1.07 \\ (1.00,1.15) \end{gathered}$
methadone	Stable maintenance dose, d 1-15 ($\mathrm{n}=16$)	$\begin{gathered} 400 \mathrm{mg} \text { QD, } \\ \mathrm{d} 2-15 \\ (\mathrm{n}=16) \end{gathered}$	 (R)-methadone 0.91 $(0.84,1.0)$ total: 0.85 $(0.78,0.93)$	(R)-methadone 1.03 $(0.95,1.10)$ total: 0.94 $(0.87,1.02)$	(R)-methadoneh 1.11 $(1.02,1.20)$ total: 1.02 $(0.93,1.12)$
nevirapine ${ }^{\text {ij, }}$	$\begin{gathered} 200 \mathrm{mg} \text { BID, } \\ \text { d 1-23 } \\ (\mathrm{n}=23) \end{gathered}$	300 mg QD/ ritonavir 100 mg QD, d $4-13$, then 400 mg QD/ ritonavir 100 mg QD, d $14-23$ $(\mathrm{n}=23)$	$\begin{gathered} \hline 1.17 \\ (1.09,1.25) \\ 1.21 \\ (1.11,1.32) \end{gathered}$	$\begin{gathered} \hline 1.25 \\ (1.17,1.34) \\ 1.26 \\ (1.17,1.36) \end{gathered}$	$\begin{gathered} 1.32 \\ (1.22,1.43) \\ 1.35 \\ (1.25,1.47) \end{gathered}$
omeprazole ${ }^{\text {k }}$	$\begin{gathered} 40 \text { mg single dose, } \\ \text { d } 7 \text { and d } 20 \\ (\mathrm{n}=16) \end{gathered}$	$\underset{(n=16)}{400 \mathrm{mg} \text { QD, } 1-12}$	$\begin{gathered} \hline 1.24 \\ (1.04,1.47) \end{gathered}$	$\begin{gathered} \hline 1.45 \\ (1.20,1.76) \end{gathered}$	NA
rifabutin	$\begin{gathered} 300 \mathrm{mg} \text { QD, } \\ \text { d } 1-10 \text { then } \\ 150 \mathrm{mg} \text { QD, } \\ \text { d } 11-20 \\ (\mathrm{n}=3) \end{gathered}$	$\begin{gathered} 600 \mathrm{mg} \text { QD,! } \\ \text { d } 11-20 \\ (n=3) \end{gathered}$	1.18 (0.94, 1.48) 25-0-desacetyl-- rifabutin: 8.20 $(5.90,11.40)$	2.10 (1.57, 2.79) $25-0$-desacetyl-- rifabutin: 22.01 $(15.97,30.34)$	3.43 $(1.98,5.96)$ $25-0$-desacetyl- rifabutin: 75.6 $(30.1,190.0)$
rosiglitazone ${ }^{\text {m }}$	$\begin{gathered} 4 \mathrm{mg} \text { single dose, } \\ \mathrm{d} 1,7,17 \\ (n=14) \end{gathered}$	400 mg QD, d 2-7, then 300 mg QD/ ritonavir 100 mg QD, d 8-17 ($\mathrm{n}=14)$	$\begin{gathered} \hline 1.08 \\ (1.03,1.13) \\ 0.97 \\ (0.91,1.04) \end{gathered}$	$\begin{gathered} \hline 1.35 \\ (1.26,1.44) \\ 0.83 \\ (0.77,0.89) \end{gathered}$	NA NA

Table 17: Drug Interactions: Pharmacokinetic Parameters for Coadministered (Continued) Drugs in the Presence of REYATAZ (atazanavir sulfate) ${ }^{\text {a }}$

Coadministered Drug	$\begin{aligned} & \text { Coadministered } \\ & \text { Drug } \\ & \text { Dose/Schedule } \end{aligned}$	REYATAZ Dose/Schedule	Ratio (90\% Confidence Interval) of Coadministered Drug Pharmacokinetic Parameters with/without REYATAZ; No effect $=1.00$		
			$\mathrm{C}_{\text {max }}$	AUC	$\mathrm{C}_{\text {min }}$
saquinavir" ${ }^{\text {n }}$ (soft gelatin capsules)	$\begin{gathered} 1200 \mathrm{mg} \text { QD, } \\ \mathrm{d} 1-13 \\ (\mathrm{n}=7) \end{gathered}$	400 mg QD, d7-13 ($\mathrm{n}=7$)	$\begin{gathered} \hline 4.39 \\ (3.24,5.95) \end{gathered}$	$\begin{gathered} 5.49 \\ (4.04,7.47) \end{gathered}$	$\begin{gathered} 6.86 \\ (5.29,8.91) \end{gathered}$
tenofovir ${ }^{0}$	$\begin{gathered} 300 \mathrm{mg} \text { QD, } \\ \mathrm{d} 9-16(\mathrm{n}=33) \text { and } \\ 2 \mathrm{~d} 4-30 \\ (\mathrm{n}=33) \\ 300 \mathrm{mg} \text { QD, d 1-7 } \\ (\mathrm{pm})(\mathrm{n}=14) \\ d 25-34(\mathrm{pm}) \\ (\mathrm{n}=12) \end{gathered}$	$\begin{array}{\|c\|} \hline 400 \mathrm{mg} \text { QD, } \\ \text { d 2-16 } \\ (\mathrm{n}=33) \\ \\ 300 \mathrm{mg} \text { QD/ } \\ \text { ritonavir } 100 \mathrm{mg} \text { QD, } \\ \mathrm{d} 25-34(\mathrm{am}) \\ (\mathrm{n}=12)^{\mathrm{P}} \end{array}$	$\begin{gathered} 1.14 \\ (1.08,1.20) \\ \\ 1.34 \\ (1.20,1.51) \end{gathered}$	$\begin{gathered} \hline 1.24 \\ (1.21,1.28) \\ \\ 1.37 \\ (1.30,1.45) \end{gathered}$	$\begin{gathered} 1.22 \\ (1.15,1.30) \\ \\ 1.29 \\ (1.21,1.36) \end{gathered}$
lamivudine + zidovudine	150 mg lamivudine + 300 mg zidovudine BID, d 1-12 ($\mathrm{n}=19$)	400 mg QD, d7-12 ($\mathrm{n}=19$)	lamivudine: 1.04 (0.92, 1.16) zidovudine: 1.05 (0.88, 1.24) zidovudine glucuronide: 0.95 (0.88, 1.02)	lamivudine: 1.03 (0.98, 1.08) zidovudine: 1.05 (0.96, 1.14) zidovudine glucuronide: 1.00 (0.97, 1.03)	$\begin{gathered} \hline \text { lamivudine: } \\ 1.12 \\ (1.04,1.21) \\ \text { zidovudine: } \\ 0.69 \\ \text { (0.57, } 0.84) \\ \text { zidovudine } \\ \text { glucuronide: } \\ 0.82 \\ (0.62,1.08) \end{gathered}$

${ }^{\text {a }}$ Data provided are under fed conditions unless otherwise noted.
${ }^{\mathrm{b}}$ All drugs were given under fasted conditions.
c 400 mg ddl EC and REYATAZ were administered together with food on Days 8 and 19.
${ }^{\text {d }}$ Upon further dose normalization of ethinyl estradiol 25 mcg with atazanavir relative to ethinyl estradiol 35 mcg without atazanavir, the ratio of geometric means (90% confidence intervals) for $\mathrm{C}_{\text {max }}, \mathrm{AUC}$, and $\mathrm{C}_{\text {min }}$ were $0.82(0.73,0.92)$, $1.06(0.95,1.17)$, and $1.35(1.11,1.63)$, respectively.
${ }^{\text {e }}$ Upon further dose normalization of ethinyl estradiol 35 mcg with atazanavir/ritonavir relative to ethinyl estradiol 25 mcg without atazanavir/ritonavir, the ratio of geometric means (90% confidence intervals) for $\mathrm{C}_{\text {max }}, A \cup C$, and $\mathrm{C}_{\text {min }}$ were 1.17 (1.03, 1.34), 1.13 (1.05, 1.22), and 0.88 ($0.77,1.00$), respectively.
${ }^{\dagger}$ All subjects were on a 28 day lead-in period; one full cycle of Ortho Tri-Cyclen ${ }^{\circledR}$. Ortho Tri-Cyclen ${ }^{\circledR}$ contains 35 mcg of ethinyl estradiol. Ortho Tri-Cyclen ${ }^{\circledR}$ LO contains 25 mcg of ethinyl estradiol. Results were dose normalized to an ethinyl estradiol dose of 35 mcg .
g 17-deacetyl norgestimate is the active component of norgestimate.
${ }^{\mathrm{h}}(\mathrm{R})$-methadone is the active isomer of methadone.
${ }^{\text {i }}$ Study was conducted in HIV-infected individuals.
j Subjects were treated with nevirapine prior to study entry.
${ }^{k}$ Omeprazole was used as a metabolic probe for CYP2C19. Omeprazole was given 2 hours after REYATAZ on Day 7; and was given alone 2 hours after a light meal on Day 20.
${ }^{1}$ Not the recommended therapeutic dose of atazanavir.
${ }^{m}$ Rosiglitazone used as a probe substrate for CYP2C8.
${ }^{n}$ The combination of atazanavir and saquinavir 1200 mg QD produced daily saquinavir exposures similar to the values produced by the standard therapeutic dosing of saquinavir at 1200 mg TID. However, the $\mathrm{C}_{\max }$ is about 79% higher than that for the standard dosing of saquinavir (soft gelatin capsules) alone at 1200 mg TID.
${ }^{0}$ Note that similar results were observed in a study where administration of tenofovir and REYATAZ was separated by 12 hours.
${ }^{p}$ Administration of tenofovir and REYATAZ was temporally separated by 12 hours.
$N A=$ not available.

12.4 Microbiology

Mechanism of Action

Atazanavir (ATV) is an azapeptide HIV-1 protease inhibitor (PI). The compound selectively inhibits the virus-specific processing of viral Gag and Gag-Pol polyproteins in HIV-1 infected cells, thus preventing formation of mature virions.

Antiviral Activity in Cell Culture

Atazanavir exhibits anti-HIV-1 activity with a mean 50% effective concentration (EC_{50}) in the absence of human serum of 2 to 5 nM against a variety of laboratory and clinical HIV-1 isolates grown in peripheral blood mononuclear cells, macrophages, CEM-SS cells, and MT-2 cells. ATV has activity against HIV-1 Group M subtype viruses A, B, C, D, AE, AG, F, G, and J isolates in cell culture. ATV has variable activity against HIV-2 isolates (1.9 to 32 nM), with EC_{50} values above the EC_{50} values of failure isolates. Two-drug combination antiviral activity studies with ATV showed no antagonism in cell culture with NNRTIs (delavirdine, efavirenz, and nevirapine), Pls (amprenavir, indinavir, lopinavir, nelfinavir, ritonavir, and saquinavir), NRTIs (abacavir, didanosine, emtricitabine, lamivudine, stavudine, tenofovir, zalcitabine, and zidovudine), the HIV-1 fusion inhibitor enfuvirtide, and two compounds used in the treatment of viral hepatitis, adefovir and ribavirin, without enhanced cytotoxicity.

Resistance

In Cell Culture: HIV-1 isolates with a decreased susceptibility to ATV have been selected in cell culture and obtained from patients treated with ATV or atazanavir/ ritonavir (ATV/RTV). HIV-1 isolates with 93- to 183 -fold reduced susceptibility to ATV from three different viral strains were selected in cell culture by 5 months. The substitutions in these HIV-1 viruses that contributed to ATV resistance include I50L, N88S, I84V, A71V, and M46l. Changes were also observed at the protease cleavage sites following drug selection. Recombinant viruses containing the I50L substitution without other major PI substitutions were growth impaired and displayed increased susceptibility in cell culture to other PIs (amprenavir, indinavir, lopinavir, nelfinavir, ritonavir, and saquinavir). The I50L and I50V substitutions yielded selective resistance to ATV and amprenavir, respectively, and did not appear to be cross-resistant.
Clinical Studies of Treatment-Naive Patients: Comparison of Ritonavir-Boosted REYATAZ vs. Unboosted REYATAZ: Study Al424-089 compared REYATAZ 300 mg once daily with ritonavir 100 mg vs. REYATAZ (atazanavir sulfate) 400 mg once daily when administered with lamivudine and extended-release stavudine in HIV-infected treatment-naive patients. A summary of the number of virologic failures and virologic failure isolates with ATV resistance in each arm is shown in Table 18.

Table 18: \quad Summary of Virologic Failures ${ }^{\text {a }}$ at Week 96 in Study AI424-089: Comparison of Ritonavir Boosted REYATAZ vs. Unboosted REYATAZ: Randomized Patients

	REYATAZ $300 \mathrm{mg}+$ ritonavir $100 \mathrm{mg}(\mathrm{n}=95)$	REYATAZ 400 mg $(\mathrm{n}=105)$
Virologic Failure (≥ 50 copies $/ \mathrm{mL}$) at Week 96	15 (16\%)	34 (32\%)
Virologic Failure with Genotypes and Phenotypes Data	5	17
Virologic Failure Isolates with ATVresistance at Week 96	0/5 (0\%) ${ }^{\text {b }}$	4/17 (24\%) ${ }^{\text {b }}$
Virologic Failure Isolates with I50L Emergence at Week 96 ${ }^{\text {c }}$	0/5 (0\%) ${ }^{\text {b }}$	2/17 (12\%) ${ }^{\text {b }}$
Virologic Failure Isolates with Lamivudine Resistance at Week 96	$2 / 5(40 \%)^{\text {b }}$	11/17 (65\%) ${ }^{\text {b }}$

${ }^{\text {a }}$ Virologic failure includes patients who were never suppressed through Week 96 and on study at Week 96, had virologic rebound or discontinued due to insufficient viral load response.
${ }^{\mathrm{b}}$ Percentage of Virologic Failure Isolates with genotypic and phenotypic data.
${ }^{\text {c }}$ Mixture of 1501/L emerged in 2 other ATV 400 mg -treated patients. Neither isolate was phenotypically resistant to ATV.

Clinical Studies of Treatment-Naive Patients Receiving REYATAZ 300 mg With Ritonavir 100 mg : In Phase III study Al424-138, an as-treated genotypic and phenotypic analysis was conducted on samples from patients who experienced virologic failure ≥ 400 copies $/ \mathrm{mL}$ or discontinued before achieving suppression on ATV/RTV ($\mathrm{n}=32 ; 7 \%$) and LPV/RTV ($\mathrm{n}=33 ; 8 \%$). In the ATV/RTV arm, 2 of the virologic failure isolates had 4- and 56-fold decreases in ATV susceptibility emerge on therapy with the development of PI substitutions M46I, V77V/I, and N88S (4-fold isolate); and L10F, V32I, K43T, M46I, A711, G73S, I85I/V, and L90M (56-fold isolate). Four of the treatment failure isolates in the ATV/RTV arm developed emtricitabine resistance with the emergence of the M184V substitution on therapy. In the LPV/RTV arm, none of the virologic failure patient isolates developed LPV resistance (fold change: >10-fold) or had major PI substitutions emerge on therapy. Three of the failure isolates in the LPV/RTV arm developed emtricitabine resistance with the emergence of the M184V substitution.
Clinical Studies of Treatment-Naive Patients Receiving REYATAZ 400 mg Without Ritonavir:ATV-resistant clinical isolates from treatment-naive patients who experienced virologic failure on REYATAZ 400 mg treatment without ritonavir often developed an I50L substitution (after an average of 50 weeks of ATV therapy), often in combination with an A71V substitution, but also developed one or more other PI substitutions (eg, V32I, L33F, G73S, V82A, I85V, or N88S) with or without the I50L substitution. In treatment-naive patients, viral isolates that developed the I50L substitution, without other major PI substitutions, showed phenotypic resistance to ATV but retained in cell culture susceptibility to other Pls (amprenavir, indinavir, lopinavir, nelfinavir, ritonavir, and saquinavir); however, there are no clinical data available to demonstrate the effect of the I50L substitution on the efficacy of subsequently administered PIs.
Clinical Studies of Treatment-Experienced Patients: In studies of treatmentexperienced patients treated with ATV or ATV/RTV, most ATV-resistant isolates from patients who experienced virologic failure developed substitutions that were associated with resistance to multiple PIs and displayed decreased susceptibility to multiple Pls. The most common protease substitutions to develop in the viral isolates of patients who failed treatment with ATV 300 mg once daily and RTV 100 mg once daily (together with tenofovir and an NRTI) included V32I, L33F/V/I, E35D/G, M46I/L, I50L, F53L/N, I54V, A71V/T/I, G73S/T/C, V82A/T/L, I85V, and L89V/Q/M/T. Other substitutions that developed on ATV/RTV treatment including E34K/A/Q, G48V, I84V, N88S/D/T, and L90M occurred in less than 10\% of patient isolates. Generally, if multiple PI resistance substitutions were present in the HIV-1 virus of the patient at baseline, ATV resistance developed through substitutions associated with resistance to other PIs and could include the development of the I50L substitution. The I50L substitution has been detected in treatment-experienced patients experiencing
virologic failure after long-term treatment. Protease cleavage site changes also emerged on ATV treatment but their presence did not correlate with the level of ATV resistance.

Cross-Resistance

Cross-resistance among Pls has been observed. Baseline phenotypic and genotypic analyses of clinical isolates from ATV clinical trials of PI-experienced patients showed that isolates cross-resistant to multiple Pls were cross-resistant to ATV. Greater than 90% of the isolates with substitutions that included I84V or G48V were resistant to ATV. Greater than 60% of isolates containing L90M, G73S/T/C, A71V/T, I54V, M46I/L, or a change at V82 were resistant to ATV, and 38\% of isolates containing a D30N substitution in addition to other changes were resistant to ATV. Isolates resistant to ATV were also cross-resistant to other PIs with $>90 \%$ of the isolates resistant to indinavir, lopinavir, nelfinavir, ritonavir, and saquinavir, and 80\% resistant to amprenavir. In treatment-experienced patients, Pl-resistant viral isolates that developed the I50L substitution in addition to other PI resistance-associated substitution were also cross-resistant to other PIs.

Baseline Genotype/Phenotype and Virologic Outcome Analyses

Genotypic and/or phenotypic analysis of baseline virus may aid in determining ATV susceptibility before initiation of ATV/RTV therapy. An association between virologic response at 48 weeks and the number and type of primary PI resistance-associated substitutions detected in baseline HIV-1 isolates from antiretroviral-experienced patients receiving ATV/RTV once daily or lopinavir (LPV)/RTV twice daily in Study Al424-045 is shown in Table 19.
Overall, both the number and type of baseline PI substitutions affected response rates in treatment-experienced patients. In the ATV/RTV group, patients had lower response rates when 3 or more baseline PI substitutions, including a substitution at position $36,71,77,82$, or 90 , were present compared to patients with $1-2 \mathrm{PI}$ substitutions, including one of these substitutions.

Table 19: HIV RNA Response by Number and Type of Baseline PI Substitution, Antiretroviral-Experienced Patients in Study Al424-045, As-Treated Analysis

	Virologic Response = HIV RNA < 400 copies/mL ${ }^{\text {b }}$	
Number and Type of Baseline PI Substitutions ${ }^{\text {a }}$	$\begin{aligned} & \text { ATV/RTV } \\ & (\mathrm{n}=110) \end{aligned}$	$\begin{aligned} & \hline \text { LPV/RTV } \\ & (\mathrm{n}=113) \end{aligned}$
3 or more primary PI substitutions including: ${ }^{\text {c }}$		
D30N	75\% (6/8)	50\% (3/6)
M36IN	19\% (3/16)	33\% (6/18)
M46I/LT	24\% (4/17)	23\% (5/22)
154V/LT/M/A	31\% (5/16)	31\% (5/16)
A71V/T///G	34\% (10/29)	39\% (12/31)
G73S/A/C/T	14\% (1/7)	38\% (3/8)
V771	47\% (7/15)	44\% (7/16)
V82A/F/T/S/l	29\% (6/21)	27\% (7/26)
I84V/A	11\% (1/9)	33\% (2/6)
N88D	63\% (5/8)	67\% (4/6)
L90M	10\% (2/21)	44\% (11/25)
Number of baseline primary PI substitutions ${ }^{\text {a }}$		
All patients, as-treated	58\% (64/110)	59\% (67/113)
$0-2 \mathrm{PI}$ substitutions	75\% (50/67)	75\% (50/67)
3-4 PI substitutions	41\% (14/34)	43\% (12/28)
5 or more Pl substitutions	0\% (0/9)	28\% (5/18)

a Primary substitutions include any change at D30, V32, M36, M46, I47, G48, I50, I54, A71, G73, V77, V82, I84, N88, and L90.
${ }^{\mathrm{b}}$ Results should be interpreted with caution because the subgroups were small.
${ }^{\text {c }}$ There were insufficient data $(\mathrm{n}<3)$ for PI substitutions V321, 147V, G48V, I50V, and F53L.
The response rates of antiretroviral-experienced patients in Study Al424-045 were analyzed by baseline phenotype (shift in susceptibility in cell culture relative to reference, Table 20). The analyses are based on a select patient population with 62\% of patients receiving an NNRTI-based regimen before study entry compared to 35% receiving a PI-based regimen. Additional data are needed to determine clinically relevant break points for REYATAZ (atazanavir sulfate).
Table 20: Baseline Phenotype by Outcome, Antiretroviral-Experienced Patients in Study Al424-045, As-Treated Analysis

	Virologic Response $=$ HIV RNA $<\mathbf{4 0 0}$ copies/mL ${ }^{\mathbf{b}}$	
	ATV/RTV	LPV/RTV
Baseline Phenotype ${ }^{\mathbf{a}}$	$(\mathbf{n}=111)$	$\mathbf{(\mathbf { n } = 1 1 1)}$
$0-2$	$71 \%(55 / 78)$	$70 \%(56 / 80)$
$>2-5$	$53 \%(8 / 15)$	$44 \%(4 / 9)$
$>5-10$	$13 \%(1 / 8)$	$33 \%(3 / 9)$
>10	$10 \%(1 / 10)$	$23 \%(3 / 13)$

[^2]
13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility

Two-year carcinogenicity studies in mice and rats were conducted with atazanavir. At the high dose in female mice, the incidence of benign hepatocellular adenomas was increased at systemic exposures 7.2 -fold higher than those in humans at the recommended $400-\mathrm{mg}$ clinical dose. There were no increases in the incidence of tumors in male mice at any dose in the study. In rats, no significant positive trends in the incidence of neoplasms occurred at systemic exposures up to 5.7 -fold higher than those in humans at the recommended $400-\mathrm{mg}$ clinical dose. The clinical relevance of the carcinogenic findings in female mice is unknown.
Atazanavir tested positive in an in vitro clastogenicity test using primary human lymphocytes, in the absence and presence of metabolic activation. Atazanavir tested negative in the in vitro Ames reverse-mutation assay, in vivo micronucleus and DNA repair tests in rats, and in vivo DNA damage test in rat duodenum (comet assay).

13.2 Reproductive Toxicology Studies

At the systemic drug exposure levels (AUC) equal to (in male rats) or two times (in female rats) those at the human clinical dose (400 mg once daily), atazanavir did not produce significant effects on mating, fertility, or early embryonic development.

14 CLINICAL STUDIES

14.1 Adult Patients Without Prior Antiretroviral Therapy

Study Al424-138: a 96-week study comparing the antiviral efficacy and safety of atazanavir/ritonavir with lopinavir/ritonavir, each in combination with fixed-dose tenofovir-emtricitabine in HIV-1 infected treatment naive subjects. Study Al424138 is a 96 -week open-label, randomized, multicenter study, comparing REYATAZ (atazanavir sulfate) (300 mg once daily) with ritonavir (100 mg once daily) to lopinavir with ritonavir ($400 / 100 \mathrm{mg}$ twice daily), each in combination with fixed-dose tenofovir with emtricitabine ($300 / 200 \mathrm{mg}$ once daily), in 878 antiretroviral treatment-naive treated patients. Patients had a mean age of 36 years (range: 19-72), 49\% were Caucasian, 18\% Black, 9\% Asian, 23\% Hispanic/Mestizo/mixed race, and 68\% were male. The median baseline plasma CD4+ cell count was 204 cells $/ \mathrm{mm}^{3}$ (range: 2 to 810 cells $/ \mathrm{mm}^{3}$) and the mean baseline plasma HIV-1 RNA level was $4.94 \log _{10}$ copies $/ \mathrm{mL}$ (range: 2.60 to $5.88 \log _{10}$ copies $/ \mathrm{mL}$). Treatment response and outcomes through Week 48 are presented in Table 21.

Table 21:
Outcomes of Treatment Through Week 48 (Study Al424-138)

Outcome	$\begin{array}{c}\text { REYATAZ } \\ 300 \mathrm{mg}+\text { ritonavir } 100 \mathrm{mg} \\ \text { (once daily) }\end{array}$	$\begin{array}{c}\text { lopinavir } \\ \text { with tenofovir/emtricitabine } \\ \text { (once daily) } \\ \text { (} \mathrm{n}=441 \text {) }\end{array}$
+ $\begin{array}{c}\text { ritonavir } 100 \mathrm{mg} \\ \text { (twice daily) }\end{array}$		
with tenofovir/emtricitabine		
(once daily)		
($\mathrm{n}=437$)		

${ }^{\text {a }}$ As a fixed-dose combination: 300 mg tenofovir, 200 mg emtricitabine once daily.
${ }^{\text {b }}$ Patients achieved confirmed HIV RNA <50 copies/mL at Week 48. Roche Amplicor ${ }^{\circledR}$, v1.5 ultra-sensitive assay.
${ }^{\text {c }}$ Pre-specified ITT analysis using as-randomized cohort: ATV/RTV 78\% and LPV/RTV 76\% [difference estimate: 1.7 (95% confidence interval: -3.8, 7.1)].
${ }^{\text {d }}$ Includes viral rebound and failure to achieve confirmed HIV RNA <50 copies/mL through Week 48.
${ }^{\mathrm{e}}$ Includes lost to follow-up, patient's withdrawal, noncompliance, protocol violation, and other reasons.

Through 48 weeks of therapy, the proportion of responders among patients with high viral loads (ie, baseline HIV RNA $\geq 100,000$ copies $/ \mathrm{mL}$) was comparable for the REYATAZ/ ritonavir (164 of 223 patients, 74%) and lopinavir/ritonavir (161 of 222 patients, 73\%) arms. The median increase from baseline in CD4+ cell count was 191 cells $/ \mathrm{mm}^{3}$ for the REYATAZ/ritonavir arm and 200 cells $/ \mathrm{mm}^{3}$ for the lopinavir/ritonavir arm.
Study Al424-034: REYATAZ once daily compared to efavirenz once daily, each in combination with fixed-dose lamivudine + zidovudine twice daily. Study Al424-034 was a randomized, double-blind, multicenter trial comparing REYATAZ (atazanavir sulfate) (400 mg once daily) to efavirenz (600 mg once daily), each in combination with a fixed-dose combination of lamivudine (3TC) (150 mg) and zidovudine (ZDV) (300 mg) given twice daily, in 810 antiretroviral treatment-naive patients. Patients had a mean age of 34 years (range: 18 to 73), 36% were Hispanic, 33% were Caucasian, and 65% were male. The mean baseline CD4+ cell count was 321 cells $/ \mathrm{mm}^{3}$ (range: 64 to 1424 cells $/ \mathrm{mm}^{3}$) and the mean baseline plasma HIV-1 RNA level was $4.8 \log _{10}$ copies $/ \mathrm{mL}$ (range: 2.2 to $5.9 \log _{10}$ copies $/ \mathrm{mL}$). Treatment response and outcomes through Week 48 are presented in Table 22.

Table 22: $\quad \begin{aligned} & \text { Outcomes of Randomized Treatment Through Week } 48 \\ & \text { (Study Al424-034) }\end{aligned}$ (Study Al424-034)

Outcome	REYATAZ (atazanavir sulfate) 400 mg once daily + lamivudine + zidovudine $^{\text {d }}$ ($\mathrm{n}=405$)	efavirenz 600 mg once daily + lamivudine + zidovudine ${ }^{\text {d }}$ ($\mathrm{n}=405$)
Responder ${ }^{\text {a }}$	67\% (32\%)	62\% (37\%)
Virologic failure ${ }^{\text {b }}$	20\%	21\%
Rebound	17\%	16\%
Never suppressed through Week 48	3\%	5\%
Death	-	<1\%
Discontinued due to adverse event	5\%	7\%
Discontinued for other reasons ${ }^{\text {c }}$	8\%	10\%

a Patients achieved and maintained confirmed HIV RNA <400 copies $/ \mathrm{mL}(<50$ copies $/ \mathrm{mL}$) through Week 48. Roche Amplicor ${ }^{\circledR}$ HIV-1 Monitor ${ }^{\text {TM }}$ Assay, test version 1.0 or 1.5 as geographically appropriate.
${ }^{\text {b }}$ Includes viral rebound and failure to achieve confirmed HIV RNA < 400 copies/mL through Week 48.
${ }^{\mathrm{c}}$ Includes lost to follow-up, patient's withdrawal, noncompliance, protocol violation, and other reasons.
${ }^{\mathrm{d}}$ As a fixed-dose combination: 150 mg lamivudine, 300 mg zidovudine twice daily.
Through 48 weeks of therapy, the proportion of responders among patients with high viral loads (ie, baseline HIV RNA $\geq 100,000$ copies $/ \mathrm{mL}$) was comparable for the REYATAZ and efavirenz arms. The mean increase from baseline in CD4+ cell count was 176 cells $/ \mathrm{mm}^{3}$ for the REYATAZ arm and 160 cells $/ \mathrm{mm}^{3}$ for the efavirenz arm.
Study Al424-008: REYATAZ 400 mg once daily compared to REYATAZ 600 mg once daily, and compared to nelfinavir 1250 mg twice daily, each in combination with stavudine and lamivudine twice daily. Study A1424-008 was a 48-week, randomized, multicenter trial, blinded to dose of REYATAZ (atazanavir sulfate), comparing REYATAZ at two dose levels (400 mg and 600 mg once daily) to nelfinavir (1250 mg twice daily), each in combination with stavudine (40 mg) and lamivudine (150 mg) given twice daily, in 467 antiretroviral treatment-naive patients. Patients had a mean age of 35 years (range: 18 to 69), 55% were Caucasian, and 63% were male. The mean baseline CD4+ cell count was 295 cells $/ \mathrm{mm}^{3}$ (range: 4 to 1003 cells $/ \mathrm{mm}^{3}$) and the mean baseline plasma HIV-1 RNA level was $4.7 \log _{10}$ copies $/ \mathrm{mL}$ (range: 1.8 to 5.9 $\log _{10}$ copies $/ \mathrm{mL}$). Treatment response and outcomes through Week 48 are presented in Table 23.
Table 23: Outcomes of Randomized Treatment Through Week 48 (Study AI424-008)

Outcome	REYATAZ 400 mg once daily + lamivudine + stavudine $(\mathrm{n}=181)$	nelfinavir $\mathbf{1 2 5 0} \mathrm{mg}$ twice daily + lamivudine + stavudine $(\mathrm{n}=91)$
Responder $^{\mathrm{a}}$	$67 \%(33 \%)$	$59 \%(38 \%)$
Virologic failure $^{\mathrm{b}}$	24%	27%
Rebound	14%	14%
Never suppressed through Week 48	10%	13%
Death	$<1 \%$	-
Discontinued due to adverse event	1%	3%
Discontinued for other reasons ${ }^{\text {c }}$	7%	10%

[^3]Through 48 weeks of therapy, the mean increase from baseline in CD4+ cell count was 234 cells $/ \mathrm{mm}^{3}$ for the REYATAZ $400-\mathrm{mg}$ arm and 211 cells $/ \mathrm{mm}^{3}$ for the nelfinavir arm.

14.2 Adult Patients With Prior Antiretroviral Therapy

Study Al424-045: REYATAZ once daily + ritonavir once daily compared to REYATAZ once daily + saquinavir (soft gelatin capsules) once daily, and compared to lopinavir + ritonavir twice daily, each in combination with tenofovir + one NRTI. Study Al424045 is an ongoing, randomized, multicenter trial comparing REYATAZ (300 mg once daily) with ritonavir (100 mg once daily) to REYATAZ (400 mg once daily) with saquinavir soft gelatin capsules (1200 mg once daily), and to lopinavir + ritonavir ($400 / 100 \mathrm{mg}$ twice daily), each in combination with tenofovir and one NRTI, in 347 (of 358 randomized) patients who experienced virologic failure on HAART regimens containing PIs, NRTIs, and NNRTIs. The mean time of prior exposure to antiretrovirals was 139 weeks for Pls, 283 weeks for NRTIs, and 85 weeks for NNRTIs. The mean age was 41 years (range: 24 to 74); 60\% were Caucasian, and 78% were male. The mean baseline CD4+ cell count was 338 cells $/ \mathrm{mm}^{3}$ (range: 14 to $1543 \mathrm{cells} / \mathrm{mm}^{3}$) and the mean baseline plasma HIV-1 RNA level was $4.4 \log _{10}$ copies $/ \mathrm{mL}$ (range: 2.6 to $5.88 \log _{10}$ copies $/ \mathrm{mL}$).
Treatment outcomes through Week 48 for the REYATAZ/ritonavir and lopinavir/ritonavir treatment arms are presented in Table 24. REYATAZ/ritonavir and lopinavir/ritonavir were similar for the primary efficacy outcome measure of time-averaged difference in
change from baseline in HIV RNA level. Study AI424-045 was not large enough to reach a definitive conclusion that REYATAZ (atazanavir sulfate)/ritonavir and lopinavir/ritonavir are equivalent on the secondary efficacy outcome measure of proportions below the HIV RNA lower limit of detection. [See Clinical Pharmacology, Tables 19 and 20 (12.4).]

Table 24:	Outcomes of Treatment Through Week 48 in Study AI424-045 (Patients with Prior Antiretroviral Experience)		
Outcome	REYATAZ 300 mg + ritonavir 100 mg once daily + tenofovir + 1 NRTI $(\mathbf{n}=119)$	lopinavir/ritonavir $(400 / 100 \mathrm{mg})$ twice daily + tenofovir + 1 NRTI $(\mathbf{n}=118)$	Difference (REYATAZ-lopinavir/ ritonavir)
(CI)			

[^4]No patients in the REYATAZ/ritonavir treatment arm and three patients in the lopinavir/ ritonavir treatment arm experienced a new-onset CDC Category C event during the study.

In Study Al424-045, the mean change from baseline in plasma HIV-1 RNA for REYATAZ 400 mg with saquinavir ($\mathrm{n}=115$) was $-1.55 \log _{10}$ copies $/ \mathrm{mL}$, and the time-averaged difference in change in HIV-1 RNA levels versus lopinavir/ritonavir was 0.33 . The corresponding mean increase in CD4+ cell count was 72 cells $/ \mathrm{mm}^{3}$. Through 48 weeks of treatment, the proportion of patients in this treatment arm with plasma HIV-1 RNA $<400(<50)$ copies $/ \mathrm{mL}$ was 38% (26%). In this study, coadministration of REYATAZ and saquinavir did not provide adequate efficacy [see Drug Interactions (7)].
Study Al424-045 also compared changes from baseline in lipid values. [See Adverse Reactions (6.1).]

Study Al424-043: Study Al424-043 was a randomized, open-label, multicenter trial comparing REYATAZ (400 mg once daily) to lopinavir/ritonavir ($400 / 100 \mathrm{mg}$ twice daily), each in combination with two NRTIs, in 300 patients who experienced virologic failure to only one prior Pl-containing regimen. Through 48 weeks, the proportion of patients with plasma HIV-1 RNA $<400(<50)$ copies/mL was 49% (35\%) for patients randomized to REYATAZ ($\mathrm{n}=144$) and 69% (53\%) for patients randomized to lopinavir/ritonavir ($n=146$). The mean change from baseline was $-1.59 \log _{10}$ copies $/ \mathrm{mL}$ in the REYATAZ treatment arm and $-2.02 \log _{10}$ copies $/ \mathrm{mL}$ in the lopinavir/ ritonavir arm. Based on the results of this study, REYATAZ without ritonavir is inferior to lopinavir/ritonavir in Pl-experienced patients with prior virologic failure and is not recommended for such patients.

14.3 Pediatric Patients

Assessment of the pharmacokinetics, safety, tolerability, and efficacy of REYATAZ is based on data from the open-label, multicenter clinical trial PACTG 1020A conducted in patients from 3 months to 21 years of age. In this study, 182 patients (83 antiretroviral-naive and 99 antiretroviral-experienced) received once daily REYATAZ, with or without ritonavir, in combination with two NRTIs.

Ninety-nine patients (6 to less than 18 years of age) treated with the REYATAZ capsule formulation, with or without ritonavir, were evaluated. In this cohort, the overall proportions of antiretroviral-naive and -experienced patients with HIV RNA <400 copies $/ \mathrm{mL}$ at week 24 were $68 \%(28 / 41)$ and 33% (19/58), respectively. The overall proportions of antiretroviral-naive and -experienced patients with HIV RNA <50 copies $/ \mathrm{mL}$ at week 24 were 59% (24/41) and 24% (14/58), respectively. The median increase from baseline in absolute CD4 count at 20 weeks of therapy was 171 cells $/ \mathrm{mm}^{3}$ in antiretroviral-naive patients and 116 cells $/ \mathrm{mm}^{3}$ in antiretroviral experienced patients.

16 HOW SUPPLIED/STORAGE AND HANDLING

REYATAZ ${ }^{\circledR}$ (atazanavir sulfate) Capsules are available in the following strengths and configurations of plastic bottles with child-resistant closures.

Product Strength*	Capsule Shell Color (cap/body)	Markings on Capsule (ink color)		Capsules per Bottle	NDC Number
		cap	body		
100 mg	blue/white	BMS 100 mg (white)	$\begin{aligned} & 3623 \\ & \text { (blue) } \end{aligned}$	60	0003-3623-12
150 mg	blue/powder blue	BMS 150 mg (white)	3624 (blue)	60	0003-3624-12
200 mg	blue/blue	BMS 200 mg (white)	$\begin{gathered} \hline 3631 \\ \text { (white) } \end{gathered}$	60	0003-3631-12
300 mg	red/blue	$\begin{aligned} & \text { BMS } 300 \text { mg } \\ & \text { (white) } \end{aligned}$	3622 (white)	30	0003-3622-12

* atazanavir equivalent as atazanavir sulfate.

REYATAZ (atazanavir sulfate) Capsules should be stored at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$; excursions permitted to $15-30^{\circ} \mathrm{C}\left(59-86^{\circ} \mathrm{F}\right.$) [see USP Controlled Room Temperature].

17 PATIENT COUNSELING INFORMATION

A statement to patients and healthcare providers is included on the product's bottle label: ALERT: Find out about medicines that should NOT be taken with REYATAZ. FDA-Approved Patient Labeling is available for REYATAZ.

Patients should be informed that REYATAZ is not a cure for HIV infection and that they may continue to develop opportunistic infections and other complications associated with HIV disease. Patients should be told that there are currently no data demonstrating that therapy with REYATAZ can reduce the risk of transmitting HIV to others through sexual contact.

17.1 Dosing Instructions

Patients should be told that sustained decreases in plasma HIV RNA have been associated with a reduced risk of progression to AIDS and death. Patients should remain under the care of a physician while using REYATAZ. Patients should be advised to take REYATAZ with food every day and take other concomitant antiretroviral therapy as prescribed. REYATAZ must always be used in combination with other antiretroviral drugs. Patients should not alter the dose or discontinue therapy without consulting with their doctor. If a dose of REYATAZ is missed, patients should take the dose as soon as possible and then return to their normal schedule. However, if a dose is skipped the patient should not double the next dose.

17.2 Drug Interactions

REYATAZ may interact with some drugs; therefore, patients should be advised to report to their doctor the use of any other prescription, nonprescription medication, or herbal products, particularly St. John's wort.

Patients receiving a PDE5 inhibitor and atazanavir should be advised that they may be at an increased risk of PDE5 inhibitor-associated adverse events including hypotension, visual changes, and prolonged penile erection, and should promptly report any symptoms to their doctor.

17.3 Cardiac Conduction Abnormalities

Patients should be informed that atazanavir may produce changes in the electrocardiogram (eg, PR prolongation). Patients should consult their physician if they are experiencing symptoms such as dizziness or lightheadedness.

17.4 Rash

Patients should be informed that mild rashes without other symptoms have been reported with REYATAZ use. These rashes go away within two weeks with no change in treatment. However, there have been a few reports of severe skin reactions (eg, Stevens-Johnson syndrome, erythema multiforme, and toxic skin eruptions) with REYATAZ use. Patients developing signs or symptoms of severe skin reactions or hypersensitivity reactions (including, but not limited to, severe rash or rash accompanied by one or more of the following: fever, general malaise, muscle or joint aches, blisters, oral lesions, conjunctivitis, facial edema, hepatitis, eosinophilia, granulocytopenia, lymphadenopathy, and renal dysfunction) must discontinue REYATAZ and seek medical evaluation immediately.

17.5 Hyperbilirubinemia

Patients should be informed that asymptomatic elevations in indirect bilirubin have occurred in patients receiving REYATAZ. This may be accompanied by yellowing of the skin or whites of the eyes and alternative antiretroviral therapy may be considered if the patient has cosmetic concerns.

17.6 Fat Redistribution

Patients should be informed that redistribution or accumulation of body fat may occur in patients receiving antiretroviral therapy including protease inhibitors and that the cause and long-term health effects of these conditions are not known at this time. It is unknown whether long-term use of REYATAZ will result in a lower incidence of lipodystrophy than with other protease inhibitors.

17.7
 FDA-Approved Patient Labeling

Patient Information

REYATAZ ${ }^{\circledR}$ (RAY-ah-taz)
 (generic name = atazanavir sulfate) Capsules

ALERT: Find out about medicines that should NOT be taken with REYATAZ (atazanavir sulfate). Read the section "What important information should I know about taking REYATAZ with other medicines?"
Read the Patient Information that comes with REYATAZ before you start using it and each time you get a refill. There may be new information. This leaflet provides a summary about REYATAZ and does not include everything there is to know about your medicine. This information does not take the place of talking with your healthcare provider about your medical condition or treatment.

What is REYATAZ?

REYATAZ is a prescription medicine used with other anti-HIV medicines to treat people who are infected with the human immunodeficiency virus (HIV). HIV is the virus that causes acquired immune deficiency syndrome (AIDS). REYATAZ is a type of anti-HIV medicine called a protease inhibitor. HIV infection destroys CD4+ (T) cells, which are important to the immune system. The immune system helps fight infection. After a large number of (T) cells are destroyed, AIDS develops. REYATAZ helps to block HIV protease, an enzyme that is needed for the HIV virus to multiply. REYATAZ may lower the amount of HIV in your blood, help your body keep its supply of CD4+ (T) cells, and reduce the risk of death and illness associated with HIV.

Does REYATAZ cure HIV or AIDS?

REYATAZ does not cure HIV infection or AIDS. At present there is no cure for HIV infection. People taking REYATAZ may still get opportunistic infections or other conditions that happen with HIV infection. Opportunistic infections are infections that develop because the immune system is weak. Some of these conditions are pneumonia, herpes virus infections, and Mycobacterium avium complex (MAC) infections. It is very important that you see your healthcare provider regularly while taking REYATAZ.
REYATAZ does not lower your chance of passing HIV to other people through sexual contact, sharing needles, or being exposed to your blood. For your health and the health of others, it is important to always practice safer sex by using a latex or polyurethane condom or other barrier to lower the chance of sexual contact with semen, vaginal secretions, or blood. Never use or share dirty needles.

Who should not take REYATAZ?

Do not take REYATAZ if you:

- are taking certain medicines. (See "What important information should I know about taking REYATAZ with other medicines?") Serious life-threatening side effects or death may happen. Before you take REYATAZ, tell your healthcare provider about all medicines you are taking or planning to take. These include other prescription and nonprescription medicines, vitamins, and herbal supplements.
- are allergic to REYATAZ or to any of its ingredients. The active ingredient is atazanavir sulfate. See the end of this leaflet for a complete list of ingredients in REYATAZ. Tell your healthcare provider if you think you have had an allergic reaction to any of these ingredients.
What should I tell my healthcare provider before I take REYATAZ?
Tell your healthcare provider:
- If you are pregnant or planning to become pregnant. It is not known if REYATAZ can harm your unborn baby. Pregnant women have experienced serious side effects when taking REYATAZ with other HIV medicines called nucleoside analogues. You and your healthcare provider will need to decide if REYATAZ is right for you. If you use REYATAZ while you are pregnant, talk to your healthcare provider about the Antiretroviral Pregnancy Registry.
- If you are breast-feeding. You should not breast-feed if you are HIV-positive because of the chance of passing HIV to your baby. Also, it is not known if REYATAZ can pass into your breast milk and if it can harm your baby. If you are a woman who has or will have a baby, talk with your healthcare provider about the best way to feed your baby.
- If you have liver problems or are infected with the hepatitis B or C virus. See "What are the possible side effects of REYATAZ?"
- If you have end stage kidney disease managed with hemodialysis.
- If you have diabetes. See "What are the possible side effects of REYATAZ?"
- If you have hemophilia. See "What are the possible side effects of REYATAZ?"
- About all the medicines you take including prescription and nonprescription medicines, vitamins, and herbal supplements. Keep a list of your medicines with you to show your healthcare provider. For more information, see "What important information should I know about taking REYATAZ with other medicines?" and "Who should not take REYATAZ?" Some medicines can cause serious side effects if taken with REYATAZ.

How should I take REYATAZ (atazanavir sulfate)?

- Take REYATAZ once every day exactly as instructed by your healthcare provider. Your healthcare provider will prescribe the amount of REYATAZ that is right for you.
- For adults who have never taken anti-HIV medicines before, the dose is 300 mg once daily with 100 mg of $\mathrm{NORVIR}^{\circledR}$ (ritonavir) once daily taken with food. For adults who are unable to tolerate ritonavir, 400 mg (two 200-mg capsules) once daily (without NORVIR ${ }^{\circledR}$) taken with food is recommended.
- For adults who have taken anti-HIV medicines in the past, the usual dose is 300 mg plus 100 mg of $\mathrm{NORVIR}^{\circledR}$ (ritonavir) once daily taken with food.
- Your dose will depend on your liver function and on the other anti-HIV medicines that you are taking. REYATAZ is always used with other anti-HIV medicines. If you are taking REYATAZ with SUSTIVA ${ }^{\circledR}$ (efavirenz) or with VIREAD ${ }^{\circledR}$ (tenofovir disoproxil fumarate), you should also be taking NORVIR ${ }^{\circledR}$ (ritonavir).
- Always take REYATAZ with food (a meal or snack) to help it work better. Swallow the capsules whole. Do not open the capsules. Take REYATAZ at the same time each day.
- If you are taking antacids or didanosine (VIDEX ${ }^{\circledR}$ or VIDEX ${ }^{\circledR}$ EC), take REYATAZ 2 hours before or 1 hour after these medicines.
- If you are taking medicines for indigestion, heartburn, or ulcers such as AXID ${ }^{\circledR}$ (nizatidine), PEPCID AC ${ }^{\circledR}$ (famotidine), TAGAMET ${ }^{\circledR}$ (cimetidine), ZANTAC $^{\circledR}$ (ranitidine), AcipHex ${ }^{\circledR}$ (rabeprazole), NEXIUM ${ }^{\circledR}$ (esomeprazole), PREVACID ${ }^{\circledR}$ (lansoprazole), PRILOSEC ${ }^{\circledR}$ (omeprazole), or PROTONIX ${ }^{\circledR}$ (pantoprazole), talk to your healthcare provider.
- Do not change your dose or stop taking REYATAZ without first talking with your healthcare provider. It is important to stay under a healthcare provider's care while taking REYATAZ.
- When your supply of REYATAZ starts to run low, get more from your healthcare provider or pharmacy. It is important not to run out of REYATAZ. The amount of HIV in your blood may increase if the medicine is stopped for even a short time.
- If you miss a dose of REYATAZ, take it as soon as possible and then take your next scheduled dose at its regular time. If, however, it is within 6 hours of your next dose, do not take the missed dose. Wait and take the next dose at the regular time. Do not double the next dose. It is important that you do not miss any doses of REYATAZ or your other anti-HIV medicines.
- If you take more than the prescribed dose of REYATAZ, call your healthcare provider or poison control center right away.

Can children take REYATAZ?

Dosing recommendations are available for children 6 years of age and older for REYATAZ Capsules. Dosing recommendations are not available for children from 3 months to less than 6 years of age. REYATAZ should not be used in babies under the age of 3 months.

What are the possible side effects of REYATAZ?

The following list of side effects is not complete. Report any new or continuing symptoms to your healthcare provider. If you have questions about side effects, ask your healthcare provider. Your healthcare provider may be able to help you manage these side effects.

The following side effects have been reported with REYATAZ:

- mild rash (redness and itching) without other symptoms sometimes occurs in patients taking REYATAZ, most often in the first few weeks after the medicine is started. Rashes usually go away within 2 weeks with no change in treatment. Tell your healthcare provider if rash occurs.
- severe rash: In a small number of patients, a rash can develop that is associated with other symptoms which could be serious and potentially cause death.

If you develop a rash with any of the following symptoms stop using REYATAZ and call your healthcare provider right away:

- shortness of breath
- general ill feeling or "flu-like" symptoms
- fever
- muscle or joint aches
- conjunctivitis (red or inflamed eyes, like "pink eye")
- blisters
- mouth sores
- swelling of your face
- yellowing of the skin or eyes. These effects may be due to increases in bilirubin levels in the blood (bilirubin is made by the liver). Call your healthcare provider if your skin or the white part of your eyes turn yellow. Although these
effects may not be damaging to your liver, skin, or eyes, it is important to tell your healthcare provider promptly if they occur.
- a change in the way your heart beats (heart rhythm change). Call your healthcare provider right away if you get dizzy or lightheaded. These could be symptoms of a heart problem.
- diabetes and high blood sugar (hyperglycemia) sometimes happen in patients taking protease inhibitor medicines like REYATAZ (atazanavir sulfate). Some patients had diabetes before taking protease inhibitors while others did not. Some patients may need changes in their diabetes medicine.
- if you have liver disease including hepatitis B or C, your liver disease may get worse when you take anti-HIV medicines like REYATAZ.
- kidney stones have been reported in patients taking REYATAZ. If you develop signs or symptoms of kidney stones (pain in your side, blood in your urine, pain when you urinate) tell your healthcare provider promptly.
- some patients with hemophilia have increased bleeding problems with protease inhibitors like REYATAZ.
- changes in body fat. These changes may include an increased amount of fat in the upper back and neck ("buffalo hump"), breast, and around the trunk. Loss of fat from the legs, arms, and face may also happen. The cause and long-term health effects of these conditions are not known at this time.
Other common side effects of REYATAZ taken with other anti-HIV medicines include nausea; headache; stomach pain; vomiting; diarrhea; depression; fever; dizziness; trouble sleeping; numbness, tingling, or burning of hands or feet; and muscle pain.
Gallbladder disorders (which may include gallstones and gallbladder inflammation) have been reported in patients taking REYATAZ.

What important information should I know about taking REYATAZ with other

 medicines?Do not take REYATAZ if you take the following medicines (not all brands may be listed; tell your healthcare provider about all the medicines you take). REYATAZ may cause serious, life-threatening side effects or death when used with these medicines.

- Ergot medicines: dihydroergotamine, ergonovine, ergotamine, and methylergonovine such as CAFERGOT ${ }^{\circledR}$, MIGRANAL ${ }^{\circledR}$, D.H.E. 45^{\circledR}, ergotrate maleate, METHERGINE ${ }^{\circledR}$, and others (used for migraine headaches).
- ORAP ${ }^{\circledR}$ (pimozide, used for Tourette's disorder).
- PROPULSID ${ }^{\circledR}$ (cisapride, used for certain stomach problems).
- Triazolam, also known as HALCION ${ }^{\circledR}$ (used for insomnia).
- Midazolam, also known as VERSED ${ }^{\circledR}$ (used for sedation), when taken by mouth.

Do not take the following medicines with REYATAZ because of possible serious side effects:

- CAMPTOSAR ${ }^{\circledR}$ (irinotecan, used for cancer).
- CRIXIVAN ${ }^{\circledR}$ (indinavir, used for HIV infection). Both REYATAZ and CRIXIVAN sometimes cause increased levels of bilirubin in the blood.
- Cholesterol-lowering medicines MEVACOR ${ }^{\circledR}$ (lovastatin) or ZOCOR ${ }^{\circledR}$ (simvastatin).
Do not take the following medicines with REYATAZ because they may lower the amount of REYATAZ in your blood. This may lead to an increased HIV viral load. Resistance to REYATAZ or cross-resistance to other HIV medicines may develop:
- Rifampin (also known as RIMACTANE ${ }^{\circledR}$, RIFADIN ${ }^{\circledR}$, RIFATER ${ }^{\circledR}$, or RIFAMATE ${ }^{\circledR}$, used for tuberculosis).
- St. John's wort (Hypericum perforatum), an herbal product sold as a dietary supplement, or products containing St. John's wort.
- VIRAMUNE ${ }^{®}$ (nevirapine, used for HIV infection).

Do not take the following medicine if you are taking REYATAZ and NORVIR ${ }^{\circledR}$ together:

- VFEND ${ }^{\circledR}$ (voriconazole).

The following medicines may require your healthcare provider to monitor your therapy more closely:

- CIALIS $^{\circledR}$ (tadalafil), LEVITRA ${ }^{\circledR}$ (vardenafil), or VIAGRA ${ }^{\circledR}$ (sildenafil). REYATAZ may increase the chances of serious side effects that can happen with CIALIS, LEVITRA, or VIAGRA. Do not use CIALIS, LEVITRA, or VIAGRA while you are taking REYATAZ unless your healthcare provider tells you it is okay.
- LIPITOR ${ }^{\circledR}$ (atorvastatin) or CRESTOR ${ }^{\circledR}$ (rosuvastatin). There is an increased chance of serious side effects if you take REYATAZ with this cholesterollowering medicine.
- Medicines for abnormal heart rhythm: CORDARONE ${ }^{\circledR}$ (amiodarone), lidocaine, quinidine (also known as CARDIOQUIN ${ }^{\circledR}$, QUINIDEX ${ }^{\circledR}$, and others).
- \quad VASCOR ${ }^{\circledR}$ (bepridil, used for chest pain).
- COUMADIN ${ }^{\circledR}$ (warfarin).
- Tricyclic antidepressants such as ELAVIL ${ }^{\circledR}$ (amitriptyline), NORPRAMIN ${ }^{\circledR}$ (desipramine), SINEQUAN ${ }^{\circledR}$ (doxepin), SURMONTIL ${ }^{\circledR}$ (trimipramine), TOFRANIL ${ }^{\circledR}$ (imipramine), or VIVACTIL ${ }^{\circledR}$ (protriptyline).
- Medicines to prevent organ transplant rejection: SANDIMMUNE ${ }^{\circledR}$ or NEORAL ${ }^{\circledR}$ (cyclosporin), RAPAMUNE ${ }^{\circledR}$ (sirolimus), or PROGRAF ${ }^{\circledR}$ (tacrolimus).
- The antidepressant trazodone (DESYREL ${ }^{\circledR}$ and others).
- Fluticasone propionate (ADVAIR ${ }^{\circledR}$, FLONASE $^{\circledR}$, FLOVENT $^{\circledR}$), given by nose or inhaled to treat allergic symptoms or asthma. Your doctor may choose not to keep you on fluticasone, especially if you are also taking NORVIR ${ }^{\circledR}$.
The following medicines may require a change in the dose or dose schedule of either REYATAZ (atazanavir sulfate) or the other medicine:
- INVIRASE ${ }^{\circledR}$ (saquinavir).
- NORVIR ${ }^{\circledR}$ (ritonavir).
- \quad SUSTIVA ${ }^{\circledR}$ (efavirenz).
- Antacids or buffered medicines.
- VIDEX ${ }^{\circledR}$ (didanosine).
- VIREAD ${ }^{\circledR}$ (tenofovir disoproxil fumarate).
- MYCOBUTIN ${ }^{\circledR}$ (rifabutin).
- Calcium channel blockers such as CARDIZEM ${ }^{\circledR}$ or TIAZAC $^{\circledR}$ (diltiazem), COVERA-HS ${ }^{\circledR}$ or ISOPTIN SR ${ }^{\circledR}$ (verapamil) and others.
- BIAXIN ${ }^{\circledR}$ (clarithromycin).
- Medicines for indigestion, heartburn, or ulcers such as AXID ${ }^{\circledR}$ (nizatidine), PEPCID AC ${ }^{\circledR}$ (famotidine), TAGAMET ${ }^{\circledR}$ (cimetidine), or ZANTAC ${ }^{\circledR}$ (ranitidine).
Talk to your healthcare provider about choosing an effective method of contraception. REYATAZ may affect the safety and effectiveness of hormonal contraceptives such as birth control pills or the contraceptive patch. Hormonal contraceptives do not prevent the spread of HIV to others.

Remember:

1. Know all the medicines you take.
2. Tell your healthcare provider about all the medicines you take.

3. Do not start a new medicine without talking to your healthcare provider.

How should I store REYATAZ?

- Store REYATAZ Capsules at room temperature, 59° to $86^{\circ} \mathrm{F}\left(15^{\circ}\right.$ to $\left.30^{\circ} \mathrm{C}\right)$. Do not store this medicine in a damp place such as a bathroom medicine cabinet or near the kitchen sink.
- Keep your medicine in a tightly closed container.
- Keep all medicines out of the reach of children and pets at all times. Do not keep medicine that is out of date or that you no longer need. Dispose of unused medicines through community take-back disposal programs when available or place REYATAZ in an unrecognizable, closed container in the household trash.

General information about REYATAZ

This medicine was prescribed for your particular condition. Do not use REYATAZ for another condition. Do not give REYATAZ to other people, even if they have the same symptoms you have. It may harm them. Keep REYATAZ and all medicines out of the reach of children and pets.
This summary does not include everything there is to know about REYATAZ. Medicines are sometimes prescribed for conditions that are not mentioned in patient information leaflets. Remember no written summary can replace careful discussion with your healthcare provider. If you would like more information, talk with your healthcare provider or you can call 1-800-321-1335.

What are the ingredients in REYATAZ?

Active Ingredient: atazanavir sulfate

Inactive Ingredients: Crospovidone, lactose monohydrate (milk sugar), magnesium stearate, gelatin, FD\&C Blue \#2, and titanium dioxide.
VIDEX ${ }^{\circledR}$ and REYATAZ ${ }^{\circledR}$ are registered trademarks of Bristol-Myers Squibb Company. COUMADIN ${ }^{\circledR}$ and SUSTIVA ${ }^{\circledR}$ are registered trademarks of Bristol-Myers Squibb Pharma Company. DESYREL ${ }^{\circledR}$ is a registered trademark of Mead Johnson and Company. Other brands listed are the trademarks of their respective owners and are not trademarks of Bristol-Myers Squibb Company.
US Patent Nos: 5,849,911 and 6,087,383

Bristol-Myers Squibb
Princeton, NJ 08543 USA

> F1-B0001-10-08

Rev September 2008

[^0]: * Sections or subsections omitted from the full prescribing information are not listed

[^1]: ${ }^{\text {a }}$ Based on the regimen containing REYATAZ.

[^2]: ${ }^{\text {a }}$ Fold change susceptibility in cell culture relative to the wild-type reference.
 ${ }^{\mathrm{b}}$ Results should be interpreted with caution because the subgroups were small.

[^3]: ${ }^{\text {a }}$ Patients achieved and maintained confirmed HIV RNA <400 copies $/ \mathrm{mL}$ (<50 copies $/ \mathrm{mL}$) through Week 48. Roche Amplicor ${ }^{\text {® }}$ HIV-1 Monitor ${ }^{\text {TM }}$ Assay, test version 1.0 or 1.5 as geographically appropriate.
 ${ }^{\text {b }}$ Includes viral rebound and failure to achieve confirmed HIV RNA <400 copies $/ \mathrm{mL}$ through Week 48.
 ${ }^{\text {c Includes lost to follow-up, patient's withdrawal, noncompliance, protocol violation, and }}$ other reasons.

[^4]: a Time-averaged difference through Week 48 for HIV RNA; Week 48 difference in HIV RNA percentages and CD4+ mean changes, REYATAZ/ritonavir vs lopinavir/ritonavir; CI = 97.5\% confidence interval for change in HIV RNA; 95\% confidence interval otherwise.
 ${ }^{\mathrm{b}}$ Roche Amplicor ${ }^{\circledR} \mathrm{HIV}-1$ Monitor ${ }^{\text {TM }}$ Assay, test version 1.5.
 ${ }^{\text {c }}$ Protocol-defined primary efficacy outcome measure.
 ${ }^{\text {d }}$ Based on patients with baseline and Week 48 CD4+ cell count measurements (REYATAZ/ritonavir, n=85; lopinavir/ritonavir, n=93).
 ${ }^{\text {e }}$ Patients achieved and maintained confirmed HIV-1 RNA <400 copies/mL (<50 copies/mL) through Week 48.

