This item has been officially peer reviewed. Print this Encyclopedia Page Print This Section in a New Window This item is currently being edited or your authorship application is still pending. View published version of content View references for this item

Slope Winds

Slope winds are local diurnal winds present on all sloping surfaces. They flow upslope during the day as the result of surface heating, and downslope at night because of surface cooling. Slope winds are produced by the local pressure gradient caused by the difference in temperature between air near the slope and air at the same elevation away from the slope.

During the daytime the warm air sheath next to the slope serves as a natural chimney and provides a path of least resistance for the upward flow of warm air. Ravines or draws facing the sun are particularly effective chimneys because of the large area of heated surface and steeper slopes; winds are frequently stronger here than on intervening spur ridges or uniform slopes. Upslope winds are quite shallow, but their depth increases from the lower portion of the slope to the upper portion. Turbulence and depth of the unstable layer increase to the crest of the slope, which is the main exit for the warm air. Here, momentum of the upflowing air, convergence of upslope winds from opposite slopes, and mechanical turbulence combine to make the ridge a very turbulent region where much of the warm air escapes aloft. The crests of higher ridges are also likely to experience the influence of the general wind flow, if that flow is moderate or strong.

An exception to the normal upcanyon, upslope, daytime flow occurs frequently enough on the east slopes of the Pacific Coast Ranges to warrant further discussion; see Downslope Afternoon Winds.

At night the cool air near the surface flows downslope much like water, following the natural drainage ways in the topography. The transition from upslope to downslope wind begins soon after the first slopes go into afternoon shadow and cooling of the surface begins. In individual draws and on slopes going into shadow, the transition period consists of (1) dying of the upslope wind, (2) a period of relative calm, and then (3) gentle laminar flow downslope. Downslope winds are very shallow and of a slower speed than upslope winds. The cooled denser air is stable and the downslope flow, therefore, tends to be laminar.

Downslope winds may be dammed temporarily where there are obstructions to free flow, such as crooked canyons and dense brush or timber. Cool air from slopes accumulates in low spots and overflows them when they are full. The principal force here is gravity. With weak to moderate temperature contrasts, the airflow tends to follow the steepest downward routes through the topography. Strong air temperature contrasts result in relatively higher air speeds. With sufficient momentum, the air tends to flow in a straight path over minor topographic obstructions rather than to separate and flow around them on its downward course.

Cool, dense air accumulates in the bottom of canyons and valleys, creating an inversion which increases in depth and strength during the night hours. Downslope winds from above the inversion continue downward until they reach air of their own density. There they fan out horizontally over the canyon or valley. This may be either near the top of the inversion or some distance below the top.

Theoretically, both upslope and downslope winds may result in a cross-valley circulation. Air cooled along the slopes at night flows downward and may be replaced by air from over the valley bottom. Air flowing upslope in the daytime may be replaced by settling cooler air over the center of the valley. The circulation system may be completed if the upward flowing air, on reaching the upper slopes, has cooled enough adiabatically to flow out over the valley and replace air that has settled. During strong daytime heating, however, cross-valley circulation may be absent. Upflowing air is continually warmed along the slopes. Adiabatic cooling may not be sufficient to offset the warming, and the warmer air is forced aloft above the ridgetops by denser surface air brought in by the upvalley winds.


Subsections found in Slope Winds

Encyclopedia ID: p410



Home » So. Fire Science » Fire Behavior » Fire Weather » Convective Winds » Slope and Valley Winds » Slope Winds


 
Skip to content. Skip to navigation
Text Size: Large | Normal | Small