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Simultaneous Homographic and Comparametric
Alignment of Multiple Exposure-Adjusted Pictures

of the Same Scene
Frank M. Candocia, Member, IEEE

Abstract—An approach is presented that can simultaneously
align multiple exposure-adjusted pictures of the same scene
both in their spatial coordinates as well as in their pixel values.
The approach is featureless and produces an image mosaic at a
common spatial and exposure reference and also addresses the
misalignment problem common to methods that compose mosaics
from only pair-wise registered image pairs. The objective function
considered minimizes the sum of the collective variance over pixels
of a global coordinate grid on which to create the final image.
The models employed relate images spatially by homographic
transformations and tonally by comparametric functions. The
importance of performing joint spatial and tonal registration
on exposure-adjusted images is emphasized by providing two
examples in which spatial-only registration fails. A discussion
describing the performance between pair-wise and simultaneous
registration under both spatial-only and joint registration proce-
dures is provided.

Index Terms—Comparametric equation, domain and range reg-
istration, dynamic range map, exposure adjustment, homography,
perspective projection, simultaneous alignment.

I. INTRODUCTION

I MAGE registration is increasingly being applied in a variety
of diverse fields. Its been applied to the creation of virtual

environments [1], [2] to be used in applications as tele-shop-
ping, tele-realty and tele-travel. It has found use in the creation
of large terrestrial mosaics from images gathered from aircraft
and satellites [3]. In medical applications it has served for the
purposes of planning and evaluation of surgical and radiothera-
peutical procedures [4]. It has also been used in such problems
as image resolution increase [5], depth extraction [6], video in-
dexing [7] and video compression [8] to name a few.

An important factor to obtaining accurately registered images
is the use of models that well describe the transformation be-
tween images. There have been various models used to describe
the relations amongst the spatial coordinates, i.e., domain, of a
set of images as well as amongst the pixel values, i.e., range, of
the image functions considered [9]. Spatial coordinate transfor-
mations have typically accounted for a variety of linear map-
pings such as translational, rotational, affine or homographic
mappings [10]–[12]. They have also been more complex and
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involved optical flow calculations [13] and the modeling of lens
distortion [14]. These domain transformations are typically de-
termined using either direct [15] or feature-based [16] methods.
The registration of images tonally has seen work that models a
camera’s response function so that multiple images of a static
scene, captured at different exposure settings, can been used to
create high dynamic range maps whose resolution is greater than
the typical 8 bits/pixel/channel [17]–[21]. Knowledge of this
exposure difference has also been used to create range images
where all objects in the scene are properly exposed [17], [22],
[23]. The registration of images in both domain and range has
resulted in work in which spatially varying optical filters have
been attached to a camera so that, as the camera moves about
a scene, points in the scene can be multiply imaged at different
exposure settings [24], [25]. In this way, a mosaic of a scene
can be created that also exhibits increased dynamic range. This
joint registration has also been performed on images captured
using modern automated exposure-adjusting cameras – without
the special lens attachments [26]–[29]. These works utilize para-
metric models that can account for the nonuniform biasing of
pixels that an image undergoes when a camera’s exposure set-
tings are automatically adjusted in response to the amount of
light sensed. The exposure difference models utilized have been
described in terms of comparametric functions [20] as well as
by opto-electronic conversion functions (OECFs) [28], [29].

Along with the use of appropriate domain and range image
models, another important factor to obtaining accurately reg-
istered images is that the procedure should have the ability to
correct for (typically imperceptible) registration errors that exist
among the adjacent images of a registered sequence; these are
corrected by employing registration strategies that simultane-
ously account for all images in the sequence [10], [14]. These
errors, when not accounted for, are most evident on mosaics cre-
ated from sequences that loop back on themselves and can se-
verely hinder applications involving, for example, superresolu-
tion [30].

In this paper, a framework is presented for optimally and si-
multaneously registering images while accounting for exposure
differences. The need of such a framework is important for sev-
eral reasons: (1) up to now, the issue of joint domain and range
registration has only been approached utilizing pair-wise image
registration [24]–[29], [31] – thus errors in the global mosaic
have either not been correctable or have been corrected in a
nonoptimal fashion, (2) it answers the question of how to gen-
eralize parametric range models to the case of multiple overlap-
ping images [31], (3) it allows for the registration of sequences
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with severe exposure differences – this will be illustrated with
two examples where it is shown that domain-only registration is
not sufficient for the accurate registration of the sequences con-
sidered.

The procedure performs registration jointly in domain and
range. It does so directly and globally. The direct approach uti-
lizes the pixel values (in contrast to features) in the optimality
criteria. The global approach is used as all pixels in an image are
typically exposed by the same amount; consequently, the appro-
priate manner in which to determine the exposure-difference be-
tween images is to utilize all pixels common to the images’ over-
lapping regions. Two domain models are utilized. The first con-
sists of a translation and rotation model that is used in the initial
stages of the registration. The second and actual model relating
the domain transformations between images presented is the
homographic (perspective) model. The range model employed
makes use of one of Mann’s comparametric functions. Its inclu-
sion in the modeling is attractive as comparametric functions are
theoretically well-founded, can be used to easily relate local ex-
posure differences to a global coordinate reference and one only
needs to estimate one parameter per image pair to quantify ex-
posure differences between images in the sequence.

In the remainder of this paper, the registration approach is
fully discussed. This begins in Section II by presenting the spa-
tial coordinate and exposure-related transformations that are uti-
lized in the paper. Section III details the optimization process
and discusses the rationale behind it. Section IV provides a
step-by-step description of the registration process as well as
insights into algorithm specifics. This is then followed in Sec-
tion V with experimental results on two image sequences and
the paper concludes with a brief summary and conclusions in
Section VI.

II. DOMAIN AND RANGE MODELS

The registration approach of this paper relates the domain of
an image function to those of other images by a homographic
mapping. This model is known to describe the relation between
perspective views captured by a pinhole camera that is allowed
to pan, tilt, rotate and/or zoom about its optical center [12].
Equivalently, this model holds in relating images of planar sur-
faces under arbitrary camera motion. The homographic map-
ping has eight free parameters and is given by

(1)

where is a 2 2 scaling and rotation
matrix, is a 2 1 translation vector and

is a 2 1 “perspective” vector. The spatial coordinates
are denoted by and the superscript denotes vector
transposition. Note that another domain mapping that will be
used for initialization purposes considers pure rotation as well
as translation. This is given by

(2)

and has only three parameters that need estimating:, and
.

The registering of images in range as well as in domain can
be important to accurate featureless registration methods; this is
particularly true when capturing images with an automatic ex-
posure-adjusting camera. This point will be emphasized through
examples later in the paper. The range model used in this work
corresponds to the “preferred” model of Mann [20]. The com-
parametric relation between the pixel values of two images
and , i.e., of two images of the same subject matter but that
differ in exposure, for the “preferred” model1 is

(3)

where is a scalar that quantifies the exposure difference be-
tween images and , and are fixed camera parameters and
the explicit dependence of and on has been omitted for
notational conciseness. For estimating the fixed camera param-
eters, the interested reader can refer to [20]. The “preferred”
model is used herein because the author has conducted pre-
vious tests and determined this an acceptably good model for
the camera that is used. Note that, given the above models, any
image whose spatial coordinates and pixel values are trans-
formed would yield a new image .

III. OPTIMIZATION PROCESS

A. Statistical Interpretation of the Image Set

The image sets in this paper consist of images of an arbi-
trary static scene under constant illumination conditions. That
is, all objects in the scene are not moving and the light source (or
sources if more than one) is not changing with time. Now, under
the ideal and noiseless pinhole camera model, any 3-D point im-
aged under the constrained camera motion previously described
would appear as having the same pixel value in any of the im-
ages captured in which it was contained. However, due to the
presence of camera noise (electronically induced noise, spatial
sampling, point spread function effects, lens distortion, quanti-
zation effects, etc.), there is uncertainty as to the true value of
this pixel. As such, the scene being analyzed can be considered
a stochastic process for which our sequence of cap-
tured images constitutes a set of sample
functions drawn from this process but which are related by a
homographic mapping in domain and by a comparametric map-
ping in range.

Since both the domain and range models are parameterized,
we will explicitly denote this by referring to the homographic
mapping of (1), which is applied to image, as
where is the vector
containing all the parameters upon which this domain mapping
depends. Similarly, the range mapping of (3), when applied
to image and which is parameterized by, will be denoted

. Note that since parametersand are
specific to a given camera and are thus fixed constants, we are
not explicitly listing them in our notation. For all coordinates

1In Mann’s paper, this equation is expressed asg(f). To facilitate the imple-
mentation of this approach, the functionf has been expressed in terms ofg as
we are mapping global coordinates into each image’s local coordinate frame to
determine which images are influencing the current global point under obser-
vation.
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on a grid, we choose to minimize the variance of pixel values
of any image contributing to the current point under analysis.
The optimization procedure adjusts the parameters so that all
images are registered, i.e., aligned, with respect to a reference
image in both the domain and range of the image function.

Now, the set of images to register is for
. Without loss of generality, let image ,

i.e., , denote the reference image. Upon successful
registration of the set of images, all images are related to the
reference by

(4)

for all and where is the vector of do-
main-mapped spatial coordinates of imageand is the com-
parametric mapping which modifies the pixel values ofac-
cording to the parameter .

B. Objective Function

In performing our registration, we wish to minimize the sum
of the collective variances of pixel values at all spatial coordi-
nates on our chosen grid. The objective function to minimize is
thus

(5)

where and are the statistical expectation and
variance operators, respectively, and notice that is the
random variable (from the stochastic process) describing
the pixel at location . The process is parameterized by vector

because the sample functions, i.e., captured images ,
drawn from this process are known to be related by a domain
and range mapping. Note that
is a vector of length that consists of all domain
mapping parameters and range mapping parametersfor

. Also, the summation of (5) is a double
summation over all sample points ( ) being considered. In
the development that follows, it will be assumed without loss
of generality, that image is the reference image. Making use
of unbiased estimators for the mean and variance [32], we can
approximate these two statistics with

(6)

and

(7)

where represents the number of images contributing a
pixel value to sample point in question. Please note that for any
point , only those images contributing a value at this point are
considered in the summation of (7) and that two or more images
are needed to estimate the variance at this point; if a variance
cannot be computed, then the pointunder consideration does
not contribute to the minimization of the cost in (5). Also, notice
that ((6)–(7)) are in terms of as this is the parameterized
version of the sample functions we have observed for which we
must determine the appropriate domain and range mappings that
properly registers our set of images.

Having established this notation, we can express (5) as

(8)

where

(9)

and recall that the parameters inare “embedded” in the do-
main mapping and range mapping .

The use of the variance as our objective optimality measure
seems a natural one. First, since we know the images in our set
are spatially related by the homographic transformation of (1)
and tonally by the comparametric relation of (3) to a good accu-
racy, the only remaining source of error between the final set of
registered images comes from camera-related noise. This type
of noise is most commonly modeled as being independent and
having zero-mean Gaussian statistics. With this in mind, there
are only second-order statistic effects to account for. Further,
notice that the variance measure in (5) being used overim-
ages defaults to the commonly used sum of squared errors when

; this is known to yield the maximum likelihood (ML)
solution. Thus, our optimality measure is akin to the ML pa-
rameter solution when multiple observations are available for
each random variable (due to overlapping images) and indeed,
defaults to the ML solution when . That is, given two im-
ages where one is the reference, the objective function becomes

(10)

hence the minimization of the variance as the natural measure
for parameter optimality. It is now noted that one of the error
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measures that will be utilized later on is the average standard
deviation. This is defined as

(11)

where denotes the total number of pointsthat contributed
to the sum.

C. Iterative Solution

Since the cost function is nonlinearly related to the parame-
ters in vector , we require a nonlinear least squares approach to
finding the parameters that minimize the objective function of
(8). Here, we employ the Levenberg-Marquardt (LM) algorithm
for performing our optimization [33]. A direct application of the
LM procedure to the objective function in (8) yields a Hessian
matrix given by

(12)

and an error-weighted gradient vectorwhich is

(13)

where is as in (9) and its gradient is

(14)

where the and have been omitted for notational conciseness
and, as previously mentioned, there are sets of domain
and range parameters , , to estimate
given images because the chosen reference image stays fixed.
Thus to evaluate (14) we must compute and for

. We see that

(15)
and

(16)

where is seen to be a 1 2 row vector and is a
2 8 matrix given the domain mapping of (1). We can further
see, using (4), that

(17)

where

(18)

is a scalar and resulted from differentiating (3) and
is a 1 2 vector that con-

tains the first derivative in the and , i.e., row and column,
directions of captured image which is to be evaluated at
image sample . This first derivative of image
is not truly known and must be approximated by, for example,

a finite difference operation on pixel values near the sample
point . The derivative operator employed yields an unbiased
estimate and is given in [34].

For the homographic mapping, the second term in (16) results
in

(19)

if . If , is a matrix of zeroes of size 28.
Note that and the definition of
in Section III-A was utilized in conjunction with the domain
mapping of (1). Note that the mapping of (2), which is used for
initialization purposes, would yield the 23 matrix

(20)
The other gradient term that needed to be calculated was

(21)
where

(22)

if . If , is a scalar with a value of zero. Equation
(22) was arrived at by using the relations in (3) and (4).

IV. REGISTRATION STEPS

Because this is a nonlinear parameter optimization problem,
the error surface defined bycontains many local minima. No-
tice that, though there is no guarantee that the truly registered
image set corresponds to the global minima ofdue to our fi-
nite set of noisy images, it is reasonable to expect that the reg-
istered set will have an error measurecomparable to that of
the global minima we seek. Therefore, as long as we begin our
iterative scheme with an initial parameter setnear the solu-
tion, we are likely to converge to an acceptable, if not optimal,
solution.

To arrive at a solution, several steps are performed.

1) Perform a pyramidal decomposition on each. An image
pyramid can be created by simply averaging nonover-
lapping 2 2 pixel blocks of the previous image level
so that the resulting image is half the size of its prede-
cessor in both its rows and columns [35]. The registra-
tion would proceed from the coarsest to the finest level
of the pyramid and the transformations obtained at each
pyramid level are used to initialize registration at the next
finer level. This scheme is employed on the images of this
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paper. The use of pyramids for registration has been pre-
viously well-justified [36].

2) Low pass filter each image . The amount of filtering is
a bit arbitrary but the purpose of this step is to mitigate
the effects of noise as well as subdue image detail that is
not relevant to the global registration sought. In general, a
smoother signal will likely result in fewer local minima in
the error surface that the algorithm can get trapped in. The
most crucial stage of registration is at the coarsest level.
In our scheme, the coarsest image is filtered more than at
finer levels and the low pass filtering employed consisted
of separable moving average (MA) filters [37].

3) Pair-wise register the set of images. Because it is easier to
register two images than more than two, i.e., we require
less computation and there are likely less local minima
in , we first perform pair-wise registration among the
adjacent captured images.

a) Estimate the simultaneous translation, rotation and
comparametric parameterbetween images. At all
levels except for the finest, we perform registration
using the range model of (3) but, in domain, use the
more restricted model of (2). At the coarsest level,
all parameters are set to the identity transformation,
i.e., the range parameter and the domain
model sets and . This estimate is
refined as we process finer levels.

b) Estimate the homographic mapping between
images. At the finest level, we utilize the full
domain and range models, namely, (1) and (3),
respectively. The parameter estimates obtained
from part a. serve to initialize the iterations of
this last step. Note that, initially and

where and
come from part a.

4) Choose a reference image and perform the simultaneous
registration of the set of images using the pair-wise es-
timates obtained from part 3. Because the homographic
and comparametric mapping constitutes a group struc-
ture, i.e., the functional composition of two homographic
mappings results in a homographic mapping in domain
and a range mapping in range, it is easy to convert the
pair-wise mappings between adjacent images into how
each image globally maps to the reference image [26].
This set of global mappings then constitutes the initial
parameter vector for which to begin performing the
optimization for simultaneously registering our image
set. The global registration also proceeds in a pyramidal
fashion. The initial vector begins the process at the
coarsest level and is subsequently refined as we process
finer levels.

Please note that these steps are not a recipe but only serve
as a guide to achieving good simultaneous image registration
performance. Alternate methods for creating image pyramids
[35], [38] as well as filters to use [37] are available and when
used, would supplant steps 1 and 2 above. However, the simple
pyramid described above seems to work well in practice. The
number of pyramid levels to utilize and the amount of filtering

to perform is a bit subjective and typically requires tweaking as
one must balance registration performance with speed of exe-
cution. Also, bilinear interpolation was used throughout the en-
tire registration process when determining registration errors as
it has experimentally been seen to be simple and effective. We
have also used bicubic interpolation and not noticed any appre-
ciable differences in performance.

V. EXPERIMENTAL RESULTS

Two image sequences are presented that illustrate the algo-
rithm’s performance and also provide examples of the benefits
of simultaneous domain and range, i.e., joint, registration over
domain-only registration when registering images that differ in
exposure. All images were captured with a Sony DCRTRV30
camcorder and each image was resized to 240320 pixels for
the experiments in this paper. In both sequences, the camcorder
roughly panned across a scene (from left to right) and then back
again at a lower elevation. The camcorder was handheld and
approximately moved about its optical center (though no great
care was taken to achieve this) so that we could justify using the
domain model of (1). Also, the camera used has been compara-
metrically modeled with the “preferred” model of (3) such that
the fixed camera parameters used were , and

for one exposure increment of the camera. Please note
that the domain-only algorithm is identical to the joint algorithm
except for the presence of the extra range parameter used in the
joint registration.

The first set of images is illustrated in Fig. 1 and constitutes
the “Parking Lot” sequence. In capturing these images, the ex-
posure of the camera was manually reduced by one increment
for each successive captured image. This results in a sequence of
successively darker images for which the range parameteris
known. Using the pyramidal approach described in the previous
section, we pair-wise registered the images in the sequence first
by using only the domain model and then by using the joint
model. We utilized four pyramid levels and two-tap MA filters
at all levels except the coarsest for which a four-tap MA filter
was used. The registration time, error and the correlation co-
efficient between pairs of registered images appear in Table I
under the respective “Pair-wise” sections of the table. Note that
image pair 1 consists of images (a) and (b), image pair 2 con-
sists of images (b) and (c), and so on. Also note that we are using
the correlation coefficient [32] obtained from the images after
performing pair-wise registration as a measure of registration
accuracy. Given our assumption of images corrupted by addi-
tive Gaussian noise, this is an appropriate measure to utilize.
We can see from the table that pair-wise domain-only registra-
tion performed as well as pair-wise joint registration as all
values in both pair-wise cases are very similar and close to 1.2

Notice that the average standard deviationbetween pair-wise
registered image pixels is not as good an indicator to registra-
tion performance as is. In the domain-only case, we see that

was always greater than in the joint registration – sometimes
more than twice greater. In general, the pair-wise registration

2We have noticed experimentally that values of� > 0:95 indicate a well-
registered image – even though model mismatch and image noise typically result
in small, visually imperceptible, registration errors.
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Fig. 1. “Parking Lot” image sequence. The images are 240� 320 pixels in size.

TABLE I
REGISTRATION PERFORMANCE FOR“PARKING LOT” SEQUENCE

time for the domain-only case was about 20 s in contrast to an
average of about 37 s for the joint pair-wise registration. We can
also notice that the range parameterwas reasonably estimated
during the joint pair-wise estimation, thus validating the use of
our comparametric model. Any deviation from ideal values, i.e.,

and , are due to the noisy images as well as
mismatches in the comparametric model (model used and/or es-
timated intrinsic parameters) and domain model (particularly
with the camera being hand-held). Please note that the algo-
rithms were written and run using the Matlab 6.0 R12 package
in the Windows 2000 environment on a Dell 330 Precision PC
with a 1.5 GHz Pentium IV processor. Loop-intensive sections
of the code were manually written in C and compiled as MEX
files to help speed up the calculations.

Though the correlation coefficients from the pair-wise
registration indicate good performance, the compounding
effect of small registration errors (visually imperceptible from
the pair-wise registration) is clearly present upon examining
the “ghosting” effect on the second car from the left in both
images of Fig. 2. To correct for this misalignment, we use these
pair-wise estimates to initialize the simultaneous registration
procedure. We used two pyramid levels to perform the simul-
taneous registration with three-tap MA filters at each level.
The result of simultaneous joint registration is illustrated in

the bottom image of Fig. 3. Notice in Table I that the obtained
pair-wise transformations between images after the simulta-
neous registration still maintain high values of, although
they have slightly decreased (similarly thehas increased).
Examining for image pair 1 after the simultaneous joint
registration we see a decrease from 0.977 to 0.921. This is at-
tributed to comparametric model inaccuracies at high exposure
differences. That is, during simultaneous joint registration, the
significant exposure differences in the images of Fig. 1(a) and
(g) result in an increase in range parameter error to compensate
for this model mismatch. This compensation most affects those
image pairs adjacent to images (1a) and (1g). Even with this
comparametric model mismatch, we can see in Fig. 3 (bottom
image) that the simultaneous joint registration has successfully
corrected for the errors in the pair-wise transformations by
removing the “ghosting” artifacts present in the pair-wise
case. The simultaneous joint registration resulted in a global
average pixel standard deviation of and took 132 s
to complete.

In contrast, attempting to correct for pair-wise errors using
domain-only registration for the “Parking Lot” sequence is diffi-
cult at best. Because images (1a) and (1g) of Fig. 1 are so tonally
different, the domain-only algorithm erroneously compensates
for this pixel error by modifying the domain transformations of
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Fig. 2. Comparison between pair-wise domain-only and pair-wise joint
registration of the “Parking Lot” sequence. The reference image (in both
domain and range) is that of Fig. 1(b). Notice the “ghosting” effect on
the second car from the left resulting from the compounding of pair-wise
registration errors in the domain-only case (top image) and the joint case
(bottom image).

other images. This results in significant transformation errors
specifically in images adjacent to (1a) and (1g) from Fig. 1. This
is illustrated in the top image of Fig. 3 where severe “ghosting”
is most noted in the car at the left as well as the light above it.
Note that only images (1a)-(1f) in Fig. 1 are used in forming the
top image as (1g) was badly distorted relative to these others.
Lastly, a comparison of the tonal “quality” of the final joint and
domain-only mosaics of the “Parking Lot” sequence in Figs. 2
and 3 shows that all objects in the joint mosaics are easily vis-
ible relative to when the domain-only mosaic is viewed. This
is most evident when comparing objects on the left half of the
domain-only mosaics that appear too dark to be clearly identi-
fied. Joint registration does not typically suffer from this as any
object that has been multiply exposed can be readily viewed by
specifying an appropriate exposure reference for the final mo-
saic.

The second set of images constitutes the “Office” sequence
and is illustrated in Fig. 4. The camcorder is now operating in
automated exposure-adjusting mode. This particular scene was
chosen because the lighting in the interior of the office was
much poorer relative to the lighting outside of the window. This
creates a sequence of images for which the camera automati-
cally increases the exposure setting to compensate for the poor

Fig. 3. Comparison between simultaneous domain-only and simultaneous
joint registration. Both mosaics use Fig. 1(b) as the reference image. Using
simultaneous domain-only registration to correct for pair-wise registration
errors does not work because images Fig. 1(a) and (g) are so tonally different
that the algorithm erroneously compensates for this by modifying the
transformations of other images (top image). Only images (1a)-(1f) are shown
here as (1g) was disproportionately distorted relative to the other images during
the simultaneous registration. The simultaneous joint registration does not
suffer from this effect and produces the correct registration (bottom image).

lighting inside the office relative to when the camera is focused
on the trees outside the window. As a result, it is difficult to iden-
tify objects inside the office in image (4e) of Fig. 4 but one can
easily see the trees outside the window, whereas in image (4a),
objects in the interior of the office are easily identifiable but the
trees outside the window have been “washed out” due to the rel-
ative increased exposure setting at which it was captured. Again,
pair-wise domain-only and joint registration is performed using
the pyramidal approach of the previous section. Four pyramid
levels and the same filters as with the “Parking Lot” sequence
were utilized. The resulting registration performance is listed in
Table II. As before, examining the correlation coefficients be-
tween pair-wise registered images indicates good registration
accuracy in the case of joint registration as the smallest such
value is . The average global standard deviation error
after joint registration was and the registration took
160 s to complete.

The domain-only registration yields some highvalues com-
parable to those of the joint registration and some poor ones
too with image pairs 3, 6 and 7 having values less than 0.72.
The pair-wise registration in these cases was visibly way-off. As
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Fig. 4. “Office” image sequence. The images are 240� 320 pixels in size.

TABLE II
REGISTRATION PERFORMANCE FOR“OFFICE” SEQUENCE

such, the creation of a mosaic involving these grossly erroneous
pair-wise transformations results in an image of little use and is
thus not illustrated. It is important to now stress that performing
simultaneous image registration requires good pair-wise regis-
tration accuracy as the transformations found are used to ini-
tialize the simultaneous procedure. Because the domain-only
approach had pair-wise cases that were grossly in error, simul-
taneous registration cannot be performed and thus its exclusion
from Table II in the domain-only case. We therefore, illustrate
results for the joint registration procedure in Fig. 5. The top
image is the mosaic formed from the joint pair-wise transfor-
mations. The reference image (in both domain and range) is
that of Fig. 4(a). Here, again, is a case where small transfor-
mation errors are compounded and lead to misregistration that is
most noticeable around the file cabinet toward the left part of the
image. After simultaneous registration using two pyramid levels
and three-tap MA filters, the mosaic at the bottom of Fig. 5 re-
sults. This image is now visually correct and examination of the
pair-wise correlation coefficients after performing the simulta-
neous registration supports this claim. Even if we had been able
to perform pair-wise domain registration, the small pair-wise er-
rors would not have been fixed with simultaneous domain-only
registration. Fig. 6 illustrates the final mosaic created using the

simultaneous domain-only approach where the initial pair-wise
transformations used to begin the process are the domain por-
tion (those used in obtaining the bottom image of Fig. 5) of the
simultaneous joint registration. Significant “ghosting” can be
seen around the column between the file cabinet and desk illus-
trating again that the simultaneous domain-only procedure er-
roneously adjusts the domain transformations when large tonal
differences between images exist. The reference image was (a)
of Fig. 4.

One can notice some common themes upon examining the
data of Tables I and II. The first is the use of the correlation
coefficient as an indicator of goodness of registration and
correspondingly, the average standard deviation as not as
good an indicator. The second is that joint registration is
typically about twice as slow as domain-only registration using
the approach presented. The third is that after simultaneous
registration, the correlation coefficient values usually drop and
the average standard deviation usually increases. This is not
surprising as the best computed pair-wise transformations do
so based on noisy images and approximate domain and range
transformation models. By using the simultaneous registration,
there is a mechanism by which these errors can be optimally
reduced in the context of the entire sequence. This means
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Fig. 5. Comparison between pair-wise and simultaneous joint registration of
the “Office” sequence. The domain and range reference is the image in Fig. 4(a).
Pair-wise registration results in misalignment noticeable around the file cabinet
(top image) while simultaneous registration results in correct image alignment
(bottom image).

Fig. 6. Demonstration of inappropriateness of simultaneous domain-only
registration on the “Office” sequence. Because domain-only registration was
not capable of supplying reasonably accurate pair-wise transformations to use
in simultaneous registration, the sequence was initialized with the domain
transformations obtained from the simultaneous joint registration (those used
in creating the bottom image of Fig. 5). Even so, the lack of exposure modeling
illustrates that large tonal differences between images severely affects the
simultaneous domain-only registration’s ability to account for such differences
as “ghosting” is visibly clear around the file cabinet and the column adjacent
to it. The reference image is that of Fig. 4(a).

trading-off pair-wise registration accuracy in favor of global
registration accuracy.

VI. SUMMARY AND CONCLUSIONS

An approach to the featureless simultaneous registration of
images has been presented which does so optimally in both the

domain and range of the images considered. The procedure is
particularly useful on automated exposure-adjusted images to
correct for small pair-wise registration errors that, if not cor-
rected, typically result in ghosting artifacts when a mosaic is
created. This is typically evident when working with image se-
quences that loop back on themselves. Examples of two se-
quences exhibiting significant exposure differences were used
to demonstrate that joint registration is necessary in order to
obtain accurate registration results. Since joint registration can
more than double the registration time, it should be used when
the option of domain-only registration is inadequate. This will
usually be the case when an image sequence loops back on it-
self and significant tonal differences between images in the se-
quence exists. A drawback of this method is that simultaneous
registration times significantly rise as the number of images in
the sequence increases. This is due to the large number of pa-
rameters required to be simultaneously estimated, i.e.,
where denotes the number of images in the sequence, and, in
particular, is also due to the computing of the Hessian matrix
after each iteration of the LM procedure.
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