
A Self-Repairing Multiplexer-Based FPGA Inspired by Biological Processes Gianluca Tempesti

Page 38 Ph.D. Thesis Chapter 3

3.2.3 Von NeumannÕs Successors

The extreme size of von NeumannÕs universal constructor has so far pre-
vented any kind of physical implementation (apart from the small demonstration
unit we mentioned). But further, even the simulation of a cellular automaton of
such complexity was far beyond the capability of early computer systems. Today,
such a simulation is starting to be conceivable. Umberto Pesavento, a young Ital-
ian high school student, developed a simulation of von NeumannÕs entire univer-
sal constructor [78]. The computing power available did not allow him to simulate
either the entire self-replication process (the length of the memory tape needed to
describe the automaton would have required too large an array) or the Turing
machine necessary to implement the universal computer, but he was able to dem-
onstrate the full functionality of the constructor. Considering the rapid advances
in computing power of modern computer systems, we can assume that a complete
simulation could be envisaged within a few years.

The impossibility of achieving a physical realization did not however deter
some researchers from trying to continue and improve von NeumannÕs work [11,
54, 71]. Arthur Burks, for example, in addition to editing von NeumannÕs work on
self-replication [17, 104], also made several corrections and advances in the
implementation of the cellular model. Codd [20], by altering the states and the
transition rules, managed to simplify the constructor by a considerable degree.
However, without in any way lessening these contributions, we can say that no
major theoretical advance in the research on self-reproducing automata occurred
until C. Langton, in 1984, opened a second stage in this Þeld of research.

3.3 LangtonÕs Loop

Von NeumannÕs Universal Constructor was so complex because it tried to
implement self-reproduction as a particular case of construction universality, i.e.
the capability of constructing any other automaton, given its description. C.
Langton approached the problem somewhat differently, by attempting to deÞne
the simplest cellular automaton capable exclusively of self-reproduction. 

As a consequence of this approach, his automaton, commonly known as Lang-
tonÕs Loop [53], is orders of magnitude simpler than von NeumannÕs. In fact, it is
loosely based on one of the simplest organs9 in CoddÕs automaton: the periodic
emitter (itself derived from von NeumannÕs periodic pulser), a relatively simple
structure capable of generating a repeating string of a given sequence of pulses.

LangtonÕs loop (Fig. 3-6) is named after the dynamic storage of data inside a
square sheath (red in the Þgure). The data is stored as a sequence of instructions
for directing the constructing arm, coded in the form of a set of three states. The
data turns counterclockwise in permanence within the sheath, creating a loop.

9. An organ in this context can be seen as a self-supporting structure capable of a single sub-task.



Gianluca Tempesti A Self-Repairing Multiplexer-Based FPGA Inspired by Biological Processes

Chapter 3 Ph.D. Thesis Page 39

The two instructions in LangtonÕs loop are extremely simple. One instruction
(uniquely identiÞed by the yellow element in the Þgure) tells the arm to advance
by one position (Fig. 3-7), while the other (green in the Þgure) directs the arm to
turn 90o to the left (Fig. 3-8). Obviously, after three such turns, the arm has
looped back on itself (Fig. 3-9), at which stage a messenger (the pink element)
starts the process of severing the connection between the parent and the off-
spring, thus concluding the replication process. Once the copy is over, the parent
loop proceeds to construct a second copy of itself in a different direction (to the
north in this example), while the offspring itself starts to reproduce (to the east in
this example).

ADVANCE INSTRUCTION

TURN INSTRUCTION

SHEATH ELEMENT

CONSTRUCTING ARM

Figure 3-6: The initial conÞguration of LangtonÕs Loop (iteration 0).

ITER=4

ITER=7ITER=6

ITER=5

Figure 3-7: The constructing arm advances by one space.



A Self-Repairing Multiplexer-Based FPGA Inspired by Biological Processes Gianluca Tempesti

Page 40 Ph.D. Thesis Chapter 3

The sequential nature of the self-reproduction process generates a spiraling
pattern in the propagation of the loop through space (Fig. 3-10): as each loop tries
to reproduce in the four cardinal directions, it Þnds the place already occupied
either by its parent or by the offspring of another loop, in which case it dies (the
data within the loop is destroyed).

LangtonÕs loop uses 8 states for each of the 86 non-quiescent cells making up
its initial conÞguration, a 5-cell neighborhood, and a few hundred transition rules
(the exact number depends on whether default rules are used and whether sym-
metric rules are included in the count). 

Further simpliÞcations to LangtonÕs automaton were introduced by Byl [18],
who eliminated the internal sheath and reduced the number of states per cell, the
number of transition rules, and the number of non-quiescent cells in the initial
conÞguration. Reggia et al. [82] managed to remove also the external sheath,
thus designing the smallest self-replicating loop known to date. Given their mod-
est complexity, at least relative to von NeumannÕs automaton, all of the men-
tioned automata have been thoroughly simulated.

ITER=29

ITER=32ITER=31

ITER=30

ITER=34ITER=33

Figure 3-8: The constructing arm turns 90o to the left.



Gianluca Tempesti A Self-Repairing Multiplexer-Based FPGA Inspired by Biological Processes

Chapter 3 Ph.D. Thesis Page 41

3.4 Self-Replicating Cellular Automata in Embryonics

While the self-replicating automata we introduced in this chapter are indeed
interesting examples of self-replicating machines, they do not address some of the
requirements of the Embryonics project. In this section, we will attempt to deÞne
more precisely these requirements and, after introducing a Þrst attempt to aug-
ment the versatility of LangtonÕs loop through the addition of a Turing machine,
we will present a new self-replicating automaton we developed in order to offset

ITER=122

ITER=125ITER=124

ITER=123

ITER=127ITER=126

ITER=129ITER=128
Figure 3-9: The copy is complete and the connection from parent to offspring is severed.



A Self-Repairing Multiplexer-Based FPGA Inspired by Biological Processes Gianluca Tempesti

Page 42 Ph.D. Thesis Chapter 3

ITER=200 ITER=350

ITER=500

ITER=1360

ITER=650

ITER=800

Figure 3-10: Propagation pattern of LangtonÕs loop.



Gianluca Tempesti A Self-Repairing Multiplexer-Based FPGA Inspired by Biological Processes

Chapter 3 Ph.D. Thesis Page 43

some of the more important deÞciencies. We will begin by describing in some
detail the operation of the new loop in its most basic conÞguration, and then illus-
trate an example of a more elaborate version where a program has been added to
the basic automaton to demonstrate its construction capabilities.

3.4.1 The Requirements of the Embryonics Project

LangtonÕs loop represents the best-known example of a simple self-replicating
machine, and is therefore of great interest for the Embryonics project. However, it
falls short of our requirements in two important aspects:

1. It is designed to operate in an inÞnite space, whereas the surface of
an integrated circuit is necessarily Þnite. This inconvenience, which
might appear relatively minor and easily circumvented, is in fact a
major obstacle: the loopÕs mechanism of self-replication (i.e. the arm)
is inherently incapable of handling contact with the arrayÕs border.

2. It does not have any functionality beyond self-replication: the loop
reproduces and then dies. It is thus more similar to a biological (or
even a software) virus than to an actual cell. Once again, the default
is structural: because of its origins in the periodic emitter, all the
data circulating inside the loop is involved in the generation of the
sequence which directs the self-replication process. As we will see,
while it is possible to add functionality to LangtonÕs loop, the task is
extremely complex and the results not very efÞcient.

Nevertheless, von NeumannÕs constructor and LangtonÕs loop are the models
which most closely approach our requirements. Therefore, we decided to follow
tradition in developing our own approach to self-replication by using cellular
automata as an environment to study the issue.

As we already mentioned, there is no formal approach to the development of
complex cellular automata. The design of such systems poses therefore consider-
able problems, since few of the available tools are suited for the task. In particu-
lar, no efÞcient tools were available to help the user in determining the local
transition rules necessary to obtain a complex global behavior (cellular automata
are mostly used to simulate physical phenomena, where the rules are usually
well known). Our Þrst task was therefore to design a software application which
would allow us to generate the required rules as easily as possible. The resulting
program (described in Appendix A) is, to the best of our knowledge, unique, and
proved an invaluable tool in our research.

Equipped with a reasonably powerful tool, we started developing a new
automaton capable of self-replication. Considering the complexity of von Neu-
mannÕs constructor, we decided to draw inspiration from the much simpler Lang-
tonÕs loop, but, as we will see, we had to develop a completely novel mechanism to
enable us to circumvent its drawbacks.



A Self-Repairing Multiplexer-Based FPGA Inspired by Biological Processes Gianluca Tempesti

Page 44 Ph.D. Thesis Chapter 3

3.4.2 A Self-Replicating Turing Machine: PerrierÕs Loop

As we mentioned, one of the two main problems of LangtonÕs loop is that it is
not well adapted to Þnite CA arrays. Its self-reproduction mechanism assumes
that there is enough space for a copy of the loop, and the entire loop becomes non-
functional otherwise.

At Þrst glance, this might seem a relatively trivial drawback, which could be
overcome by modifying the loop. Such a modiÞcation, however, turns out to be
very difÞcult. In fact, to exist in a Þnite space, and assuming that the automaton
has no a priori knowledge of the location of the boundaries (a safe assumption,
since CA elements have only knowledge of their immediate neighborhood), the
loop needs either to verify that enough space is available before it starts the repli-
cation process, or else some way to destroy the constructing arm if it detects a
boundary during the self-replication process. Either of these mechanisms would
require a major structural modiÞcation to LangtonÕs loop.

Thus, rather than trying to adapt LangtonÕs automaton to a Þnite space, we
decided to develop an entirely new mechanism, designed speciÞcally to exist in a
Þnite, but arbitrarily large, space, and at the same time capable, unlike LangtonÕs
loop, to have a functionality in addition to self-replication.

Adding functionality to LangtonÕs loop, in fact, is not possible without major
alterations. As a matter of fact, in the course of our research, we did develop a rel-
atively complex automaton (Fig. 3-11) in which a two-tape Turing machine was
appended to LangtonÕs loop [77]. This automaton, developed in our laboratory by

LANGTON LOOP

DATA TAPE

INSTRUCTION TAPE

Figure 3-11: A two-tape Turing machine appended to LangtonÕs loop (iteration 0).



Gianluca Tempesti A Self-Repairing Multiplexer-Based FPGA Inspired by Biological Processes

Chapter 3 Ph.D. Thesis Page 45

J.Y. Perrier as a semester-long research project under the supervision of Prof. J.
Zahnd, exploits LangtonÕs loop as a sort of ÒcarrierÓ (Fig. 3-12): the Þrst operation
of PerrierÕs loop is to allow LangtonÕs loop to build a copy of itself (iteration 128:
note that the copy is limited to one dimension, since the second dimension is
taken up by the Turing machine). The main function of the offspring is to deter-
mine the location of the copy of the Turing machine (iteration 134). Once the new
loop is ready, a ÒmessengerÓ runs back to the parent loop and starts to duplicate
the Turing machine (iterations 158 and 194), a process completely disjoint from
the operation of the loop. When the copy is Þnished (iteration 254), the same mes-
senger activates the Turing machine in the parent loop (the machine had to be
inert during the replication process in order to obtain a perfect copy). The process
is then repeated in each offspring until the space is Þlled (iteration 720: as the
automaton exploits LangtonÕs loop for replication, meeting the boundary of the
array causes the last machine to crash).

ITER=128

ITER=194ITER=158

ITER=720ITER=254

ITER=134

Figure 3-12: Self-replication of the Turing machine.



A Self-Repairing Multiplexer-Based FPGA Inspired by Biological Processes Gianluca Tempesti

Page 46 Ph.D. Thesis Chapter 3

The automaton thus becomes a self-replicating Turing machine, a powerful
construct which is unfortunately handicapped by its complexity: in order to
implement a Turing machine, the automaton requires a very considerable num-
ber of additional states (more than 60), as well as an important number of addi-
tional transition rules. This kind of complexity, while still relatively minor
compared to von NeumannÕs universal constructor, is nevertheless too important
to be really considered for a hardware application. So once again, adapting Lang-
tonÕs loop to Þt our requirements proved too complex to be efÞcient, and we were
forced to design a novel automaton to meet our requirements.

3.4.3 A Novel Self-Replicating Loop: Description

In designing our self-replicating automaton [97], we did maintain some of the
more interesting features of LangtonÕs loop. In particular, we preserved the struc-
ture based on a square loop to dynamically store information. Such storage is con-
venient in CA because of the locality of the rules. Also, we maintained the concept
of constructing arm, in the tradition of von Neumann and his successors, even if
we introduced considerable modiÞcations to its structure and operation.

While preserving some of the more interesting features of LangtonÕs loop, we
nevertheless introduced some basic structural alterations:

¥ We use a 9-element neighborhood (the element itself plus its 8
neighbors).

¥ As in BylÕs version of LangtonÕs loop, we use only one sheath, but
contrary to Byl, we retain the internal sheath and eliminate the
external one. This allows us to let the data in the loop circulate with-
out the need for leading or trailing states (the black and white ele-
ments in LangtonÕs loop). In addition to the internal sheath, we have
four gate elements (in the same state as the sheath) outside the loop
at the four corners of the automaton. These elements are initially in
the ÒopenÓ position, and will shift to the ÒclosedÓ position once the
copy is accomplished.

¥ We extend four constructing arms in the four cardinal directions at
the same time, and thus create four copies of the original automaton
in the four directions in parallel. When the arm meets an obstacle
(either the boundary of the array or an existing copy of the loop), it
simply retracts and puts the corresponding gate element in the
closed position. This mechanism allows us to overcome the Þrst
major drawback of LangtonÕs loop in relation to the Embryonics
project (its inability to work properly in a Þnite space).

¥ Rather than being directed to advance, our constructing arm
advances by default. As a consequence, it is necessary only to direct
it to turn at the appropriate moment. This is done by sending peri-
odic ÒmessengersÓ to the tip of the constructing arm.



Gianluca Tempesti A Self-Repairing Multiplexer-Based FPGA Inspired by Biological Processes

Chapter 3 Ph.D. Thesis Page 47

¥ The arm does not immediately construct the entire loop. Rather, it
constructs a sheath of the same size as the original. Once the sheath
is ready, the data circulating in the loop is duplicated and the copy is
sent along the constructing arm to wrap around the new sheath.
When the new loop is completed, the constructing arm retracts and
closes the gate. As we will see, dividing the self-replication process
in two phases is a major asset in the transition to digital hardware.

¥ As a consequence, we use only four of the circulating elements to
generate the messengers. Since the only operation performed on the
remaining data elements is duplication, they do not have to be in
any particular state. In particular, they can be used as a ÒprogramÓ,
i.e., a set of states with their own transition rules which will then be
applied alongside the self-reproduction to execute some function,
allowing us to overcome the second drawback of LangtonÕs loop (its
lack of functionality beyond self-reproduction).

¥ Unlike LangtonÕs loop, our loop does not ÒdieÓ once duplication is
achieved, as the circulating data remains untouched by the self-
reproduction process. This feature is a requirement for implement-
ing functions which work after the copy has Þnished. As a side bene-
Þt, it becomes possible to force the loop to try and duplicate again in
any of the four directions simply by shifting the corresponding gate
back to the open position. This feature could be interesting in view of
self-repair: a dead loop can be reconstructed by its neighbors.

As should be obvious, while our loop owes to von Neumann the concept of con-
structing arm and to Langton (and/or Codd) the basic loop structure, it is in fact a
very different automaton, endowed with some of the properties of both.

We have seen that von NeumannÕs automaton is extremely complex, while
LangtonÕs loop is very simple. The complexity of our automaton is more difÞcult to
estimate, as it depends on the data circulating in the loop. The number of non-
quiescent elements making up the initial conÞguration depends directly on the
size of the circulating program. The more complex (i.e. the longer) the program,
the larger the automaton (it should be noted, however, that the complexity of the
self-reproduction process does not depend on the size of the loop). The number of
states also depends on the complexity of the program. To the 5 ÒbasicÓ states used
for self-reproduction (see description below) must be added the Òdata statesÓ (at
least one) used in the program, which must be disjoint from the basic states. The
number of transition rules is obviously a function of the number of data states: in
the basic conÞguration (i.e., one data state), the automaton needs 692 rules10

(173 rules rotated in the four directions).

The complexity of the basic conÞguration is therefore in the same order as
that of LangtonÕs and BylÕs loops, with the proviso that it is likely to increase
drastically if the data in the loop is used to implement a complex function.

10. By default, all elements remain in the same state.



A Self-Repairing Multiplexer-Based FPGA Inspired by Biological Processes Gianluca Tempesti

Page 48 Ph.D. Thesis Chapter 3

3.4.4 A Novel Self-Replicating Loop: Operation

As for von NeumannÕs and LangtonÕs automata, the ideal space for our
automaton is an inÞnite two-dimensional grid. Since we realize that a practical
implementation of such a space might prove difÞcult, we added some transition
rules to handle the collision between the constructing arm and the border of the
array. On meeting the border, the arm will retract without attempting to make a
copy of the parent loop.

The elements of the array require Þve basic states and at least one data state
(Fig. 3-13). State 0 (black) is the quiescent state: it represents the inactive back-
ground. State 1 (white) is the sheath state, that is the state of the elements mak-
ing up the sheath and the four gates. State 2 (red) is the activation state or control

DATA ELEMENTS

CONTROL ELEMENT

SHEATH ELEMENT

GATE ELEMENT

Figure 3-13: The initial conÞguration of the loop (iteration 0).

ITER=10 ITER=11

Figure 3-14: The constructing arm begins to extend.

ITER=4 ITER=5



Gianluca Tempesti A Self-Repairing Multiplexer-Based FPGA Inspired by Biological Processes

Chapter 3 Ph.D. Thesis Page 49

state. The four elements in the loop directing the reproduction are in state 2, as
are the messengers which will be used to command the constructing arm and the
tip of the constructing arm itself for the Þrst phase of construction, after which
the tip of the arm will pass to state 3 (light blue), the construction state. State 3
will construct the sheath that will host the offspring, signal the parent loop that
the sheath is ready, and lead the duplicated data to the new loop. State 4 (green),
the destruction state, will destroy the constructing arm once the copy is com-
pleted. In addition to these states, two additional data states (light and dark grey)
represent the information stored in the loop. In this example, they are inactive,
while the next section describes a loop where they are used to store an executable
program.

The initial conÞguration is in the form of a square loop wrapped around a
sheath. The size of the loop is variable, and for our example is set to 8x8. In the
loop is a string of elements of which four are in the activation state (red) and are
placed at a distance from each other equal to the side of the loop. Near the four
corners of the loop we have placed four elements in the sheath state. These are
the gate elements, and the position they occupy at iteration 0 means that the
gates are open (that is, that the automaton should attempt to duplicate itself in
all four directions).

Once the iterations begin, the data starts turning counterclockwise around
the loop. Nothing happens until the Þrst control element reaches a corner of the
loop, where it checks the status of the gate. Since the gate is open, the control ele-
ment splits into two identical elements: the Þrst continues turning around the
loop, while the second starts extending the arm (Fig. 3-14). The arm advances by
one position every two iterations. Once the arm has started extending, each con-
trol element that arrives to a corner will again split and one of the copies will
start running along the arm, advancing by one position per iteration (Fig. 3-15).
Since the arm is extending at half the speed of the messengers and the messen-
gers are spaced 8 elements apart (the length of one side of the loop), the messen-
gers will reach the tip of the arm at regular intervals corresponding to the length
of one side of the loop.

When the Þrst messenger reaches the tip of the arm, the tip, which was until
then in state 2, passes to state 3 and continues to advance at the same speed (Fig.
3-16). This transformation tells the arm that it has reached the location of the off-
spring loop and to start constructing the new sheath.

The next three messengers will force the tip of the arm to turn left (Fig. 3-17),
while the fourth will reach the tip as the arm is closing upon itself (Fig. 3-19). It
causes the sheath to close and then runs back along the arm to signal to the orig-
inal loop that the new sheath is ready.

Once the return signal arrives at the corner of the original loop, it waits for
the next control element to arrive (Fig. 3-20). When the control element sees the
messenger waiting by the gate, once again it splits, one copy staying around the



A Self-Repairing Multiplexer-Based FPGA Inspired by Biological Processes Gianluca Tempesti

Page 50 Ph.D. Thesis Chapter 3

ITER=15 ITER=16

Figure 3-15: The Þrst messenger is running along the arm.

ITER=20 ITER=21

ITER=22 ITER=23

Figure 3-16: The Þrst messenger reaches the tip of the constructing arm.

ITER=39 ITER=40

ITER=41 ITER=42

ITER=43 ITER=44

Figure 3-17: The second messenger reaches the tip of the arm, forcing it to turn left.



Gianluca Tempesti A Self-Repairing Multiplexer-Based FPGA Inspired by Biological Processes

Chapter 3 Ph.D. Thesis Page 51

loop, the other running along the arm. This time, however, rather than running
along the arm in isolation as a messenger, it carries behind him a copy of the data
in the loop.

Always followed by the data, it runs around the sheath until it has reached
the junction where the arm folded upon itself (Fig. 3-18). On reaching that spot, it
closes the loop and sends a destruction signal (green) back along the arm. The sig-
nal will destroy the arm until it reaches the corner of the original loop, where it
closes the gate to avoid further copies.

ITER=145 ITER=146

ITER=147 ITER=148

ITER=149 ITER=150

Figure 3-18: The copy is complete and the constructing arm retracts.

ITER=92 ITER=93

ITER=94 ITER=95

Figure 3-19: The loop is closed, and a new messenger (light blue) is sent back to the 
parent loop to signal that the offspring is ready to receive the data.



A Self-Repairing Multiplexer-Based FPGA Inspired by Biological Processes Gianluca Tempesti

Page 52 Ph.D. Thesis Chapter 3

Meanwhile, the new loop is already staring to reproduce itself in three of the
four directions. One direction (down in the Þgures) is not necessary since another
of the new loops will always get there Þrst, and therefore its corresponding gate is
automatically set to the closed position. Since the automaton reproduces in all
four directions at the same time, its propagation pattern (Fig. 3-21) is somewhat
different from that of LangtonÕs loop.

ITER=103 ITER=104

ITER=105 ITER=106

Figure 3-20: A copy of the data is sent from the parent to the offspring.

ITER=125

ITER=375

ITER=250

ITER=684

Figure 3-21: The propagation pattern for our loop.



Gianluca Tempesti A Self-Repairing Multiplexer-Based FPGA Inspired by Biological Processes

Chapter 3 Ph.D. Thesis Page 53

After 121 time periods the gates of the original automaton will be closed and
it will enter an inactive state, with the understanding that it will be ready to
reproduce itself again should the gates be opened.

The main advantage of the new mechanism is that it becomes relatively sim-
ple to retract the arm if an obstacle (either the boundary of the array or another
loop) is encountered, and therefore our loop is perfectly capable of operating in a
Þnite space. In the example above, the right border of the Þgure corresponded to
the boundary of the array: when the offspring tried to replicate towards the east,
the arm, it found its way blocked, simply retracted and closed its gate (Fig. 3-22).

ITER=133 ITER=134

ITER=135 ITER=136

Figure 3-22: The arm, Þnding the boundary of the array, retracts and closes the gate.

EMPTY SPACE

TURN RIGHT

TURN LEFT

NOP

INIT SEQUENCE

ADVANCE

Figure 3-23: ConÞguration of the LSL automaton at iteration 0.



A Self-Repairing Multiplexer-Based FPGA Inspired by Biological Processes Gianluca Tempesti

Page 54 Ph.D. Thesis Chapter 3

3.4.5 A Novel Self-Replicating Loop: a Functional Example

In Fig. 3-23, we illustrate an example of how the data states can be used to
carry out operations alongside self-reproduction. The operation in question is the
construction of three letters, LSL (the acronym of Logic Systems Laboratory), in
the empty space inside the loop. Obviously this is not a very useful operation from
a computational point of view, but it is a far from trivial construction task which
should sufÞce to demonstrate the capabilities of the automaton.

For this example, we have used 5 data states, each representing an instruc-
tion for the construction of the letters: advance, turn left, turn right, empty space,
and a NOP (no operation) instruction to Þll the remaining space in the loop. The
construction requires 330 additional rules.

The operation of the program is fairly straightforward. When a certain initia-
tion sequence within the loop arrives to the top left corner of the loop, a ÒdoorÓ is
opened in the internal sheath (Fig. 3-24). The rest of the program, as it passes by
the door in its rotation around the loop, is duplicated and one of the copies is sent
to the interior of the loop, where it is treated as a sequence of instructions which
direct the construction of the three letters. Once the duplication is complete (i.e.,
when the Þrst NOP instruction reaches the opening), the door is closed and the
sheath reset, except for a ßag which indicates that the task has already been com-
pleted and prevents the door from being opened again (Fig. 3-25).

 The construction mechanism itself is somewhat similar to the method Lang-
ton used in his own loop, and is based on a modiÞed constructing arm. The
advance instruction causes the arm to advance by one element, the turn left and
turn right (Fig. 3-26) instructions cause the arm to change direction, and the
Òempty spaceÓ instruction produce a gap in the arm (to separate the letters).

During the process of reproduction, the program is simply copied (as opposed
to interpreted as in the interior of the sheath) and arrives intact in the new loop,
where it will execute again exactly as it did in the parent loop (Fig. 3-27).

This is a simple demonstration of one way in which the data in the loop could
be used as an executable program. Of course, many other methods can be envis-
aged, but unfortunately it would be very hard, if not impossible, to obtain compu-
tationally interesting self-replicating systems using ÒpureÓ cellular automata.

In fact, CA are, by deÞnition, closed systems: all the information must be
present in the array at iteration 0 (in our case, all the data for the system must be
included in the initial loop). Since useful computation would require that each of
the offspring execute a different function (or at the very least, the same function
on different data), the requirement that all information be stored in the parent
loop is too restrictive for our needs.

At this stage we therefore decided to stop further development of self-repli-
cating machines in the cellular automaton environment, and attempt to transfer
the accumulated experience to the design of our FPGA.



Gianluca Tempesti A Self-Repairing Multiplexer-Based FPGA Inspired by Biological Processes

Chapter 3 Ph.D. Thesis Page 55

ITER=36 ITER=38

Figure 3-24: The initiation sequence opens a ÒdoorÓ in the sheath.

ITER=86 ITER=87

ITER=88 ITER=89

Figure 3-25: The copy of the program is concluded and the ÒdoorÓ is closed.



A Self-Repairing Multiplexer-Based FPGA Inspired by Biological Processes Gianluca Tempesti

Page 56 Ph.D. Thesis Chapter 3

3.5 Towards a Digital Hardware Implementation

An FPGA circuit is signiÞcantly different from a cellular automaton, a certain
superÞcial resemblance notwithstanding. To develop a self-replication mecha-
nism which can be efÞciently adapted to digital electronic circuits in general and
to FPGAs in particular, we therefore had to analyze the operation of our loop and
attempt to extract not so much the precise mechanism used to achieve self-repli-
cation, but rather the general approach to the problem. In this section, we will
present the results of this process, which led to the development of the membrane
builder, a very simple cellular automaton which we then implemented in hard-
ware and integrated into our FPGA.

ITER=94 ITER=95

ITER=96 ITER=97

Figure 3-26: The execution of a Òturn rightÓ instruction.



Gianluca Tempesti A Self-Repairing Multiplexer-Based FPGA Inspired by Biological Processes

Chapter 3 Ph.D. Thesis Page 57

ITER=302

ITER=440

ITER=1005

Figure 3-27: The program is copied and executed into each of the offspring.


