
Phoenix Technologies Ltd.
PC Division, Desktop Product Line

Subject: Standard BIOS 32-bit Service Directory Proposal

Revision: 0.4

Revision Date: June 22, 1993

Document ID: ATBIOS

Author: Thomas C. Block

Origin Date: May 24, 1993

Abstract: This paper presents a proposal for a new BIOS service,
which will be known as the BIOS32 Service Directory.
The new service will provide information about those
services in the BIOS that are designed for callers running in
a 32-bit code segment. (The BIOS32 Service Directory will
itself be a 32-bit BIOS service.) The expected clients of this
service are 32-bit operating systems and 32-bit device
drivers. The expected providers of this service are BIOS
vendors that implement one or more 32-bit BIOS services.

Phoenix Technologies Ltd.

PC Division

Desktop Product Line

Phoenix Technologies Ltd.
PC Division, Desktop Product Line

Table of Contents

1 Introduction... 1

2 Revision History .. 2

3 The BIOS32 Service Directory Header.. 2-3

4 The BIOS32 Service Directory Calling Interface ... 4

4.1 Code Segment... 4

4.2 Data Segments.. 5

4.3 Stack Segment .. 5

4.4 Paging ... 6

4.5 IOPL... 6

4.6 The Component Existence Function (BL = 0h) ... 6-7

4.7 Future Functions.. 7

5 Summary... 7-8

Standard BIOS 32-bit Service Directory Proposal, Revision 0.4 Page 1

Phoenix Technologies Ltd.
PC Division, Desktop Product Line

1 Introduction

The BIOS32 Service Directory proposal came into being during the attempts to establish
a 32-bit code interface for the Peripheral Component Interconnect (PCI) standard. A
major problem that needed solving was: How does a 32-bit caller determine the existence
of a 32-bit BIOS service? The drawbacks of a functional interface (i.e., an entry point that
control is transferred to) are clear in the case where the functional interface is non-extant.
A recoverable method would seem to entail a search for a signature as proof that a
functional interface does exist. In fact, one of the first BIOS 32-bit services, EISA, uses
an existence signature at a fixed location in the 0F000h segment. However, as more 32-
bit BIOS services are required and come into existence, it is obvious that providing a
signature (and any associated information, such as entry points, segment requirements,
etc.) for each is a costly usage of a scarce memory resource. Hence, the idea behind the

BIOS32 Service Directory use a single signature to indicate the existence of a generic
32-bit service that returns information on all specific 32-bit services.

A further justification for implementing a general solution versus continuing to solve the
problem on a case-by-case basis is seen in the obvious benefits a standard provides to the
industry. Code reusability, modular ("plug-in"-able) implementation of new 32-bit BIOS
interfaces, thorough specification of calling environment requirements, etc., are a few
benefits which come to mind.

The BIOS32 Service Directory has two components: the Header and the Calling Interface.
 The Header is a static data structure that includes the signature and which is located in a
well-known memory range. The existence of a valid Header implies the existence of the
Calling Interface and, in fact, describes its entry point. The Calling Interface is a body of
code and data which exists in a separate memory space apart from the Header and any
particular 32-bit BIOS services. It provides a functional interface through which a caller
receives information about a particular 32-bit BIOS service. (Section 0 describes a
hypothetical memory map of the Header, Calling Interface, and the "XYZ" 32-bit BIOS
service.)

The design of the Calling Interface is extensible in two dimensions. First, it is a function-
based interface - future revisions of the service can incorporate new features, as they
become necessary. Second, specific 32-bit BIOS services will be represented by a 4-byte
Component ID. This will enable both OS callers and BIOS32 Service Directory
implementors alike to easily add new 32-bit BIOS services as they become available.

This paper consists of five major sections: this introduction, a revision history, a
specification of the BIOS32 Service Directory Header (with an algorithm for determining
if the BIOS32 Service Directory exists on a platform), a specification of the Calling

Standard BIOS 32-bit Service Directory Proposal, Revision 0.4 Page 2

Phoenix Technologies Ltd.
PC Division, Desktop Product Line

Interface to the BIOS32 Service Directory, and a summary with example.

2 Revision History

Revision 0.0, 5/24/93: Initial revision for internal Phoenix distribution.

Revision 0.1, 5/25/93: Incorporated comments from Phoenix internal distribution.
Submitted to PCISIG Work Group for discussion. This was the basis for the Work Group
conference call agenda on 5/28/93. Participants were from Intel, Phoenix, IBM, and
Compaq.

Revision 0.2, 6/4/93: Incorporated comments from 5/28/93 conference call and
subsequent discussions with Brad Hosler, Intel.

Revision 0.3, 6/14/93: Incorporated comments from Brad Hosler, Intel.

Revision 0.4, 6/18/93: Incorporated comments from Eric Rasmussen, IBM and Paula
Bishop, Phoenix. Changed format from memo to document. Added change bars to
distinguish from Revision 0.3.

3 The BIOS32 Service Directory Header

A BIOS which implements the BIOS32 Service Directory must embed a specific,
contiguous 16-byte pattern somewhere in the physical address range 0E0000h - 0FFFFFh.
 The pattern must be paragraph aligned (i.e., it must start on a 16-byte boundary). This
pattern is known as the BIOS32 Service Directory Header.

The Header is comprised of six distinct fields. The following table describes each field.

Standard BIOS 32-bit Service Directory Proposal, Revision 0.4 Page 3

Phoenix Technologies Ltd.
PC Division, Desktop Product Line

Offset Size Description

0 4
bytes

The ASCII signature "_32_". This string is packed left to
right: offset 0 is '_' (underscore), offset 1 is '3', offset 2 is
'2', offset 3 is another '_'.

4 4
bytes

The entry point for the BIOS32 Service Directory Calling
Interface. This is a 32-bit linear (i.e., not segment:offset)
physical address.

8 1 byte The revision level of the BIOS32 Service Directory
Header and Calling Interface. The current revision is 0h.

9 1 byte The length of the BIOS32 Service Directory Header. This
is measured in units of paragraphs (16 bytes). The current
Header has a length of 1h.

10 1 byte The BIOS32 Service Directory Header checksum. This is
a value which makes the cumulative ADD value of all
bytes in the Header equal to 0h.

11 5
bytes

This field is reserved and should be set to 0h.

TABLE 1: The BIOS32 Service Directory Header

Clients of the BIOS32 Service Directory should first determine its existence by locating
the Header. This is done by scanning 0E0000h to 0FFFF0h in paragraph increments and
looking for a signature match ("_32_") in the first 4 bytes of each paragraph. When, and
if, the signature is detected the client should perform a checksum of all bytes in the
Header. (The Header length, in paragraphs, is found at offset 9h.) All bytes in the Header
should ADD together with a result of 0h. If the checksum is valid then the 32-bit entry
point field can be used as the address for the BIOS32 Service Directory Calling Interface.
 If the Header is not found then the BIOS32 Service Directory does not exist on the
platform.

N.B., The checksum step is necessary since there is a remote possibility that code exists
which matches the signature. For example: "_32_" ASCII (5Fh 33h 32h 5Fh) is the
instruction sequence POP DI; XOR SI,[BP+SI].

Standard BIOS 32-bit Service Directory Proposal, Revision 0.4 Page 4

Phoenix Technologies Ltd.
PC Division, Desktop Product Line

4 The BIOS32 Service Directory Calling Interface

If the BIOS32 Service Directory existence has been determined (via the Header test,
above) then the 32-bit physical address found in the Header can be used as the entry point
to the Calling Interface. Clients should CALL FAR to this address. The client's calling
environment has the following requirements.

4.1 Code Segment

The CS code segment selector must be set up with a segment descriptor with the
following values:

• The base address must be less than or equal to the (4kb) page address of
the page that contains the entry point. For example, if the entry point is
0FFF81234h then the base address must be less than or equal to
0FFF81000h.

• The limit must be such that the base address plus the limit generate an
address that is greater than or equal to the last address on the (4kb) page
which follows the page containing the entry point. For example, if the
entry point is 0FFF81234h then the base address plus the limit must be
greater than or equal to 0FFF82FFFh.

• Simply stated, the base address and the limit must "encompass" both the
page that contains the entry point and the following page.

• The segment type must be 100b (code, execute only) or 101b (code,
execute/read). However, the implementors of the Service Directory cannot
assume read access to the CS code segment.

• The system bit must be 1 (nonsystem segment).
• It is recommended that the Descriptor Privilege Level (DPL) be 0. (The

CS descriptor DPL becomes the Current Privilege Level, or CPL). If the
CPL is not 0, then the OS must provide trapping and virtualization services
for ring 0 privileged instructions (such as those that access CRx). Note
also the dependency of this field on the IOPL field in EFLAGS (see Section
0).

• The Default Size bit must be 1 (32 bits).

The BIOS32 Service Directory entry point, and its associated code and data, may
be located anywhere within the 4Gb physical address space. However, it is
guaranteed to be physically contiguous (i.e., it will be delivered in ROM or
FLASH space) and to fit within two pages (i.e., it will not span three pages).

Standard BIOS 32-bit Service Directory Proposal, Revision 0.4 Page 5

Phoenix Technologies Ltd.
PC Division, Desktop Product Line

4.2 Data Segments

The DS data segment selector must be set up with a segment descriptor with the
following values:

• The base address must be equal to the CS base address.
• The limit must be greater than or equal to the CS limit.
• The segment type must be 000b (data, read only) or 001 (data, read/write).

 However, the implementors of the Service Directory cannot assume write
access to the DS data segment.

• The system bit must be 1 (nonsystem segment).
• The Descriptor Privilege Level (DPL) must be greater than or equal to

CPL (see the DPL field in Section 0).

There are no requirements concerning the ES, FS, and GS data segment selectors.

4.3 Stack Segment

The SS stack segment selector must be set up with a segment descriptor with the
following values:

• The segment type must be 011b (data, read/write, expand-down) or 001b
data, read/write, expand-up).

• The system bit must be 1 (nonsystem segment).
• The Descriptor Privilege Level (DPL) must be equal to the CPL (see the

DPL field in Section 0).
• The Default Size bit must be 1 (32 bits).
• The Granularity bit must be 1 (4Kb).

Note that the above settings ensure a stack size of at least 4kb. It is the caller's
responsibility to ensure that there is at least 1kb of unused stack available.

Standard BIOS 32-bit Service Directory Proposal, Revision 0.4 Page 6

Phoenix Technologies Ltd.
PC Division, Desktop Product Line

4.4 Paging

Paging may or may not be enabled. If paging is enabled, then the address space
that is described by the CS and DS selectors must be linearly contiguous. That is,
the original physical contiguity of the Calling Interface as found in ROM or
FLASH must be preserved. (The Calling Interface code and data is written to be
position-independent and EIP-relative).

4.5 IOPL

In order for the Calling Interface to execute I/O instructions, the I/O Privilege
Level (IOPL) field in EFLAGS must be greater than or equal to the CPL (see the
DPL field in Section 0).

The BIOS32 Service Directory Calling Interface is function-based and all parameters are
passed in registers. If a register is not specified as an output parameter for a function,
then it will be preserved. All flags are preserved. Function values are passed as input
parameters in register BL. Return status is passed back in register AL. A return status of
00h indicates that the function was successful. A return status of 80h indicates that the
requested function (in BL) is not supported. Other AL return values are defined by the
individual functions. There is currently one BIOS32 Service Directory function defined.
It is specified below.

4.6 The Component Existence Function (BL = 0h)

The Component Existence function returns information about whether a specific
32-bit BIOS service exists and, if it does, what memory space it occupies.

Input:
BL, 0h
EAX, Component ID

The Component ID is a 4-byte ASCII string which uniquely
identifies the 32-bit BIOS service. The specifications for particular
BIOS services define their own Component IDs. (It is important
that those specifications define whether the Component ID string is
packed left to right, or right to left.)

EBX, Reserved, set to 0h

Standard BIOS 32-bit Service Directory Proposal, Revision 0.4 Page 7

Phoenix Technologies Ltd.
PC Division, Desktop Product Line

Output:
If requested 32-bit service does not exist

AL = 81h
If requested 32-bit service does exist

AL = 0h
EBX = base address of 32-bit BIOS service
ECX = length of 32-bit BIOS service
EDX = offset (from EBX) of 32-bit BIOS service entry point

The meaning of the EBX, ECX, and EDX registers is dependent on
the particular 32-bit BIOS service specification. That is, they may
represent exact values for setting up segment selectors, minimal
"encompassing" values, etc.

4.7 Future Functions

Future BIOS32 Service Directory functions may be defined in subsequent revisions
of this document. The function parameter interface is not constrained to register
passing and may employ input/output parameters on the stack. This is feasible due
to the static definition of the stack (see Section 0).

5 Summary

This paper presents a proposal for the BIOS32 Service Directory. This proposal identifies
two distinct memory components: the Header and the Calling Interface. The Header is a
paragraph of signature data located in the memory range 0E0000h - 0FFFFFh. The
Calling Interface is a body of code that occupies a physically contiguous section of
memory anywhere in the 4Gb address space and is less than two pages (8kb) in length.
The Header contains a pointer into the Calling Interface memory area.

The BIOS 32 Service Directory Calling Interface functions describe additional memory
areas that contain code and data for specific 32-bit BIOS services. A memory map for a
hypothetical Header, Calling Interface and the "XYZ" 32-bit BIOS service follows.

Standard BIOS 32-bit Service Directory Proposal, Revision 0.4 Page 8

Phoenix Technologies Ltd.
PC Division, Desktop Product Line

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ-ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ 4Gb
³---³
³ BIOS32 Service Directory ³ ÍÍÍÍÍÍÍÍ»
³ Calling Interface ³ º
³ Code/Data ³<ÍÍÍÍÍ» º
³---³ º º
³ ³ º º
. . º º
. . º º
. . º º
³ ³ º º
³ ³ º º
³ÄÄÄ³ 1Mb º º
³ ³ º º
³---³ º º
³ BIOS32 Service Directory ³ ÍÍÍÍÍ¼ º
³ Header ³ º
³---³ º
³ ³ º
³---³ º
³ "XYZ" 32-bit BIOS Service ³ º
³ Code/Data ³<ÍÍÍÍÍÍÍÍ¼
³---³
³ÄÄÄ³ E0000h
³ ³
. .
. .
. .
³ ³
ÀÄÄÄÙ 0000h

This proposal lays the groundwork for a standard method of accessing 32-bit BIOS
services. The extensibility of the BIOS32 Service Directory Calling Interface may be used
easily to advance a standard method as new 32-bit BIOS services are recognized and
implemented.

