
1PGAS Languages Kathy Yelick

Performance and Productivity
Opportunities using Global Address

Space Programming Models

Kathy Yelick
Lawrence Berkeley National Laboratory

and UC Berkeley
Joint work with

The Titanium Group: S. Graham, P. Hilfinger, P. Colella, D. Bonachea,
K. Datta, E. Givelberg, A. Kamil, N. Mai, A. Solar, J. Su, T. Wen

The Berkeley UPC Group: C. Bell, D. Bonachea, W. Chen, J. Duell,
P. Hargrove, P. Husbands, C. Iancu, R. Nishtala, M. Welcome

Kathy Yelick, 2

Partitioned Global Address Space
(PGAS) Languages

• Productivity
• Global address space supports construction of complex

shared data structures
• High level constructs (e.g., multidimensional arrays)

simplify programming
• Performance

• PGAS Languages are Faster than two-sided MPI
• Some surprising hints on performance tuning
• Compilers can optimize parallel constructs

• Portability
• These languages are nearly ubiquitous

Kathy Yelick, 3

Partitioned Global Address Space
• Global address space: any thread/process may

directly read/write data allocated by another
• Partitioned: data is designated as local (near) or

global (possibly far); programmer controls layout

G
lo

ba
l a

dd
re

ss
 s

pa
ce x: 1

y:

l: l: l:

g: g: g:

x: 5
y:

x: 7
y: 0

p0 p1 pn

By default:
• Object heaps

are shared
• Program

stacks are
private

• 3 Current languages: UPC, CAF, and Titanium
• Emphasis in this talk on UPC & Titanium (based on Java)

Kathy Yelick, 4

PGAS Language Overview
• Many common concepts, although specifics differ

• Consistent with base language
• Both private and shared data

• int x[10]; and shared int y[10];
• Support for distributed data structures

• Distributed arrays; local and global pointers/references
• One-sided shared-memory communication

• Simple assignment statements: x[i] = y[i]; or t = *p;
• Bulk operations: memcpy in UPC, array ops in Titanium and CAF

• Synchronization
• Global barriers (split-phase in UPC), locks, memory fences

• Collective Communication, IO libraries, etc.
• Overlapping, possibly non-blocking collectives

Kathy Yelick, 5

Case Study 1: AMR in Titanium
• Ocean modeling with AMR:

• Horizontal range from 10km (ocean) to
.1 km (coast)

• High grid aspect ratio horizontal to
vertical

Work by Tong Wen and Phil Colella

• For elliptic problems:
• Multigrid algorithms remain the same
• But point relaxation replaced by line relaxation

• Developed fully in Titanium
• Benchmark based on point-relaxation 3D Poisson

Kathy Yelick, 6

Coding Challenges: Block-Structured AMR
• Adaptive Mesh Refinement

(AMR) is challenging
• Irregular data accesses and

control from boundaries
• Mixed global/local view is useful

AMR Titanium work by Tong Wen and Philip Colella

Titanium AMR benchmark available

Kathy Yelick, 7

AMR in Titanium
C++/Fortran/MPI AMR

• Chombo package from LBNL
• Bulk-synchronous comm:

• Pack boundary data between procs

Titanium AMR
• Entirely in Titanium
• Finer-grained communication

• No explicit pack/unpack code
• Automated in runtime system

Code Size in Lines

4200*
6500

35000
C++/Fortran/MPI

1500Elliptic PDE solver
1200AMR operations
2000AMR data Structures

Titanium

10X reduction
in lines of
code!

* Somewhat more functionality in PDE part of Chombo code

Elliptic PDE solver running time (secs)

113
57

C++/Fortran/MPI

112Parallel, SP3 (28 procs)
53Serial, Opteron

TitaniumPDE Solver Time (secs)
Comparable
running time
(both being
tuned)

Work by Tong Wen and Philip Colella; Communication optimizations joint with Jimmy Su

Kathy Yelick, 8

Immersed Boundary Simulation in Titanium
• Modeling elastic structures in an

incompressible fluid.
• Blood flow in the heart, blood clotting,

inner ear, embryo growth, and many more
• Complicated parallelization

• Particle/Mesh method
• “Particles” connected into materials

Joint work with Ed Givelberg, Armando Solar-Lezama

Code Size in Lines

8000
Fortran

4000
Titanium

Time per timestep

0

20

40

60

80

100

1 2 4 8 16 32 64
128

procs

tim
e

(s
ec

s)

Pow3/SP 256 3̂
Pow3/SP 512 3̂
P4/Myr 512 2̂x256

No support for parallelism
in the Fortran code

Kathy Yelick, 9

One-Sided vs Two-Sided

• A one-sided put/get message can be handled directly by a network
interface with RDMA support
• Avoid interrupting the CPU or storing data from CPU (preposts)

• A two-sided messages needs to be matched with a receive to
identify memory address to put data
• Offloaded to Network Interface in networks like Quadrics
• Need to download match tables to interface (from host)

• MPI has added costs associated with ordering to make it usable as a
end-user programming model

address

message id

data payload

data payload

one-sided put message (e.g., GASNet)

two-sided message (e.g., MPI)

network
interface

memory

host
CPU

Kathy Yelick, 10

Performance Advantage of One-Sided
Communication: GASNet vs MPI

0

100

200

300

400

500

600

700

800

900

10 100 1,000 10,000 100,000 1,000,000 10,000,000

Size (bytes)

B
an

dw
id

th
 (M

B
/s

)

GASNet put (nonblock)"
MPI Flood

Relative BW (GASNet/MPI)

1.0

1.2

1.4

1.6
1.8

2.0

2.2

2.4

10 1000 100000 10000000Si z e (b y t e s)

• Opteron/InfiniBand (Jacquard at NERSC):
• GASNet’s vapi-conduit and OSU MPI 0.9.5 MVAPICH

• Half power point (N ½) differs by one order of magnitude
• Note: this is a very good MPI implementation!!

Joint work with Paul Hargrove and Dan Bonachea

(u
p

is
 g

oo
d)

Kathy Yelick, 11

GASNet: Portability and High-Performance
(d

ow
n

is
 g

oo
d)

GASNet better for latency across machines

8-byte Roundtrip Latency

14.6

6.6

22.1

9.6

6.6

4.5

9.5

18.5

24.2

13.5

17.8

8.3

0

5

10

15

20

25

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

R
ou

nd
tr

ip
 L

at
en

cy
 (u

se
c)

MPI ping-pong
GASNet put+sync

Joint work with UPC Group; GASNet design by Dan Bonachea

Kathy Yelick, 12

(u
p

is
 g

oo
d)

GASNet at least as high (comparable) for large messages

Flood Bandwidth for 2MB messages

1504

630

244

857
225

610

1490799
255

858 228
795

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

Pe
rc

en
t H

W
 p

ea
k

(B
W

 in
 M

B
)

MPI GASNet

GASNet: Portability and High-Performance

Joint work with UPC Group; GASNet design by Dan Bonachea

Kathy Yelick, 13

(u
p

is
 g

oo
d)

GASNet excels at mid-range sizes: important for overlap

GASNet: Portability and High-Performance
Flood Bandwidth for 4KB messages

547

420

190

702

152

252

750

714231

763
223

679

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

Pe
rc

en
t H

W
 p

ea
k

MPI

GASNet

Joint work with UPC Group; GASNet design by Dan Bonachea

Kathy Yelick, 14

Case Study 2: NAS FT
• Performance of Exchange (Alltoall) is critical

• 1D FFTs in each dimension, 3 phases
• Transpose after first 2 for locality
• Bisection bandwidth-limited

• Problem as #procs grows

• Three implementations:
• Exchange:

• wait for 2nd dim FFTs to finish, send 1
message per processor pair

• Slab:
• wait for chunk of rows destined for 1

proc, send when ready
• Pencil:

• send each row as it completes

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea

thread 0’s planes before Xpose

thread 0’s planes after Xpose

Kathy Yelick, 15

NAS FT Variants Performance Summary

• Slab is always best for MPI; small message cost too high
• Pencil is always best for UPC; more overlap

0

200

400

600

800

1000

Myrinet 64
InfiniBand 256

Elan3 256
Elan3 512

Elan4 256
Elan4 512

M
Fl

op
s

pe
r T

hr
ea

d

Best MFlop rates for all NAS FT Benchmark versions

Best NAS Fortran/MPI
Best MPI
Best UPC

0

100

200

300

400

500

600

700

800

900

1000

1100

Myrinet 64

InfiniBand 256
Elan3 256

Elan3 512
Elan4 256

Elan4 512

M
Fl

op
s

pe
r T

hr
ea

d

Best NAS Fortran/MPI

Best MPI (always Slabs)

Best UPC (always Pencils)

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea

.5 Tflops

Kathy Yelick, 16

Case Study 3: LU Factorization
• Direct methods have complicated dependencies

• Especially with pivoting (unpredictable communication)
• Especially for sparse matrices (dependence graph with holes)

• LU Factorization in UPC
• Use overlap ideas and multithreading to mask latency
• Multithreaded: UPC threads + user threads + threaded BLAS

• Panel factorization: Including pivoting
• Update to a block of U
• Trailing submatrix updates

• Status:
• Dense LU done: HPL-compliant
• Sparse version underway

Joint work with Parry Husbands

Kathy Yelick, 17

UPC HPL Performance

• Comparison to ScaLAPACK on an Altix
• 2 x 4 process grid (best of several block sizes for both versions)

• ScaLAPACK 25.25 GFlop/s (block size 64)
• UPC LU 33.60 GFlop/s (block size 256)

• 4x4 process grid
• ScaLAPACK - 43.34 GFlop/s (block size = 64)
• UPC - 70.26 Gflop/s (block size = 200)

X1 Linpack Performance

0

200

400

600

800

1000

1200

1400

60 X1/64 X1/128

G
Fl

op
/s

MPI/HPL

UPC

Opteron Cluster
Linpack

Performance

0

50

100

150

200

Opt/64

G
Fl

op
/s

MPI/HPL

UPC

Altix Linpack
Performance

0

20

40

60

80

100

120

140

160

Alt/32

G
Fl

op
/s

MPI/HPL

UPC

•MPI HPL numbers
from HPCC
database

•Large scaling:
• 2.2 TFlops on 512p,
• 4.4 TFlops on 1024p
(Thunder)

• UPC is ½ the code
size

Joint work with Parry Husbands

• Comparison to High Performance Linpack

Kathy Yelick, 18

What About Serial Performance?
• In general, UPC and Titanium serial performance

are comparable to C
• Differences between tuning effort and C/Fortran compilers

are more significant than an overhead from languages

Reference

Best: 4x2

Mflop/s

Mflop/s• Strategy: Empirical tuning
• FFTW & Spiral: FFTs, etc.
• Atlas (& PHiPAC): dense LA
• OSKI (& Sparsity): sparse LA

• NASA example shown
• Currently working on stencil

optimizations
• Not currently tied to

PGAS languages

Joint work with Jim Demmel, Rich Vuduc and the BeBOP group

Kathy Yelick, 19

Portability of Titanium and UPC
• Titanium and the Berkeley UPC translator use a similar model

• Source-to-source translator (generate ISO C)
• Runtime layer implements global pointers, etc
• Common communication layer (GASNet)

• Both run on most PCs, SMPs, clusters & supercomputers
• Support Operating Systems:

• Linux, FreeBSD, Tru64, AIX, IRIX, HPUX, Solaris, Cygwin, MacOSX, Unicos, SuperUX
• UPC translator somewhat less portable: we provide a http-based compile server

• Supported CPUs:
• x86, Itanium, Alpha, Sparc, PowerPC, PA-RISC, Opteron

• GASNet communication:
• Myrinet GM, Quadrics Elan, Mellanox Infiniband VAPI, IBM LAPI, Cray X1, SGI Altix,

Cray/SGI SHMEM, and (for portability) MPI and UDP
• Specific supercomputer platforms:

• HP AlphaServer, Cray X1, IBM SP, NEC SX-6, Cluster X (Big Mac), SGI Altix 3000
• In progress: Cray XT3, BG/L (both run over MPI)

• Can be mixed with MPI, C/C++, Fortran

Also used by gcc/upc

Joint work with Titanium and UPC groups

Kathy Yelick, 20

Portability of PGAS Languages
Other compilers also exist for PGAS Languages
• UPC

• Gcc/UPC by Intrepid: runs on GASNet
• HP UPC for AlphaServers, clusters, …
• MTU UPC uses HP compiler on MPI (source to source)
• Cray UPC

• Co-Array Fortran:
• Cray CAF Compiler: X1, X1E
• Rice CAF Compiler (on ARMCI or GASNet), John Mellor-Crummey

• Source to source
• Processors: Pentium, Itanium2, Alpha, MIPS
• Networks: Myrinet, Quadrics, Altix, Origin, Ethernet
• OS: Linux32 RedHat, IRIS, Tru64

NB: source-to-source requires cooperation by backend compilers

Kathy Yelick, 21

Summary
• PGAS languages offer performance advantages

• Expose best-possible network performance
• Shared memory on machines like SGI Altix
• Remote load/store on GAS hardware like Cray X1 and Quadrics
• Remote load/store with “registration” on Infiniband, Myrinet

• Smaller messages may be faster:
• make better use of network: postpone bisection bandwidth pain
• can also prevent cache thrashing for packing

• PGAS languages offer productivity advantage
• Order of magnitude in line counts for grid-based code in Titanium
• Push decisions about packing/not into runtime for portability

(advantage of language with translator vs. library approach)
• Source-to-source translation

• The way to ubiquity
• Complement highly tuned machine-specific compilers

