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Partitioned Global Address Space 
(PGAS) Languages

• Productivity
• Global address space supports construction of complex 

shared data structures
• High level constructs (e.g., multidimensional arrays) 

simplify programming
• Performance

• PGAS Languages are Faster than two-sided MPI
• Some surprising hints on performance tuning
• Compilers can optimize parallel constructs

• Portability
• These languages are nearly ubiquitous
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Partitioned Global Address Space
• Global address space: any thread/process may 

directly read/write data allocated by another
• Partitioned: data is designated as local (near) or 

global (possibly far); programmer controls layout 
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• 3 Current languages: UPC, CAF, and Titanium 
• Emphasis in this talk on UPC & Titanium (based on Java)
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PGAS Language Overview
• Many common concepts, although specifics differ

• Consistent with base language
• Both private and shared data

• int x[10];      and shared int y[10]; 
• Support for distributed data structures

• Distributed arrays; local and global pointers/references
• One-sided shared-memory communication 

• Simple assignment statements: x[i] = y[i]; or t = *p;
• Bulk operations: memcpy in UPC, array ops in Titanium and CAF

• Synchronization
• Global barriers (split-phase in UPC), locks, memory fences

• Collective Communication, IO libraries, etc.
• Overlapping, possibly non-blocking collectives
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Case Study 1: AMR in Titanium
• Ocean modeling with AMR:

• Horizontal range from 10km (ocean) to 
.1 km (coast)

• High grid aspect ratio horizontal to 
vertical

Work by Tong Wen and Phil Colella

• For elliptic problems: 
• Multigrid algorithms remain the same 
• But point relaxation replaced by line relaxation

• Developed fully in Titanium
• Benchmark based on point-relaxation 3D Poisson
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Coding Challenges: Block-Structured AMR
• Adaptive Mesh Refinement 

(AMR) is challenging
• Irregular data accesses and 

control from boundaries
• Mixed global/local view is useful 

AMR Titanium work by Tong Wen and Philip Colella

Titanium AMR benchmark available
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AMR in Titanium
C++/Fortran/MPI AMR

• Chombo package from LBNL
• Bulk-synchronous comm:

• Pack boundary data between procs

Titanium AMR
• Entirely in Titanium
• Finer-grained communication

• No explicit pack/unpack code
• Automated in runtime system

Code Size in Lines

4200*
6500

35000
C++/Fortran/MPI

1500Elliptic PDE solver
1200AMR operations
2000AMR data Structures

Titanium

10X reduction 
in lines of 
code!

* Somewhat more functionality in PDE part of Chombo code

Elliptic PDE solver running time (secs)

113
57

C++/Fortran/MPI

112Parallel, SP3 (28 procs)
53Serial, Opteron

TitaniumPDE Solver Time (secs)
Comparable 
running time 
(both being 
tuned)

Work by Tong Wen and Philip Colella; Communication optimizations joint with Jimmy Su
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Immersed Boundary Simulation in Titanium
• Modeling elastic structures in an 

incompressible fluid.
• Blood flow in the heart, blood clotting, 

inner ear, embryo growth, and many more
• Complicated parallelization

• Particle/Mesh method
• “Particles” connected into materials 

Joint work with Ed Givelberg, Armando Solar-Lezama

Code Size in Lines
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One-Sided vs Two-Sided

• A one-sided put/get message can be handled directly by a network 
interface with RDMA support
• Avoid interrupting the CPU or storing data from CPU (preposts)

• A two-sided messages needs to be matched with a receive to 
identify memory address to put data
• Offloaded to Network Interface in networks like Quadrics
• Need to download match tables to interface (from host)

• MPI has added costs associated with ordering to make it usable as a 
end-user programming model

address

message id

data payload

data payload

one-sided put message (e.g., GASNet)

two-sided message (e.g., MPI)

network
interface

memory

host
CPU
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Performance Advantage of One-Sided 
Communication: GASNet vs MPI
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• Opteron/InfiniBand (Jacquard at NERSC):
• GASNet’s vapi-conduit and OSU MPI 0.9.5 MVAPICH

• Half power point (N ½ ) differs by one order of magnitude
• Note: this is a very good MPI implementation!!

Joint work with Paul Hargrove and Dan Bonachea
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GASNet: Portability and High-Performance
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GASNet better for latency across machines
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Joint work with UPC Group; GASNet design by Dan Bonachea



Kathy Yelick, 12

(u
p 

is
 g

oo
d)

GASNet at least as high (comparable) for large messages

Flood Bandwidth for 2MB messages
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GASNet: Portability and High-Performance

Joint work with UPC Group; GASNet design by Dan Bonachea
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GASNet excels at mid-range sizes: important for overlap

GASNet: Portability and High-Performance
Flood Bandwidth for 4KB messages
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Joint work with UPC Group; GASNet design by Dan Bonachea
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Case Study 2: NAS FT
• Performance of Exchange (Alltoall) is critical

• 1D FFTs in each dimension, 3 phases
• Transpose after first 2 for locality
• Bisection bandwidth-limited

• Problem as #procs grows

• Three implementations:
• Exchange:

• wait for 2nd dim FFTs to finish, send 1 
message per processor pair

• Slab:
• wait for chunk of rows destined for 1 

proc, send when ready
• Pencil:

• send each row as it completes

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea

thread 0’s planes before Xpose

thread 0’s planes after Xpose
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NAS FT Variants Performance Summary

• Slab is always best for MPI; small message cost too high
• Pencil is always best for UPC; more overlap
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Case Study 3: LU Factorization
• Direct methods have complicated dependencies

• Especially with pivoting (unpredictable communication)
• Especially for sparse matrices (dependence graph with holes)

• LU Factorization in UPC
• Use overlap ideas and multithreading to mask latency
• Multithreaded: UPC threads + user threads + threaded BLAS

• Panel factorization: Including pivoting
• Update to a block of U
• Trailing submatrix updates

• Status:
• Dense LU done: HPL-compliant 
• Sparse version underway

Joint work with Parry Husbands



Kathy Yelick, 17

UPC HPL Performance

• Comparison to ScaLAPACK on an Altix
• 2 x 4 process grid (best of several block sizes for both versions)

• ScaLAPACK 25.25 GFlop/s (block size 64) 
• UPC LU 33.60 GFlop/s (block size 256) 

• 4x4 process grid
• ScaLAPACK - 43.34 GFlop/s (block size = 64) 
• UPC - 70.26 Gflop/s (block size = 200)

X1 Linpack Performance
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•MPI HPL numbers 
from HPCC 
database

•Large scaling: 
• 2.2 TFlops on 512p, 
• 4.4 TFlops on 1024p 
(Thunder)

• UPC is ½ the code 
size

Joint work with Parry Husbands

• Comparison to High Performance Linpack
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What About Serial Performance?
• In general, UPC and Titanium serial performance 

are comparable to C
• Differences between tuning effort and C/Fortran compilers 

are more significant than an overhead from languages

Reference

Best: 4x2

Mflop/s

Mflop/s• Strategy: Empirical tuning
• FFTW & Spiral: FFTs, etc.
• Atlas (& PHiPAC): dense LA
• OSKI (& Sparsity): sparse LA

• NASA example shown
• Currently working on stencil 

optimizations
• Not currently tied to 

PGAS languages

Joint work with Jim Demmel, Rich Vuduc and the BeBOP group
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Portability of Titanium and UPC
• Titanium and the Berkeley UPC translator use a similar model

• Source-to-source translator (generate ISO C)
• Runtime layer implements global pointers, etc
• Common communication layer (GASNet)

• Both run on most PCs, SMPs, clusters & supercomputers
• Support Operating Systems:

• Linux, FreeBSD, Tru64, AIX, IRIX, HPUX, Solaris, Cygwin, MacOSX, Unicos, SuperUX
• UPC translator somewhat less portable: we provide a http-based compile server

• Supported CPUs: 
• x86, Itanium, Alpha, Sparc, PowerPC, PA-RISC, Opteron

• GASNet communication:
• Myrinet GM, Quadrics Elan, Mellanox Infiniband VAPI, IBM LAPI, Cray X1, SGI Altix, 

Cray/SGI SHMEM, and (for portability) MPI and UDP
• Specific supercomputer platforms: 

• HP AlphaServer, Cray X1, IBM SP, NEC SX-6, Cluster X (Big Mac), SGI Altix 3000
• In progress: Cray XT3, BG/L (both run over MPI)

• Can be mixed with MPI, C/C++, Fortran 

Also used by gcc/upc

Joint work with Titanium and UPC groups
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Portability of PGAS Languages
Other compilers also exist for PGAS Languages
• UPC

• Gcc/UPC by Intrepid: runs on GASNet
• HP UPC for AlphaServers, clusters, …
• MTU UPC uses HP compiler on MPI (source to source)
• Cray UPC

• Co-Array Fortran:
• Cray CAF Compiler: X1, X1E
• Rice CAF Compiler (on ARMCI or GASNet), John Mellor-Crummey

• Source to source 
• Processors: Pentium, Itanium2, Alpha, MIPS
• Networks: Myrinet, Quadrics, Altix, Origin, Ethernet 
• OS: Linux32 RedHat, IRIS, Tru64

NB: source-to-source requires cooperation by backend compilers
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Summary
• PGAS languages offer performance advantages

• Expose best-possible network performance
• Shared memory on machines like SGI Altix
• Remote load/store on GAS hardware like Cray X1 and Quadrics
• Remote load/store with “registration” on Infiniband, Myrinet

• Smaller messages may be faster: 
• make better use of network: postpone bisection bandwidth pain
• can also prevent cache thrashing for packing

• PGAS languages offer productivity advantage
• Order of magnitude in line counts for grid-based code in Titanium
• Push decisions about packing/not into runtime for portability 

(advantage of language with translator vs. library approach)
• Source-to-source translation

• The way to ubiquity
• Complement highly tuned machine-specific compilers


