
1

Reducing Avionics Software Cost Through
Component Based Product Line Development*

David C. Sharp
david.c.sharp@boeing.com

The Boeing Company
P.O. Box 516

St. Louis, MO 63166, USA

Title: Reducing Avionics Software Cost Through Component Based Product
Line Development

Presenter: David C. Sharp

Track: Product Line Engineering/Y2K

Day: Thursday, 23 April, 1998

Keywords: Product Line, Reuse, Affordability, Component, Architecture

Abstract: Just as hardware integrated circuits, or components, can be used to
inexpensively manufacture a product line of related hardware systems, re-
usable software components can be used to create software systems. This
is accomplished by developing a common framework for a product line of
related software systems that forms the component operating environment.
A development architecture is presented based on our work using Object
Oriented Analysis and Design techniques to create reusable software com-
ponents that combine with aircraft specific customizations to form an avi-
onics software system.

* Presented at the Software Technology Conference, April 1998.

1. Introduction
In 1995, an initiative was launched at

McDonnell Douglas (now merged with The
Boeing Company) to assess the potential for
reuse of operational flight program (OFP)
software across multiple fighter aircraft
platforms, and to define and demonstrate a
supporting system architecture based upon
open commercial hardware, software,
standards and practices.1 This initiative
produced a set of reusable object oriented
navigation software, which was flight tested
on several different aircraft platforms hosted

on different hardware configurations (both
MIPS® and PowerPC® based).

The following year, this validation of
the product line approach led to broader
application of the techniques to the tactical
aircraft mission processing domain. This
paper describes key aspects of the
component based logical architecture
developed therein.

1.1 Software Project Goals
As illustrated in Figure 1, two

primary software project level goals were
defined:

2

1. Development of a reusable
architecture framework for the
product line.

2. Development of reusable appli-
cation components for the prod-
uct line.

Hardware (CPU, Memory, I/O)
Board Support Package

Operating System
Infrastructure Services

HUD
MPC

D

Stations Station

Airframe Radar

JD
AM

MK82

AIM
12

0
AIM

9L

Tgts FLIR Weapons Fly-out
Model

Develop Reusable
Architecture Framework

Develop Reusable
Architecture Framework

Develop Reusable
Application Components

Develop Reusable
Application Components

Figure 1: Software Project Goals
The project follows a two-pronged

strategy: establish an architecture foundation
that defines the overall system structure and
component environment, and then create
application components that reside therein.
The combination of these two techniques
provides the basis for an affordable approach
to product line avionics software. This
strategy follows Johnson’s approach of
decomposing reusable software systems into
a framework and a component library.2

1.2 Architecture Goals
Given the driving project goals, there

are two key goals of the software
architecture itself:

1. Contain change.
2. Maximize reusability.
Naturally, there are many types of

change that appear in a complex avionics
mission computing product line:

1. Differences in avionics subsys-
tems (e.g. radar, cockpit controls
and displays, INS)

2. Differences in mission comput-
ing hardware – both in terms of
number of processors and in
terms of the exact microproces-
sor chosen.

3. Differences in system require-
ments.

In terms of the changes that need to
be anticipated during design, system
differences within the product line are
similar to traditional changes to a single
system. Therefore, in a product line project,
there are two types of differences that must
be contained:

1. Temporal differences – the
evolution of a system over the
course of time, and

2. Simultaneous differences – the
differences between multiple
products in the product line that
must be concurrently sup-
ported.

 The established adage of “encapsulate
change” can be somewhat broadened to
“encapsulate differences” when in a product
line context.

Maximizing reusability relates to
minimizing cost in a reuse-driven
affordability process. One corollary to this
goal is that the developed software must be
granular enough that specific aircraft
products can select the exact software
elements applicable to their system. This
requires elements with the ability to be
plugged together to create a deliverable
system.

Note that these architecture goals are
a direct result of the original goal to develop
software applicable to a full product line.

1.3 Patterns
Patterns have been widely used in the

object-oriented community to capture best
practices. They document the forces and
issues providing the answer to the frequently

3

asked question of why software was
designed a certain way. Documenting the
tradeoffs made while arriving at a solution
guides future development of the produced
artifact and reuse of the techniques in other
areas. Understanding the consequences of a
design choice is especially key in those cases
where multiple potential solutions exist
whose selection is dependent on specifics of
the problem context. It is in these situations
that patterns prove most valuable.

There are several different classifi-
cation techniques, or taxonomies, of patterns
in the literature. Gamma et al. divide their
design patterns into three categories3:

1. Creational – patterns used in
flexibly constructing objects

2. Structural – patterns outlining
class or object composition

3. Behavioral – patterns describing
how objects interact and distrib-
ute responsibility

Schmidt4 and others classify patterns
as:

1. Tactical – patterns that resolve
localized design forces in an ap-
plication

2. Strategic – patterns that address
application-wide issues and thus
have broad impact

and also as:
1. Domain Independent – patterns

that cross application domains
2. Domain Dependent – patterns

applicable to a specific applica-
tion domain

Buschmann et al. break patterns into
the following divisions5:

1. Architectural – patterns provid-
ing the overall skeleton of a sys-
tem

2. Design – patterns dealing with
localized design choices

3. Idioms – patterns of usage within
a particular language

Some of the numerous relationships
between these classifications are:

• Design patterns are often tactical
• Architectural patterns are often

strategic
• Strategic patterns are often

domain dependent
Given this context, the development

process relies heavily on leveraging domain
independent patterns developed in other
organizations and growing domain specific
patterns within the home organization,
particularly strategic ones. This combined
set of patterns then forms a shared expertise
base, which guides high level architecture
development as well as individual
development across the full organization.

2. Top Level Architecture
Two architectural patterns underlie

the top level software architecture: the
Layers pattern6 and the Model-View-
Controller pattern7. Using these patterns
helps generate the overall architecture for
the system8.

2.1. Layers Pattern
The Layers pattern describes the

widely used method of basing software
systems on layers of abstraction and
insulation. Low layers in the system provide
hardware and operating system level
facilities. Higher layers provide application
functionality. The low layers form the
foundation that insulates the application
from specifics of the hardware
configuration. This is an essential
characteristic of a product line software
system that is targeted to varying hardware
configurations.

A key characteristic of layered
architectures is that all dependencies flow
downward. This helps avoid cyclic
dependencies, and avoids low level

4

abstractions from depending on high-level
application considerations. Jacobson et al.
mention layered architectures as a central
aspect of reusable software systems.9

2.2. Model-View-Controller
Pattern

The Model-View-Controller (MVC)
pattern was developed within the Smalltalk
community as an architecture for graphical
user interface based systems. Its architecture
is shown in Figure 2, and is itself a layered
architecture.

Model

View Controller

Figure 2: Model-View-Controller
Architecture

One of the important characteristics
of the MVC architectural pattern is the
separation of the domain model from the
user interface utilized to present domain
information to users and allow them to
manipulate it. This allows multiple views
(i.e. displays) of the same information. It
also separates the relative stability of domain
models from the relative instability of user
interfaces, resulting in better change
encapsulation.

2.3. Top Level Architecture
The top level software architecture

derives from applying the two
aforementioned architectural patterns. In the
case of the Layers pattern, it is applied
recursively in hierarchical fashion. In all
cases, a relaxed version of the Layers
architecture is applied where a higher level
layer may bypass intermediary layers and
access low layers directly where necessary.

Figure 3 shows the top level archi-
tecture. The Model layer represents the core

domain application as defined in the MVC
architecture. The Operator layer contains
both the View and Controller portions of the
MVC pattern, sometimes referred to as a
Document-View variant of the MVC
architecture.10

Configurator

Operator

Infrastructure Services

Model

Figure 3: Top Level Layered Architecture
To these MVC based application

layers, a foundational Infrastructure layer is
added to provide a CORBA based run-time
system and insulate the application from
hardware configuration specifics. At the top,
a Configurator layer is added which
represents a notional “software system
circuit board” and is responsible for
instantiating all of the objects and
establishing their relationships. The
Configurator layer is responsible for taking
all of the applicable software elements and
plugging them together into a functional
system.

Especially at the architectural level,
the boundaries between software elements
should foster change encapsulation and
separate independent concerns. This
inspection reveals the following benefits of
the top-level architecture:

• The Infrastructure Services-
Model boundary isolates hard-
ware, run-time, and operating
system issues from the applica-
tion.

5

• The Model-Operator boundary
isolates the core application from
user interface volatility.

• The Operator-Configurator
boundary isolates the software
elements from their integration
into a complete system.

2.4. Model Architecture
 As stated earlier, the Layers pattern

is applied recursively. One example of this
is within the top level Model layer. Figure 4
illustrates this second level layered
architecture.

Real World Model

Avionics Interfaces

Building Blocks

Figure 4: Model Layered Architecture
In this case, the Building Blocks

layer represents general-purpose objects like
vectors and matrices. Avionics Interfaces
represents the mission computing interface
to other avionics subsystems. The Real
World Model contains the software
representation of the problem domain.
Examples of elements in the Real World
Model are weapons, stations, targets, the
ownship airframe, waypoints, and routes.

Applying the boundary inspection
process as before at this level reveals the
following benefits:

• The Building Blocks-Avionics
Interfaces boundary separates
more general-purpose domain
independent elements from do-
main specific elements.

• The Avionics Interfaces-Real-
World Model boundary forms a

key separation isolating product
line elements from the specifics
of a single avionics system on a
particular aircraft. This boundary
is directly related to the original
goal of containing avionics sys-
tem specifics.

Summarizing, combining repeated
application of these architecture patterns
with domain specific considerations
develops the overall system structure and
leverages proven architecture experience
within the product line software architecture.

3. Operational Flight
Program Component
Overview

Once the overall logical architecture
structure is established, issues concerning
software element development within this
architecture surface. An important
consideration is the granularity of the
software elements. If an extremely fine
granularity is chosen, the canonical software
elements can be defined as being individual
objects. This results in a multitude of
elements that must be configured and
integrated at the Configurator level. Near the
other extreme, a single software element can
be created for each of the layers. This fails,
however to provide the configurability
required by individual aircraft projects both
in terms of independently selecting software
elements applicable to their system and in
allowing any required customizations to
those elements. As Roberts and Johnson
note in their Fine-Grained Objects pattern,11

making software elements more reusable
tends to make them finer-grained. The
opposing force is that systems with more
elements are more difficult to understand.

In the subject software system, the
term Component was adopted to represent a
software element somewhat in the middle of

6

the granularity continuum. Given the
sometimes ambiguous usage of the term, and
the need to clearly specify its meaning
within the project, a set of defining patterns
was developed. Because of their pervasive
usage within the system, they are classified
as strategic patterns. These patterns can be
simplistically stated as providing software
elements that are as large as possible while
still being reusable within the product line.

These patterns form a small language
whose names can be used within the
organization to easily communicate and
guide development. There are potentially
many different types of components that fit
in this language, including:

1. Component – the basic compo-
nent definition that applies to all
of the more specific types

2. Configurable Component –
components that allow customi-
zation by users

3. Distributable Component –
components that are distributable
when in a multi-processing
hardware configuration

4. Real Time Component – compo-
nents that provide real time qual-
ity of service information for
scheduling purposes12

a) Active Component – compo-
nents that have specific re-
quirements under which they
must run

b) Passive Component – com-
ponents that execute only as a
service to other components

This paper focuses on the founda-
tional Component pattern itself and the
Configurable Component pattern.

3.1. Component Pattern
Roughly following the pattern

outline of Gamma et al.13, the following
sections define the Component pattern.

3.1.1 Intent
Define software entities which are

similar to objects but which can be
composed of multiple smaller objects that
together provide a set of services to a client.

3.1.2 Motivation
In multithreaded, multiprocessor

applications, objects must deal with a
number of complexities. Among these
complexities are concurrent threads, shared
resources, and multiple address spaces. In
addition, large object oriented applications
can easily comprise thousands or tens of
thousands of objects. Components provide a
practical way to group closely coupled
objects that together provide a set of services
to other objects. Grouping objects in this
way allows for localization of certain
concerns and provides a higher level of
abstraction when considering software
collaboration.

3.1.3 Applicability
Use the Component pattern when
• closely coupled objects provide a

set of cohesive services to cli-
ents,

• a group of objects is reusable as a
single entity, and

• especially when collaborating
objects share similar synchroni-
zation requirements or thread
priorities (e.g. processing rate)

3.1.4 Structure
Figure 5 shows the Component

pattern structure using the Unified Modeling
Language (UML).

7

ComponentFacade

ComponentConsumer

ComponentSupplier1 ComponentSupplier2

Figure 5: Component Pattern Structure

3.1.5 Participants
• ComponentConsumer

- uses the component via the
facade

• ComponentFacade
- provides the public interface
for the contained objects

3.1.6 Collaborations
• Consumers communicate with

the component via the façade,
which forwards them to the ap-
propriate contained objects as
applicable.

• Consumers do not access internal
objects directly without first go-
ing through the facade.

3.1.7 Consequences
The Component pattern has the

following benefits and drawbacks:
1. Encapsulates change. Promotes

weak coupling between compo-
nents by defining a clear interface
via the component façade. The
façade actually provides an inter-

face to potentially many enclosed
objects.

2. Defines distribution boundaries.
Components form the potentially
distributable software entities at a
level higher than individual ob-
jects. Note that components are
not always distributable, but all
distributable items are compo-
nents. Objects within compo-
nents are guaranteed to reside
within the same address space,
fully supporting pointer sharing.

3. Localizes concurrency control.
Localizes concurrency control
issues to the component facades
so that most objects do not have
to be concerned with thread
locking mechanisms.

4. Identifies pluggable entities. The
pluggable software entities,
which developers may choose to
incorporate or not incorporate
into a specific executable, are
represented by components.
While some components are
foundational and essential, the
majority is selectable and plug-
gable.

5. Enhances reusability. Makes it
easier to configure resulting ex-
ecutables by reducing the number
of software entities that must be
considered.

6. Reduces complexity. Similar to
the reason for Enhances reus-
ability, Component reduces com-
plexity by reducing the amount
of detail that component users
must consider.

8

3.1.8 Implementation
Consider the following issues when

implementing the Component pattern:
1. Allowed calls. No external

component is allowed to call
member functions of objects in-
ternal to the component without
first going through the facade.
Doing otherwise defeats the goal
of localizing concurrency control
and providing a single public in-
terface for the whole component.
Objects within the component are
allowed to invoke member func-
tions on external component fa-
çades. Summarizing, calls in go
through the façade. Calls out
have no such restrictions.

2. Contained objects. Components
can contain references to internal
objects. If a façade returns a ref-
erence to another object for direct
use by a consumer, then some
other mechanism must be pro-
vided for serialization, such as:
a. the returned object must

manage its own concurrency
mechanism, etc, and therefore
takes on the responsibilities
of a component facade, or

b. the component façade must
provide a request/release
locking mechanism for access
to the reference to ensure that
access is serialized.

3. Façade usage. Objects within the
component should not call public
methods in the Façade. Since the
façade normally contains the
concurrency locking mechanism,
components are typically not re-
entrant. If an internal object calls
a façade member function, it
would potentially block indefi-
nitely waiting for the current

thread (its own) to release the
lock. For this reason, the façade
should not contain algorithms or
other functionality in public
member functions that objects
internal to the component would
want to invoke.

3.1.9 Related Patterns
This pattern is a specialization of the

Façade pattern.14 Façade pattern issues apply
here as well.

3.2 Configurable Component
Design Pattern
The following sections define the

Configurable Component pattern.

3.2.1 Intent
Define components that are config-

urable to increase reusability.

3.2.2 Motivation
There are many cases where multiple

components can share interfaces but where
all or part of the implementations differ.
Configurable components provide all of the
shared implementation and allow flexible
incorporation of differences.

This establishes a new kind of
component interface for the purposes of
plugging in customizations. The original
notion of a component interface is referred
to as the User Application Programmer
Interface (API). This interface provides the
services used during normal component
operation. Configurable Components add the
idea of a Configuration API, which allows
component creators (referred to as
Configurators) to customize behavior. This
Configuration API is used during
component initialization. Figure 6 offers a
conceptual view of a configurable airframe

9

component representing the navigational
state of the aircraft.

Airframe

Config-
uration
API

...

Horizontal
Sensors

... Vertical
Sensors

... ...Rotational
Sensors

Optional
Receptacle

Horiz.
Substate

Vertical
Substate

Rot.
Substate

User API

Required
Receptacle

Figure 6: Conceptual Airframe
Component

3.2.3 Applicability
Use the Configurable Component

pattern when all of the following hold true:
• components in different applica-

tions or within a single applica-
tion represent the same logical
entity and can share the same in-
terface

• flexible customization of the
components enables or increases
reuse, either within a single ap-
plication for different component
objects or between different ap-
plications

• interfaces to the differences can
be defined

• the additional software or archi-
tecture reuse justifies the addi-
tional complexity

3.2.4 Structure
Figure 7 shows the Configurable

Component pattern structure.

1..*

ConfigurableObject3ConfigurableObject2

SupplierComponent2

ComponentConfigurator

StaticInternalObjectClass

ConfigurableComponentFacade

SupplierComponent1

ConfigurableObject1

Figure 7: Configurable Component
Pattern Structure

3.2.5 Participants
• ComponentConfigurator

- passes configuration pa-
rameters to the Component-
Facade via the Configuration
API to customize component
behavior

• ConfigurableComponent
Facade

- instantiates objects directly
for those internal objects that
are not configurable
- provides the Configuration
API which defines the com-
plete set of allowed customi-
zations for the
ComponentConfigurator to
tailor operation as desired

• SupplierComponent1, Sup-
plierComponent2

- represent external compo-
nents to which the Configur-
able Component must be
related during construction

3.2.6 Collaborations
The collaborations listed here apply

when the Abstract Factory pattern15 is

10

applied for configuring the objects internal
to the component as described in 3.2.8
Implementation.

• The Configurator creates an
Abstract Factory object, passing
in any references to supplier
components as constructor argu-
ments.

• The Configurator creates the
component by constructing the
façade and providing the factory
as a constructor argument.

• The façade invokes methods on
the factory to create the internal
objects and receive references to
both the created internal objects
and possibly external suppliers.

• Consumers then receive refer-
ences to the created component
via their configurators and in-
voke member functions in the
User API to access operational
capabilities of the component.

3.2.7 Consequences
The Configurable Component pattern

has the following benefits and drawbacks:
1. Increases reusability. Allows

components to be used in more
situations by allowing customi-
zation.

2. Identifies potential tailorings.
The Configuration API defines
the receptacles that provide cus-
tomization hooks. The recepta-
cles allow flexible configuration
of functionality or performance
customizations via aggregation
during component construction
and initialization.

3.2.8 Implementation
Consider the following issues when

implementing the Configurable Component
pattern:

1. What parts are configurable?
One of the most basic issues is
identifying the component inter-
nals that should be made cus-
tomizable. Directly contained
objects are inflexible and are
typically only acceptable for
those parts that are extremely
stable and would never require
customization in any reasonably
expected usage. Any internal
objects that might require cus-
tomization should be pluggable
to aid reusability. The hooks pro-
vided by Configurable Compo-
nents clearly indicate which parts
are customizable.

2. Tailoring functionality or per-
formance. Customizations may
be desirable for any reason, not
only to affect the component’s
functional behavior. Tailoring
may also be advantageous in
cases where simplified imple-
mentations can be plugged in for
streamlined performance.

3. Abstract Factory. A clear and
concise way to define the Con-
figuration API is through use of
the Abstract Factory pattern.16 In
this method, an abstract factory
class is created that has member
functions for creating or other-
wise returning a reference to each
configurable entity. Users then
inherit from the base class and
fill in the implementation with
the specific desired configured
items. The factory is passed into
the façade constructor for use
during component construction.

11

This method also helps avoid
lengthy constructor argument
lists when there are many config-
urable items.

4. Required or optional tailoring.
The receptacles defined by the
Configuration API may be either
required or optional for compo-
nent operation. Receptacles may
be designed as optional by pro-
viding a default plug internal to
the component or by virtue of the
fact that the plug will simply not
be used if not present. The later
typically occurs when there is a
variable length list of plugs in
which case the component sim-
ply iterates over the provided
plugs.

5. Receptacles are relationships.
The receptacles in the Configu-
ration API are actually special
cases of relationships. In this
case, they are relationships to
pluggable customizations. Rec-
ognizing the different kinds of
component relationships aids un-
derstanding:
a. Static relationships. These

are set during construction
and remain unchanged during
system operation. The Con-
figuration API is solely com-
prised of these static
relationships. There are two
types of static relationships:
i. To other components –

these allow tailorable
component environments
where surrounding com-
ponents are flexible, not
tailorable component in-
ternals themselves.

ii. To plugged in customiza-
tions – these are related to

actual component tailor-
ings where objects inter-
nal to the component are
plugged in during con-
struction.

b. Dynamic relationships. These
are changed during normal
system operation. An exam-
ple of this is selecting the tar-
get towards which a specific
weapon is currently aimed.
Since these relationships are
an intrinsic part of using the
component, they are consid-
ered part of the User API.

6. Pushing or pulling plugs. Plugs
may be provided either by a con-
figurator passing the plugs in
during construction or by the
component retrieving them itself.
Pushing plugs makes the con-
figurator smarter at the expense
of the component. Conversely,
pulling plugs makes the compo-
nent smarter. Since configurators
are focused on the component
level, and the component façade
is more concerned with issues
internal to the component, the
following recommendation is
made:
a. Static relationships to other

components are established
by passing the references into
the component façade con-
structor.

b. Static relationships to
plugged in objects and the
creation of the objects them-
selves are provided by the
configurator creating an Ab-
stract Factory and passing its
reference to the component
façade for use during compo-
nent construction. This re-

12

duces configurator complex-
ity, localizes the creation is-
sues associated with a
specific component, and
clearly identifies to users
what items are tailorable
within the component.

3.2.9 Related Patterns
The Abstract Factory pattern is used

as the means for flexibly creating objects
internal to components.

4. Conclusion
This paper focuses on two important

characteristics of the software architecture:
• Layered Architecture
• Medium Grained Architecture
It is important to note that both of

these characteristics derive directly from the
original goals of encapsulating change and
maximizing reuse. The layering aspect
especially relates to developing an
application that is independent of the
hardware and avionics specifics of a single
aircraft. The medium granularity of the
components provides a system that can be
deployed on varying numbers of processors
in single processor or distributed hardware
configurations. Both of these goals directly
relate to the original decision of developing
a product line software system.

Patterns form a very powerful
technique for reusing and spreading
expertise. The pattern driven architecture
described herein leverages previous industry
experience to address the original goal of
defining a software architecture applicable
to a fighter aircraft mission processing
product line. The Component pattern
language defines the reusable software
elements and provides the complete
development community with understanding
of the underlying rationale, tradeoffs, and

implementation concerns involved. The
resulting component library embodies
reusable application elements available for
specific aircraft products. All of these
elements, including:

• Architecture,
• Components,
• Patterns, and
• Developer expertise

provide reusable artifacts, which are
exploited to reduce life cycle avionics
software cost.

5. Acknowledgements
The concepts described herein were

developed within the stimulating confines of
the project Software Core Architecture
Team. Their contributions, and especially
the many insights provided by founding
member Bryan Doerr, are gratefully
acknowledged. Our work also reflects an
extremely fruitful collaboration with Dr.
Douglas C. Schmidt and his colleagues at
Washington University in St. Louis,
Missouri. Thanks also go to Tim Popp, who
authored the original abstract for this paper.

1 Winter, Don C., “Modular, Reusable Flight
Software For Production Aircraft”, 15th AIAA/IEEE
Digital Avionics Systems Conference Proceedings,
October, 1996, p. 401-406.

2 Johnson, Ralph, How to Develop Frame-
works, Conference on Object-Oriented Programming,
Systems, Languages, and Applications, October 1997.

3 Gamma et al, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-
Wesley, 1995, p. 10.

4 Schmidt, Douglas C., “A Family of Design
Patterns for Application-Level Gateways”, Theory
and Practice of Object Systems, Wiley & Sons, Vol.
2, No. 1, December 1996.

5 Buschmann et al., Pattern-Oriented
Software Architecture: A System of Patterns, Wiley
& Sons, 1996, p. xiv.

6 Ibid., p. 31-52.
7 Ibid., p. 125-144.
8 Beck, Kent, and Johnson, Ralph, “Patterns

Generate Architectures”, European Conference on

13

Object-Oriented Programming (ECOOP)
Proceedings, 1994.

9 Jacobson et al, Software Reuse: Architec-
ture Process and Organization for Business Success,
Addison-Wesley, 1997, p. 170-212.

10 Buschmann, p. 140.
11 Roberts, Don, and Johnson, Ralph,

“Evolving Frameworks: A Pattern Language for
Developing Object-Oriented Frameworks”, How to
Develop Frameworks, Conference on Object-
Oriented Programming, Systems, Languages, and
Applications, October 1997.

12 Harrison, Timothy, Levine, David, and
Schmidt, Douglas, “The Design and Performance of a
Real-time CORBA Event Service”, Conference on
Object-Oriented Programming, Systems, Languages,
and Applications Proceedings, October 1997, p. 184-
200.

13 Gamma et al., p. 6-8.
14 Ibid., p. 185-193.
15 Ibid., p. 87-95.
16 Ibid., p. 87-95.

	1. Introduction
	1.1 Software Project Goals
	1.2 Architecture Goals
	1.3 Patterns

	2. Top Level Architecture
	2.1.	Layers Pattern
	Model-View-Controller Pattern
	Top Level Architecture
	Model Architecture

	3.	Operational Flight Program Component Overview
	Component Pattern
	3.1.1 Intent
	3.1.2 Motivation
	3.1.3 Applicability
	3.1.4 Structure
	3.1.5 Participants
	3.1.6 Collaborations
	3.1.7 Consequences
	3.1.8 Implementation
	3.1.9 Related Patterns

	Configurable Component Design Pattern
	3.2.1 Intent
	3.2.2 Motivation
	3.2.3 Applicability
	3.2.4 Structure
	3.2.5 Participants
	3.2.6 Collaborations
	3.2.7 Consequences
	3.2.8 Implementation
	3.2.9 Related Patterns

	4. Conclusion
	5. Acknowledgements

