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1 Introduction

In this survey of the history of constructivism, more space has been devoted to
early developments (up till ca 1965) than to the work of the last few decades. Not
only because most of the concepts and general insights have emerged before 1965,
but also for practical reasons: much of the recent work is of a too technical and
complicated nature to be described adequately within the limits of this article.

Constructivism is a point of view (or an attitude) concerning the methods and
objects of mathematics which is normative: not only does it interpret existing math-
ematics according to certain principles, but it also rejects methods and results not
conforming to such principles as unfounded or speculative (the rejection is not always
absolute, but sometimes only a matter of degree: a decided preference for construc-
tive concepts and methods). In this sense the various forms of constructivism are
all ‘ideological’ in character.

Constructivism as a specific viewpoint emerges in the final quarter of the 19th
century, and may be regarded as a reaction to the rapidly increasing use of highly
abstract concepts and methods of proof in mathematics, a trend exemplified by the
works of R. Dedekind1 and G. Cantor2.

The mathematics before the last quarter of the 19th century is, from the view-
point of today, in the main constructive, with the notable exception of geometry,
where proof by contradiction was commonly accepted and widely employed.

Characteristic for the constructivist trend is the insistence that mathematical
objects are to be constructed (mental constructions) or computed; thus theorems
asserting the existence of certain objects should by their proofs give us the means
of constructing objects whose existence is being asserted.

L. Kronecker3 may be described as the first conscious constructivist. For Kro-
necker, only the natural numbers were ‘God-given’; all other mathematical objects
ought to be explained in terms of natural numbers (at least in algebra). Assertions
of existence should be backed up by constructions, and the properties of numbers

1(Julius Wilhelm) Richard Dedekind 1831–1916
2Georg Ferdinand Ludwig Philipp Cantor 1845–1918
3Leopold Kronecker 1823–1891
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defined in mathematics should be decidable in finitely many steps. This is in the
spirit of finitism (see the next section). Kronecker strongly opposed Cantor’s set
theory, but in his publications he demonstrated his attitude more by example than
by an explicit discussion of his tenets.

The principal constructivistic trends in this century are finitism already men-
tioned (section 2), semi-intuitionism and predicativism (section 3), intuitionism (sec-
tion 4), Markov’s constructivism (section 7) and Bishop’s constructivism (section
8).

Constructivism, in particular intuitionism, has given rise to a considerable amount
of metamathematical research (sections 5, 6).

Notations. We use N, Q, R for the set of natural, rational, and real numbers
respectively.

For logical symbols we use ¬ (not), ⊥ (falsehood), → (implication), ∧ (conjunc-
tion, and), ∨ (disjunction, or), ∀ (for all), ∃ (there exists). A,B,C are arbitrary
propositions or formulas of the language under discussion.

Usually n, m, k are elements of N, α, β number-theoretic functions (infinite se-
quences of natural numbers); ᾱn ≡ 〈α0, α1, . . . , α(n − 1)〉 is the initial segment of
α of length n; 〈 〉 is the empty sequence. n ∗m is the concatenation of n and m.

IPC, IQC, HA are systems of intuitionistic propositional logic, predicate logic,
and arithmetic respectively. In arithmetic, S is the sucessor function (i.e. Sx =
x + 1). These intuitionistic systems differ from standard axiomatizations of the
corresponding classical systems only by the absence of the principle PEM of the
excluded middle

PEM A ∨ ¬A,

or the principle of double negation ¬¬A → A.

2 Finitism

2.1. Finitist mathematics

Finitism may be characterized as based on the concept of natural number (or finite,
concretely representable structure), which is taken to entail the acceptance of proof
by induction and definition by recursion.

Abstract notions, such as ‘constructive proof’, ‘arbitrary number-theoretic func-
tion’ are rejected. Statements involving quantifiers are finitistically interpreted in
terms of quantifier-free statements. Thus an existential statement ∃xAx is regarded
as a partial communication, to be supplemented by providing an x which satisfies
A. Establishing ¬∀xAx finitistically means: providing a particular x such that Ax
is false.

In this century, T. Skolem4 was the first to contribute substantially to finitist

4Thoralf Skolem 1887–1963
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mathematics; he showed that a fair part of arithmetic could be developed in a
calculus without bound variables, and with induction over quantifier-free expressions
only. Introduction of functions by primitive recursion is freely allowed (Skolem
1923). Skolem does not present his results in a formal context, nor does he try to
delimit precisely the extent of finitist reasoning.

Since the idea of finitist reasoning was an essential ingredient in giving a pre-
cise formulation of Hilbert’s programme (the consistency proof for mathematics
should use intuitively justified means, namely finitist reasoning), Skolem’s work is
extensively reported by D.Hilbert5 and P.Bernays6. Hilbert also attempted to cir-
cumscribe the extent of finitist methods in a global way; the final result is found in
‘Die Grundlagen der Mathematik’ (Hilbert & Bernays 1934, chapter 2).

In 1941 H. B. Curry7 and R.L. Goodstein8 independently formulated a purely
equational calculus PRA for primitive recursive arithmetic in which Skolem’s argu-
ments could be formalized, and showed that the addition of classical propositional
logic to PRA is conservative (i.e. no new equations become provable). PRA con-
tains symbols for all primitive recursive functions, with their defining equations, and
an induction rule of the form: if t[0] = t′[0], and t[Sx] = s[x, t[x]], t′[Sx] = s[x, t′[x]]
has been derived, then we may conclude t[x] = t′[x].

Goodstein carried the development of finitist arithmetic beyond Skolem’s results,
and also showed how to treat parts of analysis by finitist means (Goodstein 1957,
1959).

Recently W.W.Tait9 made a new attempt to delimit the scope of finitist reasoning
(Tait 1981). He defends the thesis that PRA is indeed the limit of finitist reasoning.
Any finitely axiomatized part of PRA can be recognized as finitist, but never all
of PRA, since this would require us to accept the general notion of a primitive
recursive function, which is not finitist.

In recent years there has been a lot of metamathematical work showing that large
parts of mathematics have an indirect finitist justification, namely by results of the
form: a weak system S in a language with strong expressive power is shown to be
consistent by methods formalizable in PRA, from which it may be concluded that
S is conservative over PRA. A survey of such results is given in (Simpson 1988).

2.2. Actualism

A remark made in various forms by many authors, from G. Mannoury10 in 1909
onwards, is the observation that already the natural number concept involves a
strong idealization of the idea of ‘concretely representable’ or ‘visualizable’. Such an
idealization is implicit in the assumption that all natural numbers are constructions

5David Hilbert 1862–1943
6Paul Bernays
7Haskell Brooks Curry
8Reuben L. Goodstein
9William W. Tait

10Gerrit Mannoury 1857–1956
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of the same kind, whether we talk about very small numbers such as 3 or 5, or
extremely large ones such as 999

. In reality, we cannot handle 999
without some

understanding of the general concept of exponentiation. The objection to finitism,
that it is not restricted to objects which can be actually realized (physically, or in
our imagination) one might call the ‘actualist critique’, and a programme taking the
actualist critique into account, actualism (sometimes called ‘ultra-intuitionism’, or
‘ultra-finitism’).

The first author to defend an actualist programme, was A.S. Esenin-Vol’pin11 in
1957. He intended to give a consistency proof for ZF using only ‘ultra-intuitionist’
means. Up till now the development of ‘actualist’ mathematics has not made much
progress — there appear to be inherent difficulties associated with an actualist
programme.

However, mention should be made of a paper by R. Parikh12 (Parikh 1971), mo-
tivated by the actualist criticism of finitism, where is indicated, by technical results,
the considerable difference in character between addition and multiplication on the
one hand and exponentiation on the other hand. Together with work in complexity
theory, this paper has stimulated the research on polynomially bounded arithmetic,
as an example of which may be quoted the monograph ‘Bounded Arithmetic’ (Buss
1986).

3 Predicativism and semi-intuitionism

3.1. Poincaré

The French mathematician H. Poincaré13 wrote many essays on the philosophy of
mathematics and the sciences, collected in (Poincaré 1902, 1905, 1908, 1913); his
ideas played an important role in the debate on the foundations of mathematics in
the early part of this century. One cannot extract a unified and coherent point of
view from Poincaré’s writings. On the one hand he is a forerunner of the (semi-)
intuitionists and predicativists, on the other hand he sometimes expresses formal-
ist views, namely where he states that existence in mathematics can never mean
anything but freedom from contradiction.

For the history of constructivism, Poincaré is important for two reasons:
(1) Explicit discussion and emphasis on the role of intuition in mathematics,

more especially ‘the intuition of pure number’. This intuition gives us the principle
of induction for the natural numbers, characterized by Poincaré as a ‘synthetic
judgment a priori’. That is to say, the principle is neither tautological (i.e. justified
by pure logic), nor is it derived from experience; instead, it is a consequence of our
intuitive understanding of the notion of number. In this respect, Poincaré agrees
with the semi-intuitionists and Brouwer.

11A.S. Esenin-Vol’pin ?
12Rohit J. Parikh
13Henri Poincaré 1854–1913
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(2) According to Poincaré, the set-theoretic paradoxes are due to a vicious circle,
namely the admission of impredicative definitions: defining an object N by referring
to a totality E (in particular by quantifiying over E), while N itself belongs to E.

Poincaré’s standard example is J.Richard’s14 paradox (Richard 1905): let E
be the totality of all real numbers given by infinite decimal fractions, definable in
finitely many words. E is clearly countable, so by a wellknown Cantor style diagonal
argument we can define a real N not in E. But N has been defined in finitely
many words! However, Poincaré, adopting Richard’s conclusion, points out that the
definition of N as element of E refers to E itself and is therefore impredicative. For
a detailed discussion of Poincaré’s philosophy of mathematics, see (Mooij 1966).

3.2. The semi-intuitionists

The term ‘semi-intuitionists’ or ‘empirists’ refers to a group of French mathemati-
cians, in particular E. Borel15 , H. Lebesgue16 , R. Baire17, and the Russian math-
ematician N.N.Luzin18. Their discussions of foundational problems are always in
direct connection with specific mathematical developments, and thus have an ’ad
hoc’, local, character; also the views within the group differ.

What the semi-intuitionists have in common is the idea that, even if mathemati-
cal objects exist independently of the human mind, mathematics can only deal with
such objects if we can also attain them by mentally constructing them, i.e. have
access to them by our intuition; in practice, this means that they should be explic-
itly definable. In addition, pragmatical considerations occur: one is not interested
in arbitrary objects of a certain kind, but only in the ones which play an important
role in mathematics (which ‘occur in nature’ in a manner of speaking).

We shall illustrate semi-intuitionism by a summary of the views of Borel, the
most explicit and outspoken of the semi-intuitionists. According to Borel, one can
assert the existence of an object only if one can define it unambiguously in finitely
many words. In this concern with definability there is a link with predicativism (as
described below in 3.4); on the other hand, there is in Borel’s writings no explicit
concern with impredicativity and the vicious circle principle, as in the writings of
Poincaré and H.Weyl19 . (The Borel sets, introduced by Borel in the development of
measure theory, are a ‘continuous’ analogue of the hyperarithmetic sets, which may
be regarded as a first approximation to the general notion of a predicative subset of
the natural numbers, but this was not known to Borel.)

With respect to the reality of the countably infinite, Borel takes a somewhat
pragmatical attitude: while conceding the strength of the position of the strict

14Jules Richard
15(Félix Édouard) Émile Borel 1871–1970
16Henri (-Léon) Lebesgue 1875–1941
17(Louis) René Baire
18Nikolai Nikolaevich Luzin (Nicolas Lusin) 1893-1950
19Hermann Weyl 1885–1955
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finitist, he observes that the countably infinite plays a very essential role in math-
ematics, and mathematicians have in practice always agreed on the correct use of
the notion:

‘ The notion of the countably infinite appears therefore [. . . ] as a limit
possibility conceived by our imagination, just like the ideal line or the
perfect circle.’ (Borel 1914, p.179)

In other words, the natural numbers and the principle of complete induction are
intuitively clear.

Borel explains the Richard paradox, not by referring to the impredicative charac-
ter of the definition of N , but by the observation that N has not been unambiguously
defined; the collection E is countable, but not effectively enumerable and hence the
construction of N cannot be carried out (Borel 1914, p.165). This distinction would
later obtain a precise formulation in recursion theory.

Borel explicitly introduced the notion of a calculable real number; a function f is
calculable if f(x) is calculable for each calculable x, and he observes that a calculable
function must necessarily be continuous, at least for calculable arguments (Borel
1914, p.223). This foreshadows Brouwer’s wellknown theorem on the continuity of
all real functions (cf. section 6.1).

3.3. Borel and the continuum

Borel rejected the general notion of an uncountable set, as an essentially nega-
tive notion. According to Borel, Cantor’s diagonal argument only shows that the
continuum cannot be exhausted by a countable set. Obviously, on this view the
continuum presents a problem. On the one hand it is the basic concept in analysis,
on the other hand it cannot be described as ‘the set of its (definable) elements’ since
it is uncountable. Thus Borel remarks in 1908:

‘ [ . . . ] the notion of the continuum, which is the only well-known ex-
ample of a non-denumerable set, that is to say a set of which the math-
ematicians have a clear idea in common (or believe to have in common,
which in practice amounts to the same thing). I regard that notion as
acquired from the geometric intuition of the continuum; it is well-known
that the complete arithmetical notion of the continuum requires that
one admits the legitimacy of an infinity of countably many successive
arbitrary choices’. (Borel 1914, p.162)

(The term ‘arithmetic theory of the continuum’, or ‘arithmetization of the con-
tinuum’, frequently appears in discussions of constructivism in the early part of
this century. By this is meant the characterization of the continuum as a set of
reals, where the real numbers are obtained as equivalence classes of fundamental
sequences of rationals, or as Dedekind cuts. Since the rationals can be enumerated,
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this achieves a reduction of the theory of the continuum to numbertheoretical or
‘arithmetical’ functions.)

In 1912 Borel remarks that one can reason about certain classes of objects, such
as the reals, since the class is defined in finitely many words, even if not all elements
of the class are finitely definable. Therefore Borel had to accept the continuum as
a primitive concept, not reducible to an arithmetical theory of the continuum.

Although the fact is not mentioned by Borel, the idea of a continuum consisting
of only countably many definable reals suggests a ‘measure-theoretic paradox’, for
if the reals in [0, 1] are countable, one can give a covering by a sequence of intervals
I0, I1, I2, . . . with

∑∞
n=0 |In| < 1, where |In| is the length of In. (Such coverings

are called singular.) The paradox is repeatedly mentioned in Brouwer’s publications
(e.g. Brouwer 1930), as a proof of the superiority of his theory of the continuum.

3.4. Weyl

Motivated by his rejection of the platonistic view of mathematics prevalent in Can-
torian set theory and Dedekind’s foundation of the natural number concept, Weyl,
in his short monograph ‘Das Kontinuum’ (Weyl 1918) formulated a programme
for predicative mathematics; it appears that Weyl had arrived at his position in-
dependently of Poincaré and B.Russell20. Predicativism may be characterized as
‘constructivism’ w.r.t. definitions of sets (but not w.r.t. the use of logic): sets are
constructed from below, not characterized by singling them out among the members
of a totality conceived as previously existing.

Weyl accepted classical logic and the set of natural numbers with induction and
definition by recursion as unproblematic. Since the totality of natural numbers is
accepted, all arithmetical predicates make sense as sets and we can quantify over
them. The arithmetically definable sets are the sets of rank 1, the first level of a
predicative hierarchy of ranked sets; sets of higher rank are obtained by permitting
quantification over sets of lower rank in their definition. Weyl intended to keep the
developments simple by restricting attention to sets of rank 1.

On the basis of these principles Weyl was able to show for example: Cauchy se-
quences of real numbers have a limit; every bounded monotone sequence of reals has
a limit; every countable covering by open intervals of a bounded closed interval has
a finite subcovering; the intermediate value theorem holds (i.e. a function changing
sign on an interval has a zero in the interval); a continuous function on a bounded
closed interval has a maximum and a minimum.

After his monograph appeared, Weyl became for a short period converted to
Brouwer’s intuitionism. Later he took a more detached view, refusing the exclusive
adoption of either a constructive or an abstract axiomatic approach. Although Weyl
retained a lifelong interest in the foundations of mathematics, he did not influence
the developments after 1918. An excellent summary of Weyl’s development, as well

20Bertrand Russell 1872–1970
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as a technical analysis of ‘Das Kontinuum’ has been given by S.Feferman21 (1988,
Weyl).

3.5. Predicativism after ‘das Kontinuum’

After Weyl’s monograph predicativism rested until the late fifties, when interest re-
vived in the work of M. Kondô22, A. Grzegorczyk23 and G. Kreisel24. Kreisel showed
that the so-called hyperarithmetic sets known from recursion theory constituted an
upper bound for the notion ‘predicatively definable set of natural numbers’. Fefer-
man and K. Schütte25 addressed the question of the precise extent of predicative
analysis; they managed to give a characterization of its proof theoretic ordinal. Type
free formalizations for predicative analysis with sets of all (predicative) ranks were
developed. In recent years also many formalisms have been shown to be indirectly
reducible to predicative systems, cf. (Feferman 1988, Hilbert).

The books of P. Lorenzen26 (Lorenzen 1955, 1965) may be regarded as a direct
continuation of Weyl’s programme.

4 Brouwerian intuitionism

4.1. Early period

In his thesis ‘Over de Grondslagen der Wiskunde’ (Brouwer 1907) the Dutch mathe-
matician L.E.J. Brouwer27 defended, more radically and more consistently than the
semi-intuitionists, an intuitionist conception of mathematics. Brouwer’s philosophy
of mathematics is embedded in a general philosophy, the essentials of which are
found already in (Brouwer 1905). To these philosophical views Brouwer adhered
all his life; a late statement may be found in (Brouwer 1949). With respect to
mathematics, Brouwer’s main ideas are

1. Mathematics is not formal; the objects of mathematics are mental construc-
tions in the mind of the (ideal) mathematician. Only the thought constructions
of the (idealized) mathematician are exact.

2. Mathematics is independent of experience in the outside world, and mathemat-
ics is in principle also independent of language. Communication by language
may serve to suggest similar thought constructions to others, but there is no
guarantee that these other constructions are the same. (This is a solipsistic
element in Brouwer’s philosophy.)

21Solomon Feferman
22Motokiti Kondô
23Andrzej Grzegorczyk
24Georg Kreisel, born 1926
25Kurt Schütte
26Paul Lorenzen
27Luitzen Egbertus Jan Brouwer 1881–1966
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3. Mathematics does not depend on logic; on the contrary, logic is part of math-
ematics.

These principles led to a programme of reconstruction of mathematics on intuition-
istic principles (‘Brouwer’s programme’ or ‘BP’ for short). During the early period,
from say 1907 until 1913, Brouwer did the major part of his work in (classical) topol-
ogy and contributed little to BP. In these years his view of the continuum and of
countable sets is quite similar to Borel’s position on these matters. Thus he writes

‘ The continuum as a whole was intuitively given to us; a construction
of the continuum, an act which would create “all” its parts as individu-
alized by the mathematical intuition is unthinkable and impossible. The
mathematical intuition is not capable of creating other than countable
quantities in an individualized way.’ (Brouwer 1907, p.62, cf. also p.10)

On the other hand, already in this early period there are also clear differences;
thus Brouwer did not follow Borel in his pragmatic intersubjectivism, and tries to
explain the natural numbers and the continuum as two aspects of a single intuition
(‘the primeval intuition’).

Another important difference with Borel c.s. is, that Brouwer soon after finishing
his thesis realized that classical logic did not apply to his mathematics (see the next
section). Nevertheless, until circa 1913 Brouwer some of the views of the semi-
intuitionists and did not publicly dissociate himself from them.

4.2. Weak counterexamples and the creative subject

Already in (Brouwer 1908) a typically intuitionistic kind of counterexample to cer-
tain statements A of classical mathematics was introduced, not counterexamples
in the strict sense of deriving a contradiction from the statement A, but examples
showing that, assuming that we can prove A intuitionistically, it would follow that
we had a solution to a problem known to be as yet unsolved. Undue attention
given to these examples often created for outsiders the erroneous impression that
intuitionism was mainly a negative activity of criticizing classical mathematics.

Example. Consider the set X ≡ {x : x = 1 ∨ (x = 2 ∧ F )} where F is any as yet undecided
mathematical statement, such as the Riemann hypothesis. X is a subset of the finite set {1, 2},
but we cannot prove X to be finite, since this would require us to decide whether X has only one,
or two elements, and for this we would have to decide F . (Intuitionistically, a set is finite if it can
be brought into a constructively specified 1-1 correspondence with an initial part of the natural
numbers.) So we have found a weak counterexample to the statement ‘a subset of a finite set is
finite’.

By choosing our undecided problems suitably, it is also possible to give a weak
counterexample to: ‘for reals x, x < 0 or x = 0 or x > 0’, or to ‘for all reals x,
x ≤ 0 or x ≥ 0’. Brouwer used these examples to show the need for an intuitionistic
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revision of certain parts of the classical theory, and to demonstrate how classically
equivalent definitions corresponded to distinct intuitionistic notions.

G.F.C. Griss28, in a number of publications between 1944 and 1955, advocated a
form of intuitionistic mathematics without negation, since one cannot have a clear
conception of what it means to give proof of a proposition which turns out to be
contradictory (cf. the interpretation of intuitionistic implication and negation in
subsection 5.2).

In reaction to Griss, Brouwer published in 1948 an example of a statement in the
form of a negation which could not be replaced by a positive statement. Brouwer’s
example involved a real number defined by explicit reference to stages in the ac-
tivity of the ideal mathematician trying to prove an as yet undecided statement A.
An essential ingredient of Brouwer’s argument is that if the ideal mathematician
(creative subject in Brouwer’s terminology) is certain that at no future stage of his
mathematical activity he will find A to be true, it means that he knows that ¬A
(Brouwer seems to have used such examples in lectures since 1927).

The argument illustrates the extreme solipsistic consequences of Brouwer’s intu-
itionism. Because of their philosophical impact, these examples generated a good
deal of discussion and inspired some metamathematical research, but their impact
on BP was very limited, in fact almost nihil.

4.3. Brouwer’s programme

After 1912, the year in which he obtained a professorship at the University of Am-
sterdam, Brouwer started in earnest on his programme, and soon discovered that
for a fruitful reconstruction of analysis his ideas on the continuum needed revision.
Around 1913 he must have realized that the notion of choice sequence (appearing in
a rather different setting in Borel’s discussion of the axiom of choice) could be legit-
imized from his viewpoint and offered all the advantages of an ‘arithmetical’ theory
of the continuum. The first paper where the notion is actually used is (Brouwer
1919).

In the period up to 1928 he reconstructed parts of the theory of pointsets, some
function theory, developed a theory of countable well-orderings and, together with
his student B. de Loor29, gave an intuitionistic proof of the fundamental theorem of
algebra.

Brouwer’s ideas became more widely known only after 1920, when he lectured
on them at many places, especially in Germany.

After 1928, Brouwer displayed very little mathematical activity, presumably as
a result of a conflict in the board of editors of the ‘Mathematische Annalen’ (cf.
Van Dalen 1990). From 1923 onwards, M.J. Belinfante30 and A. Heyting31, and

28George François Cornelis Griss
29Barend de Loor
30Maurits Joost Belinfante
31Arend Heyting 1898–1980
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later also Heyting’s students continued BP. Belinfante investigated intuitionistic
complex function theory in the thirties. Heyting dealt with intuitionistic projective
geometry and algebra (in particular linear algebra and elimination theory). In the
period 1952-1967, six of Heyting’s Ph.D students wrote theses on subjects such as
intuitionistic topology, measure theory, theory of Hilbert spaces, the Radon integral,
intuitionistic affine geometry. After 1974, interesting contributions have been made
by W. Veldman32, he studied a.o. the intuitionistic analytic hierarchy.

The discovery of a precise notion of algorithm in the thirties (the notion of a
(general) recursive function) as a result of the work of A.Church33, K. Gödel34,
J.Herbrand35, A.M.Turing36 and S.C.Kleene37, did not affect intuitionism. This is
not really surprising: most of these characterizations describe algorithms by spec-
ifying a narrow language in which they can be expressed, which is utterly alien to
Brouwer’s view of mathematics as the languageless activity of the ideal mathemati-
cian. Turing’s analysis is not tied to a specific formalism. Nevertheless he bases his
informal arguments for the generality of his notion of algorithm on the manipulation
of symbols and appeals to physical limitations on computing; and such ideas do not
fit into Brouwer’s ideas on mathematics as a ‘free creation’.

Without Heyting’s sustained efforts to explain Brouwer’s ideas and to make them
more widely known, interest in intuitionism might well have died out in the thirties.
However, most of the interest in intuitionism concerned its metamathematics, not
BP, contrary to Heyting’s intentions. Heyting’s monograph (Heyting 1956) was
instrumental in generating a wider interest in intuitionism.

The next two sections will be devoted to the codification of intuitionistic logic
and the gradual emergence of the metamathematics of constructive theories.

5 Intuitionistic Logic and Arithmetic

5.1. L.E.J. Brouwer and intuitionistic logic

The fact that Brouwer’s approach to mathematics also required a revision of the
principles of classical logic was not yet clearly realized by him while writing his
thesis, but in 1908 Brouwer explicitly noted that intuitionism required a different
logic. In particular, he noted that the principle of the excluded middle A ∨ ¬A is
not intuitionistically valid. Implicitly, of course, the meaning of the logical operators
had been adapted to the intuitionistic context, that is the intuitionistic meaning of
a statement A∨¬A is different from the classical one. With a quote from (Brouwer
1908):

32Willem Henri Maria Veldman
33Alonzo Church
34Kurt Gödel 1906–1978
35Jacques Herbrand 1908–1931
36Alan Mathison Turing 1912–1954
37Stephen Cole Kleene, born 1909
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‘is it allowed, in purely mathematical constructions and transformations,
to neglect for some time the idea of the mathematical system under con-
struction and to operate in the corresponding linguistic structure, follow-
ing the principles of [ . . . ] and can we have confidence that each part of
the argument can be justified by recalling to the mind the corresponding
mathematical construction?’

A first important technical contribution to intuitionistic logic is made in (Brouwer
1924, Zerlegung), namely the observation that ¬¬¬A ↔ ¬A is an intuitionistic log-
ical law.

5.2. The Brouwer-Heyting-Kolmogorov interpretation

The standard informal interpretation of logical operators in intuitionistic logic is the
so-called proof-interpretation or Brouwer-Heyting-Kolmogorov interpretation (BHK-
interpretation for short). The formalization of intuitionistic logic started before
this interpretation was actually formulated, but it is preferable to discuss the BHK-
interpretation first since it facilitates the understanding of the more technical results.
On the BHK-interpretation, the meaning of a statement A is given by explaining
what constitutes a proof of A, and proof of A for logically compound A is explained
in terms of what it means to give a proof of its constituents. Thus, for propositional
logic:

1. A proof of A ∧B is given by presenting a proof of A and a proof of B.

2. A proof of A ∨B is given by presenting either a proof of A or a proof of B.

3. A proof of A → B is a construction which transforms any proof of A into a
proof of B.

4. Absurdity ⊥ (‘the contradiction’) has no proof; a proof of ¬A is a construction
which transforms any supposed proof of A into a proof of ⊥.

Such an interpretation is implicit in Brouwer’s writings (e.g. Brouwer 1908, 1924,
Zerlegung) and has been made explicit by Heyting for predicate logic (Heyting 1934),
and by A.N.Kolmogorov38 (Kolmogorov 1932) for propositional logic.

Kolmogorov formulated what is essentially the same interpretation in different
terms: he regarded propositions as problems, and logically compound assertions as
problems explained in terms of simpler problems, e.g. A → B represents the problem
of reducing the solution of B to the solution of A. Initially Heyting and Kolmogorov
regarded their respective interpretations as distinct; Kolmogorov stressed that his
interpretation also makes sense in a classical setting. Later Heyting realized that,
at least in an intuitionistic setting, both interpretations are practically the same.

38Andrei Nikolaevich Kolmogorov 1903–1987
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5.3. Formal intuitionistic logic and arithmetic till 1940

Kolmogorov’s paper from 1925, written in Russian, is the earliest published formal-
ization of a fragment of intuitionistic logic, and represents a remarkable achieve-
ment, but had very little effect on the developments (in 1933 still unknown to
Gödel, and not seen by Heyting in 1934). Kolmogorov does not assume the ‘ex falso
sequitur quodlibet’ P → (¬P → Q) which is justifiable on the basis of the BHK-
interpretation. The system of intuitionistic logic with the ‘ex falso’ deleted became
known as minimal logic and is of some interest in connection with completeness
problems.

V.I.Glivenko39 presented in 1928 a (not complete) formalization of intuitionistic
propositional logic and derives from this informally ¬¬(¬P ∨ P ), ¬¬¬P → ¬P ,
(¬P ∨ P → ¬Q) → ¬Q, and uses these theorems to show that the interpretation
of (Barzin and Errera 1927) of Brouwer’s logic, according to which a proposition
intuitionistically is either true, or false, or ‘tierce’, is untenable; a nice example of
the use of formalization to settle a philosophical debate.

Heyting wrote a prize essay on the formalization of intuitionistic mathematics
which was crowned by the Dutch Mathematical Association in 1928; the essay ap-
peared in revised form in 1930. The first of the three papers (Heyting 1930) contains
a formalization of intuitionistic propositional logic in its present extent. The second
paper deals with predicate logic and arithmetic. Predicate logic does not yet appear
in its final form, due to a defective treatment of substitution, and the (not quite
consistent) germs of a theory permitting non-denoting terms. Arithmetic as pre-
sented in the second paper is a fragment of Heyting arithmetic as it is understood
today, since there are axioms for addition (in the guise of a definition) but not for
multiplication. The third paper deals with analysis. The system is very weak due
to a lack of existence axioms for sets and functions.

In 1929 Glivenko formulated and proved as a result of his correspondence with
Heyting the ‘Glivenko theorem’: in propositional logic ¬¬A is intuitionistically prov-
able if and only if A is classically provable.

Kolmogorov in his paper from 1925 describes an embedding of classical proposi-
tional logic into (his fragment of) intuitionistic propositional logic, thereby anticipat-
ing the work of Gödel (1933) and G.Gentzen40(also dating from 1933, but published
only in 1965), and argues that this embedding is capable of generalization to stronger
systems. Gödel’s embedding is formulated for arithmetic, but can be adapted in an
obvious way to predicate logic. In Gentzen’s version prime formulas P are first
replaced by ¬¬P , and the operators . . . ∨ . . ., ∃x . . . by ¬(¬ . . . ∧ ¬ . . .),¬∀x¬ . . .
respectively. In Kolmogorov’s version ¬¬ is inserted simultaneously in front of every
subformula. The various embeddings are logically equivalent. If ∗ is one of these
embeddings, then A∗ ↔ A classically, and A∗ is provable intuitionistically if and
only if A is provable classically.

39Valerĭi Ivanovich Glivenko 1897–1940
40Gerhard Gentzen 1909–1945
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Gödel’s embedding made it clear that intuitionistic methods went beyond finitism,
precisely because abstract notions were allowed. This is clear e.g. from the clause
explaining intuitionistic implication in the BHK-interpretation, since there the ab-
stract notion of constructive proof and construction are used as primitives. This
fact had not been realized by the Hilbert school until then; Bernays was the first
one to grasp the implications of Gödel’s result.

Quite important for the proof theory of intuitionistic logic was the formulation in
(Gentzen 1935) of the sequent calculi LK and LJ. Using his cut elimination theorem,
Gentzen showed that for IQC the disjunction property DP holds: if ` A ∨ B, then
` A or ` B. Exactly the same method yields the explicit definability or existence
property ED: if ` ∃xA(x) then ` A(t) for some term t. These properties present
a striking contrast with classical logic, and have been extensively investigated and
established for all the usual intuitionistic formal systems.

The earliest semantics for IPC, due to the work of S.Jaskowski41, M.H. Stone42,
A.Tarski43, G.Birkhoff44, T. Ogasawara45in the years 1936-1940 was algebraic se-
mantics, with topological semantics as an important special case. In algebraic se-
mantics, the truth values for propositions are elements of a Heyting algebra (also
known as Brouwerian lattice, pseudo-complemented lattice, pseudo-Boolean alge-
bra, or residuated lattice with bottom). A Heyting algebra is a lattice with top
and bottom, and an extra operation → such that a ∧ b ≤ c iff a ≤ b → c, for all
elements a, b, c of the lattice. An important special case of a Heyting algebra is
the collection of open sets of a topological space T ordered under inclusion, where
U → V := Interior(V ∪ (T \ U)). The logical operations ∧,∨,→,¬ correspond to
the lattice operations ∧,∨,→ and the defined operation ¬a := a → 0, where 0 is the
bottom of the lattice. (A boolean algebra is a special cases of a Heyting algebra.)

5.4. Metamathematics of intuitionistic logic and arithmetic after 1940

In the early forties Kleene devised an interpretation which established a connection
between the notion of computable (= recursive) function and intuitionistic logic, the
realizability interpretation (Kleene 1945).

The essence of the interpretation is that it so to speak hereditarily codes informa-
tion on the explicit realization of disjunctions and existential quantifiers, recursively
in numerical parameters. The definition is by induction on the number of logical
symbols of sentences (= formulas without free variables): with every formula A one
associates a predicate ‘x realizes A’, where x is a natural number. Typical clauses
are

1. n realizes t = s iff t = s is true.

41Stanislaw Jáskowski
42M.H.Stone?
43Alfred Tarski
44Garrett Birkhoff
45Tôzirô Ogasawara
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2. n realizes A → B iff for all m realizing A, n •m realizes B;

3. n realizes ∃mB(m) iff n is a pair (m, k), and k realizes B(m).

Here • is the operation of application between a number and the code of a partial
recursive function. Kleene established the correctness of this interpretation: if HA `
A, then for some number n, n realizes A.

The interest of the interpretation is, that it makes more true than just what is
coded in the formalism HA. In particular, the following version of Church’s thesis
may be shown to be realizable:

CT0 ∀n∃mA(n,m) → ∃k∀nA(n, k •m)

a principle which is easily seen to be incompatible with classical logic. Realizability
and its many variants have become a powerful tool in the study of metamathematics
of constructive systems.

We now turn to the further development of truth-value semantics. Algebraic se-
mantics was extended to predicate logic, and A.Mostowski46in 1949 was the first one
to apply topological models to obtain underivability results for IQC. This develop-
ment culminated in the monograph (Rasiowa and Sikorski 1963). Although algebraic
semantics has proved to be technically useful in metamathematical research, it is so
to speak only the algebraic version of the syntax, as witnessed by the fact that IPC
itself can be made into a Heyting algebra (the Lindenbaum algebra of IPC). More
important from a conceptual point of view are two other semantics, Beth models,
due to E.W.Beth47(Beth 1956, 1959), and Kripke models, due to S.Kripke48 (Kripke
1965).

Both these semantics are based on partially ordered sets. We call the elements
k, k′, k′′ . . . of a partially ordered set (K,≤) nodes. In Kripke models the partial
order is arbitrary, in Beth models as defined by Beth it is a finitely branching tree.
The interest of these models resides in the intuitive interpretation of the partial
order: for Beth models, each node represents a state of information in time, and a
higher node represents a possible state of information at a later point in time. The
branching of the tree reflects the fact that there are different possibilities for the
extension of our knowledge in the future. In the Kripke models, it is more natural
to think of the nodes as representing possible stages of knowledge; a higher node in
the ordering corresponds to an extension of our knowledge. (That is to say, passing
to a later period in time does not force us to move upwards in a Kripke model, only
extension of our knowledge does.) In these models one has a notion of ‘A is true at
k’, or ‘k forces A’. Falsehood ⊥ is nowhere forced. It is possible to interpret Beth
and Kripke models as topological models for special spaces.

An important aspect of Beth models is the connection with intuitive intuitionis-
tic validity; a formula A(R1, . . . , Rn) of IQC, containing predicate letters R1, . . . , Rn

46Andrzej Mostowski 1913–1975
47Evert Willem Beth 1908–1964
48Saul Kripke
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is intuitionistically valid if for all domains D and all relations R∗
i of the appropri-

ate arity (i.e. the appropriate number of argument places), AD(R∗
1, . . . , R

∗
n) holds

intuitionistically; here AD(R∗
1, . . . R

∗
n) is obtained from A by restricting quantifiers

to D, and replacing Ri by R∗
i .

From observations by G.Kreisel in 1958 it follows that, for propositional logic,
validity in a Beth model is equivalent to intuitive validity for a collection of propo-
sitions Pα

1 , Pα
2 , . . . , Pα

n depending on a lawless parameter α (for the explanation of
‘lawless’ see the next section).

Beth and Kripke proved completeness for their respective kinds of semantics by
classical methods. (Beth originally believed to have also an intuitionistic complete-
ness proof for his semantics.) Veldman was able to show that if one extends the
notion of Beth model to fallible Beth models, where it is permitted that in cer-
tain nodes falsehood is forced, it is possible to obtain an intuitionistic completeness
proof for Kripke semantics. The idea was transferred to Kripke semantics by H. de
Swart49. For the fragment of intuitionistic logic without falsehood and negation, fal-
lible models are just ordinary models. For minimal logic, where ⊥ is regarded as an
arbitrary unprovable proposition letter, one has intuitionistic completeness relative
to ordinary Beth models. The best results in this direction can be obtained from
work by H.Friedman50from ca. 1976 (cf. Troelstra & van Dalen 1988, 2, chapter
13).

C.A.Smoryński51 used Kripke models with great virtuosity in the study of the
metamathematics of intuitionistic arithmetic (see Smoryński 1973).

5.5. Formulas-as-types

In essence, the ‘formulas-as-types’ idea (may be ‘propositions-as-types’ would have
been better) consists in the identification of a proposition with the set of its (in-
tuitionistic) proofs. Or stated in another form: in a calculus of typed objects, the
types play the role of propositions, and the objects of a type A correspond to the
proofs of the proposition A.

Thus, since on the BHK-interpretation a proof of an implication A → B is an
operation transforming proofs of A into proofs of B, the proofs of A → B are a set
of functions from (the proofs of) A to (the proofs of) B. Similarly, (the set of proofs
of) A∧B is the set of pairs of proofs, with first component a proof of A, and second
component a proof of B. So A ∧B corresponds to a cartesian product.

A clear expression to this idea was given in the late sixties (circa 1968–1969),
by W.A.Howard52, and by N.G.de Bruijn53; H. Läuchli54around the same time used
the idea for a completeness proof for IQC for a kind of realizability semantics.

49Henricus Cornelis Maria de Swart, born 1944
50Harvey Friedman
51Craig A. Smoryński
52William A. Howard
53Nicolaas Govert de Bruijn
54H. Läuchli ?
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The analogy goes deeper: one can use terms of a typed lambda calculus to denote
natural deduction proofs, and then normalization of proofs corresponds to normal-
ization in the lambda calculus. So pure typed lambda calculus is in a sense the same
as IPC in natural deduction formulation; similarly, second-order lambda calculus
(polymorphic lambda calculus) is intuitionistic logic with propositional quantifiers.

The formulas-as-types idea is a guiding principle in much recent research in type
theory on the borderline of logic and theoretical computer science. It is used in the
type theories developed by P.Martin-Löf55 (Martin-Löf 1975, 1984) to reduce logic
to type theory; thus proof by induction and definition by recursion are subsumed
under a single rule in these theories. Formulas-as-types plays a key role in the proof-
checking language AUTOMATH devised by de Bruijn and collaborators since the
late sixties.

The formulas-as-types idea has a parallel in category theory, where propositions
correspond to objects, and arrows to (equivalence classes of) proofs. J. Lambek56

investigated this parallel for IPC in (Lambek 1972) and later work, culminating in
the monograph (Lambek & Scott 1986).

6 Intuitionistic analysis and stronger theories

6.1. Choice sequences in Brouwer’s writings

As already remarked, the continuum presented a problem to the semi-intuitionists;
they were forced to introduce it as a primitive notion, while Brouwer in his thesis
tried to explain the continuum and the natural numbers as emanating both from a
single ‘primeval intuition’.

However, when Brouwer started (circa 1913) with his intuitionistic reconstruction
of the theory of the continuum and the theory of pointsets, he found that the notion
of choice sequence, appearing in Borel’s discussion of the axiom of choice (as the
opposite, so to speak, of a sequence defined in finitely many words, and therefore in
Borel’s view of a dubious character) could be regarded as a legitimate intuitionistic
notion, and as a means of retaining the advantages of an arithmetic theory of the
continuum.

In Brouwer’s intuitionistic set theory the dominating concept is that of a spread
(German: ‘Menge’). Slightly simplifying Brouwer’s original definition, we say that
a spread consists essentially of a tree of finite sequences of natural numbers, such
that every sequence has at least one successor, plus a law L assigning objects of a
previously constructed domain to the nodes of the tree. Choice sequences within a
given spread correspond to the infinite branches of the tree. Brouwer calls a sequence
L(ᾱ1), L(ᾱ2), L(ᾱ3), . . . , (α an infinite branch) an element of the spread. Below
we shall use ‘spread’ only for trees of finite sequences of natural numbers without

55Per Martin-Löf
56Joachim Lambek
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finite branches, corresponding to the trivial L satisfying L(ᾱ(n + 1)) = αn. Since it
is not the definition of a spread, but the way the choice sequences are given to us,
which determines the properties of the continuum, we shall henceforth concentrate
on the choice sequences.

The notion of spread is supplemented by the notion of species, much closer to
the classical concept of set; one may think of a species as a set of elements singled
out from a previously constructed totality by a property (as in the separation axiom
of classical set theory).

The admissibility of impredicative definitions is not explicitly discussed in Brouwer’s
writings, though it is unlikely that he would have accepted impredicative definitions
without restrictions. On the other hand, his methods allow more than just predica-
tive sets over N: Brouwer’s introduction of ordinals in intuitionistic mathematics is
an example of a set introduced by a so-called generalized inductive definition, which
cannot be obtained as a set defined predicatively relative to N.

A choice sequence α of natural numbers may be viewed as an unfinished, ongoing
process of choosing values α0, α1, α2, . . . by the ideal mathematician (IM); at any
stage of his activity the IM has determined only finitely many values plus, possibly,
some restrictions on future choices (the restrictions may vary from ‘no restrictions’
to ‘choices henceforth completely determined by a law’). For sequences completely
determined by a law or recipe we shall use lawlike; other mathematical objects not
depending on choice parameters are also called lawlike. An important principle
concerning choice sequences is the

Continuity principle or continuity axiom. If to every choice sequence α of
a spread a number n(α) is assigned, n(α) depends on an initial segment
ᾱm = α0, α1, . . . , α(m − 1) only, that is to say for all choice sequences
β starting with the same initial segment ᾱm, n(β) = n(α).

This principle is not specially singled out by Brouwer, but used in proofs (for
the first time in course notes from 1916-17), more particularly in proofs of what
later became known as the bar theorem. From the bar theorem (explained below)
Brouwer obtained an important corollary for the finitary spreads, the

Fan theorem. If to every choice sequence α of a finitely branching spread
(fan) a number n(α) is assigned, there is a number m, such that for all
α, n(α) may be determined from the first m values of α (i.e. an initial
segment of length m).

The fan theorem may be seen as a combination of the compactness of finite trees
with the continuity axiom; Brouwer uses the fan theorem in particular to derive

The uniform continuity theorem. Every function from a bounded closed
interval into R is uniformly continuous.

The essence of the bar theorem is best expressed in a formulation which appears
in a footnote in (Brouwer 1927), and was afterwards used by Kleene as an axiom in
his formalization of intuitionistic analysis.
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Bar theorem.If the ‘universal spread’ (i.e. the tree of all sequences of
natural numbers) contains a decidable set A of nodes such that each
choice sequence α has an initial segment in A, then for the set of nodes
generated by (i) X ⊂ A, (ii) if all successors of a node n are in X, then
n ∈ X, it follows that the empty sequence is in X.

Originally, in (Brouwer 1919), the fan theorem is assumed without proof. In 1923
Brouwer presents an unsatisfactory proof of the uniform continuity theorem, in 1924
he proves this theorem via the fan theorem which in its turn is obtained from the bar
theorem; his 1924 proof of the bar theorem is repeated in many later publications
with slight variations.

Brouwer’s proof of the bar theorem has often been regarded as obscure, but has
also been acclaimed as containing an idea of considerable interest. For in this proof
Brouwer analyzes the possible forms of a constructive proof of a statement of the
form ∀α∃nA(ᾱn) for decidable A.

More precisely, the claim made by Brouwer, in his proof of the bar theorem, amounts to the
following. Let Sec(n) (‘n is secured’) mean ‘All α through the node n pass through A’, Now
Brouwer assumes that a ‘fully analyzed proof’ of the statement 〈 〉 ∈ Sec or Sec(〈 〉) (i.e. all α pass
through A), can consist of three kinds of steps only:

(i) n ∈ A, hence Sec(n);
(ii) if for all i Sec(n ∗ 〈i〉), then Sec(n);
(iii) if Sec(n), then Sec(n ∗ 〈i〉).

Brouwer then shows that steps of the form (iii) may be eliminated, from which one readily obtains
the bar theorem in the form given above.

Nowadays the proof is regarded not so much obscure as well as unsatisfactory.
As Kleene (Kleene & Vesley 1965, p.51 ) rightly observes, Brouwer’s assumption
concerning the form of ‘fully analyzed proofs’ is not more evident than the bar
theorem itself. On the other hand, the notion of ‘fully analyzed’ proof or ‘canonical’
proof was used later by M.A.E.Dummett57 (Dummett 1977) in his attempts to give
a more satisfactory version of the BHK-interpretation of intuitionistic logic.

6.2. Axiomatization of intuitionistic analysis

In Heyting’s third formalization paper from 1930 we find for the first time a formal
statement of the continuity principle. For a long time nothing happened till Kleene
in 1950 started working on the axiomatization of intuitionistic analysis; his work
culminated in the monograph (Kleene & Vesley 1965). Kleene based his system on
a language with variables for numbers and choice sequences; to arithmetical axioms
he added an axiom of countable choice, the axiom of bar induction (equivalent to
the bar theorem as formulated above) and a continuity axiom, a strengthening of
the continuity principle as stated above (‘Brouwer’s principle for functions’).

The continuity axiom was the only non-classical principle, and Kleene estab-
lished its consistency relative to the other axioms using a realizability interpretation

57Michael A.E. Dummett
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(function-realizability). He also showed, by means of another realizability notion,
that Markov’s principle (see 7.2) was not derivable in his system.

In 1963 Kreisel developed an axiomatization based on a language with number
variables and two kinds of function variables, for lawlike sequences and for choice
sequences. He sketched a proof of the conservativity of the axioms for choice se-
quences relative to the lawlike part of the system, by means of a translation of an
arbitrary sentence into the lawlike part of the theory (the ‘elimination translation’).
This work finally resulted in (Kreisel & Troelstra 1970).

J. Myhill58 in 1967 introduced an axiom intended to express the consequences
in the language of analysis of Brouwer’s solipsistic theory of the creative subject (as
reported above in 4.2), called by him Kripke’s scheme (KS) since Kripke was the
first to formulate this principle. KS is

∃α((∃x(αx 6= 0) → A) ∧ (∀x(αx = 0) → ¬A)

for arbitrary A. KS conflicts with Brouwer’s principle for functions. (Brouwer’s
reasoning seems to justify in fact the even stronger ∃α(∃x(αx 6= 0) ↔ A)). Myhill’s
conceptual analysis of the notion of choice sequence is considerably more refined
earlier attempts.

There is an obvious connection between Kripke’s scheme and the theory of the creative subject
mentioned in subsection 4.2. For any proposition A, the α in KS may be interpreted as: αn 6= 0
if and only if the creative subject has found evidence for the truth of A at stage n of his activity.

Brouwer appears to have vacillated w.r.t. the precise form which restrictions
on choice sequences could take, but in his published writings he does not explicitly
consider subdomains of the universe of choice sequences which are characterized
by the class of restrictions allowed, except for the trivial example of the lawlike
sequences.

In 1958 Kreisel considered ‘absolutely free’ (nowadays lawless) sequences rang-
ing over a finitely branching tree, where at any stage in the construction of the
sequence no restriction on future choices is allowed; later this was extended to an
axiomatization LS of the theory of lawless sequences ranging over the universal
tree (Kreisel 1968). Lawless sequences are of interest because of their conceptual
simplicity (when compared to other concepts of choice sequence), as a tool for study-
ing other notions of choice sequence (see e.g. (Troelstra 1983)), and because they
provide a link between Beth-validity and intuitive intuitionistic validity (cf. 5.4).

As a result of work of Kreisel, Myhill and A.S.Troelstra59, mainly over the period
1963-1980, it became clear that many different notions of choice sequence may be
distinguished, with different properties. For a survey of this topic and its history
see (Troelstra 1977 , Appendix C; 1983).

58John Myhill
59Anne Sjerp Troelstra, born 1939
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The publication of (Bishop 1967) led to several proposals for an axiomatic frame-
work for Bishop’s constructive mathematics, in particular a type-free theory of op-
erators and classes (Feferman 1975, 1979), and versions of intuitionistic set theory
(Friedman 1977). Martin-Löf’s type theories have also been considered in this con-
nection (Martin-Löf 1975, 1984). As shown by Aczel in 1978, one can interpret
a constructive set theory CZF in a suitable version of Martin-Löf’s type theory.
(CZF does not have a powerset axiom; instead there are suitable collection axioms
which permit to derive the existence of the set of all functions from x to y for any
two sets x and y; moreover, the foundation axiom has been replaced by an axiom
of ∈-induction). Much of this work is reported in the monograph (Beeson 1985);
Beeson60 himself made substantial contributions in this area.

6.3. The model theory of intuitionistic analysis

Topological models and Beth models turned out to be very fruitful for the metamath-
ematical study of intuitionistic analysis, type theory and set theory. D.S. Scott61

was the first to give a topological model for intuitionistic analysis, in two papers
from 1968 and 1970. In this model the real numbers are represented by the contin-
uous functions over the topological space T underlying the model. For suitable T ,
all real-valued functions are continuous in Scott’s model.

This later developed into the so-called sheaf models for intuitionistic analysis,
type theory and set theory, with a peak of activity in the period 1977-1984. The
inspiration for this development not only came from Scott’s models just mentioned,
but also from category theory, where W.Lawvere62(Lawvere 1971) developed the
notion of elementary topos — a category with extra structure, in which set theory
and type theory based on intuitionistic logic can be interpreted. The notion of
elementary topos generalized the notion of Grothendieck topos known from algebraic
geometry, and is in a sense ‘equivalent’ to the notion of an intuitionistic type theory.

Even Kleene’s realizability interpretation can be extended to type theory and be
recast as an interpretation of type theory in a special topos (Hyland 1982).

Some of the models studied are mathematically interesting in their own right,
and draw attention to possibilities not envisaged in the constructivist tradition (e.g.
analysis without an axiom of countable choice, where the reals defined by Dedekind
cuts are not isomorphic to the reals defined via fundamental sequences of rationals).

60Michael J. Beeson
61Dana Stewart Scott, born 1932
62William Lawvere
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7 Constructive recursive mathematics

7.1. Classical recursive mathematics

Before we can discuss Markov’s version of constructive mathematics, it is necessary
to say a few words on classical recursive mathematics (RM for short).

In RM, recursive versions of classical notions are investigated, against a back-
ground of classical logic. The difference with a more strictly constructive approach
is illustrated by the following example:

(0,−1)

(1, 0)
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(3, 1)
f0
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¡
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¡
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The function fa(x) given by fa(x) = f0(x) + a, where f0 is as in the picture, cannot
be constructively proved to have a zero as long as we do not know whether a ≤ 0
or a ≥ 0. But even classically we can show that fa does not have a zero recursively
in the parameter a - and this is typically a result of RM.

Where in constructive recursive mathematics the recursivity in parameters is
built into the constructive reading of the logical operators, in RM the recursiveness
has to be made explicit.

RM is almost as old as recursion theory itself, since already Turing introduced
“computable numbers” (Turing 1937), and it is still expanding today. We mention
a few examples.

E.Specker63 was the first to construct an example of a recursive bounded mono-
tone sequence of rationals without a recursive limit (Specker 1949). Such sequences
are now known as Specker sequences.

Kreisel and D.Lacombe64 constructed singular coverings of the interval in 1957;
Kreisel, Lacombe and J.Shoenfield65 showed, also in 1957, that every effective oper-
ation of type 2 is continuous (an effective operation of type 2 is a partial recursive
operation with code u say, acting on codes x, y of total recursive functions such that
∀z(x•z = y •z) → u•x = u•y; continuity of u means that u•x depends on finitely
many values only of the function coded by x).

63Ernst Specker
64Daniel Lacombe
65Joseph Shoenfield
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A.I.Maltsev66 and Y.L.Ershov67 developed (mainly in the period 1961-1974) the
‘theory of numerations’ as a systematic method to lift the notion of recursiveness
from N to arbitrary countable structures (Ershov 1972). In 1974 G.Metakides68 and
A.Nerode69 gave the first applications of the powerful priority method from recursion
theory to problems in algebra; see (Metakides & Nerode 1979). As an example of a
recent striking result we mention the construction of a recursive ordinary differential
equation without recursive solutions, obtained by M.B. Pour-El70 and J.I. Richards71

in 1979.
For a recent monograph, see (Pour-El & Richards 1989).

7.2. Constructive recursive mathematics

A.A. Markov72 formulated in 1948-49 the basic ideas of constructive recursive math-
ematics (CRM for short). They may be summarized as follows.

1. objects of constructive mathematics are constructive objects, concretely: words
in various alphabets.

2. the abstraction of potential existence is admissible but the abstraction of actual
infinity is not allowed. Potential realizability means e.g. that we may regard
plus as a well-defined operation for all natural numbers, since we know how
to complete it for arbitrarily large numbers.

3. a precise notion of algorithm is taken as a basis (Markov chose for this his own
notion of ‘Markov-algorithm’).

4. logically compound statements have to be interpreted so as to take the pre-
ceding points into account.

Not surprisingly, many results of RM can be bodily lifted to CRM and vice versa.
Sometimes parallel results were discovered almost simultaneously and independently
in RM and CRM respectively. Thus the theorem by Kreisel, Lacombe and Shoenfield
mentioned above is in the setting of CRM a special case of a theorem proved by
G.S.Tsĕitin73 in 1959: every function from a complete separable metric space into a
separable metric space is continuous.

N.A.Shanin74 (Shanin 1958) formulated a “deciphering algorithm which makes
the constructive content of mathematical statements explicit. By this reinterpre-
tation an arbitrary statement in the language of arithmetic is reformulated as a

66A.I.Maltsev ?
67Yurĭi Leonidovich Ershov, born 1940
68Georges Metakides
69Anil Nerode
70Marian Boykan Pour-El
71(Jonathan) Ian Richards
72Andrei Andreevich Markov 1903–1979
73Grigorij Samuilovich Tsĕitin, born 1936
74Nikolai Aleksandrovich Shanin, born 1919
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formula ∃x1 . . . xiA where A is normal, i.e. does not contain ∨, ∃ and the string
of existential quantifiers may be interpreted in the usual way. Shanin’s method is
essentially equivalent to Kleene’s realizability, but has been formulated in such a
way that normal formulas are unchanged by the interpretation (Kleene’s realizabil-
ity produces a different although intuitionistically equivalent formula when applied
to a normal formula).

The deciphering method systematically produces a constructive reading for no-
tions defined in the language of arithmetic; classically equivalent definitions may
obtain distinct interpretations by this method. But not all notions considered in
CRM are obtained by applying the method to a definition in arithmetic (example:
the ‘FR-numbers’ are the reals corresponding to the intuitionistic reals and are given
by a code α for a fundamental sequence of rationals, together with a code β for a
modulus of convergence, i.e. relative to a standard enumeration of the rationals
〈rn〉n the sequence is 〈rαn〉n, and ∀mm′(|rβn+m − rβn+m′| < 2−k). An F-sequence is
an FR-sequence with the β omitted. The notion of an F-sequence does not arise as
an application of the deciphering algorithm.)

Markov accepted one principle not accepted in either intuitionism or Bishop’s
constructivism: if it is impossible that computation by an algorithm does not ter-
minate, then it does terminate. Logically this amounts to what is usually called
Markov’s principle:

MP ¬¬∃x(fx = 0) → ∃x(fx = 0) (f : N → N recursive.)

The theorem by Tsejtin, mentioned above, needs MP for its proof.
The measure-theoretic paradox (cf. 3.3) is resolved in CRM in a satisfactory

way: singular coverings of [0, 1] do exist, but the sequence of partial sums
∑k

n=0 |In|
does not converge, but is a Specker sequence; and if the sequence does converge, the
limit is ≥ 1, as shown by Tsejtin and I.D.Zaslavskĭi75 in 1962.

In recent years (after ca. 1985) the number of contributions to CRM has consid-
erably decreased. Many researchers in CRM have turned to more computer-science
oriented topics.

8 Bishop’s constructivism

8.1. Bishop’s constructive mathematics

In his book ‘Foundations of constructive mathematics’ the American mathemati-
cian E. Bishop76 launched his programme for constructive mathematics. Bishop’s
attitude is both ideological and pragmatical: ideological, inasmuch he insists that
we should strive for a type of mathematics in which every statement has empirical
content, and pragmatical in the actual road he takes towards his goal.

75Igor’ Dmitrievich Zaslavskĭi, born 1932
76Errett Bishop 1928-1983
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In Bishop’s view, Brouwer successfully criticized classical mathematics, but had
gone astray in carrying out his programme, by introducing dubious concepts such as
choice sequences, and wasting much time over the splitting of classical concepts into
many non-equivalent ones, instead of concentrating on the mathematically relevant
versions of these concepts. In carrying out his programme, Bishop is guided by three
principles:

1. avoid concepts defined in a negative way;

2. avoid defining irrelevant concepts — that is to say, among the many possi-
ble classically equivalent, but constructively distinct definitions of a concept,
choose the one or two which are mathematically fruitful ones, and disregard
the others;

3. avoid pseudo-generality, that is to say, do not hesitate to introduce an extra
assumption if it facilitates the theory and the examples one is interested in
satisfy the assumption.

Statements of Bishop’s constructive mathematics (BCM for short) may be read
intuitionistically without distortion; sequences are then to be regarded as given by
a law, and accordingly, no continuity axioms nor bar induction are assumed.

Statements of BCM may also be read by a Markov-constructivist without es-
sential distortion; the algorithms are left implicit, and no use is made of a precise
definition of algorithm.

Thus BCM appears as a part of classical mathematics, and the situation may be
illustrated graphically in the diagram below, where ‘INT’ stands for intuitionistic
mathematics, and ‘CLASS’ for classical mathematics.
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However, it should not be forgotten that this picture is not to be taken at face
value, since the mathematical statements have different interpretations in the various
forms of constructivism.

In the actual implementation of his programme, Bishop not only applied the
three principles above, but also avoided negative results (only rarely did he present
a weak counterexample), and concentrated almost exclusively on positive results.
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There has been a steady stream of publications contributing to Bishop’s pro-
gramme since 1967 until now; two of the most prolific contributors are F. Richman77

and D.E.Bridges78. The topics treated cover large parts of analysis, including the
theory of Banach spaces and measure theory, parts of algebra (e.g. abelian groups,
Noetherian groups) and topology (e.g. dimension theory, the Jordan curve theorem).

8.2. The relation of BCM to INT and CRM

The success of Bishop’s programme has left little scope for traditional intuitionistic
mathematics; to some extent this is also true of CRM. For all of BCM may at
the same time be regarded as a contribution to INT; moreover, in many instances
where in INT a routine appeal would be made to a typical intuitionistic result,
such as the uniform continuity theorem for functions defined on a closed bounded
interval, the corresponding treatment in in BCM would simply add an assumption of
uniform continuity for the relevant function, without essential loss in mathematical
content. Thus to find scope for specifically intuitionistic reasoning, one has to look
for instances where the use of typically intuitionistic axioms such as the continuity
axiom or the fan theorem results in a significantly better or more elegant result, and
such cases appear to be comparatively rare.

To some extent the above, mutatis mutandis, also applies to constructive re-
cursive mathematics. Thus, for example, the usefulness of the beautiful Kreisel-
Lacombe-Shoenfield-Tsejtin theorem is limited by two factors: (1) an appeal to the
theorem can often be replaced by an assumption of continuity in the statement of
the result to be proved; (2) in many cases, continuity without uniform continuity
is not enough, as witnessed e.g. by Kushner’s example of a continuous function on
[0,1] which is not integrable.

In the literature contributing to Brouwer’s and Markov’s programme, a compar-
atively large place is taken by counterexamples and splitting of classical notions.
This may be compared with periods in the development of classical analysis and
topology in which there was also considerable attention given to ‘pathologies’. In
this comparison, BCM exemplifies a later stage in constructivism.

Finally, let us note that in classical mathematics there arise questions of con-
structivity of a type which has not been considered in the constructivistic tradition
For example, one may attempt to find a bound on the number of solutions to a
number-theoretic problem, without having a bound for the size of the solutions; see
(Luckhardt 1989).

77F. Richman ?
78Douglas E.Bridges
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9 Concluding remarks

In the foundational debate in the early part of this century, constructivism played
an important role. Nevertheless, at any time only a handful of mathematicians have
been actively contributing to constructive mathematics (in the sense discussed here).

In the course of time, the focus of activity in constructive mathematics has shifted
from intuitionism to Markov’s constructivism, then to Bishop’s constructivism. In
addition there has been a steady flow of contributions to classical recursive mathe-
matics, a subject which is still flourishing.

Much more research has been devoted to intuitionistic logic and the metamathe-
matics of constructive systems. In this area the work has recently somewhat ebbed,
but its concepts and techniques play a significant role elsewhere, e.g. in theoret-
ical computer science and artificial intelligence, and its potential is by no means
exhausted (example: the notion of ‘formulas-as-types’ and Martin-Löf-style type
theories).

New areas of application lead to refinement and modification of concepts devel-
oped in another context. Thus a recent development such as ‘linear logic’ (Girard
1987) may be seen as a refinement of intuitionistic logic, obtained by pursuing the
idea of a ‘bookkeeping of resources’ seriously.
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Heijenoort, J. van, From Frege to Gödel, Harvard University Press, Cambridge
(Mass.) 1967.

Heyting, A., Die formalen Regeln der intuitionistischen Logik, Sitzungsberichte der
Preussischen Akademie von Wissenschaften, Physikalisch Mathematische Klasse,
1930, pp.158–169; Die formalen Regeln der intuitionistischen Mathematik, Ibidem
pp.57–71, 158–169.

Heyting, A., Mathematische Grundlagenforschung. Intuitionismus. Beweistheorie,
Springer Verlag, Berlin 1934.

Heyting, A., Intuitionism, an introduction, North-Holland Publ. Co., Amsterdam 1956,
19662, 19713.

Hilbert, D., Bernays, P., Grundlagen der Mathematik Vol. I, Springer Verlag, Berlin,
1934, 19682.

Hyland, J.M.E., The effective topos, in The L.E.J. Brouwer Centenary Symposium,
edited by A.S. Troelstra, D. van Dalen, North-Holland Publ. Co., Amsterdam 1982,
pp. 165–216.



History of constructivism in the 20th century 30

Kleene, S.C., On the interpretation of intuitionistic number theory, The Journal of
Symbolic Logic 10, 1945, pp. 109–124.

Kleene, S.C., Vesley, R.E., The Foundations of Intuitionistic Mathematics, espe-
cially in Relation to Recursive Functions, North-Holland Publ. Co., Amsterdam
1965.

Kolmogorov, A.N., O printsipe tertium non datur (Russian) (On the principle of the
excluded middle), Matematicheskii Sbornik 32, 1925, pp.646–667. Translation (van
Heijenoort 1967, pp.414-437).

Kolmogorov, A.N., Zur Deutung der intuitionistischen Logik, Mathematische
Zeitschrift 35, 1932, pp. 58–65.

Kreisel, G., A remark on free choice sequences and the topological completeness proofs,
The Journal of Symbolic Logic 23, 1958, pp. 369–388.

Kreisel, G., Lawless sequences of natural numbers, Compositio Mathematica 20, 1968,
pp. 222–248.

Kreisel, G., Troelstra, A.S., Formal systems for some branches of intuitionistic
analysis, Annals of Mathematical Logic 1, 1970, pp. 229–387.

Kripke, S., Semantical analysis of intuitionistic logic, in Formal Systems and Recur-
sive Functions, edited by J.Crossley, M.A.E. Dummett, North-Holland Publ. Co.,
Amsterdam 1965, pp. 92–130.

Kushner, B.A., Lektsii po konstruktivnomu matematicheskomu analizu (Russian), 1973.
Translated as Lectures on Constructive Mathematical Analysis, American Mathe-
matical Society, Providence, Rhode Island, U.S.A. 1984.

Lambek, J., Deductive systems and categories III, in Toposes, Algebraic Geometry and
Logic, edited by F.W.Lawvere, Springer Verlag, Heidelberg 1972, pp.57–82.

Lambek, J., Scott, P.J., Introduction to higher order categorical logic, Cambridge Uni-
versity Press, Cambridge 1986.

Luckhardt, H., Herbrand-Analysen zweier Beweise des Satzes von Roth: polynomiale
Anzahlschranken, The Journal of Symbolic Logic 54, 1989, pp. 234–263.
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