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Abstract

We propose an algorithm for the conversion of grammars from an arbitrary FB-LTAG
grammar into a strongly equivalent HPSG-style grammar. Our algorithm converts LTAG
elementary trees into HPSG feature structures by encoding the tree structures in stacks. A
set of pre-determined rules manipulate the stack to emulate substitution and adjunction. We
have used our algorithm to obtain HPSG-style grammars from existing LTAG grammars. We
apply this algorithm to the XTAG English grammar and report some of our findings.

1 Introduction

Recent applications of NLP (Kay et al. 1994; Carroll et al. 1998) have taken advantage of
computationally and linguistically motivated approaches to the formalization of grammars, such
as the Feature-Based Lexicalized Tree Adjoining Grammar (FB-LTAG1: Vijay-Shanker 1987;
Vijay-Shanker and Joshi 1988) and the Head-Driven Phrase Structure Grammar (HPSG:Pol-
lard and Sag 1994). Discussion of the correspondences between the two formalisms has ac-
companied their development; i.e., their linguistic relationships and differences have been in-
vestigated (Abeillé 1993; Kasper 1998), as has conversion between two grammars in the two
formalisms (Kasper et al. 1995; Tateisi et al. 1998; Becker and Lopez 2000). These ongoing
efforts towardscollaborationhave contributed greatly to the development of the two formalisms,
and we believe that it is worth continuing in this direction.

This research is thus intended to provide a basis for further collaboration between the com-
munities, and is built around a proposed method of conversion from LTAG to HPSG. This differs
from previous methods of conversion in that it guaranteesstrong equivalence2; that is, the results
of parsing (derivation trees) by an LTAG grammar can be derived from those of the obtained

1Unless otherwise noted, we use the term LTAG to refer to FB-LTAG in this paper.
2Chomsky first introduced the notion of strong equivalence between grammars, where both grammars generate

the same set of structural descriptions (e.g., parse trees:Chomsky (1963)). Kornai and Pullum (1990)andMiller
(1999)used the notion of isomorphism between sets of structural descriptions to provide the notion of a strong
equivalence across grammar formalisms which we have adopted in this research.
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HPSG-style grammar and vice versa. Having strongly equivalent grammars based on differ-
ent formalisms is valuable for both communities from practical, computational, and theoretical
points of view in the following way (Becker and Lopez 2000):

Sharing of resourcesHPSG-based applications can make use of LTAG resources (lexicons and
grammars) such as the large-scale English (Doran et al. 2000) and French (Abeillé and
Candito 2000) grammars that have been developed. Our method of conversion can reduce
the considerable workload involved in developing large-scale resources from scratch. In
this paper, we report on the conversion of a large-scale LTAG grammar.

Parsing comparison Having strongly equivalent grammars allows us to compare two parsers
based on two different formalisms. Although most researchers believe that the HPSG
parsers are inefficient as compared to LTAG parsers from the viewpoint of the theoretical
bounds of worst time complexity, no results have been reported for empirical comparisons
of the respective levels of time complexity. This is because a comparison can only be
meaningful if it is based on strongly equivalent grammars, which had not been available.

Linguistic correspondence We are also able to explore the linguistic correspondences between
formalisms. Since the HPSG-style grammar obtained by our method has both the compu-
tational architecture that underlies HPSG and the linguistic specifications that were given
in the original LTAG, their difference will be made apparent by comparing the obtained
grammar with existing HPSG grammars (Kay et al. 1994; Flickinger 2000).

We used the conversion algorithm which we implemented to successfully convert the latest
version of the XTAG English grammar (The XTAG Research Group 2001), which is a large-scale
FB-LTAG grammar, into an HPSG-style grammar. Strong equivalence between the original and
obtained grammars was empirically attested to by the fact that parsing with these grammars
generated equivalent results. Strong equivalence of grammars allows the fair comparison of
LTAG and HPSG parsers. As an aside,Yoshinaga et al. (2001)have reported on an efficient
HPSG parser that achieved a significantly higher speed of parsing than an existing LTAG parser.
In this paper, we investigated the types of linguistic phenomena covered by the XTAG English
grammar, and the correspondence to their analysis in the HPSG formalism.

The existing works do not have the above three advantages, which are only attainable when
strong equivalence is preserved.Tateisi et al. (1998)have translated the same LTAG into an
HPSG. However, their method depended on a translator’s intuitive analysis of the original gram-
mar, and the translation was thus manual and grammar dependent. The manual translation de-
manded considerable efforts on the part of the translator, and this obscures the existence or non-
existence of strong equivalence between the original and obtained grammars. Other work has
involved the conversion of HPSG into LTAG (Kasper et al. 1995; Becker and Lopez 2000).
However, given the greater generative power of HPSG, the conversion required that some re-
strictions be placed on the input HPSG to suppress its generative capacity. Moreover, Becker
and Lopez discussed that there was overgeneration and undergeneration of the LTAG grammars.
Thus the results of conversion do not have strong equivalence.
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Figure 1: Tree Adjoining Grammar: basic structures and the compose operations used to them

2 Grammar formalisms

2.1 Feature-Based Lexicalized Tree Adjoining Grammar (FB-LTAG)

LTAG (Schabes et al. 1988), an input of our algorithm, provides syntactic analysis of a sentence
by using two operations, calledsubstitutionandadjunction, to composeelementary trees. This
is shown on the left-hand side of Figure1. An elementary tree has at least one leaf node that is
labeled with a terminal symbol (i.e., word) calledan anchor(marked with�). Elementary trees
are classified into two types,initial trees (α1 andα2) andauxiliary trees(β1). The label of one
leaf node of an auxiliary tree is identical to that of its root node and this is specially marked (here,
with ∗) asa foot node. In an elementary tree, leaf nodes other than anchors and a foot node are
calledsubstitution nodes(marked with↓).

The left-hand side of Figure1 illustrates the two operations. In substitution, a leaf node
(substitution node) is replaced by an initial tree, while in adjunction, an auxiliary tree with the
root node and a foot node labeledx is grafted onto a node with the same symbolx. The results
of analysis are described not only byderived trees(i.e., parse trees) but also byderivation trees
(the right-hand side of Figure1). Derivation trees represent the history of combinations of trees
and are the upper-level structural descriptions of LTAG.

FB-LTAG (Vijay-Shanker 1987; Vijay-Shanker and Joshi 1988) is an extension of the LTAG
formalism in which each node in the elementary trees has a feature structure, which contains the
set of grammatical constraints on that node.

2.2 Head-Driven Phrase Structure Grammar (HPSG)

We define an HPSG-style grammar, the form of the output of our algorithm, according to the
computational architecture which underlies HPSG (Pollard and Sag 1994). It consists oflexical
entriesand ID grammar rules, each of which is described with typed feature structures (Car-
penter 1992). The greater generative power of the underlying architecture of HPSG allows us to
obtain a trivial encoding of an LTAG in HPSG, as described byKeller (1994). However, such a
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Figure 2: Parsing with an HPSG grammar

conversion cannot answer our purpose because the obtained grammar is far from the one defined
by Pollard and Sag (1994). Hence, we restrict the form of an HPSG-style grammar to one which
follows the HPSG formalism in its lexicalist framework in the following way. A lexical entry
for a word must express the characteristics of the word, such as its subcategorization frame and
grammatical category. An ID grammar rule must represent the constraints on the configuration
of immediate constituency, and not be a construction-specific rule specified by lexical charac-
teristics. For example, in Figure2, the boxed numericals ‘n ’ called tagsexpress the sharing
of common values between the two sub-feature structures. Note thatPollard and Sag (1994)
provide detailed linguistic specifications for the form of feature structures and adoptprinciples,
such asthe Head Feature Principle, to depict linguistic properties. In our definition, we assume
that such principles are encoded in ID grammar rules, and do not give further linguistic specifica-
tions. The above restrictions enable us to not only define a formal link between an LTAG and an
HPSG-style grammar, both of which are lexicalist frameworks, but also clarify the relationships
between an HPSG-style grammar and HPSG. We will address this point later, in Section3.7.

Figure2 illustrates an example of bottom-up parsing with an HPSG-style grammar. In the
HPSG approach, as we can see in this example, a parse tree is generated by incrementally ap-
plying ID grammar rules to lexical entries and constructing each of the branching structures one
by one. Thus, the key points in the conversion are 1) how to encode the tree structure of an
elementary tree as an HPSG lexical entry, and 2) how to emulate substitution and adjunction by
ID grammar rules. Note that there is no one-to-one correspondence between an elementary tree
and an HPSG lexical entry because one elementary tree can have multiple anchors (i.e., words)
to represent compound expressions.

3 The algorithm

This section describes our conversion algorithm in detail. As noted in Section2, the tree struc-
tures of LTAG elementary trees should be encoded in HPSG lexical entries, and substitution and
adjunction should be emulated by ID grammar rules. Thus, we propose a conversion algorithm
which consists of: 1) the conversion of elementary trees into HPSG lexical entries and 2) the
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emulation of substitution and adjunction by pre-determined ID grammar rules.
In the following description, we start by definingcanonical elementary trees, which have a

one-to-one correspondence with HPSG lexical entries.3

Definition 3.1 (Canonical elementary tree)Canonical elementary trees are elementary trees
which satisfy the conditions below:

Condition 1: A tree has only one anchor.
Condition 2: Every branching structure in a tree contains trunk nodes.

Trunk nodesare nodes ona trunk which is a path from an anchor to the root node (the thick
lines in Figure3) other than the anchor (Kasper et al. 1995). Conditions 1 and 2 respectively
guarantee that a canonical elementary tree has only one trunk and that each branching consists
of a trunk node, a leaf node, and their mother which is also a trunk node, as seen in the example
on the left-hand side of Figure3. The right-hand side of Figure3 shows non-canonical trees. We
call a subtree of depthn(≥ 1) that includes no anchora non-anchored subtree. Non-canonical
elementary trees are converted to canonical trees before conversion into HPSG lexical entries by
the algorithm in the next section.

3.1 Conversion of canonical elementary trees

We can directly convert canonical elementary trees to HPSG lexical entries in the way shown
in Figure4. The procedureconvert tree into lexical entry in Figure4 presents an al-
gorithm for converting a canonical elementary treeT into an HPSG lexical entryL. In the
algorithm,arg is a stack of branchingsbi as described by a quadruplet〈ni−1, l i ,di , ti〉 along the
trunk. The parameterni−1 represents the mother node of the trunk nodeni. The parametersl i, di

3In this paper, we discuss the conversion of elementary trees which consist of binary branching structures. A
unary branching can be regarded as a binary branching whose sibling is the empty category, and n-ary (n ≥ 3)
branchings can be converted into binary branchings. Strong equivalence before and after the conversion is guaran-
teed, because the conversion are according to an one-to-one (i.e., isomorphic) mapping.
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procedure convert tree into lexical entry(T)
begin

arg := []
for i := 1 to depth(T)−1

ni−1 := trunk(T, i − 1)
l i := leaf(T, i)
di := direct(T, i)
ti := type(T, i)
bi := 〈ni−1, l i ,di , ti 〉
arg := [bi] ⊕ arg
end for

L := (ndepth(T)−1, arg)
return L;
end

depth: returns the depth of the anchor.
trunk: returns the symbol of the trunk node.
leaf: returns the symbol of the leaf node at depthi
direct: returns the side of the trunk node

for the leaf node at depthi
type: returns the type of the leaf node at depthi

Figure 4: An algorithm for converting a canonical elementary treeT to an HPSG lexical entryL
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andti represent the leaf node at a depthi; respectively, they represent the non-terminal symbol,
the direction (the side of the trunk nodeni on which the leaf node is), and the type (whether the
node is a foot node or a substitution node). We call this stackargumentsof the word. Finally,
the converted lexical entryL is described by the argumentsarg and the mother of the anchor,
namely,ndepth(T)−1 wheredepth(T) is the depth of the treeT. In the left-hand side of Figure4,
the value of theSym feature is the symbolndepth(T)−1 and the value of theArg feature contains the
arguments inarg, as a stack of feature structures with the four featuresSym, Leaf, Dir andFoot?,
which correspond toni−1, l i, di andti, respectively. In the recognition process, the parser pops an
element from theArg feature to select a node that is unifiable with that element. It follows that
the node with an empty stack as itsArg feature corresponds to the root node of the initial tree.

3.2 Definition of grammar rules

In this section, we provide the definition of the grammar rules which emulate substitution and
adjunction respectively and are thus calledsubstitution rulesandadjunction rules(in Figure5).
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In the figure, we give rules for the case where right-hand daughters correspond to the trunk nodes.
Of course, there are symmetric rules for the left-hand case. These rules are independent of the
input LTAG because they do not specify any given characteristics for the LTAG.

Substitution rule: TheSym feature of the node to which is applied substitution must be iden-
tical to theLeaf feature ‘3 ’ of the trunk node. The substitution rule percolates the tail elements
‘ 2 ’ of the Arg feature of the trunk node to the mother in order to continue constructing the tree.
The value of theArg feature of the node for substitution must be an empty stack〈 〉, because this
node must be unified only with the node that corresponds to the root node of the initial tree. The
value “−” or “+” of the Foot? feature explicitly determines whether the next rule to be applied
is the substitution rule or the adjunction rule.

Adjunction rule: TheSym feature of a foot node must be identical to theLeaf feature ‘3 ’ of
the trunk node. The value of theArg feature of the mother node is a concatenated stack of theArg
features, ‘2 ’ and ‘ 4 ’, of both of its daughters. This allows the parser to construct the tree which
corresponds to the adjoining tree and then to continue constructing the tree which corresponds
to the adjoined tree.

Figure6 shows examples of rule application. The thick lines indicate the adjoined tree (α1)
and the dashed lines indicate the adjoining tree (β1). The adjunction rule is applied to construct
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procedure divide tree into subtrees(MT)
begin

if (number(MT) = 0)
return {MT}
else

A := select(MT)
〈CT,T〉 := divtree(MT, A) · · · (1)

foreach T (T)
SST := divide tree into subtrees(T)

ST := SST ∪ ST

end foreach

ST := ST ∪ {CT}
return ST;

end

procedure divtree(MT, A)
begin

T := φ
for i := 1 to depth(MT, A)-1
if (nonleaf(arg(trunk(i))))
〈MT′ ,T〉 := cut(MT, arg(trunk(i))) · · · (2)

address(trunk(i), Address)
mark(Address, MT′, T) · · · (3)

T = T ∪ T
MT := MT′

end if

end for

CT := MT
return 〈CT,T〉
end

select: returns one of anchors (default: the left-most one).
depth: returns the depth of the anchor.
trunk: returns the trunk node at depthi
arg: returns the sibling node of the trunk node.
cut: cuts off the tree at the sibling node of the trunk node and

returns a subtree whose root node is the sibling node.
nonleaf: returns true if not a leaf node.
address: returns address in the elementary tree.
mark: marks an address for each cut-off node.

Figure 7: An algorithm for dividing a non-canonical elementary treeMT into a set of subtree
ST , each of which has at most one anchor.

the branching marked with?, where “think” takes as its argument the node whoseSym feature’s
value isS. By applying the adjunction rule, theArg feature of the mother nodeB becomes
a concatenated stack of theArg features of bothβ1, ‘ 8 ’, and α1, ‘ 5 .’ Note that when the
construction ofβ1 is completed, theArg feature of the trunk nodeC will return to its former state
A. We can continue constructingα1 in the same way as for the case where no adjunction had
been applied.

3.3 Division of multi-anchored trees

Non-canonical elementary trees are initially divided into multiple subtrees, each of which has at
most one anchor, as is shown in Figure7. We call the cutting nodes in the divided treescut-off
nodes. Note that a cut-off node is marked byan identifierto preserve the co-occurrence relation
among the multiple anchors.

The proceduredivide tree into subtrees in Figure7 represents an algorithm for divid-
ing a non-canonical elementary treeMT into a set of subtreesST . It starts by selecting one
anchorA, and the single-anchored treeCT of that anchorA, which consists of the trunk nodes
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procedure expand tree into anchored tree(NT)
begin

BR := na br(NT)
MT := {NT}
foreach BR (BR)

S := select(BR) · · · (1)

IT := initial(S)
MMT := φ
foreach MT (MT)
TMT := substitute(MT, S, IT) · · · (2)

mark(S)

MMT := TMT ∩MMT

end foreach

MT := MMT

end foreach

return MT

end

na br: returns the deepest branchings, whose
daughters do not consist of an anchor.

initial: returns all candidate trees whose root node is the
same as the leaf node.

select: returns one of leaf nodes (default: the left-most one).
substitute: causes substitution to the leaf node and

returns a set of resulting multi-anchored trees.
mark: marks the substituted node

Figure 8: An algorithm for converting a non-anchored subtreeNT to a set of multi-anchored
treesMT

and their sibling nodes, is then picked up ((1) in Figure7). We traverse the path from the root
node to the anchorA, cut off the sibling node4 arg(trunk(i)) if it is not a leaf node, and store
the addressof the elementary tree in the cut-off node as an identifier ((2) and(3) in Figure7).

Using this algorithm, multi-anchored elementary trees which only violates Condition 1 are
converted into canonical trees, while trees with non-anchored subtrees are converted into canon-
ical trees and non-anchored subtrees, which violate Condition 2. Non-anchored subtrees are
converted into canonical trees by the algorithm given in the next section.

3.4 Substitution in non-anchored subtrees

The non-canonical elementary trees which violate Condition 2 have non-anchored subtrees.
These non-anchored subtrees are first extracted by the algorithm in the previous section, and
are then converted into multi-anchored trees by substituting a substitution node on the deepest
branching by every candidate tree for substitution. The candidate trees for the application of this
process are selected from among the all canonical elementary trees and the ones obtained by the
algorithm in the previous section. Substituted nodes are marked asbreaking pointsto record
the origination of these nodes. Note that non-anchored subtrees are not selected as candidates
for substitution, because their root nodes originate from internal nodes of the elementary trees.
This guarantees that the multi-anchored trees obtained by this process will satisfy Condition 2.

4We should mention that the path from the foot node to the root node (spine: Kasper et al. 1995) in an auxiliary
tree must not be cut because the spine represents the chain of head signs between the root node and the foot node,
which are unified with the same internal node in the other trees.
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These trees can be converted into single-anchored trees, to which we can apply the algorithm in
Section3.1, by the algorithm in the previous section.

The procedureexpand tree into anchored tree in Figure8 represents an algorithm for
converting a non-anchored subtreeNT into multi-anchored treesMT . For each branching struc-
ture that consists of substitution nodes or foot nodes, one substitution nodeS is selected ((1) in
Figure8). The functionsubstitute applies a substitution to the nodeSof every candidate tree
which is substitutable forS((2) in Figure8).

3.5 Strong equivalence

In this section, we discuss how our algorithm guarantees strong equivalence between the gram-
mar it obtains and the original grammar. In the obtained grammar, the grammar rules are applied
only to those feature structures which correspond to nodes which are substitutable for/adjoinable
with the canonical elementary trees of the original LTAG because the branchings encoded in the
respective values ofArg specify the nodes to be subcategorized next. Strong equivalence also
holds for the conversion of non-canonical elementary trees. For trees that violate Condition 1, we
can distinguish the cut-off nodes from substitution nodes thanks to the identifiers, which allow
recovery of the co-occurrence relation between the divided trees. For trees that violate Condition
2, we can identify those nodes to which substitution is to be applied in a combined tree because
they are marked as breaking points, and thus consider the combined tree as two trees in the LTAG
derivation. We can thus avoid overgeneration by having the identifiers checked in the substitution
rules, and avoid undergeneration by substitutingall candidate trees for substitution nodes in the
algorithm in Section3.4.

Strong equivalence enables us to recover an LTAG derivation tree from an HPSG parse tree
by following the history of rule applications and mapping each of them to substitution or adjunc-
tion. Let us take the case of Figure6 as an example. We start by following the trunk node when
the substitution rule was applied, or the foot node when the adjunction rule was applied. We then
reach “love,” and recognize it as the anchor of an elementary tree whose root node is identical
to that of the parse tree. We then follow the path from the anchor to the root node to recognize
α1 and combinations betweenα1 and other elementary trees. Since we start by finding an appli-
cation of the substitution rule, we can map it to the substitution ofα3 toα1 by recognizing the
sibling node of the trunk node as the root node ofα3 and by recursively recovering the partial
derivation from the sibling subtree. Then, the next rule is the adjunction rule (marked with?),
and we find that the nodeA takes adjunction. We thus remember the length of the value of the
Arg feature of the nodeA, and follow the trunk with handling rule applications as ones for the
adjoining treeβ1 until the length of theArg feature is equal to that for the nodeA. This is the
case at the nodeC. This implies that the construction of the adjoining treeβ1 is completed at the
nodeC. We restart the recognition ofα1. After handling another application of the substitution
rule, we reach the root nodeS, and complete the recognition ofα1 and thus the whole derivation
tree.
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3.6 Extension to FB-LTAG

The above algorithms produce the conversion of an LTAG, and are easily extensible to handle
an FB-LTAG grammar by merely storing a feature structure for each node, together with the
symbol, in theSym feature andLeaf feature. The grammar rules are also extended to execute
the feature structure unification done in FB-LTAG.

3.7 Correspondence between an HPSG-style grammar and HPSG

The above algorithms provide a formal link between HPSG and LTAG via an HPSG-style gram-
mar. In this section, we discuss the linguistic correspondence between an HPSG-style grammar
and HPSG according to the syntactichead, which is a central notion in HPSG. In the following
discussion, we assume that the reader is familiar with HPSG (Pollard and Sag 1994).

In order to derive HPSG from an HPSG-style grammar that we have obtained, we must elabo-
rate on thesignof the HPSG-style grammar. HPSG provides a modular specification of linguistic
generalization by usingprinciplesandrule schematain the context of the lexicalist framework.5

On the other hand, our HPSG-style grammar implicitly captures some of the principles and
ID schemata of the definition in Section2.2 in the following way. The Immediate Dominance
Principle is satisfied by the use of the ID grammar rules. In the ID grammar rules,the Subcat-
egorization Principleis expressed by the structure-sharing of theSym andLeaf features which
correspond to theHEAD feature in HPSG. We should notice that a non-empty value for the
Arg feature of the foot node in the adjunction rules roughly corresponds to theSLASH feature
in HPSG, which supportsthe Nonlocal Feature Principle. The Arg feature thus corresponds
to concatenation of theSUBCAT andSLASH features of HPSG. Other principles, such asthe
Head Feature Principle, are implicitly encoded in the original FB-LTAG. We will extract such
principles in the LTAG context and subdivide the ID grammar rules into HPSG rule schemata by
analyzing feature percolation (Tateisi et al. 1998). We should mention the following two issues
in order to elaborate an HPSG-style grammar.

The distinction between predicative and modifier auxiliary trees We should mention that
auxiliary trees in LTAG are of a predicative or a modifier type (Kroch 1989; Schabes and Shieber
1994). The former introduces a predicate that subcategorizes for a phrase of the category of its
foot node, while the latter introduces a modifying, dislocated phrase, or a complement. This
distinction is, in rough terms, made by determining which daughter is the head, a foot node
or a trunk node.Tateisi et al. (1998)distinguished these trees by manually analyzing feature
percolation in auxiliary trees and by assigning HPSG rule schemata separately to each auxiliary
tree. In this paper, we consider that all trunk nodes are heads, that is, treat all auxiliary trees as
predicative trees, but we can manually or semi-automatically determine the above categories by
providing some linguistic cues or by analyzing feature percolation.

5Note that HPSG-specific linguistic theories such as binding theory must be implemented in the obtained HPSG-
style grammar by defining additional features or special mechanisms.
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Table 1: The classification of elementary trees in the XTAG English grammar (LTAG) and lexical
entries converted from (HPSG):A: canonical elementary trees,B: trees that are non-canonical
only because they violate Condition 1,C: violate Condition 2,D: trees that violate both condi-
tions

Grammar A B C D Total

LTAG 326 764 54 50 1,194
HPSG 326 1,992 1,083 2,474 5,875

Head selection How we should implement the functionselect in Figure7 that selects the an-
chorA is not entirely clear. Since most multi-anchored trees represent compound expressions or
idioms, such as “in front of” and “kick the bucket,” this problem can be replaced with the problem
of which word of a phrase is the syntactic/semantic head. We must also consider a similar issue
to do with how we should implement the functionselect in Figure8 that selects the leaf node
S to be substituted. Since elementary trees with non-anchored subtrees represent constructions
that require a specification beyond immediate dominance, such asit-cleftsandequative be, this
problem may be rephrased as one of finding which leaf node takes the dominant syntactic role
and should be substituted in carrying out HPSG analysis. We currently simply select an anchor
or a substitution node from the left-most node, though we can solve these problems by using
linguistic ideas such as projection.

4 Experiments

We applied the algorithm to the latest version of the XTAG English grammar (The XTAG Re-
search Group 2001),6 a large-scale FB-LTAG grammar for English. We successfully converted
all elementary trees7 in the XTAG English grammar to HPSG lexical entries. Table1 shows the
classification of the elementary trees of the XTAG English grammar according to the conditions
we introduced in Section3. The table also shows the number of corresponding HPSG lexical
entries.

In the experiment with the parsing of 457 sentences from the ATIS corpus8 (Marcus et al.
1994: the average length is 6.32 words), we acquired exactly the same number of derivation
trees by using the original and obtained grammars. This result is empirical attestation of the
strong equivalence of our algorithm. We had thus made the XTAG English grammar available

6We used the grammar attached to the latest distribution of the LTAG parser which we used in the parsing
experiment. This parser is available at:ftp://ftp.cis.upenn.edu/pub/xtag/lem/lem-0.13.0.i686.tgz

7Elementary treesshould in fact be denoted aselementary tree templates. That is, elementary tree templates are
abstracted from lexicalized trees, which defines one syntactic lexicon.

8We eliminated 59 sentences because of a time-out of the parsers, and 61 sentences because the LTAG parser
sometimes does not produce correct derivation trees because of bugs in its preprocessor.
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Table 2: The classification of the non-canonical elementary trees in Table1: multi-anchored
trees (corresponding toB) (left), and trees with non-anchored subtrees (corresponding toC∪D)
(right)

Construction # of trees

Compound expressions 414
Verb with PP 194
Idioms 140
Others 16
Total 764

Construction # of trees

Verb with PP 85
It-cleft 12
Others 7
Total 104

to the HPSG community by converting the grammar to HPSG-style. In the experimental result,
we see that the efficient HPSG parser (Torisawa et al. 2000) achieved a speed in parsing that
was higher by a factor of 25.5 than the LTAG parser (Sarkar 2000). We further investigated
the reason for this speed-up in an earlier work (Yoshinaga et al. 2001) where we obtained the
following results. Contrary to expectations from the viewpoint of the theoretical bound of worst
time complexity, we showed that the empirical time complexity of the HPSG parser is lower than
that of the LTAG parser. By inspecting the differences between the algorithms of both parsers,
we finally concluded that suppressing the ambiguity of partial parse trees by the operation called
factoringis the most important factor in achieving high performance in parsing, and that existing
HPSG parsers are more beneficial than LTAG parsers in this respect.9

The left-hand side of Table2 shows how multi-anchored elementary trees are used in the
XTAG English grammar. The table shows that they are mainly used for compound expressions
or idioms. Although such expressions seem to be difficult to explain in terms of the HPSG
formalism, the obtained grammar is able to handle them when they are divided into multiple
lexical entries. Another case of multi-anchored trees isthe multi-anchor PP complement verb,
whose prepositional node is anchored. Such a case is shown in the center of Figure3. The
obtained grammar expresses this construction by cut-off nodes to require specified subtrees. In
linguistic specifications in terms of HPSG, on the other hand, such a constraint is expressed
by having aPFORM feature, which takes values that represent the type of the corresponding
prepositional phrase. This analysis seems to be consistent with the obtained grammar, that is, the
LTAG analysis.

9The compaction of substructures in elementary trees has been asserted to have a great impact on performance
in parsing (Evans and Weir 1998; Lopez 2000). In this research, several elementary trees for each word were
converted into finite-state automata, and merged into a single finite-state automaton. In the HPSG parsers, some
of this compaction is dynamically executed by factoring. Furthermore, the factoring method enables another kind
of compaction which merges the equivalent edges headed by different words. Automaton-based compaction is
incapable of performing this kind of compaction, since their techniques are basically closed in elementary trees for
each word.
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The right-hand side of Table2 shows the usages represented by elementary trees with non-
anchored subtrees. These elementary trees express constructions requiring specifications beyond
immediate dominance. As we can see in Table1, these trees are expanded to include quite a large
number of lexical entries. This result leads us to expect that these constructions might be difficult
to handle in the HPSG formalism. The major case of such constructions isthe PP complement
verb, which has the expanded PP structure (seeit-cleft in the right-hand side of Figure3). This
construction allows the extraction of the object of the preposition, and expresses the verb taking
the object of the preposition as its argument rather than taking the whole PP. In the HPSG
formalism, on the other hand, this NP extraction is explained by using theSLASH feature, and
the predicate-argument relation between the verb and the object of the preposition is expressed
by linking the argument in the predicative-argument structure (theCONTENT feature) with the
object of the preposition. This construction is hence explained differently in LTAG and HPSG.
Further case is theit-cleft. It is not clear how to handle this in the HPSG formalism, which might
be a subject worth discussing.

5 Conclusion

We have proposed a method for grammar conversion from an FB-LTAG grammar into an HPSG-
style grammar. Strong equivalence between the original and converted grammars is guaranteed;
hence, we can obtain the parsing results of an LTAG grammar from the parsing results of the
HPSG-style grammar obtained by conversion. Our method thus enables the sharing of LTAG
resources with the HPSG community, the application of HPSG parsing techniques to LTAG
grammars, and the clarification of the differences between linguistic analysis according to the
two grammar formalisms. We implemented this algorithm and obtained the following results.
(1) We used our grammar conversion algorithm to successfully convert the latest version of the
XTAG English grammar; that is, we made the XTAG English grammar available to the HPSG
community. (2) We used the strong equivalence of the grammars to perform the first ever fair
comparison of the performance of each of the approaches in parsing, and showed the relative effi-
ciency of an HPSG parser. (3) By analyzing the obtained HPSG-style grammar, we observed the
difference between the two formalisms. We are going to formally prove the strong equivalence
between the two grammars. This will be possible because of the formulation of the conversion
algorithms.
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Armanda Colin. in French.
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