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Abstract

Accounts of semantic phenomena often involve extending types of meanings and
revising composition rules at the same time. The concept of monads allows many
such accounts—for intensionality, variable binding, quantification and focus—to be
stated uniformly and compositionally.

1 Introduction

The Montague grammar tradition formulates formal semantics for natural languages in
terms of the λ-calculus. Each utterance is considered a tree in which each leaf node is
a lexical item whose meaning is a (usually typed) value in the λ-calculus. The leaf node
meanings then determine meanings for subtrees, through recursive application of one or
more composition rules. A composition rule specifies the meaning of a tree in terms of the
meanings of its sub-trees. One simple composition rule is function application:

Jx yK = JxK
(
JyK
)

: β where JxK : α→ β and JyK : α. (1)

Here α and β are type variables, and we denote function types by →.
To handle phenomena such as intensionality, variable binding, quantification and focus,

we often introduce new types in which to embed existing aspects of meaning and accommo-
date additional ones. Having introduced new types, we then need to revise our composition
rules to reimplement existing functionality. In this way, we often augment semantic theo-
ries by simultaneously extending the types of meanings and stipulating new composition
rules. When we augment a grammar, its original lexical meanings and composition rules
become invalid and require global renovation (typically described as “generalizing to the
worst case” (Partee 1996)). Each time we consider a new aspect of meaning, all lexical
meanings and composition rules have to be revised.
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Over the past decade, the category-theoretic concept of monads has gained popularity
in computer science as a tool to structure denotational semantics (Moggi 1990, 1991) and
functional programs (Wadler 1992a,b) with computational side effects. When used to
structure computer programs, monads allow the substance of a computation to be defined
separately from the plumbing that supports its execution, increasing modularity. Many
accounts of phenomena in natural language semantics can also be phrased in terms of
monads, thus clarifying the account and simplifying the presentation.

In this paper, I will present the concept of monads and show how they can be applied
to natural language semantics. To illustrate the approach, I will use four monads to state
analyses of well-known phenomena uniformly and compositionally. By “uniformly” I mean
that, even though the analyses make use of a variety of monads, they all invoke monad
primitives in the same way. By “compositionally” I mean that the analyses define compo-
sition rules in the spirit of Montague grammar. After presenting the monadic analyses, I
will discuss combining monads to account for interaction between semantic phenomena.

Acknowledgments Thanks to Stuart Shieber, Dylan Thurston, Chris Barker, and
the anonymous referees at ESSLLI-2001 and WEB-SLS for helpful discussions and com-
ments. This work is supported by the United States National Science Foundation under
Grant IRI-9712068.

2 Monadic analyses

Intuitively, a monad is a transformation on types equipped with a composition method for
transformed values. Formally, a monad is a triple (M, η, ?), whereM is a type constructor (a
map from each type α to a corresponding typeMα), and η and ? are functions (pronounced
“unit” and “bind”)

η : α→Mα, ? : Mα→ (α→Mβ)→Mβ. (2)

These two functions are polymorphic in the sense that they must be defined for all types
α and β. Roughly speaking, η specifies how ordinary values can be injected into the
monad, and ? specifies how computations within the monad compose with each other. By
definition, η and ? must satisfy left identity, right identity, and associativity:

η(a) ? k = k(a) ∀a : α, k : α→Mβ, (3a)

m ? η = m ∀m : Mα, (3b)(
m ? k

)
? l = m ?

(
λv. k(v) ? l

)
∀m : Mα, k : α→Mβ, l : β →Mγ. (3c)

In computer science, monads formalize the idea that denotations are not values but
value-producing computations. For every value type α, the monad specifies a type Mα,
the type of computations that produce α-values (possibly with some side effect). The
function η maps every α-value a to the trivial computation that produces a with no side

2



effect. Given any α-computation m, and any map k from α-values to β-computations, the
β-computation m ? k is the following: First, execute m to compute an α-value a. Then,
execute the β-computation k(a).

We now present some concrete linguistic applications of this definition.

2.1 The powerset monad; interrogatives

As a first example, consider sets. Corresponding to each type α we have a type α→ t, the
type of subsets of α. We define1

Mα = α→ t ∀α, (4a)

η(a) = {a} : Mα ∀a : α, (4b)

m ? k =
⋃
a∈m k(a) : Mβ ∀m : α→ t, k : α→ β → t. (4c)

The powerset monad is a crude model of non-determinism. For example, the set of
individuals m1 defined by

m1 = {John,Mary} : Me

can be thought of as a non-deterministic individual—it is ambiguous between John and
Mary. Similarly, the function k1 defined by

k1 : e→M(e→ t)

k1(a) = {λx. like(a, x), λx. hate(a, x)} : M(e→ t)

maps each individual to a non-deterministic property. To apply the function k1 to the
individual m1, we compute

m1 ? k1 =
⋃
a∈{John,Mary}{λx. like(a, x), λx. hate(a, x)}

= {λx. like(John, x), λx. hate(John, x),

λx. like(Mary, x), λx. hate(Mary, x)} : M(e→ t).

We see that the non-determinism in both m1 and k1 is carried through to produce a 4-way-
ambiguous result.

Most words in natural language are not ambiguous in the waym1 and k1 are. To upgrade
an ordinary (deterministic) value of any type α to the corresponding non-deterministic type
Mα, we can apply η to the ordinary value, say John:

η(John) = {John} : Me,

{John} ? k1 = {λx. like(John, x), λx. hate(John, x)} : M(e→ t).
(5)

1In this section and the next, we treat types as sets in order to define the powerset and pointed powerset
monads. These two monads do not exist in every model of the λ-calculus.
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Similarly, to convert an ordinary function to a non-deterministic function, we can apply η
to the output of the ordinary function, say k2 below:

k2 = λa. λx. like(a, x) : e→ e→ t,

η ◦ k2 = λa. {λx. like(a, x)} : e→M(e→ t),

m1 ? (η ◦ k2) = {λx. like(John, x), λx. like(Mary, x)} : M(e→ t).

(6)

In both (5) and (6), an ordinary value is made to work with a non-deterministic value by
upgrading it to the non-deterministic type.

Consider now the function application rule (1). We can regard it as a two-argument
function, denoted A and defined by

A : (α→ β)→ α→ β,

A(f)(x) = f(x) : β ∀f : α→ β, x : α.
(7)

We can lift ordinary function application A to non-deterministic function application AM,
defined by

AM : M(α→ β)→Mα→Mβ,

AM(f)(x) = f ?
[
λa. x ? [λb. η(a(b))]

]
: Mβ ∀f : M(α→ β), x : Mα.

(8)

Substituting (4) into (8), we get

AM(f)(x) = { a(b) | a ∈ f , b ∈ x } ⊆ β ∀f ⊆ α→ β, x ⊆ α. (9)

Just as the definition of A in (7) gives rise to the original composition rule (1), that is,

Jx yK = A(JxK)(JyK), (10)

the definition of AM in (8) gives rise to the revised composition rule

Jx yK = AM(JxK)(JyK). (11)

For the powerset monad, this revised rule is the set-tolerant composition rule in the alter-
native semantics analysis of interrogatives first proposed by Hamblin (1973). In Hamblin’s
analysis, the meaning of each interrogative constituent is a set of alternatives available as
answers to the question; this corresponds to the definition of M in (4). By contrast, the
meaning of each non-interrogative constituent is a singleton set; this corresponds to the
definition of η in (4).

To support question-taking verbs (such as know and ask), we (and Hamblin) need a
secondary composition rule in which A is lifted with respect to the function f but not the
argument x:

Jx yK = A′
M

(JxK)(JyK) where

A′
M

: M(Mα→ β)→Mα→Mβ,

A′
M

(f)(x) = f ?
[
λa. η(a(x))

]
: Mβ ∀f : M(Mα→ β), x : Mα.

(12)
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Substituting (4) into (12), we get

A′
M

(f)(x) = { a(x) | a ∈ f } ⊆ β ∀f ⊆ (α→ t)→ β, x ⊆ α, (13)

Note that, for any given pair of types of JxK and JyK, at most one of AM (8) and A′
M

(12) can
apply. Thus the primary composition rule (11) and the secondary composition rule (12)
never conflict.

2.2 The pointed powerset monad; focus

A variation on the powerset monad (4) is the pointed powerset monad ; it is implicitly
involved in Rooth’s (1985; 1996) account of focus in natural language. A pointed set is
a nonempty set with a distinguished member. In other words, a pointed set x is a pair
x = (x0, x1), where x0 is a member of the set x1. Define the pointed powerset monad by

Mα =
{

(x0, x1) | x0 ∈ x1 ⊆ α
}

∀α, (14a)

η(a) =
(
a, {a}

)
: Mα ∀a : α, (14b)

m ? k =
(
[k(m0)]0,

⋃
a∈m1

[k(a)]1
)

: Mβ ∀m : Mα, k : α→Mβ. (14c)

This definition captures the intuition that we want to keep track of both a set of non-
deterministic alternatives and a particular alternative in the set. As with the powerset
monad, the definition of m ? k carries the non-determinism in both m and k through to
the result.

Substituting our new monad definition (14) into the previously lifted application for-
mula (8) gives

AM(f0, f1)(x0, x1) =
(
f0(x0), { a(b) | a ∈ f1, b ∈ x1 }

)
: Mβ

∀(f0, f1) : M(α→ β), (x0, x1) : Mα.
(15)

This formula, in conjunction with the primary composition rule (11), is equivalent to
Rooth’s recursive definition of focus semantic values.

Crucially, even though the pointed powerset monad extends our meaning types to
accommodate focus information, neither our definition of AM in (8) nor our composition
rule (11) needs to change from before. Moreover, the majority of our lexical meanings have
nothing to do with focus and thus need not change either. For example, in the hypothetical
lexicon entry JJohnK = η(John), the upgrade from meaning type e to meaning type Me
occurs automatically due to the redefinition of η.

2.3 The reader monad; intensionality and variable binding

Another monad often seen in computer science is the reader monad, also known as the
environment monad. This monad encodes dependence of values on some given input (from
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the keyboard, say). To define the reader monad, fix a type ρ—say the type s of possible
worlds, or the type g of variable assignments—then let

Mα = ρ→ α ∀α, (16a)

η(a) = λw. a : Mα ∀a : α, (16b)

m ? k = λw. k
(
m(w)

)
(w) : Mβ ∀m : Mα, k : α→Mβ. (16c)

Note how the definition of m ? k threads the input w through both m and k to produce
the result. To see this threading process in action, let us once again substitute our monad
definition (16) into the definition of AM in (8):

AM(f)(x) = λw. f(w)
(
x(w)

)
: Mβ ∀f : M(α→ β), x : Mα. (17)

For ρ = s, we can think of M as the intensionality monad, noting that (17) is exactly the
usual extensional composition rule. While words such as student and know have meanings
that depend on the possible world w, words such as is and and do not. We can upgrade
the latter by applying η.

For ρ = g, we can think of M as the variable binding monad, noting that (17) is
the usual assignment-preserving composition rule. Except for pronominals, most word
meanings do not refer to the variable assignment. Thus we can upgrade the majority of
word meanings by applying η.

Substituting the same monad definition (16) into the secondary composition rule (12)
gives

A′
M

(f)(x) = λw. f(w)(x) : Mβ ∀f : M(Mα→ β), x : Mα. (18)

For ρ = s, this is the intensional composition rule; it handles sentence-taking verbs such
as know and believe (of type s→ (s→ t)→ e→ t) by allowing them to take arguments of
type s → t rather than type t. The monad laws, by the way, guarantee that A′

M
(f)(x) =

AM(f)
(
η(x)

)
for all f and x; the function η (in this case a map from s→ t to s→ s→ t)

is simply the intension (up) operator, usually written ∧.
For ρ = g, the same formula (18) is often involved in accounts of quantification that

assume quantifier raising at LF, such as that in the textbook by Heim and Kratzer (1998).
It handles raised quantifiers (of type g → (g → t)→ t) by allowing them to take arguments
of type g → t rather than type t. The function η (in this case a map from g → t to
g → g → t) is simply the variable abstraction operator.

2.4 The continuation monad; quantification

Barker (2001) proposed an analysis of quantification in terms of continuations. He con-
tinuizes a grammar by replacing each meaning type α with its corresponding continuized
type (α → t) → t. As a special case, the meaning type of NPs is changed from e to
(e→ t)→ t, matching the treatment of English quantification by Montague (1974).
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Intuitively, “the continuation represents an entire (default) future for the computation”
(Kelsey, Clinger, Rees et al. 1998): In the sentence John smokes, the continuation of John
is the “sentence with a hole” [–] smokes. In Barker’s account, quantificational NPs such as
everyone manipulate continuations, for instance to give the meaning of everyone smokes.

For any fixed type ω (say t), we can define a continuation monad with answer type ω:

Mα = (α→ ω)→ ω ∀α, (19a)

η(a) = λc. c(a) : Mα ∀a : α, (19b)

m ? k = λc.m
(
λa. k(a)(c)

)
: Mβ ∀m : Mα, k : α→Mβ. (19c)

The value c manipulated in these definitions is a continuation. Each value of type Mα
must turn a continuation (of type α → ω) into an answer (of type ω). The most obvious
way to do so, encoded in the definition of η above, is to feed the continuation a value of
type α:

JJohnK = η(John) = λc. c(John) : Me, (20a)

JsmokesK = η(smoke) = λc. c(smoke) : M(e→ t). (20b)

To compute the meaning of John smokes, we first substitute our monad definition (19) into
the primary composition operation AM (8):

AM(f)(x) = λc. f
(
λg. x

(
λy. c(g(y))

))
: Mβ ∀f : M(α→ β), x : Mα. (21)

Letting f = η(smoke) and x = η(John) then gives

JJohn smokesK = λc. η(smoke)
(
λg. η(John)

(
λy. c(g(y))

))
= λc. η(John)

(
λy. c(smoke(y))

)
= λc. c(smoke(John)) : Mt.

In the second step above, note how the term λy. c(smoke(y)) represents the future for the
computation of JJohnK, namely to check whether he smokes, then pass the result to the
context c containing the clause. If John smokes is the main clause, then the context c
is simply the identity function idω. We define an evaluation operator ε : Mω → ω by
ε(m) = m(idω). Fixing ω = t, we then have ε

(
JJohn smokesK

)
= smoke(John), as desired.

Continuing to fix ω = t, we can specify a meaning for everyone:

JeveryoneK = λc. ∀x. c(x) : Me. (22)

This formula is not of the form λc. c(. . . ). In other words, the meaning of everyone non-
trivially manipulates the continuation, and so cannot be obtained from applying η to an
ordinary value. Using the continuized composition rule (21), we now compute a denotation
for everyone smokes :

Jeveryone smokesK = λc. η(smoke)
(
λg. JeveryoneK

(
λy. c(g(y))

))
= λc. JeveryoneK

(
λy. c(smoke(y))

)
= λc. ∀x. c(smoke(x)) : Mt,
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giving ε
(
Jeveryone smokesK

)
= ∀x. smoke(x) : t, as desired.

In Barker’s account, quantifier scoping corresponds to evaluation order. The compo-
sition operation AM, as we defined it in (8), evaluates f (into a) before x (into b). This
gives the inverse scope reading of someone loves everyone. If we replace the right hand
side of (8) with

x ?
[
λb. f ? [λa. η(a(b))]

]
, (23)

then we would get the opposite evaluation order and the linear scope reading of someone
loves everyone. (Of the monads presented in this paper, the continuation monad is the only
non-commutative one—that is, the only monad where evaluation order makes a difference.)

The main theoretical advantage of this analysis is that it is a compositional, in-situ
analysis that does not invoke quantifier raising. Moreover, note that a grammar continuized
is still a grammar—the continuized composition rule (21) is perfectly interpretable using
the standard machinery of Montague grammar. In particular, we do not invoke any type
ambiguity or flexibility as proposed by Partee and Rooth (1983) and Hendriks (1993); the
interpretation mechanism performs no type-shifting at “run-time”.

This desirable property also holds of the other monadic analyses I have presented. For
instance, in a grammar with intensionality, meanings that use intensionality (for example
JstudentK) are identical in type to meanings that do not (for example JisK). The interpre-
tation mechanism does not dynamically shift the type of is to match that of student.

It is worth relating the present analysis to the computer science literature. Danvy
and Filinski (1990) studied composable continuations, which they manipulated using two
operators “shift” and “reset”. The meaning of everyone specified in (22) can be expressed
in terms of shift. To encode scope islands, Barker implicitly used reset. Filinski (1999)
proved that, in a certain sense, composable continuations can simulate monads.

3 Combining monads

Having placed various semantic phenomena in a monadic framework, we now ask a natural
question: Can we somehow combine monads in a modular fashion to characterize interac-
tion between semantic phenomena, for example between intensionality and quantification?

Unfortunately, there exists no general construction for composing two arbitrary monads,
say (M1, η1, ?1) and (M2, η2, ?2), into a new monad of the form (M3 = M1◦M2, η3, ?3) (King
and Wadler 1993; Jones and Duponcheel 1993). One might still hope to specialize and
combine monads with additional structure, to generalize and combine monads as instances
of a broader concept, or even to find that obstacles in combining monads are reflected in
semantic constraints in natural language.

Researchers in denotational semantics of programming languages have made several
proposals towards combining monadic functionality, none of which are completely satis-
factory (Moggi 1990; Steele 1994; Liang, Hudak, and Jones 1995; Espinosa 1995; Filinski
1999). In this section, I will relate one prominent approach to natural language semantics.
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3.1 Monad morphisms

One approach to combining monads, taken by Moggi (1990), Liang et al. (1995), and
Filinski (1999), is to compose monad morphisms instead of monads themselves. A monad
morphism (also known as a monad transformer or a monad layering) is a map from monads
to monads; it takes an arbitrary monad and transforms it into a new monad, presumably
defined in terms of the old monad and supporting a new layer of functionality. For instance,
given any monad (M1, η1, ?1) and fixing a type ρ, the reader monad morphism constructs
a new monad (M2, η2, ?2), defined by

M2α = ρ→M1α ∀α, (24a)

η2(a) = λw. η1(a) : M2α ∀a : α, (24b)

m ?2 k = λw.
[
m(w) ?1 λa. k(a)(w)

]
: M2β ∀m : M2α, k : α→M2β. (24c)

If we let the old monad (M1, η1, ?1) be the identity monad, defined by M1α = α, η1(a) = a,
and m ?1 k = k(m), then the new monad (24) is just the reader monad (16). If we let
the old monad be some other monad—even the reader monad itself—the new monad adds
reader functionality.

By definition, each monad morphism must specify how to embed computations inside
the old monad into the new monad. More precisely, each monad morphism must provide
a function (pronounced “lift”)

` : M1α→M2α, (25)

polymorphic in α. By definition, ` must satisfy naturality:

`
(
η1(a)

)
= η2(a) ∀a : α, (26a)

`
(
m ?1 k

)
= `(m) ?2 (` ◦ k) ∀m : M1α, k : α→M1β. (26b)

For the reader monad morphism, ` is defined by

`(m) = λw.m : M2α ∀m : M1α. (27)

The continuation monad also generalizes to a monad morphism. Fixing an answer
type ω, the continuation monad morphism takes any monad (M1, η1, ?1) to the monad
(M2, η2, ?2) defined by

M2α = (α→M1ω)→M1ω ∀α, (28a)

η2(a) = λc. c(a) : M2α ∀a : α, (28b)

m ?2 k = λc.m
(
λa. k(a)(c)

)
: M2β ∀m : M2α, k : α→M2β. (28c)

The lifting function ` for the continuation monad morphism is defined by

`(m) = λc. (m ?1 c) : M2α ∀m : M1α. (29)
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Under the monad morphism approach, a monad can be transformed through a monad
morphism to give a combined monad that supports the functionality of both the monad
and the monad morphism. Since each monad morphism is a map from arbitrary monads
to other monads, monad morphisms can be freely composed with each other, though the
order of composition is significant. Applying the continuation monad morphism to the
reader monad is equivalent to applying to the identity monad the composition of the
continuation monad morphism and the reader monad morphism, and yields a monad with
type constructor Mα = (α→ ρ→ ω)→ ρ→ ω. Applying the reader monad morphism to
the continuation monad is equivalent to applying to the identity monad the composition of
the reader monad morphism and the continuation monad morphism, and yields a different
monad, with type constructor Mα = ρ→ (α→ ω)→ ω.

3.2 Translating monads to monad morphisms

The monad morphisms (24) and (28) may appear mysterious, but we can in fact obtain
them from their monad counterparts (16) and (19) via a mechanical translation. The trans-
lation takes a monad (M0, η0, ?0) whose η0 and ?0 operations are λ-terms, and produces
a morphism mapping any old monad (M1, η1, ?1) to a new monad (M2, η2, ?2). Informally
speaking, the translation treats the λ-calculus with which (M0, η0, ?0) is defined as a pro-
gramming language with side effects, and specifies a denotational semantics for it.

At the beginning of §3, we mentioned that there is no way to compose two arbitrary
monads. This entails that there is no way to translate an arbitrary monad to a monad
morphism. The translation we are about to describe is defined recursively on the structure
of λ-types and λ-terms. It thus requires M0 to be defined as a λ-type, and η0 and ?0 to be
defined as λ-terms. Therefore, the translation cannot apply to the powerset and pointed
powerset monads (see footnote 1). Nevertheless, any monad morphism (including ones
produced by the translation) can be applied to any monad (including these two monads).

Every type τ is either a function type or a base type. A function type has the form
τ1 → τ2, where τ1 and τ2 are types. A base type ι is a type fixed in M0 (ρ and ω in our
cases), a polymorphic type variable (α and β as appearing in η and ? (2) and ` (25)), or
the terminal type ! (also known as the unit type or the void type). For every type τ , we
recursively define its computation translation dτe and its value translation bτc:

dιe = M1ι, bιc = ι, dτ1 → τ2e = bτ1 → τ2c = bτ1c → dτ2e , (30)

where ι is any base type. Intuitively, each type τ in the λ-calculus with which (M0, η0, ?0)
is defined corresponds to two types in the pure λ-calculus: the type dτe of τ -computations,
and the type bτc of τ -values.

Each term e : τ is an application term, an abstraction term, a variable term, or the
terminal term. An application term has the form (e1 : τ1 → τ2) (e2 : τ1) : τ2, where e1 and
e2 are terms. An abstraction term has the form (λx : τ1. e : τ2) : τ1 → τ2, where e is a
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term. A variable term has the form x : τ , where x is the name of a variable of type τ .
The terminal term is ! : ! and represents the unique value of the terminal type !. For every
term e : τ , we recursively define its term translation dee : dτe:⌈

(e1 : ι→ τ1 → · · · → τn → ι′)(e2 : ι)
⌉

= (31a)

λy1 : bτ1c. . . . λyn : bτnc.
[
de2e ?1

(
λy0 : ι. de1e (y0) . . . (yn)

)]
,⌈

(e1 : (τ1 → τ2)→ τ3)(e2 : τ1 → τ2)
⌉

= de1e
(
de2e

)
, (31b)

dλx : τ . ee = λx : bτc. dee , (31c)

dx : ιe = η1(x), (31d)

dx : τ1 → τ2e = x, (31e)

d!e = η1(!), (31f)

where ι and ι′ are any base types, and y0, . . . , yn are fresh variable names.
Finally, to construct the new monad (M2, η2, ?2), we specify

M2α = dM0αe , η2 = dη0e , ?2 = d?0e ,
`(m) =

⌈
λf : !→ α. η0(f(!))

⌉
(λ! : !.m) ∀m : M1α.

(32)

To illustrate this translation, let us expand out M2 and ?2 in the special case where
(M0, η0, ?0) is the reader monad (16). From the type translation rules (30) and the speci-
fication of M2 in (32), we have

M2α = dρ→ αe = bρc → dαe = ρ→M1α,

matching (24a) as desired. From the term translation rules (31) and the specification of
?2 in (32), we have

?2 =
⌈
λm : ρ→ α. λk : α→ ρ→ β. λw : ρ. k

(
m(w)

)
(w)
⌉

by (16c)

= λm : ρ→M1α. λk : α→ ρ→M1β. λw : ρ.
⌈
k
(
m(w)

)
(w)
⌉

by (31c),

in which ⌈
k
(
m(w)

)
(w)
⌉

= η1(w) ?1 λy0 : ρ.
⌈
k
(
m(w)

)⌉
(y0) by (31a), (31d)

=
⌈
k
(
m(w)

)⌉
(w) by (3a)

=
(
dwe ?1 λy0 : ρ. dme (y0)

)
?1 λy0 : α. dke (y0)(w) by (31a)

=
(
η1(w) ?1 λy0 : ρ.m(y0)

)
?1 λy0 : α. k(y0)(w) by (31d), (31e)

= m(w) ?1 λy0 : α. k(y0)(w) by (3a),

matching (24c) as desired.
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As mentioned earlier, the intuition behind our translation is to treat the λ-calculus with
which (M0, η0, ?0) is defined as a programming language whose terms may have computa-
tional side effects. Our translation specifies a semantics for this programming language in
terms of (M1, η1, ?1) that is call-by-value and that allows side effects only at base types.
That the semantics is call-by-value rather than call-by-name is reflected in the type trans-
lation rules (30), where we define bτ1 → τ2c to be bτ1c → dτ2e rather than dτ1e → dτ2e.
That side effects occur only at base types is also reflected in the rules, where we define
dτ1 → τ2e to be bτ1 → τ2c rather than M1 bτ1 → τ2c. Overall, our translation is a hybrid
between the call-by-name Algol translation (Benton, Hughes, and Moggi 2000; §3.1.2) and
the standard call-by-value translation (Wadler 1992a; §8; Benton et al. 2000; §3.1.3).

3.3 A call-by-name translation of monads

Curiously, the semantic types generated by monad morphisms seem sometimes not powerful
enough. As noted at the end of §3.1, the reader and continuation monad morphisms
together give rise to two different monads, depending on the order in which we compose
the monad morphisms. Fixing ρ = s for the reader monad morphism and ω = t for the
continuation monad morphism, the two combined monads have the type constructors

Mcrα = (α→ s→ t)→ s→ t, Mrcα = s→ (α→ t)→ t. (33)

Consider now sentences such as

John wanted to date every professor (at the party). (34)

This sentence has a reading where every professor at the party is a person John wanted
to date, but John may not be aware that they are professors. On this reading, note that
the world where the property of professorship is evaluated is distinct from the world where
the property of dating is evaluated. Therefore, assuming that to date every professor is
a constituent, its semantic type should mention s in contravariant position at least twice.
Unfortunately, the type constructorsMcr andMrc (33) each have only one such occurrence,
so neither Mcrt nor Mrct can be the correct type.

Intuitively, the semantic type of to date every professor ought to be(
(s→ t)→ s→ t

)
→ s→ t (35)

or an even larger type. The type (35) is precisely equal toMcr(s→ t), but simply assigning
Mcr(s→ t) as the semantic type of to date every professor would be against our preference
for the reader monad morphism to be the only component of the semantic system that
knows about the type s. Instead, what we would like is to equip the transformation on
types taking each α to

(
(s → α) → s → t

)
→ s → t with a composition method for

transformed values.

12



One tentative idea for synthesizing such a composition method is to replace the call-
by-value translation described in §3.2 with a call-by-name translation, such as the Algol
translation mentioned earlier (Benton et al. 2000; §3.1.2).2 For every type τ , this transla-
tion recursively defines a type VτW:

VιW = M1ι, Vτ1 → τ2W = Vτ1W→ Vτ2W, (36)

where ι is any base type. For every term e : τ , this translation recursively defines a term
VeW : VτW:

Ve1(e2)W = Ve1W
(
Ve2W

)
, VxW = x,

Vλx : τ . eW = λx : VτW.VeW, V!W = η1(!).
(37)

Applying this translation to a monad (M0, η0, ?0) gives the types

Vη0W : M1α→ VM0αW, (38a)

V?0W : VM0αW→
(
M1α→ VM0βW

)
→ VM0βW. (38b)

If we let (M0, η0, ?0) be the continuation monad (19) and (M1, η1, ?1) the reader monad (16),
then the type t transformed is

VM0tW = (M1t→M1t)→M1t =
(
(s→ t)→ s→ t

)
→ s→ t,

as desired. However, unless (M1, η1, ?1) is the identity monad, the types in (38) do not
match the definition of monads in (2). In other words, though our call-by-name translation
does give the type transform we want as well as a composition method in some sense, its
output is not a monad morphism.

4 Conclusion

In this paper, I used monads to characterize the similarity between several semantic
accounts—for interrogatives, focus, intensionality, variable binding, and quantification.3

In each case, the same monadic composition rules and mostly the same lexicon were spe-
cialized to a different monad. The monad primitives η and ? recur in semantics with
striking frequency.

It remains to be seen whether monads would provide the appropriate conceptual encap-
sulation for a semantic theory with broader coverage. In particular, for both natural and
programming language semantics, combining monads—or perhaps monad-like objects—
remains an open issue that promises additional insight.

2Another possible translation is the standard (“Haskell”) call-by-name one (Wadler 1992a; §8; Benton
et al. 2000; §3.1.1). It produces strictly larger types than the Algol call-by-name translation, for instance
s→

(
s→ (s→ α)→ s→ t

)
→ s→ t.

3Other phenomena that may fall under the monadic umbrella include presuppositions (the error monad)
and dynamic semantics (the state monad).
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and Arnim von Stechow, 361–383. Berlin: de Gruyter.

Rooth, Mats. 1996. Focus. In Lappin (1996), 271–297.

Rooth, Mats Edward. 1985. Association with focus. Ph.D. thesis, Department of Linguis-
tics, University of Massachusetts.

Steele, Guy L., Jr. 1994. Building interpreters by composing monads. In POPL ’94: Con-
ference record of the annual ACM symposium on principles of programming languages,
472–492. New York: ACM Press.

Wadler, Philip. 1992a. Comprehending monads. Mathematical Structures in Computer
Science 2(4):461–493.

———. 1992b. The essence of functional programming. In POPL ’92: Conference record of
the annual ACM symposium on principles of programming languages, 1–14. New York:
ACM Press.

15


	Introduction
	Monadic analyses
	The powerset monad; interrogatives
	The pointed powerset monad; focus
	The reader monad; intensionality and variable binding
	The continuation monad; quantification

	Combining monads
	Monad morphisms
	Translating monads to monad morphisms
	A call-by-name translation of monads

	Conclusion

